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HIGH DIMENSIONAL ELLENTUCK SPACES AND INITIAL CHAINS IN
THE TUKEY STRUCTURE OF NON-P-POINTS

NATASHADOBRINEN

Abstract. The generic ultrafilter G2 forced byP(�×�)/(Fin⊗Fin) was recently proved to be neither
maximum nor minimum in the Tukey order of ultrafilters ([1]), but it was left open where exactly in
the Tukey order it lies. We prove that G2 is in fact Tukey minimal over its projected Ramsey ultrafilter.
Furthermore, we prove that for each k ≥ 2, the collection of all nonprincipal ultrafilters Tukey reducible
to the generic ultrafilter Gk forced by P(�k)/Fin⊗k forms a chain of length k. Essential to the proof is
the extraction of a dense subset Ek from (Fin⊗k)+ which we prove to be a topological Ramsey space.
The spaces Ek , k ≥ 2, form a hierarchy of high dimensional Ellentuck spaces. New Ramsey-classification
theorems for equivalence relations on fronts on Ek are proved, extending the Pudlák–Rödl Theorem for
fronts on the Ellentuck space, which are applied to find the Tukey and Rudin–Keisler structures below Gk .

§1. Introduction. The structure of the Tukey types of ultrafilters is a current
focus of research in set theory and structural Ramsey theory; the interplay between
the two areas has proven fruitful for each. This particular line of research began
in [14], in which Todorcevic showed that selective ultrafilters are minimal in the
Tukey order via an insightful application of the Pudlák–Rödl Theorem canonizing
equivalence relations on barriers on the Ellentuck space. Soon after, new topological
Ramsey spaceswere constructed byDobrinen andTodorcevic in [7] and [8], inwhich
Ramsey-classification theorems for equivalence relations on fronts were proved and
applied to find initial Tukey structures of the associated p-point ultrafilters which
are decreasing chains of order-type α + 1 for each countable ordinal α. Recent
work of Dobrinen, Mijares, and Trujillo in [5] provided a template for constructing
topological Ramsey spaces which have associated p-point ultrafilters with initial
Tukey structures which are finite Boolean algebras, extending the work in [7].
This paper is the first to examine initial Tukey structures of non-p-points. Our
work was motivated by [1], in which Blass, Dobrinen, and Raghavan studied the
Tukey type of the generic ultrafilter G2 forced by P(� × �)/Fin ⊗ Fin. As this
ultrafilter was known to be a Rudin–Keisler immediate successor of its projected
selective ultrafilter (see Proposition 30 in [1]) and at the same time be neither a
p-point nor a Fubini iterate of p-points, it became of interest to see where in the
Tukey hierarchy this ultrafilter lies.
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At this point, we review the definitions and background necessary to understand
the motivation for the current project. Throughout, we consider ultrafilters to be
partially ordered by reverse inclusion. Given two ultrafilters U and V , we say that V
is Tukey reducible to U , and write V ≤T U , if there is a function f : U → V which
maps each filter base of U to a filter base of V . U and V are Tukey equivalent if
both U ≤T V and V ≤T U . In this case we write U ≡T V . The Tukey equivalence
class of an ultrafilter U is called its Tukey type. Given an ultrafilter U , we use the
terminology initial Tukey structure below U to denote the structure (under Tukey
reducibility) of the collection of Tukey types of all ultrafilters Tukey reducible to U .
For ultrafilters, Tukey equivalence is the same as cofinal equivalence.
The partial order ([c]<�,⊆) is the maximum Tukey type for all ultrafilters on a
countable base set. In [11], Isbell askedwhether there is alwaysmore than one Tukey
type. The recent surge in activity began with [12] in whichMilovich showed under ♦
that there can be more than one Tukey type. This was improved in [6], where it was
shown that all p-points are strictly below theTukeymaximum.Formorebackground
on the Tukey theory of ultrafilters, the reader is referred to the survey article [4].
The paper [1] of Blass, Dobrinen, and Raghavan began the investigation of the
Tukey theory of the generic ultrafilter G2 forced by P(� × �)/Fin ⊗ Fin, where
Fin ⊗ Fin denotes the collection of subsets of � × � in which all but finitely many
fibers are finite. The motivation for this study was the open problem of whether the
classes of basically generated ultrafilters and countable iterates of Fubini products
of p-points are the same class of ultrafilters. The notion of a basically generated
ultrafilterwas introducedbyTodorcevic to extract the key property ofFubini iterates
of p-pointswhichmake themstrictly below ([c]<�,⊆), the topof theTukey hierarchy.
In Section 3 of [6], Dobrinen and Todorcevic showed that the class of basically
generated ultrafilters contains all countable iterates of Fubini products of p-points.
They then asked whether there is a basically generated ultrafilter which is not Tukey
equivalent to some iterated Fubini product of p-points. This question is still open.
Since it is well-known that the generic ultrafilter G2 is not a Fubini product of
p-points, yet is a Rudin–Keisler immediate successor of its projected selective ultra-
filter, Blass asked whether G2 is Tukey maximum, and if not, then whether it is
basically generated. In [1], Blass proved that G2 is a weak p-point which has the best
partition property that a non-p-point can have. Dobrinen and Raghavan indepen-
dently proved that G2 is not Tukey maximum, which was improved by Dobrinen
in Theorem 49 in [1] by showing that (G2,⊇) �≥T ([�1]<�,⊆), thereby showing in
a strong way that G2 does not have the maximum Tukey type for ultrafilters on a
countable base set. Answering the other question of Blass, Raghavan showed in
Theorem 60 in [1] that G2 is not basically generated. However, that paper left open
the question of where exactly in the Tukey hierarchy G2 lies, and what the structure
of the Tukey types below it actually is.
In this paper, we prove that the initial Tukey structure below G2 is exactly
a chain of order-type 2. In particular, G2 is the immediate Tukey successor of
its projected selective ultrafilter. Extending this further, we investigate the initial
Tukey structure of the generic ultrafilters forced by P(�k)/Fin⊗k . Here, Fink+1 is
defined recursively: Fin1 denotes the collection of finite subsets of �; for k ≥ 1,
Fin⊗k+1 denotes the collection of subsets X ⊆ �k+1 such that for all but finitely
many n ∈ �, {(j1, . . . , jk) ∈ �k : (n, j1, . . . , jk) ∈ X} is in Fin⊗k . We prove in
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Theorem 6.2 that for all k ≥ 2, the generic ultrafilter Gk forced by P(�k)/Fin⊗k
has initial Tukey structure (of nonprincipal ultrafilters) exactly a chain of size k.
We also show that the Rudin–Keisler structures below Gk is exactly a chain of
size k. Thus, the Tukey structure below Gk mirrors the Rudin–Keisler structure
below Gk .
We remark that the structure of the spaces Ek provide a clear way of understand-
ing the partition relations satisfied by Gk . In particular, our space E2 provides an
alternate method for proving Theorem 31 of [1], due to Blass, where it is shown that
G2 has the best partition properties that a non-p-point can have. We further remark
that minor modifications to the arguments in [3] in conjunction with our theorems
that Ek is a topological Ramsey space and thatP(�k)/Fin⊗k is forcing equivalent to
(Ek,⊆Fin⊗k ) yield that these forcings P(�)/Fin⊗k have ‘complete combinatorics’ in
the sense of Blass. The details will be included in a forthcoming paper of the author.
The paper is organized as follows. Section 2 provides some background on topo-
logical Ramsey spaces from Todorcevic’s book [15]. The new topological Ramsey
spaces Ek , k ≥ 2, are introduced in Section 3. These spaces are formed by thinning
the forcing ((Fin⊗k)+,⊆Fin⊗k ), which is forcing equivalent to P(�k)/Fin⊗k , to a
dense subset and judiciously choosing the finitization map so as to form a topo-
logical Ramsey space. Once formed, these spaces are seen to be high dimensional
extensions of the Ellentuck space. The Ramsey-classification theorem generalizing
the Pudlák–Rödl Theorem to all spaces Ek , k ≥ 2, is proved in Theorem 4.14 of
Section 4. Theorem 5.2 in Section 5 shows that any monotone cofinal map from
the generic ultrafilter Gk into some other ultrafilter is actually represented on a
filter base by some monotone, end-extension preserving finitary map. This is the
analogue of p-points having continuous cofinal maps for our current setting, and is
sufficient for the arguments using canonical maps on fronts to find the initial Tukey
structure below Gk , which we do in Theorem 6.2 of Section 6.

§2. Basics of general topological Ramsey spaces. For the reader’s convenience,
we provide here a brief review of topological Ramsey spaces. Building on ear-
lier work of Carlson and Simpson in [2], Todorcevic distilled the key properties
of the Ellentuck space into four axioms, A.1–A.4, which guarantee that a space
is a topological Ramsey space. As several recent papers have been devoted to
topological Ramsey spaces, related canonical equivalence relations on fronts and
their applications to initial Tukey structures of associated ultrafilters (see [7], [8]
and [5]), we reproduce here only information necessary to aiding the reader in under-
standing the proofs in this paper. For further background, we refer the reader to
Chapter 5 of [15].
The axiomsA.1–A.4, are defined for triples (R,≤, r) of objects with the following
properties.R is a nonempty set,≤ is a quasi-ordering onR, and r : R×� → AR is a
mapping giving us the sequence (rn(·) = r(·, n)) of approximationmappings, where
AR is the collection of all finite approximations to members ofR. For a ∈ AR and
A,B ∈ R,

[a,B] = {A ∈ R : A ≤ B and (∃n) rn(A) = a}. (1)

For a ∈ AR, let |a| denote the length of the sequence a. Thus, |a| equals the
integer k for which a = rk(a). For a, b ∈ AR, a � b if and only if a = rm(b) for
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some m ≤ |b|. a � b if and only if a = rm(b) for some m < |b|. For each n < �,
ARn = {rn(A) : A ∈ R}.
A.1 (a) r0(A) = ∅ for all A ∈ R.
(b) A �= B implies rn(A) �= rn(B) for some n.
(c) rn(A) = rm(B) implies n = m and rk(A) = rk(B) for all k < n.

