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In this article we determine a formula for fractal and resistance dimensions of
two models of uniformly bounded random trees. The type (transient or recurrent)
of the random walk on such trees is ascribed, to some extent, to these dimensions.
The results presented in this article generalize some of the results of [6] and [7].

1. INTRODUCTION

The structure of a tree plays a considerable role in the context of probability on trees.
This role is essential, for instance, in determining the type of the random walk on a
tree, whether it is transient or recurrent, which is equivalent to deciding whether
the effective resistance is finite or infinite (if the tree is considered as an electric
network by assigning conductivities to its edges). See [2], [5], [8], or [9]. The
growth rate, GR(G), of a tree G is defined roughly as the nth root of the size of the
nth generation of the tree. As is seen from its definition, GR(G) barely takes into
account the process of branching of G. As such, we cannot rely much on GR(G).
The branching number, BR(G), is more reliable in describing the branching
process. BR(G) is, roughly, the mean number of branches emerging out from a
vertex of tree (outdegree). It is known that the random walk on a tree G is transient
if BR(G) . 1 and could be of either type if BR(G) ¼ 1 see [12]. The energy as
well as the capacity of a flow are closely related to the type of the random walk. In
this article we study two exponent measures of the structure of the tree: the fractal
dimension and the resistance dimension. These dimensions are related to the ran-
dom walk dimension via the Einstein equation RWD ¼ FD 2 RD þ 2, where RWD,
FD, and RD stand respectively for the random walk dimension, the fractal dimen-
sion, and the resistance dimension. This relation holds true for sufficiently regular
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(dense and smooth) trees of polynomial growth. See [13] or [14]. It is shown for a
spherically symmetric tree SSRT (where the degree of a vertex depends only on its
distance from the root) of polynomial growth that FD ¼ RD and, as such, RWD¼ 2.
This entails that the mean time that the random walk on SSRT, starting at the root
of G, takes to hit its nth level is ntn ; tn! 2.

2. BACKGROUND

To cast light on the connection between probability and electric networks, we con-
sider a finite connected graph G with edge set E, endowed with nonnegative
numbers fcxy ¼ cyx, xy [ Eg called conductivities, and the reciprocals frxy ¼ 1/cxy,
xy [ Eg are called resistances. The graph G associated with the assigned conduc-
tivities is called an electrical network and it is denoted by G*. A real-valued function
v defined on the vertices of G* is called harmonic at a vertex x ifX

y

cxy

cx
v(y) ¼ v(x);

where cx ¼
P

ycxy. Two vertices a and z are respectively the source and the sink of the
network G*. According to the uniqueness theorem [2], the harmonic function v on the
nodes of G* is uniquely determined by its boundary values in the sense that if two
harmonic functions on G*nfa, zg have the same values on the boundary fa, zg,
then they are equal. The voltage function v is harmonic on G*nfa, zg. See [2]. For
this reason, we call any harmonic function on G*nfa, zg a voltage if it has the
same boundary values of the voltage function v.

A flow u from a to z is a function on the oriented edges that is antisymmetric,
uxy ¼ 2uyx and that obeys Kirchhof’s node law

P
yuxy ¼ 0 for x � fa, zg. This is

the requirement “flow in equals flow out” for any vertex x � fa, zg.
The voltage difference between a and z induces current that flows into the

network. The current flow associated with the voltage v is defined for oriented
edges by Ohm’s law:

ixy ¼
vx � vy

rxy
:

The strength of the current flowing into the circuit at vertex a is defined by

ia ¼
X

x

iax:

If you increase the voltage difference va 2 vz between a and z, the current ia will
increase such that the ratio (va 2 vz)/ia remains constant. This constant is called the
effective resistance of the network G* and is denoted by <(a$ z); that is,

<(a$ z) ¼ va � vz

ia
:
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It is also shown that<(a$ z) is the power (energy) dissipation of the unit current
flow; see [2] or [9]:

<(a$ z) ¼ 1
2

X
x;y

i2xyrxy:

A weighted (nearest-neighbor) random walk on G is a Markov chain Xn on the
vertex set of G with transition probabilities:

pxy ¼ p(Xnþ1 ¼ yjXn ¼ x) ¼ cxy

cx
:

The probabilistic interpretation of the effective resistance is described as
follows: Let p(a! z) denote the escape probability of the random walk that
starts at a; that is

p(a! z) ¼ pa(Xn hits z before returning to a):

It is shown in [2] that

p(a! z) ¼ 1
ca<(a$ z)

: (1)

We now consider an infinite leafless tree G for which the degree d( y), the number
of edges incident with y, of every vertex y satisfies d( y) � 2. If all of the vertices
of level n is shorted (soldered) in one vertex z, then Eq. (1) gives the
connection between the escape probability and the effective resistance of the
portion of the tree between the root and the level n. Taking the limit in Eq. (1) as
n!1, we get

p(a! 1) ¼ 1
ca<(a$ 1)

; (2)

where <(a$1) stands for the effective resistance of the whole infinite tree and p(a
!1) is the probability that the random walk will escape its starting point a. This entails
that the random walk on G is transient if and only if<(a$1) , 1. This is the Nash–
Williams result. See [1] or [11]. This criterion holds true for any infinite connected graph.
Eventually, according to Thomson’s principle, the random walk on a denumerable graph
G is transient iff there is a unit flow on G having finite energy dissipation from some
(every) vertex to 1.