A.2 There is a quasi-ordering ≤fin on AR such that
(a) {a ∈ AR : a ≤fin b} is finite for all b ∈ AR,
(b) A ≤ B iff (∀n)(∃m) rn(A) ≤fin rm(B),
(c) ∀a, b, c ∈ AR[a � b ∧ b ≤fin c → ∃d � c a ≤fin d ].

The number depthB(a) is the least n, if it exists, such that a ≤fin rn(B). If such
an n does not exist, then we write depthB (a) = ∞. If depthB(a) = n < ∞, then
[depthB(a), B] denotes [rn(B), B].

A.3 (a) If depthB (a) <∞ then [a,A] �= ∅ for all A ∈ [depthB (a), B].
(b) A ≤ B and [a,A] �= ∅ imply that there is A′ ∈ [depthB(a), B] such that
∅ �= [a,A′] ⊆ [a,A].

If n > |a|, then rn[a,A] denotes the collection of all b ∈ ARn such that a � b
and b ≤fin A.
A.4 If depthB (a) < ∞ and if O ⊆ AR|a|+1, then there is A ∈ [depthB (a), B]
such that r|a|+1[a,A] ⊆ O or r|a|+1[a,A] ⊆ Oc .

The Ellentuck topology on R is the topology generated by the basic open sets
[a,B]; it extends the usual metrizable topology on R when we consider R as a
subspace of the Tychonoff cube ARN. Given the Ellentuck topology on R, the
notions of nowhere dense, and hence of meager are defined in the natural way.
We say that a subset X of R has the property of Baire iff X = O ∩M for some
Ellentuck open set O ⊆ R and Ellentuck meager setM⊆ R.
Definition 2.1 ([15]). A subset X of R is Ramsey if for every ∅ �= [a,A], there
is a B ∈ [a,A] such that [a,B] ⊆ X or [a,B] ∩ X = ∅. X ⊆ R is Ramsey null if for
every ∅ �= [a,A], there is a B ∈ [a,A] such that [a,B] ∩ X = ∅.
A triple (R,≤, r) is a topological Ramsey space if every subset of R with the
property of Baire is Ramsey and if every meager subset of R is Ramsey null.
The following result can be found as Theorem 5.4 in [15].

Theorem 2.2 (Abstract Ellentuck Theorem). If (R,≤, r) is closed (as a subspace
of ARN) and satisfies axioms A.1, A.2, A.3, and A.4, then every subset ofR with the
property of Baire is Ramsey, and every meager subset is Ramsey null; in other words,
the triple (R,≤, r) forms a topological Ramsey space.
Definition 2.3 ([15]). A family F ⊆ AR of finite approximations is
1. Nash-Williams if a �� b for all a �= b ∈ F ;
2. Ramsey if for every partition F = F0 ∪F1 and every X ∈ R, there areY ≤ X
and i ∈ {0, 1} such that Fi |Y = ∅.
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The Abstract Nash-Williams Theorem (Theorem 5.17 in [15]), which follows
from the Abstract Ellentuck Theorem, will suffice for the arguments in this paper.

Theorem 2.4 (Abstract Nash-Williams Theorem). Suppose (R,≤, r) is a closed
triple that satisfies A.1 - A.4. Then every Nash-Williams family of finite approxima-
tions is Ramsey.

Definition 2.5. Suppose (R,≤, r) is a closed triple that satisfies A.1 - A.4.
Let X ∈ R. A family F ⊆ AR is a front on [0, X ] if
1. For each Y ∈ [0, X ], there is an a ∈ F such that a � Y ; and
2. F is Nash-Williams.
Remark 2.6. There is also a general notion of barrier for topological Ramsey
spaces (see Definition 5.18 in [15]). Everything proved for the spaces Ek , k ≥ 2, in
this paper for fronts carries over to barriers, since given a front, there is a member
of the space such that, relativized to that member, the front becomes a barrier. This
follows from Corollary 5.19 in [15], since for each space Ek , the quasi-order ≤fin is
actually a partial order. Rather than defining more notions than are necessary for
the main results in this paper, we provide these references for the interested reader.

We finish this section by reminding the reader of the Pudlák–Rödl Theorem for
canonical equivalence relations on fronts on the Ellentuck space.

Definition 2.7. Let ([�]�,⊆, r) be the Ellentuck space. A map ϕ on a front
F ⊆ [�]<� is called
1. inner if for each a ∈ F , ϕ(a) ⊆ a.
2. Nash-Williams if for all pairs a, b ∈ F , ϕ(a) �� ϕ(b).
3. irreducible if it is inner and Nash-Williams.

Theorem 2.8 (Pudlák/Rödl, [13]). Let R be an equivalence relation on a front F
on the Ellentuck space. Then there is an irreducible map ϕ and an X ∈ [�]� such that
for all a, b ∈ F with a, b ⊆ X ,

a R b ←→ ϕ(a) = ϕ(b). (2)

This theorem has been generalized to new topological Ramsey spaces in the
papers [7], [8], and [5]. In Section 4, we will extend it to the high dimensional
Ellentuck spaces.

§3. High dimensional Ellentuck Spaces. Wepresent here a new hierarchy of topo-
logical Ramsey spaces which generalize the Ellentuck space in a natural manner.
Recall that the Ellentuck space is the triple ([�]�,⊆, r), where the finitzation map r
is defined as follows: for each X ∈ [�]� and n < �, r(n,X ) is the set of the least n
elements ofX .We shall let E1 denote theEllentuck space. It was proved by Ellentuck
in [9] that E1 is a topological Ramsey space. We point out that the members of E1
can be identified with the subsets of [�]1 of (lexicographical) order-type �.
The first of our new spaces, E2, wasmotivated by the problem of finding the struc-
ture of the Tukey types of ultrafilters Tukey reducible to the generic ultrafilter forced
by P(�2)/Fin⊗2, denoted by G2. In [1], it was proved that G2 is neither maximum
nor minimum in Tukey types of nonprincipal ultrafilters. However, this left open
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the question of what exactly is the structure of the Tukey types of ultrafilters Tukey
reducible toG2. To answer this question (whichwedo inTheorem6.2), the first step is
to construct the second order Ellentuck space E2, which comprises a dense subset of
((Fin⊗2)+,⊆Fin⊗2 ). Since P(�2)/Fin⊗2 is forcing equivalent to ((Fin⊗2)+,⊆Fin⊗2 ),
each generic ultrafilter for (E2,⊆Fin⊗2 ) is generic for P(�2)/Fin⊗2, and vice versa.
The Ramsey theory available to us through E2 will aid in finding the initial Tukey
structure below G2.
Our construction of E2 can be generalized to find topological Ramsey spaces
which are forcing equivalent to the partial orders P(�k)/Fin⊗k , for each k ≥ 2.
Each space Ek is composed of members which are subsets of [�]k which, when
ordered lexicographically, are seen to have order type exactly the countable ordi-
nal �k . For each k ≥ 1, the members of Ek+1 look like � many copies of the
members of Ek . These spaces will provide the structure needed to crystalize the
initial Tukey structure below the ultrafilters forced byP(�k)/Fin⊗k , for each k ≥ 2
(see Theorem 6.2).
We now begin the process of defining the new class of spaces Ek . We start by
defining a well-ordering on nondecreasing sequences of members of � which forms
the backbone for the structure of the members in the spaces. The explanation of
why this structure was chosen, and indeed is needed, will follow Definition 3.3.

Definition 3.1 (The well-ordered set (� � ↓≤k,≺)). Let k ≥ 2, and let � � ↓≤k

denote the collection of all nondecreasing sequences of members of � of length
less than or equal to k. Let <lex denote the lexicographic ordering on � � ↓≤k , where
we also consider any proper initial segment of a sequence to be lexicographically
below that sequence. Define a well-ordering ≺ on � � ↓≤k as follows. First, we set the
empty sequence () to be the ≺-minimum element; so for all nonempty sequences �j
in � � ↓≤k , we have () ≺ �j. In general, given (j0, . . . , jp−1) and (l0, . . . , lq−1) in � � ↓≤k

with p, q ≥ 1, define (j0, . . . , jp−1) ≺ (l0, . . . , lq−1) if and only if either
1. jp−1 < lq−1, or
2. jp−1 = lq−1 and (j0, . . . , jp−1) <lex (l0, . . . , lq−1).

Since ≺ well-orders � � ↓≤k in order-type �, we fix the notation of letting �jm denote
the m-th member of (� � ↓≤k,≺). For �l ∈ � � ↓≤k , we let m�l ∈ � denote the m such
that �l = �jm. In particular, �j0 = () and m() = 0.
Let � � ↓k denote the collection of all nondecreasing sequences of length k of
members of �. Note that ≺ also well-orders � � ↓k in order type �. Fix the notation
of letting �in denote the n-th member of (� � ↓k,≺).
We now define the top memberWk of the space Ek . This setWk is the prototype
for all members of Ek in the sense that every member of Ek will be a subset ofWk
which has the same structure asWk , defined below.

Definition 3.2 (The top member Wk of Ek). Let k ≥ 2 be given. For each
�i = (i0, . . . , ik−1) ∈ � � ↓k , define

Wk(�i) = {m�i�p : 1 ≤ p ≤ k}. (3)

Thus, eachWk(�i) is a member of [�]k . Define

Wk = {Wk(�i) : �i ∈ � � ↓k}. (4)
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Note that Wk is a subset of [�]k with order-type �k , under the lexicographical
ordering.

For 1 ≤ p ≤ k, letting Wk(�i � p) denote {m�i�q : 1 ≤ q ≤ p}, and letting
Wk(()) = ∅, we see thatWk induces the tree Ŵk = {Wk(�j) : �j ∈ � � ↓≤k} ⊆ [�]≤k
obtained by taking all initial segments of members ofWk . The key points about the
structure of Ŵk are the following, which will be essential in the next definition:

(ii) For each m ≥ 1, max(Wk(�jm)) < max(Wk(�jm+1)).
(iii) For all �j,�l ∈ � � ↓≤k ,Wk(�j) is an initial segment ofWk(�l) if and only if �j is

an initial segment of �l .

All members of the space Ek will have this structure.
Definition 3.3 (The spaces (Ek,≤, r), k ≥ 2). For �jm ∈ � � ↓≤k , let |�j| denote the
length of the sequence �j. We say that X̂ is an Ek-tree if X̂ is a function from � � ↓≤k

into Ŵk such that

(i) For each m < �, X̂ (�jm) ∈ [�]|�jm| ∩ Ŵk ;
(ii) For all 1 ≤ m < �, max(X̂ (�jm)) < max(X̂ (�jm+1));
(iii) For all m, n < �, X̂ (�jm) � X̂ (�jn) if and only if �jm � �jn.
For X̂ an Ek-tree, let [X̂ ] denote the function X̂ ∩ (� � ↓k ×Wk). Define the space
Ek to be the collection of all [X̂ ] such that X̂ is an Ek-tree. Thus, Ek is the space of
all functions X from � � ↓k intoWk which induce an Ek-tree.
For X,Y ∈ Ek , define Y ≤ X if and only if ran(Y ) ⊆ ran(X ). For each n < �,
the n-th finite approximation rn(X ) isX ∩({�ip : p < n}×Wk). As usual, we letAR
denote the collection {rn(X ) : X ∈ Ek and n < �}. For a, b ∈ AR define a ≤fin b
if and only if ran(a) ⊆ ran(b).
Remark 3.4. The members of Ek are functions from � � ↓k into Wk which are
obtained by restricting Ek-trees to theirmaximal nodes. Eachmember of Ek uniquely
determines an Ek-tree and vice versa. We will identify each member X of Ek with its
image ran(X ) = {X (�in) : n < �} ⊆ Wk , as this identification is unambiguous. In
this vein, we may think of rn(X ) as {X (�ip) : p < n}.
Define the projection maps �l , l ≤ k, as follows. For all �j ∈ � � ↓≤k , define
�0({m�j�q : 1 ≤ q ≤ |�j|}) = ∅. For 1 ≤ l ≤ k, for all �j ∈ � � ↓≤k with |�j| ≥ l , define

�l ({m�j�q : 1 ≤ q ≤ |�j|}) = {m�j�q : 1 ≤ q ≤ l}. (5)

Thus, �l is defined on those members of Ŵk with length at least l , and projects to
their initial segments of length l .
For each l ≤ k, we let Nkl denote the collection of all n ∈ � such that given
a ∈ ARn , for all b ∈ rn+1[a,Wk ], �l (b(�in)) ∈ �l (a), but �l+1(b(�in)) �∈ �l+1(a).
Remark 3.5. In defining the spaces Ek , there is a tension between needing the
members of Ek to have order-type �k and needing the finitization map r to give
back any member of Ek in � many steps. Thus, it was necessary to find a way to
diagonalize through a set X ⊆ [�]k of order-type�k in � many steps in such a way
that the axioms A.1 - A.4 hold. All the Axioms except for A.3 (b) could be proved
using several different choices for the finitzationmap r. However, the structure of the
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well-ordering (� � ↓k,≺), the structure ofWk given as a template for the members of
Ek , and conditions (2) and (3) in Definition 3.3 are precisely what allow us to prove
axiom A.3 (b), which will be proved in Lemma 3.10. Interestingly, the Pigeonhole
Principle A.4 is actually more straightforward than A.3 to prove for these spaces.

Before proving that these Ek form topological Ramsey spaces, we provide further
insight into the concrete examples of E2 and E3.
Example 3.6 (The space E2). The members of E2 look like � many copies of the
Ellentuck space; that is, each member has order-type� ·�, under the lexicographic
order. The well-order (� � ↓≤2,≺) begins as follows:
() ≺ (0) ≺ (0, 0) ≺ (0, 1) ≺ (1) ≺ (1, 1) ≺ (0, 2) ≺ (1, 2) ≺ (2) ≺ (2, 2) ≺ · · · (6)
The tree structure of� � ↓≤2, under lexicographic order, looks� copies of�, and has
order type the countable ordinal �2 under the lexicographic ordering.

The following trivial fact is stated, as it is important to seeing that the space in
this paper is forcing equivalent to the forcing considered in [1].

Fact 3.7. For any set S ⊆ [�]2 such that for infinitely many i ∈ �1(S), the set
{j ∈ � : {i, j} ∈ S} is infinite, there is an X ∈ E2 such that X ⊆ S.
Let �2 denote � × � and let Fin⊗2 denote the ideal Fin × Fin, which is the
collection of all subsets A of � × � such that for all but finitely many i ∈ �, the
fiber A(i) := {j < � : (i, j) ∈ A} is finite. Abusing notation, we also let Fin⊗2
denote the ideal on [�]2 consisting of sets A ⊆ [�]2 such that for all but finitely
many i ∈ �, the set {j > i : {i, j} ∈ A} is finite. Given X,Y ⊆ [�]2, we write
Y ⊆Fin⊗2 X if and only if Y \ X ∈ Fin⊗2. We now point out how our space E2
partially ordered by ⊆Fin⊗2 is forcing equivalent to P(�2)/Fin⊗2.
Proposition 3.8. (E2,⊆Fin⊗2 ) is forcing equivalent to P(�2)/Fin⊗2.
Proof. It is well-known that P(�2)/Fin⊗2 is forcing equivalent to ((Fin ×
Fin)+,⊆Fin⊗2 ), where (Fin×Fin)+ is the collection of all subsets A ⊆ �2 such that
for infinitely many coordinates i , the i-th fiber ofA is infinite. (See, for instance, [1].)
Identifying {(i, j) : i < j < �} with [�]2, we see that the collection of all infinite
subsets of [�]2 with lexicographic order-type exactly �2 forms a ⊆-dense subset of
(Fin×Fin)+. Further, for each Z ⊆ [�]2 with lexicographic order-type exactly �2,
there is an X ∈ E2 such that X ⊆ Z. Thus, (E2,⊆Fin⊗2 ) is forcing equivalent to
P(� × �)/Fin⊗2. �
Next we present the specifics of the structure of the space E3.
Example 3.9 (The space E3). The well-order (� � ↓≤3,≺) begins as follows:
∅ ≺ (0) ≺ (0, 0) ≺ (0, 0, 0) ≺ (0, 0, 1) ≺ (0, 1) ≺ (0, 1, 1) ≺ (1)
≺ (1, 1) ≺ (1, 1, 1) ≺ (0, 0, 2) ≺ (0, 1, 2) ≺ (0, 2) ≺ (0, 2, 2)
≺ (1, 1, 2) ≺ (1, 2) ≺ (1, 2, 2) ≺ (2) ≺ (2, 2) ≺ (2, 2, 2) ≺ (0, 0, 3) ≺ · · · (7)

The set� � ↓≤3 is a tree of height three with each nonmaximal node branching into
� many nodes. The maximal nodes in Figure 1 is technically the set {�im : m < 20},
which indicates the structure of � � ↓≤3.
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Figure 1. � � ↓≤3.

Technically, Figure 2 presents r20(W3), though the intent is to give the reader an
idea of the structure ofW3.

Figure 2. W3.

By Fin⊗3, we denote Fin⊗Fin⊗2, which consists of all subsets F ⊆ �3 such that
for all but finitely many i ∈ �, {(j, k) : (i, j, k) ∈ F } is in Fin⊗2. Identifying [�]3
with {(i, j, k) ∈ �3 : i < j < k}, we abuse notation and let Fin⊗3 on [�]3 denote
the collection of all subsets F ⊆ [�]3 such that {(i, j, k) : {i, j, k} ∈ F } is in Fin⊗3
as defined on �3. It is routine to check that (E3,⊆Fin⊗3 ) is forcing equivalent to
P(�3)/Fin⊗3.

We shall now show that for each k ≥ 2, the space (Ek,≤, r) is a topological
Ramsey space; hence, every subset of Ek with the property of Baire is Ramsey. Since
Ek is a closed subspace of AR� , it suffices, by the Abstract Ellentuck Theorem
(Theorem 2.2), to show that (Ek,≤, r) satisfies the axioms A.1 –A.4. As it is routine
to check that (Ek,≤, r) satisfies the axioms A.1 and A.2, we leave this to the reader.
We will show that A.3 holds for Ek for all k ≥ 2. Then we will show by induction
on k ≥ 2 that A.4 holds for Ek .
For each fixed k ≥ 2, recall our convention that 〈�in : n < �〉 is the ≺-increasing
enumeration of the well-ordered set (� � ↓k,≺). Though technically each a ∈ AR is
a subset of [�]k , we shall abuse notation and use maxa to denote max

⋃
a. Recall

that for a ∈ AR and X ∈ Ek , depthX (a) is defined to be the smallest n for which
a ⊆ rn(X ), if a ⊆ X , and∞ otherwise. As is convention, [n,X ] is used to denote
[rn(X ), X ].

Lemma 3.10. For each k ≥ 2, the space (Ek,≤, r) satisfies Axiom A.3.
Proof. To see that A.3 (a) holds, suppose that depthB(a) = d < ∞ and
A ∈ [d,B]. Let b = rd (B). Then a ⊆ b, max a = max b, and [b, B] = [d,B].
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We will recursively build a C ∈ [a,A], which will show that [a,A] is nonempty.
Let m = |a|. Note that a ∈ ARm|A, since a ⊆ b and A ∈ [b, B]. Let cm denote a.
Suppose n ≥ m and we have already chosen cn ∈ rn[a,A] such that cn � cn−1
if n > m. Construct cn+1 ∈ rn+1[cn, A] as follows. Let l be the integer less than
k such that n ∈ Nkl . Recall that n ∈ Nkl means that every extension c′ � cn has
�l (c′(�in)) ∈ �l (cn), and �l+1(c′(�in)) �∈ �l+1(cn). If l = 0, then choose cn+1(�in) to be
any member of A such that �1(cn+1(�in)) > max cn. Now suppose that l ≥ 1. Then
letting p be any integer less than n such that �ip � l = �in � l , we note that �l (cn+1(�in))
is predetermined to be equal to the set �l (cn(�ip)). Choose cn+1(�in) to be anymember
ofA such that �l (cn+1(�in)) = �l(cn(�ip)) andmax cn+1(�in � (l+1)) > max cn. Define
cn+1 to be cn ∪ cn+1(�in).
In this manner, we construct a sequence cn, n ≥ m, such that each cn+1 ∈
rn+1[cn, A]. Letting C =

⋃
n≥m cn, we see that C is in [a,A]; hence A.3 (a) holds.