Let Gn, n � 0, denote the set of vertices of level n (having distance n from the
root) of G and let jGnj denote its cardinality. Then jG0j ¼ 1. Let Bn ¼

P
k¼0
n jGkj be

the number of vertices in the first n levels. The geometric, resistance, and mean
hitting time exponents are involved respectively in the following definitions of
fractal, resistance, and random walk dimensions.
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Consider a general infinite connected graph G with a vertex r to be identified as a
reference vertex. The fractal dimension of G is defined to be

FD ¼ lim sup
n!1

log Bn

log n
; (3)

where Bn is the number of vertices of a ball of radius n and centered at r.
If the set of all vertices of G having distance n from r is shorted in one vertex b

and Rn denotes the effective resistance between r and b, then the resistance dimension
of G, having effective resistance Reff, is defined as

RD ¼
2� lim sup

n!1

log Rn

log n
if Reff ¼ 1

2� lim sup
n!1

log (R� Rn)
log n

if Reff ¼ R , 1:

8>><
>>: (4)

The random walk dimension of G is defined to be

RWD ¼ lim sup
n!1

log E(Tn)
log n

; (5)

where E(Tn) is the mean time that the random walk takes to exit a ball of radius n and
centered at r.

Note 1: We notice that if RD , 2, Reff ¼1 and the random walk on G is recurrent,
whereas if RD . 2, Reff , 1 and the random walk on G is transient.

It is assumed in [13, 14] that the G is of polynomial growth and it is shown for
dense graphs that FD � RD and hence RWD � 2. For smooth graphs, the three
exponents dimensions are related by the Einstein equation: RWD ¼ FD þ 2 2 RD.
It can easily be shown for the binary tree (every vertex has degree 3 except the
root has degree 2) that RWD ¼ 1. This is due to the exponential growth of that
tree. One important remark is that the random walk on all integer cubical
lattices Zd has RWD ¼ 2, whereas the random walk on Zd is transient if and only
if d . 2.

3. AUXILIARY LEMMAS

The following three lemmas are presented in [6].

LEMMA 1: Suppose that Xn, n � 1, are independent random variables such that
0 � Xn � K for some constant K. Set Sn ¼

P
j¼1
n Xj. If E(Sn)!1 as n!1,

then

Sn

E(Sn)
! 1 a:s: as n!1:
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LEMMA 2: Let fbng be a sequence of real numbers such that limn nbn exists.

(i) If bn . 0, then

lim
n

nbn ¼ lim
n

Xn

i¼1

bj

log n

(ii) If bn . 21 and bn! 0, then

lim
n

nbn ¼ lim
n

Xn

j¼1

log (1þ bj)

log n
:

LEMMA 3: Let fbng be a positive sequence such that

lim
n

log bn

log n
¼ L , 1:

(i) If L � 21, then

lim
n

log
Xn

j¼1

bj

log n
¼ Lþ 1:

(ii) If L , 21, then

lim
n

log
X1
j¼n

bj

log n
¼ Lþ 1:

The following lemma is presented in [8]. We now need to introduce two models
of random trees. As mentioned in Section 1, a tree is called spherically symmetric if
the degree of any vertex depends only on its distance from the root and this type of
trees will be denoted by G. Let dn stand for the outdegree of any vertex of level n.
This sequence is called the degree sequence of G. It will be assumed that dn, n �
0, are independent random variables having a probability distribution that depends
on n. To introduce a tree that corresponds to a branching process in random environ-
ments, let us consider a doubly-indexed family of independent random variables fdnk,
n � 0, k � 1g such that for fixed n, they are identically distributed following the same
distribution of dn. If we let dnk denote the out degree of the kth vertex of level n, the
resulting tree is called branching process in random environments tree, which will be
abbreviated as BPRET and will be denoted by G*.

Obviously for G, jGnþ1j ¼
Q

j¼0
n dj, and for G*, jG*

nþ1j ¼
P

j¼0
jGn

* jdnj. It is
also straightforward that EjGnþ1j ¼ EjGnþ1

* j ¼
Q

j¼0
n Edj.