To see that A.3 (b) holds, suppose A ≤ B and [a,A] �= ∅. We will construct an
A′ ∈ [depthB (a), B] such that ∅ �= [a,A′] ⊆ [a,A]. Let d = depthB(a) and let
a′d = rd (B). For each n ≥ d , given a′n, we will choose a′n+1 ∈ ARn+1 such that
1. a′n+1 ∈ rn+1[a′n, B]; and
2. If n ∈ Nkl and a′n(�in � l) ∈ �l (A), then a′n+1(�in) ∈ A.
Let n ≥ d , and suppose a′n has been chosen satisfying (1) and (2). Choose a′n+1(�in)
as follows. Let l < k be the integer such that n ∈ Nkl . If l = 0, then choose a′n+1(�in)
to be any member of A such that max �1(a′n+1(�in)) > max a

′
n.

Suppose now that l ≥ 1. We have two cases.
Case 1. �in � l = �im � l for some m < d . Then a′n+1(�in) must be chosen so that
�l (a′n+1(�in)) ∈ �l (b). In the case that a′d (�im � l) is in �l(a), then we can choose
a′n+1(�in) ∈ A such that a′n+1(�in � l) = a′d (�im � l) and max �l+1(a′n+1(�in)) > max a′n.
In the case that a′d (�im � l) is in �l (b) \ �l (a), there is no way to choose a′n+1(�in)
to be a member of A; so we choose a′n+1(�in) to be a member of B such that
a′n+1(�in � l) = a′d (�im � l) and max�l+1(a′n+1(�in)) > max a′n.
Case 2. �in � l �= �im � l for any m < d . In this case, �l (a′(�in)) cannot be in �l (b).
Since l ≥ 1, there must be some d ≤ m < n such that �in � l = �im � l . By our
construction, a′n(�im � l) must be in �l(A). Choose a′n+1(�in) to be any member of A
such that �l (a′n+1(�in)) = �l(a

′
n(�im)) with max�l+1(a

′
n+1(�in)) > max an.

Having chosen a′n+1(�in), let a
′
n+1 = a

′
n ∪ {a′n+1(�in)}. In this manner, we form a

sequence 〈a′n : n ≥ d 〉 satisfying (1) and (2). Let A′ =
⋃
n≥d a

′
n. By construction,

A′ is a member of Ek and A′ ∈ [b, B]. Since a ⊆ A′, ∅ �= [a,A′].
To see that [a,A′] ⊆ [a,A], let X be any member of [a,A′]. For each m < �,
let nm be such that X (�im) = A′(�inm ). We show that X (�im) ∈ A. Let l < k be
such that m ∈ Nkl . If �l (X (�im)) ∈ �l (a), then A′(�inm ) was chosen to be in A;
thus X (�im) ∈ A. Otherwise, �l(X (�im)) �∈ �l (a). Since X � a, it must be the case
that minX (�im) > max a. Thus, A′(�inm ) was chosen to be in A; hence, X (�im) ∈ A.
Therefore, X ⊆ A, so X ∈ [a,A]. �
Remark 3.11. Our choice of finitization using the structure of the well-ordering
(� � ↓≤k,≺) was made precisely so that A.3 (b) could be proved. In earlier versions
of this work, we used larger finitizations so that each member a ∈ ARm would
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contain precisely m members a(�in) with n ∈ Nk0 . This had the advantage that
the ultrafilters constructed using fronts ARm as base sets would be naturally seen
as Fubini products of m many ultrafilters. However, A.3 (b) did not hold under
that approach, and as such, we had to prove the Abstract Nash-William Theorem
directly from the other three and a half axioms. Our former approach still provided
the initial Tukey structures, but our finitization in this paper mapmakes it clear that
these new spaces really are generalizations of the Ellentuck space and saves us from
some unnecessary redundancy. Moreover, the approach we use has the advantage
of allowing for new generalizations of the Pudlák–Rödl Theorem to the spaces Ek .
Towards proving A.4 for E2, we first prove a lemma showing that there are three
canonical equivalence relations for 1-extensions on the space E2. This fact is already
known for the partial ordering ((Fin⊗2)+,⊆) (see Corollary 33 in [1]); we aremerely
making it precise in the context of our space E2. Given s ∈ AR, we shall say that t is
a 1-extension of s if t ∈ r|s|+1[s,W2]. For n ∈ N 20 , s ∈ ARn, andY ⊇ s , we shall say
that a function f : rn+1[s, Y ] → � is constant on blocks if for all t, u ∈ rn+1[s, Y ],
f(t) = f(u)←→ �1(t(�in)) = �1(u(�in)).
Lemma 3.12 (Canonical Equivalence Relations on 1-Extensions in E2). Suppose
n < �, s ∈ ARn and s ⊆ X , and let f : rn+1[s, X ] → �. Then there is a Y ∈
[depthX (s), X ] such that f � rn+1[s, Y ] satisfies exactly one of the following:
1. f � rn+1[s, Y ] is one-to-one;
2. f � rn+1[s, Y ] is constant on blocks;
3. f � rn+1[s, Y ] is constant.
Moreover, (2) is impossible if n ∈ N 21 .
Proof. Case 1. n ∈ N 21 . Let �jm be the member of � � ↓1 such that �jm = �in � 1.
Suppose there is an infinite subset P ⊆ � \ n such that for each p ∈ P, �ip �
1 = �jm and f is one-to-one on {s ∪ X (�ip) : p ∈ P}. Then by Fact 3.7, there is
a Y ∈ [depthX (s), X ] such that each t ∈ rn+1[s, Y ] has t(�in) = X (�ip) for some
p ∈ P. It follows that f is one-to-one on rn+1[s, Y ]. Otherwise, there is an infinite
subset P ⊆ � \ n such that for each p ∈ P, �ip � 1 = �jm , and f is constant on
{s ∪ X (�ip) : p ∈ P}. By Fact 3.7, there is a Y ∈ [depthX (s), X ] such that each
t ∈ rn+1[s, Y ] has t(�in) = X (�ip) for some p ∈ P. Then f is constant on rn+1[s, Y ].
Case 2. n ∈ N 20 . Suppose there are infinitely many m for which f is one-to-one
on the set {s ∪ X (�ip) : �ip � 1 = �jm}. Then there is a Y ∈ [depthX (s), X ] such that
f is one-to-one on rn+1[s, Y ].
Suppose now that there are infinitely manym < � for which there is an infinite set
Pm ⊆ {p ∈ � : �ip � 1 = �jm} such thatf is constant on the set {s∪X (�ip) : p ∈ Pm}.
If the value of f on {s ∪ X (�ip) : p ∈ Pm} is different for infinitely many m, then,
applying Fact 3.7, there is a Y ∈ [depthX (s), X ] such that f is constant on blocks
on rn+1[s, Y ]. If the value of f on {s ∪ X (�ip) : p ∈ Pm} is the same for infinitely
many m, then, applying Fact 3.7, there is a Y ∈ [depthX (s), X ] such that f is
constant on rn+1[s, Y ]. �
Lemma 3.13 (A.4 forE2). Leta ∈ ARn ,X ∈ E2 such thatX ⊇ a, andH ⊆ ARn+1
be given. Then there is a Y ∈ [depthX (a), X ] such that either rn+1[a,Y ] ⊆ H or else
rn+1[a,Y ] ∩H = ∅.

https://doi.org/10.1017/jsl.2015.10 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2015.10


248 NATASHADOBRINEN

Proof. Define f : rn+1[a,X ] → 2 by f(t) = 0 if t ∈ H, and f(t) = 1 if t �∈ H.
Then there is a Y ∈ [depthX (a), X ] satisfying Lemma 3.12. Since f has only two
values, neither (1) nor (2) of Lemma 3.12 can hold; so f must be constant on
rn+1[a,Y ]. If f is constantly 0 on rn+1[a,Y ], then rn+1[a,Y ] ⊆ H; otherwise, f is
constantly 1 on rn+1[a,Y ], and rn+1[a,Y ] ∩H = ∅. �
Theorem 3.14. (E2,≤, r) is a topological Ramsey space.
Proof. (E2,≤, r) is a closed subspace ofAR� . It is straightforward to check that
A.1 and A.2 hold. Lemma 3.10 shows that A.3 holds, and Lemma 3.13 shows that
A.4 holds. Thus, by the Abstract Ellentuck Theorem 2.2, (E2,≤, r) is a topological
Ramsey space. �
We now begin the inductive process of proving A.4 for Ek , k ≥ 3. Let k ≥ 2 and
1 ≤ l < k be given. LetU ⊆Wk be given.We say thatU is isomorphic to amember of
Ek−l if its structure is the same asWk−l . By this, wemean precisely the following: Let
P={p<� :Wk(�ip) ∈ U}, and enumerateP in increasing order asP={pm :m<�}.
Let the mapping � : {�ip : p ∈ P} → � � ↓(k−l) be given by �(�ipm ) equals the ≺-m-th
member of � � ↓(k−l). Then � induces a tree isomorphism, respecting lexicographic
order, from the tree of all initial segments of members of {�ip : p ∈ P} to the tree of
all initial segments of members of (� � ↓≤(k−l),≺). The next fact generalizes Fact 3.7
to the Ek , k ≥ 3, and will be used in the inductive proof of A.4 for the rest of the
spaces.
Fact 3.15. Let k ≥ 2, l < k, n ∈ Nkl , X ∈ Ek , and a ∈ ARn|X be given.
1. Suppose l ≥ 1 and V ⊆ rn+1[a,X ] is such that U := {b(�in) : b ∈ V }
is isomorphic to a member of Ek−l . Then there is a Y ∈ [a,X ] such that
rn+1[a,Y ] ⊆ V .