The following lemma is extracted from [8].
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LEMMA 4: If the degree sequence fdnkg of G* is uniformly bounded, then

jG�nj
EjG�nj
!W a:s:,

where W . 0 a.s.

The shorting principle decides that shorting together some nodes will not increase
the effective resistance of the network. Nevertheless, the effective resistance remains
unchanged if nodes of the same potential are shorted. ForG andG*, assign one unit resis-
tance to each edge. Let Rn and Rn

* denote respectively the effective resistance between the
roots of G and G* and their respective nth levels, after being shorted in one vertex. The
following lemma is represented in [5] and follows from the shorting principle.

LEMMA 5: For G, Rn ¼
P

j¼1
n (1/jGjj), whereas for G*, Rn

* �
P

j¼1
n (1/jGj

*j).

The following result is presented in [4].

LEMMA 6: For G and G*, E(Rn) � E(Rn
*). However, no stochastic domination between

Rn and Rn
* exists.

4. FRACTAL DIMENSIONS

THEOREM 7: Consider a spherically symmetric tree with a degree sequence fdng such
that for n � 0,

dn ¼

1 with probability 1� qn2 � qn3 � � � � � qnk

2 with probability qn2

3 with probability qn3

�
�
�
k with probability qnk,

8>>>>>>>><
>>>>>>>>:

(6)

where for 2 � j � k, 0 ,qnj , 1, qnj # 0, and
P

nqnj ¼1. Then, FD ¼ 1 þ limn nE
log dn.

PROOF: We can assume, without loss of generality, that k ¼ 3. Hence,

E log dn ¼ ( log 2)qn2 þ ( log 3)qn3

¼ log (2qn2 )(3qn3 ):
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Consequently,

E log jGnj ¼ E
Xn�1

j¼0

log dj ¼
Xn�1

j¼0

log 2qj2 3qj3

¼ log
Yn�1

j¼0

2qj2 3qj3

¼ log 2

Pn�1

j¼0

qj2

3

Pn�1

j¼0

qj3

It follows from Lemma 1 that

tn ¼
log jGnj

E log jGnj
! 1 a.s. as n!1;

from which we obtain

log jGnj ¼ tn
Xn�1

j¼0

qj2

 !
log 2þ tn

Xn�1

j¼0

qj2

 !
log 3:

This implies, using Lemma 2(i), that

lim
n

log jGnj
log n

¼ ( log 2)( lim
n

nqn2)þ ( log 3)( lim
n

nqn3):

As such, Lemma 3(i) ensures that

FD ¼ lim
n

log bn

log n

¼ 1þ ( log 2)( lim
n

nqn2)þ ( log 3)( lim
n

nqn3)

¼ 1þ lim
n

nE log dn: B

It is shown in [6] for SSRT that FD ¼ RD. As such, we have the following result.

THEOREM 8: For SSRT, defined by Eq. (6), RD ¼ 1 þ limn nE log dn.

THEOREM 9: The random walk on SSRT is transient if limn nE log dn . 1 and recur-
rent if limn nE log dn , 1 and it could be of either type if limn nE log dn ¼ 1.

PROOF: The result follows from Theorem 8 and Note 1. Two examples are presented
in [3] showing that the random walk could be transient or recurrent at the critical
value. B

We now turn our attention to branching process in random environments tree.
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THEOREM 10: Consider a BPRET G* with a degree sequence fdnjg such that for all n,
dnj¼D dn; That is,

dni ¼

1 with probability 1� qn2 � qn3 � � � � � qnk

2 with probability qn2

3 with probability qn3

�
�
�
k with probability qnk,

8>>>>>>>>><
>>>>>>>>>:

(7)

where k � 2, i ¼ 1, 2, . . . , jGn21
* j, and 0 , qnj , 1. In addition, let qnj # 0 as n!1,

and
P

nqnj ¼1 for all j. Then FD ¼ 1 þ limn n(Ednj 2 1).

PROOF: It follows from the definition of dnj that

EjG�nj ¼ EjGnj ¼
Yn�1

j¼0

Edj ¼
Yn�1

j¼0

(1þ qj2 þ 2qj3 þ � � � þ (k � 1)qjk)

and, hence,

log EjG�nj¼
Xn�1

j¼0

log (1þ qj2 þ 2qj3 þ � � � þ (k � 1)qjk):

This entails, using Lemmas 4 and 2(i), that

lim
n

log jG�nj
logn

¼ lim
n

n(qn2 þ 2qn3 þ � � � þ (k � 1)qnk)

¼ lim
n

n(Edni � 1): (8)

Hence, the result follows from Lemma 3(i). B

The following lemma is in [8].

LEMMA 11: The random walk on G* is recurrent if and only if
P

n(1/EjGn
*j) ¼1.

The following lemma is straightforward.