2. Suppose l = 0 and there is an infinite set I ⊆ {p ≥ n : p ∈ Nk0 } such that
(a) for all p �= q in I , �ip � 1 �= �iq � 1, and
(b) for each p ∈ I , there is a set Up ⊆ {X (�iq) : q ∈ � and �iq � 1 = �ip � 1}
such that Up is isomorphic to a member of Ek−1.

Then there is a Y ∈ [a,X ] such that rn+1[a,Y ] ⊆
⋃
p∈I Up.

Proof. To prove (1), let n,X,V,U satisfy the hypotheses. Construct Y ∈ [a,X ]
by starting with a, and choosing successively, for each p ≥ n, someY (�ip) ∈ X such
that whenever �ip � l = �in � l , then Y (�ip) ∈ U .
To prove (2), startwith a.Noting thatn ∈ Nk0 , take anyp ∈ I and chooseY (�in) ∈
Up such that max �ln+1(Y (�in)) > max a. Let yn+1 = an ∪{Y (�in)}. Suppose we have
chosen ym, for m ≥ n. If m ∈ Nk0 , then take p ∈ I such that �1(X (�iq)) > maxym
for each X (�iq) ∈ Up. Take Y (�im) to be any member of Up.
If m ∈ Nkl for some l > 0, then we have two cases. Suppose ym(�im � 1) ∈ �1(a).
Then choose Y (�im) to be any member of X such that, for q < m such that �im �
l = �iq � l , �l(Y (�im)) = �l (ym(�iq)), and max �l+1(Y (�im)) > maxym . Otherwise,
ym(�im � 1) �∈ �1(a). In this case, let q < m such that �im � l = �iq � l , and let p be
such that �1(ym(�iq)) ∈ �1(Up). Then take Y (�im) to be any member of Up such that
the following hold: Y (�im � l) = ym(�iq � l), and max�l+1(Y (�im)) > maxym . Let
ym+1 = ym ∪ {Y (�im)}.
Letting Y =

⋃
m≥n ym, we obtain a member of Ek which satisfies our claim. �
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The following lemma is proved by an induction scheme: Given that Ek satisfies
the Pigeonhole Principle, we then prove that Ek+1 satisfies the Pigeonhole Principle.
In fact, one can prove this directly, but induction streamlines the proof.
Lemma 3.16. For each k ≥ 3, Ek satisfies A.4.
Proof. By Lemma 3.13, E2 satisfies A.4. Now assume that k ≥ 2 and Ek satisfies
A.4.Wewill prove that Ek+1 satisfiesA.4. LetX ∈ Ek+1,a = rn(X ), andO ⊆ ARn+1.
Let l < k + 1 be such that n ∈ Nk+1l .
Suppose l ≥ 1 and let k′ = k + 1− l . Letting U denote {b(�in) : b ∈ rn+1[a,X ]},
we note that U is isomorphic to a member of Ek′ . By the induction hypothesis,
A.4 holds for Ek′ . It follows that at least one of {b(�in) : b ∈ rn+1[a,X ] ∩ O}
or {b(�in) : b ∈ rn+1[a,X ] \ O} contains a set isomorphic to a member of Ek′ .
By Fact 3.15 (1), there is a Y ∈ [a,X ] such that either rn+1[a,Y ] ⊆ O or else
rn+1[a,Y ] ⊆ Oc .
Suppose now that l = 0. Take I to consist of those p ≥ n for which �ip � 1 > �iq � 1
for all q < p. Then I is infinite. Moreover, for each p ∈ I , letting Ip := {q ≥ p :
�iq � 1 = �ip � 1}, we have that {X (�iq) : q ∈ Ip} is isomorphic to a member of Ek .
Thus, for each p ∈ I , at least one of {X (�iq) : q ∈ Ip}∩{b(�in) : b ∈ rn+1[a,X ]∩O}
or {X (�iq) : q ∈ Ip} ∩ {b(�in) : b ∈ rn+1[a,X ] ∩ Oc} contains a subset which is
isomorphic to a member of Ek . Take one and call it Up. Thin I to an infinite subset
I ′ for which either Up ⊆ {b(�in) : b ∈ rn+1[a,X ] ∩ O} for all p ∈ I ′, or else
Up ⊆ {b(�in) : b ∈ rn+1[a,X ] ∩ Oc} for all p ∈ I ′. By Fact 3.15 (2), there is a
Y ∈ [a,X ] such that rn+1[a,Y ] ⊆

⋃
p∈I ′ Up. Thus, Y satisfies A.4. �

FromTheorem 3.14 andLemmas 3.10 and 3.16, we obtain the following theorem.
Theorem 3.17. For each 2 ≤ k < �, (Ek,≤ r) is a topological Ramsey space.

§4. Ramsey-classification theorems. In this section, we show that in each of the
spaces Ek , k ≥ 2, the analogue of the Pudlák-Rödl Theorem holds. Precisely, we
show in Theorem 4.14 that each equivalence relation on any given front on Ek is
canonical when restricted to some member of Ek . (See Definitions 4.10 and 4.11.)
Let k ≥ 2 be fixed. We begin with some basic notation, definitions, and facts
which will aid in the proofs. From now on, we routinely use the following abuse of
notation.
Notation 4.1. For X ∈ Ek and n < �, we shall use X (n) to denote X (�in).
We will often want to consider the set of all Y into which a given finite approx-
imation s can be extended, even though Y might not actually contain s . Thus, we
define the following notation.
Notation 4.2. Let s, t ∈ AR and X ∈ R. Define Ext(s) = {Y ∈ R : s ⊆ Y},
and let Ext(s, t) denoteExt(s)∩Ext(t). Define Ext(s, X ) = {Y ≤ X : Y ∈ Ext(s)},
and let Ext(s, t, X ) denote Ext(s, X ) ∩ Ext(t, X ).
Define X/s = {X (n) : n < � andmaxX (n) > max s} and a/s = {a(n) : n < |a|
andmax a(n) > max s}. Let [s, X/t] denote {Y ∈ R : s � Y and Y/s ⊆ X/t}.
Let rn[s, X/t] be {a ∈ ARn : a � s and a/s ⊆ X/t}. For m = |s |, let r[s, X/t]
denote

⋃{rn[s, X/t] : n ≥ m}. Let depthX (s, t) denotemax{depthX (s),depthX (t)}.
Ext(s, X ) is the set of all Y ≤ X into which s can be extended to a member ofR.
Note thatY ∈ Ext(s, X ) implies that there is aZ ∈ R such that s � Z andZ/s ⊆ Y .
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Fact 4.3. SupposeY ≤ X ∈ Ek and c ⊆ c′ inAR are given withmax c = max c′,
c ≤fin Y , and c′ ≤fin X . Then there is a Y ′ ∈ [c′, X ] such that for any s ≤fin c and
any a ∈ r[s, Y ′/c], a/c ⊆ Y .
Proof. The proof is by the sort of standard constructionwe havedone in previous
similar arguments. Let d = |c′|, and let rd (Y ′) = c′. For n ≥ d , having chosen
rn(Y ′), let l < k be such that n ∈ Nkl and choose Y ′(n) as follows.

1. If l ≥ 1,
(i) if c′(�in � l) ∈ �l (c), then choose Y ′(n) ∈ Y ;
(ii) if c′(�in � l) �∈ �l (c), then choose Y ′(n) ∈ X .

2. If l = 0, then choose Y ′(n) ∈ Y .
Then Y ′ satisfies the conclusion. �
Recall Definition 2.5 of front on a topological Ramsey space from Section 2.

Definition 4.4. Let F be a front on Ek and let f : F → �. Let F̂ = {rn(a) :
a ∈ F and n ≤ |a|}. Suppose s, t ∈ F̂ and X ∈ Ext(s, t). We say that X separates
s and t if and only if for all a ∈ F ∩ r[s, X/t] and b ∈ F ∩ r[t, X/s], f(a) �= f(b).
We say that X mixes s and t if and only if no Y ∈ Ext(s, t, X ) separates s and t.
We say that X decides for s and t if and only if either X mixes s and t or else X
separates s and t.

Note that mixing and separating of s and t only are defined for X ∈ Ext(s, t).
Though we could extend this to all X in Ek by declaring X to separate s and t
whenever X �∈ Ext(s, t), this is unnecessary, as it will not be relevant to our con-
struction. Also note that X ∈ Ext(s, t) mixes s and t if and only if for each
Y ∈ Ext(s, t, X ), there are a ∈ F ∩ r[s, Y/t] and b ∈ F ∩ r[t, Y/s] for which
f(a) = f(b).

Fact 4.5. The following are equivalent for X ∈ Ext(s, t):
1. X mixes s and t.
2. For all Y ∈ Ext(s, t, X ), there are a ∈ F ∩ r[s, Y/t] and b ∈ F ∩ r[t, Y/s] for
which f(a) = f(b).

3. For all Y ∈ [depthX (s, t), X ], there are a ∈ F ∩ r[s, Y/t] and b ∈ F ∩ r[t, Y/s]
for which f(a) = f(b).

Proof. (1)⇔ (2) follows immediately from the definition of mixing. (2)⇒ (3)
is also immediate, since [depthX (s, t), X ] ⊆ Ext(s, t, X ). To see that (3) implies (2),
let Y ∈ Ext(s, t, X ) be given, and let c = rdepthX (s,t)(Y ). By Fact 4.3, there is a
Y ′ ∈ [depthX (s, t), X ] such that r[s, Y ′/t] ⊆ r[s, Y/t] and r[t, Y ′/s] ⊆ r[t, Y/s].
By (3), there are a ∈ F ∩ r[s, Y ′/t] and b ∈ F ∩ r[t, Y ′/s] such that f(a) = f(b).
By our choice of Y ′, a is in r[s, Y/t] and b is in r[t, Y/s]. Thus, (2) holds. �
Lemma 4.6 (Transitivity of Mixing). Suppose that X mixes s and t and X mixes
t and u. Then X mixes s and u.

Proof. Without loss of generality, we may assume that depthX (u) ≤ depthX (s),
and hence [depthX (s), X ] = [depthX (s, u), X ]. Let Y be any member of
[depthX (s), X ]. We will show that there are a ∈ F ∩ r[s, Y/u] and c ∈ r[u,Y/s]
such that f(a) = f(c). It then follows that X mixes s and u.
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TakeA ∈ [depthX (s, t), X ] as follows: If depthX (t) ≤ depthX (s), then letA = Y .
If depthX (t) > depthX (s), then takeA so that r[u,A/t] ⊆ r[u,Y/t] and r[s, A/t] ⊆
r[s, Y/t]. This is possible by Fact 4.3.
Define

H = {b ∈ F ∩ r[t, A/s] : ∃a ∈ F ∩ r[s, Y/t](f(a) = f(b))}. (8)

Define X = ⋃{[b,A] : b ∈ H}. Then X is an open set, so by the Abstract Ellentuck
Theorem, there is a B ∈ [depthX (s, t), A] such that either [depthX (s, t), B] ⊆ X or
else [depthX (s, t), B] ∩ X = ∅.
If [depthX (s, t), B] ∩ X = ∅, then for each b ∈ F ∩ r[t, B/s] and each
a ∈ F ∩r[s, Y/t], we have thatf(a) �= f(b). Since r[s, B/t] ⊆ r[s, A/t] ⊆ r[s, Y/t],
we have that B separates s and t, a contradiction. Thus, [depthX (s, t), B] ⊆ X .
Since depthX (u) ≤ depthX (s), it follows that B ∈ Ext(t, u, X ); so B mixes
t and u. Take b ∈ F ∩ r[t, B/u] and c ∈ F ∩ r[u,B/t] such that f(b) = f(c).
Since [depthX (s, t), B] ⊆ X , it follows that F ∩ r[t, B/s] ⊆ H. Thus, there is an
a ∈ F ∩ r[s, Y/t] such that f(a) = f(b). Hence, f(a) = f(c). Note that
a ∈ r[s, Y/u] trivially, since depthX (u) ≤ depthX (s). Moreover, c ∈ r[u,Y/s]:
To see this, note first that r[u,B/t] ⊆ r[u,A/t]. Secondly, A = Y if depthX (t) ≤
depthX (s), and r[u,A/t] ⊆ r[u,Y/t] if depthX (t) > depthX (s). Therefore,Y mixes
s and u. �
Next, we define the notion of a hereditary property, and give a general lemma
about fusion to obtain a member of Ek on which a hereditary property holds.
Definition 4.7. A propertyP(s, X ) defined onAR×R is hereditary if whenever
X ∈ Ext(s) and P(s, X ) holds, then also P(s, Y ) holds for all Y ∈ [depthX (s), X ].
Similarly, a property P(s, t, X ) defined on AR×AR×R is hereditary if whenever
P(s, t, X ) holds, then also P(s, t, Y ) holds for all Y ∈ [depthX (s, t), X ].
Lemma 4.8. Let P(·, ·) be a hereditary property on AR × R. If whenever X ∈
Ext(s) there is a Y ∈ [depthX (s), X ] such that P(s, Y ), then for each Z ∈ R, there
is a Z′ ≤ Z such that for all s ∈ AR|Z′, P(s, Z′) holds.
Likewise, suppose P(·, ·, ·) is a hereditary property onAR×AR×R. If whenever
X ∈ Ext(s, t) there is a Y ∈ [depthX (s, t), X ] such that P(s, t, Y ), then for each
Z ∈ R, there is a Z′ ≤ Z such that for all s, t ∈ AR|Z′, P(s, t, Z′) holds.
The proof of Lemma 4.8 is straightforward; being very similar to that of
Lemma 4.6 in [7], we omit it.

Lemma 4.9. Given any front F and function f : F → �, there is an X ∈ Ek such
that for all s, t ∈ F̂|X , X decides s and t.
Lemma 4.9 follows immediately from Lemma 4.8 and the fact that mixing and
separating are hereditary properties.
For a ∈ AR and �l ∈ (k + 1)|a|, we shall let ��l (a) denote {�lm(a(m)) : m < |a|}.
Definition 4.10. A map ϕ on a front F ⊆ AR is called
1. inner if for each a ∈ F , ϕ(a) = ��l (a), for some �l ∈ (k + 1)|a|.
2. Nash-Williams if for all pairs a, b ∈ F , whenever ϕ(b) = ��l (b) and there is
some n ≤ |b| such that ϕ(a) = �(l0,...,ln−1)(rn(b)), then ϕ(a) = ϕ(b).

3. irreducible if it is inner and Nash-Williams.
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Definition 4.11 (Canonical equivalence relations on a front). LetF be a front on
Ek . An equivalence relation R on F is canonical if and only if there is an irreducible
map ϕ canonizing R on F , meaning that for all a, b ∈ F , a R a ←→ ϕ(a) = ϕ(b).
We shall show in Theorem 4.12 (to be proved after Theorem 4.14) that, similarly
to the Ellentuck space, irreducible maps on Ek are unique in the following sense.
Theorem 4.12. Let R be an equivalence relation on some front F on Ek . Suppose
ϕ and ϕ′ are irreducible maps canonizing R. Then there is an A ∈ Ek such that for
each a ∈ F|A, ϕ(a) = ϕ′(a).

Definition 4.13. For each pair X,Y ∈ Ek , m, n < �, and l ≤ k, define
X (m)El Y (n)←→ �l (X (m)) = �l (Y (m)). (9)

Note that X (m)E0 Y (n) for all X,Y and m, n, and X (m)Ek Y (n) if and only if
X (m) = Y (n). Let Ek denote {El : l ≤ k}, the set of canonical equivalence relations
on 1-extensions.
We now prove the Ramsey-classification theorem for equivalence relations on
fronts. The proof generally follows the same form as that of Theorem 4.14 in [7],
the modifications either being proved or pointed out. One of the main differences is
that, in our spaces Ek , for any given s ≤fin X there will be many Y ≤ X such that
s cannot be extended into Y , and this has to be handled with care. The other main
difference is the type of inner Nash-Williams maps for our spaces here necessitate
quite different proofs of Claims 4.15 and 4.18 from their analagous statements in
[7]. Finally, analogously to the Ellentuck space, the canonical equivalence relations
are given by irreducible maps which are unique in the sense of Theorem 4.12. This
was not the case for the topological Ramsey spaces in [7], [8], and [5], which can
have different inner Nash-Williams maps canonizing the same equivalence relation;
for those spaces, we showed that the right canonical map is the maximal one.
Theorem 4.14 (Ramsey-classification Theorem). Let 2 ≤ k < � be fixed. Given
A ∈ Ek and an equivalence relation R on a front F on A, there is a member B ≤ A
such that R restricted to F|B is canonical.
Proof. By Lemma 4.9 and shrinking A if necessary, we may assume that for all
s, t ∈ F̂|A, A decides for s and t. For n < �, s ∈ ARn, X ∈ Ext(s), and E ∈ Ek ,
we shall say that X E-mixes s if and only if for all a, b ∈ rn+1[s, X ],

X mixes a and b ←→ a(n)E b(n). (10)

Claim 4.15. There is anA′ ≤ A such that for each s ∈ (F̂ \F)|A′, letting n = |s |,
the following holds: There is a canonical equivalence relation Es ∈ Ek such that for
all a, b ∈ rn+1[s, A′], B mixes a and b if and only if a(n)Es b(n). Moreover, n ∈ Nkl
implies Es cannot be Ej for any 1 ≤ j ≤ l .
Proof. Let X ≤ A be given and s ∈ (F̂ \ F)|A. Let n = |s | and l < k be such
that n ∈ Nkl . We will show that there is a Y ∈ [depthX (s), X ] and either j = 0 or
else a l < j ≤ k such that for each a, b ∈ rn+1[s, Y ], Y mixes a and b if and only if
a(n)Ej b(n). The Claim will then immediately follow from Lemma 4.8.
First, let m > n be least such that for any a ∈ rm+1[s, X ], �l(a(m)) = �l (a(n))
but �l+1(a(m)) > �l+1(a(n)). Define

Hl+1 = {a ∈ rm+1[s, X ] : A mixes s ∪ a(m) and s ∪ a(n)}. (11)
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By the Abstract Nash-Williams Theorem, there is a Yl+1 ∈ [s, X ] such that either
rm+1[s, Yl+1] ⊆ Hl+1, or else rm+1[s, Yl+1]∩Hl+1 = ∅. If rm+1[s, Yl+1] ⊆ Hl+1, then
every pair of 1-extensions of s into Yl+1 is mixed by A; hence, Es � rn+1[s, Yl+1]
is given by E0. In this case, let A′ = Yl+1. Otherwise, rm+1[s, Yl+1] ∩ Hl+1 = ∅, so
every pair of 1-extensions of s intoYl+1 which differ on level l+1 is separated byA.
For the induction step, for l +1 ≤ j < k, suppose thatYj is given and every pair
of 1-extensions of s into Yj which differ on level j is separated by A. Let m > n
be least such that for any a ∈ rm+1[s, X ], �j(a(m)) = �j(a(n)) but �j+1(a(m)) �=
�j+1(a(n)). Define

Hj+1 = {a ∈ rm+1[s, X ] : A mixes s ∪ a(m) and s ∪ a(n)}. (12)

By the Abstract Nash-Williams Theorem, there is a Yj+1 ∈ [s, Yj ] such that either
rm+1[s, Yj+1] ⊆ Hj+1, or else rm+1[s, Yj+1] ∩ Hj+1 = ∅. If rm+1[s, Yj+1] ⊆ Hj+1,
then every pair of 1-extensions of s into Yj+1 is mixed by A; hence, Es �
rn+1[s, Yj+1] = Ej+1. In this case, let A′ = Yj+1.
Otherwise, rm+1[s, Yj+1]∩Hj+1 = ∅, so every pair of 1-extensions of s into Yj+1
which differ on level j + 1 is separated by A. If j + 1 < k, continue the induction
scheme. If the induction process terminates at some stage j + 1 < k, then letting
A′ = Yj+1 satisfies the claim. Otherwise, the induction does not terminate before
j + 1 = k, in which case Es � rn+1[s, Yk] = Ek and we let A′ = Yk .
The above arguments show thatEs � rn+1[a,A′] is given byEj , where either j = 0
or else l < j ≤ k. �
For s ∈ ARn|A′, let Es denote the canonical equivalence relation for mixing
1-extensions of s in rn+1[s, A′] from Claim 4.15, and let �s denote the projection
map on {t(n) : t ∈ rn+1[s, A′]} determined by Es . Thus, for a ∈ rn+1[s, A′], if
n ∈ Nkl , then

�s(a(n)) = ∅ ←→ Es = E0, (13)

and for l < j ≤ k,
�s(a(n)) = �j(a(n))←→ Es = Ej. (14)

Definition 4.16. For t ∈ F̂|A′, define

ϕ(t) = {�s(t(m)) : s � t and m = |s |}. (15)

It follows immediately from the definition that ϕ is an inner map on F|A′.
The next fact is straightforward, its proof so closely resembling that of Claim 4.17
in [7] that we do not include it here.