LEMMA 12: For a positive sequence fan, n � 1g of real numbers,
P

n(1/
Q

k¼1
n ak) ¼

1 if and only if limn n(an 2 1) � 1.

As a consequence of Lemmas 11 and 12, we have the following lemma.

LEMMA 13: The random walk on G* is recurrent if and only if limn n(Edni 2 1) � 1.
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THEOREM 14: Consider a tree G* defined by Eq. (7). Then RD* � 1 þ limn nE(dni 2

1) a.s. Moreover, if the random walk is recurrent, then E(RD*) � 1 þ limn n(1 2 E(1/
dni)). The same last inequality holds true for transient random walk provided that

lim
n

n 1� E
1

dnj

� �
. 1: (9)

PROOF: We first consider the case that the random walk on G* is recurrent. Then from
Lemma 13,

lim
n

n(Ednj � 1) � 1: (10)

It follows from Eq. (8) and inequality (10) that

lim
n

log
1
jG�nj

log n
¼ � lim

n
n(Edni � 1) � �1: (11)

Then by applying Lemmas 5 and 3(i) we get

RD� ¼ 2� lim
n

log R�n
log n

� 2� lim
n

log
Xn

j¼0

1
jG�j j

log n

¼ 2� (1� lim
n

n(Edni � 1))

¼ 1þ lim
n

n(Edni � 1) a:s:

On the other hand,

E(RD�) ¼ 2� E lim
n

log R�n
log n

� �

� 2� lim
n

E
log R�n
log n

� �

� 2� lim
n

log E(R�n)
log n

� 2� lim
n

log E(Rn)
log n

; (12)

where the last three inequalities follow respectively from Fatou’s lemma, Jensen’s
inequality, and Theorem 6. For SSRT,

E
1
jGnj
¼
Yn�1

j¼0

1� 1
2

qj2 þ
2
3

qj3 þ � � � þ 1� 1
k

� �
qjk

� �� �
:
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It follows from Lemma 2(ii) that

lim
n

log E
�

1
Gn

�
log n

¼ lim
n

Xn�1

j¼0

log 1� 1
2 qj2 þ 2

3 qj3 þ � � � þ
�
1� 1

k

��
qjk

	h i
log n

¼ � lim
n

n
1
2

qn2 þ
2
3

qn3 þ � � � þ 1� 1
k

� �
qnk

� �

¼ � lim
n

n 1� E
1

dnj

� �
: (13)

Since dnj þ 1/dnj � 2 a.s., then E(dnj) þ E(1/dnj) � 2. As such, 1 2 E(1/dnj) �
Ednj 2 1. This implies, using inequality (10), that limn n(1 2 E(1/dnj)) � 1. Now,
Eq. (13) entails that

lim
n

log E 1
jGnj

	 �
log n

� �1:

From Lemma 5, Rn ¼
P

j¼1
n (1/jGjj) a.s. Thus, Lemma 3(i) and Eq. (13) assure that

lim
n

log E(Rn)
log n

¼ lim
n

log
Xn

j¼1

E
�
1=jGjj

�
log n

¼ 1� lim
n

n 1� E
1

dnj

� �
:

This ensures that

E(RD�) ¼ 2� E lim
n

log Rn

log n

� �

� 2� lim
n

log E(Rn)
log n

¼ 1þ lim
n

n 1� E
1

dnj

� �
:

This completes the proof in the case that the random walk is recurrent.
We now consider the case where the random walk is transient. Hence, limn Rn

* ¼

R* , 1 and from Lemma 13,

lim
n

n(Ednj � 1) . 1; (14)
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in which case,

RD� ¼ 2� lim
n

log (R� � R�n)
log n

� 2� lim
n

log
X1

j¼nþ1

1
jG�j j

	 �
log n

: (15)

It follows from Eq.(8) and Lemma 3(ii) that

lim
n

log
X1

j¼nþ1

1
jG�j j

	 �
log n

¼ 1� lim
n

n(Ednj � 1):

Hence, inequality (15) implies that

RD� � 1þ lim
n

n(Ednj � 1) a.s.

On the other hand,

E(RD�) ¼ 2� E lim
n

log (R� � R�n)
log n

� �

� 2� lim
n

E
log (R� � R�n)

log n

� �

� 2� lim
n

log E(R� � R�n)
log n

� 2� lim
n

log E(R� Rn)
log n

¼ 2� lim
n

log
X1

k¼nþ1

E 1
jGk j

	 �
log n

¼ 1� lim
n

log E 1
jGnj

	 �
log n

(16)

¼ 1þ lim
n

n 1� E
1

dnj

� �
; (17)

where Eq. (16) follows from inequality (9) and Lemma 3(ii), whereas Eq. (17) follows
from Eq. (13). B
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