Fact 4.17. Suppose s ∈ (F̂ \ F)|A′ and t ∈ F̂|A′.
1. Suppose s ∈ ARn|A′ and a, b ∈ rn+1[s, A′]. If A′ mixes a and t and A′ mixes b
and t, then a(n)Es b(n).

2. If s � t and ϕ(s) = ϕ(t), then A′ mixes s and t.
The next lemma is the crux of the proof of the theorem.

Claim 4.18. There is a B ≤ A′ such that for all s, t ∈ (F̂ \ F)|B which are mixed
by B, the following holds: For all a ∈ r|s|+1[s, B/t] and b ∈ r|t|+1[t, B/s], B mixes a
and b if and only if �s (a(|s |)) = �t(b(|t|)).
Proof. We will show that for all pairs s, t ∈ (F̂ \ F)|A′ which are mixed by
A′, for each X ∈ Ext(s, t, A′), there is a Y ∈ [depthX (s, t), X ] such that for all
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a ∈ r|s|+1[s, Y/t] and b ∈ r|t|+1[t, Y/s],A′ mixes a and b if and only of ϕs (a(|s |)) =
ϕt(b(|t|)). The conclusion will then follow from Fact 4.5 and Lemma 4.8.
Suppose s, t ∈ (F̂ \F)|A′ aremixed byA′. Letm = |s |, n = |t|,X ∈ Ext(s, t, A′),
and d = depthX (s, t).

Subclaim 1. Es = E0 if and only if Et = E0.
Proof. Suppose toward a contradiction that Es = E0 but Et �= E0. Let l < k
be such that n ∈ Nkl . Then Et �= E0 implies Et = Ep for some l < p ≤ k, by
Claim 4.15. Fact 4.17 (1) implies that there is at most one Et equivalence class
of 1-extensions b of t for which b is mixed with each 1-extension of s . If each
b ∈ rn+1[t, X/s] is not mixed with any a ∈ rm+1[s, X/t], then X separates s and t,
a contradiction. So, suppose b ∈ rn+1[t, X/s] is mixed with some a ∈ rm+1[s, X/t].
By Fact 4.17 (2), all 1-extensions a, a′ of s are mixed. Hence, X mixes b with every
a ∈ rm+1[s, X/t]. Take Y ∈ [d,X ] such that, for the j < k such that d ∈ Nkj ,
max �j+1(Y (d )) > max b. Then for each b′ ∈ rn+1[t, Y/s], �p(b′) > �p(b), so
b′ �Et b. Hence, b′ is separated from each a ∈ rm+1[s, Y/t]. But this contradicts that
X mixes s and t. Therefore, Et must also be E0. �
Suppose bothEs andEt areE0. Then for alla ∈ rm+1[s, X/t] and b ∈ rn+1[t, X/s],
A′ mixes a and b, by Fact 4.17 (2) and transitivity of mixing. At the same time,
�s (a(m)) = �t(b(n)) = ∅. In this case simply let Y = X .
Subclaim 2. Assume that Es �= E0 and Et �= E0. Let p, q be the numbers such
thatm ∈ Nkp and n ∈ Nkq . If p �= q, then A separates s and t.
Proof. Since bothEs andEt are notE0, there are some j, l such that p < j ≤ k,
q < l ≤ k, Es = Ej , and Et = El . Suppose without loss of generality that
q < p. Since m ∈ Nkp , it follows that for each a ∈ rm+1[s, A′/t], �p(a(m)) ∈ �p(s).
Furthermore, max�p(a(m)) < max rd (A′), and max�p+1(a(m)) > max(rd (A′)),
where d = depthA′(s, t). Since n ∈ Nkq , it follows that for each b ∈ rn+1[t, A′/s],
max �q+1(b(n)) > max rd (A′). Since q < p, every pair of 1-extensions of s have the
same �q+1 value. On the other hand, every pair of 1-extensions of t with different
�q+1 values are separated, since l ≥ q+1. In particular, a(m) is never equal to b(n),
for all a ∈ rm+1[s, A′/t] and b ∈ rn+1[t, A′/s].
Let n′ > d beminimal inNkq such that there is anm

′ ∈ Nkp with d ≤ m′ < n′, and
such that for each c ∈ rn′+1[d,A′], both s ∪ c(m′) ∈ rm+1[s, A′/t] and t ∪ c(n′) ∈
rn+1[t, A′/s]. Define

H′ = {c ∈ rn′+1[d,A′] : A mixes s ∪ c(m′) and t ∪ c(n′)}. (16)

Letm′′ > d beminimal inNkp such that there is an n′′ ∈ Nkq with d ≤ n′′ < m′′, and
such that for each c ∈ rm′′+1[d,A′], both s ∪ c(m′′) ∈ rm+1[s, A′/t] and t ∪ c(n′′) ∈
rn+1[t, A′/s]. Define

H′′ = {c ∈ rm′′+1[d,A′] : A mixes s ∪ c(m′′) and t ∪ c(n′′)}. (17)

Take Y ∈ [d,A′] homogeneous for bothH′ andH′′.
If rn′+1[d,Y ] ⊆ H′, then there are two different 1-extensions of t in Y above
s which are not Et-related, yet are both mixed with the same extension of s ,
a contradiction, since mixing is transitive. Similarly, if rn′+1[d,Y ] ⊆ H′′, we obtain
a contradiction. Thus, both rn′+1[d,Y ] ∩H′ = ∅ and rm′′+1[d,Y ] ∩H′′ = ∅; hence
Y separates s and t.
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Similarly, if p < q, we conclude that there is aY ∈ [d,A′] which separates s and t.
Since A already decides s and t, it follows that A separates s and t. �
By Subclaim 2, s and t being mixed by A implies that p and q must be equal.
Further, s and t mixed by A also implies j must equal l . To see this, supposing that
j < l , let d ≤ m′ < n′ be such that m′ ∈ Nkp and n′ ∈ Nkq , and such that for each
c ∈ rn′+1[d,A′], both s ∪ c(m′) ∈ rm+1[s, A′/t] and t ∪ c(n′) ∈ rn+1[t, A′/s]. Let

H = {c ∈ rn′+1[d,A′] : A mixes s ∪ c(m′) and t ∪ c(n′)}. (18)

Then taking Y ∈ [d,A′] homogenous for H, we find that Y must separate these
extensions of s and t. Likewise, for n′ < m′. Similarly, if l < j, we find aY ∈ [d,A′]
which separates s and t, a contradiction. Therefore, j = l .

Subclaim 3. There is a Y ∈ [d,X ] such that for all a ∈ rm+1[s, Y/t] and b ∈
rn+1[t, Y/s], Y mixes a and b if and only if �s (a(m)) = �t(b(n)).

Proof. Wehave already shown thatAmixing s and t implies thatp = q and j = l .
For each pair p ≤ j′ < k and � ∈ {<,>}, and the pair j′ = k and � ==, choose
minimal m′, n′ ∈ Nkp such that m′, n′ > d ; m′ � n′; for each c ∈ rmax(m′ ,n′)+1[d,A

′],
both s ∪ c(m′) ∈ rm+1[s, A′/t] and t ∪ c(n′) ∈ rn+1[t, A′/s]; and j′ is maximal
such that �j′(c(m′)) = �j′(c(n′)). Let m′(j′, �), n′(j′, �) denote this chosen pair
m′, n′. For each pair (j′, �), lettingM (j′�) denote max(m′(j′, �), n′(j′, �))+1, let
H(j′ ,�) denote the set of all c ∈ rM (j′�)[d,X ] such that A mixes s ∪ c(m′(j′, �))
and t ∪ c(n′(j′, �)). Take a Y ∈ [d,X ] which is homogeneous for all these
sets.
Let a ∈ rm+1[s, Y/t] and b ∈ rn+1[t, Y/s]. Let p ≤ j′ ≤ k be maximal such
that �j′(a(m)) = �j′(b(n)), and let � be the relation between a(m) and b(n) as
members of Wk . Let m′, n′ denote m′(j′, �), n′(j′, �), respectively. Then there is
a c ∈ rM (j′ ,�)[d,Y ] such that c(m′) = a(m) and c(n′) = b(n). Suppose that
�j(a(m)) �= �j(b(n)). Then � �== and j′ < j. Suppose toward a contradiction
that Y mixes a and b. If � is <, then there are c, c′ ∈ rM (j′ ,�)[d,Y ] such that
c(m′) = c′(m′) but �j(c(n′)) �= �j(c′(n′)). If rM (j′,�)[d,Y ] ⊆ H(j′ ,�), then by
transitivity ofmixing,Y mixes t∪c(n′) and t∪c′(n′), contradictingClaim4.15, since
�j(c(n′)) �= �j(c′(n′)). Therefore, itmust be the case that rM (j′ ,�)[d,Y ]∩H(j′ ,�) = ∅,
and hence,Y separates a and b. Likewise, if � is>, we find thatY separates a and b.
Thus, for all p ≤ j′ < j and � ∈ {<,>}, rM (j′ ,�)[d,Y ] ∩ H(j′ ,�) = ∅; and hence,
Y separates a and b whenever �j(a(m)) �= �j(b(n)).
Since by our assumption s and t are mixed by A and Y ≤ A, s and t are mixed
byY . Thus, theremust be some j′ ≥ j and some � such that rM (j′ ,�)[d,Y ] ⊆ H(j′,�).
It follows from transitivity of mixing and an argument similar to above that for each
pair (j′, �) with j′ ≥ j, Y mixes s ∪ c(m′) and t ∪ c(n′). Hence, Y mixes a and b
whenever �j(a(m)) = �j(b(n)). �
By Subclaim 3 and Lemma 4.8, the Claim holds. �
The next claim and its proof are similar to Claim 4.19 in [7]. We include it, as the
modifications might not be obvious to the reader referring to [7].

Claim 4.19. For all s, t ∈ F̂|B, if ϕ(s) = ϕ(t), then B mixes s and t.
Proof. Suppose that ϕ(s) = ϕ(t). Let I denote the set of indices i < |s | for
which there is a 0 < ji ≤ k such that �ri (s) = �ji ; likewise let L denote this set
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for t. Let q = |ϕ(s)| and enumerate I and L as 〈im : m < q〉 and 〈lm : m < q〉,
respectively. Note that for each m < q, �rim (s)(s(im)) = �rlm (t)(t(lm)). Further,
these sequences are both in ≺-increasing order. Now ϕ(ri0 (s)) = ϕ(rl0 (t)) = ∅
and ϕ(s(0)) = ϕ(t(0)), so B mixes ri0+1(s) and rl0+1(t). By induction on m < q,
applying Fact 4.17 and Claim 4.18, we find that B mixes s and t. �
Claim 4.19 and Fact 4.17 (1) imply that ϕ is a Nash-Williams function on F|B.
As the proof is almost identical to that of Claim 4.20 in [7], we omit it. We finally
obtain that for all s, t ∈ F|B, if f(s) = f(t), then ϕ(s) = ϕ(t), by a proof similar
to that of Claim 4.21 in [7].
This concludes the proof of the Ramsey-classification theorem. �
We now prove that irreducible maps are unique, up to restriction below some
member of the space.

Proof of Theorem 4.12. Let R be an equivalence relation on some front
F on Ek , and let A ∈ Ek be such that the irreducible map ϕ from the
proof of Theorem 4.14 canonizes R on F|A. Let ϕ′ be any irreducible map can-
onizing R on F . Then ϕ′ is a map from F into an infinite set, namely [Ŵk ]<� .
Applying the proof of Theorem 4.14 to ϕ′, we find a B ≤ A such that for each
t ∈ F|B and n < |t|, there is a sequence 〈lt,0, . . . , lt,|t|−1〉 such that for each n < |t|,
ϕ′(t) ∩ t̂(n) = �ln (t(n)), and ϕ′(t) = {�li (t(i)) : i < |t|}. Now if ϕ(t) �= ϕ′(t) for
some t ∈ F|B, then there is some n < |t| for which ϕ(t) ∩ t̂(n) �= ϕ′(t) ∩ t̂(n).
Letm denote the integer less than k such that �rn(t) = �m. If lt,n < m, then there are
s, s ′ ∈ F|B such that s, s ′ � rn(t) and ϕ(s) = ϕ(s ′), but �m(s(n)) �= �m(s ′(n)) and
hence ϕ′(s) �= ϕ′(s ′). This contradicts thatϕ andϕ′ canonize the same equivalence
relation. Likewise, ifm < lt,n, we obtain a contradiction. Therefore,ϕ(t) must equal
ϕ′(t) for all t ∈ F|B. �
As a corollary of Theorem 4.14, we obtain the following canonization theorem
for the finite rank fronts ARn, the case of n = 1 providing a higher order analogue
of the Erdős-Rado Theorem (see [10]) for the Ellentuck space.

Corollary 4.20. Let k ≥ 2, n ≥ 1, and R be an equivalence relation on ARn on
the space Ek . Then there is an A ∈ Ek and there are li ≤ k (i < n) such that for each
pair a, b ∈ ARn|A, a R b if and only if for each i < n,�li (a(i)) = �li (b(i)).Moreover,
for each i < n, if m is such that i ∈ Nkm, then either li = 0 or else m + 1 ≤ li ≤ k.

§5. Basic cofinal maps from the generic ultrafilters. In Theorem 20 in [6], it was
proved that every monotone cofinal map from a p-point into another ultrafilter is
actually continuous, after restricting below somemember of the p-point. This prop-
erty of p-points was key in [14], [7], [8], and [5] to pulling out a Rudin–Keisler map
on a front from a cofinal map on an ultrafilter, thereby, along with the appropriate
Ramsey-classification theorem, allowing for a fine analysis of initial Tukey struc-
tures in terms ofRudin–Keisler isomorphism types. Although the generic ultrafilters
under consideration here do not admit continuous cofinal maps, they do possess
the key property allowing for the analysis of Tukey reducibility in terms of Rudin–
Keisler maps on a front. We prove in Theorem 5.2 that each monotone map from
the generic ultrafilter Gk for P(�k)/Fin⊗k into P(�) is basic (see Definition 5.1)
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on a filter base for Gk , which implies that it is represented by a finitary function.
This is sufficient for analyzing Tukey reducibility in terms of Rudin–Keisler maps
on fronts. In the next section, Theorem 5.2 will combine with Theorem 4.14 to
prove that the initial Tukey structure of nonprincipal ultrafilters below Gk is exactly
a chain of length k: Gk >T �k−1(Gk) >T · · · >T �1(Gk).
In Theorem 42 in [1], we proved that eachmonotone cofinal map from G2 to some
other ultrafilter is represented by a monotone finitary map which preserves initial
segments. Here, we extend that result to all Gk , k ≥ 2. Slightly refining Definition 41
in [1] and extending it to all Ek , we have the following notion of a canonical cofinal
map.
Given thatP(�k)/Fin⊗k is forcing equivalent to (Ek,⊆Fin⊗k ), we from now on let
Bk denoteGk∩Ek , wherewe identify [�]2 with the upper triangle {(i, j) : i < j < �}.
Definition 5.1. Let 2 ≤ k < �. Given Y ∈ Bk , a monotone map g : Bk|Y →
P(�) is basic if there is a map ĝ : AR|Y → [�]<� such that
1. (monotonicity) For all s, t ∈ AR|Y , s ⊆ t → ĝ(s) ⊆ ĝ(t);
2. (end-extension preserving) For s � t in AR|Y , ĝ(s) � ĝ(t);
3. (ĝ represents g) For each V ∈ Bk|Y , g(V ) =

⋃
n<� ĝ(rn(V )).

Theorem 5.2 (Basic monotone maps on Gk). Let 2 ≤ k < � and Gk generic for
P(�k)/Fin⊗k be given. In V [Gk ], for each monotone function g : Gk → P(�), there
is a Y ∈ Bk such that g � (Bk |Y ) is basic.
It follows that every monotone cofinal map g : Gk → V is represented by a
monotone finitary map on the filter base Bk|Y , for some Y ∈ Gk .
Proof. We force with (Ek,⊆Fin⊗k ), as it is forcing equivalent to P(�k)/Fin⊗k .
Let ġ be an (Ek,⊆Fin⊗k )-name such that � “ġ : Ġk → P(�) is monotone.” Recall
that≺ is a well-ordering on� � ↓≤k with order-type�, and that 〈�jm : m < �〉 denotes
the ≺-increasing well-ordering of � � ↓≤k . Let AR∗ denote the collection of all trees
of the form {Z(�jm) : m < n}, where Z ∈ Ek andm < �. Note that for those n < �
for which �jn has length k, {Z(�jm) : m ≤ n} is a member of AR.
Fix an A0 ∈ Ek , and let X0 = A0. We now begin the recursive construction of the
sequences (An)n<� and (Xn)n<� . Let n ≥ 1 be given, and suppose we have chosen
Xn−1, An−1. Let yn = {Xn−1(�jm) : m ≤ n}. Let Sn denote the set of all z ∈ AR∗

such that z ⊆ yn . Enumerate the members of Sn as zpn , p < |Sn|. Let X−1
n = Xn−1

and A−1
n = An−1. Suppose p < |Sn | − 1 and we have chosen Xp−1n and Ap−1n .

If there are V,A ∈ Ek with A ⊆Fin⊗k V ⊆ Xp−1n such that

(i) V̂ ∩ yn = zpn ;
(ii) A � n − 1 �∈ ġ(V );

then take Apn and V
p
n to be some such A and V . In this case, A

p
n � n �∈ ġ(V pn ).

Hence, by monotonicity, Apn � n �∈ ġ(V ) for every V ⊆ V pn . In this case, let Xpn be
a member of Ek such that Xpn ⊆ Xp−1n , yn � X̂ pn , and wheneverW ⊆ Xpn such that
Ŵ ∩ yn = zpn , thenW ⊆ V pn .
Otherwise, for all V ⊆ Xp−1n satisfying (i), there is no A ⊆Fin⊗k V which forces
n �∈ ġ(V ). Thus, for all V ⊆ Xp−1n satisfying (i), V � n ∈ ġ(V ). In this case, let
Apn = A

p−1
n , Xpn = X

p−1
n , and define V pn to be the largest subset of X

p
n in Ek such

that V̂ pn ∩ yn = zpn .
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By this construction, we have that for each n ≥ 1,
(∗) Apn decides the statement “n − 1 ∈ ġ(V )”,
for each V ⊆ Xpn such that V̂ ∩ yn = zpn . Let An = A|Sn |−1

n and Xn = X
|Sn|−1
n . This

ends the recursive construction of the An and Xn.

LetY be the set of maximal nodes in the tree
⋃
1≤n<� yn. Note thatY is a member

of Ek . For y ∈ AR∗ and U ∈ Ek , we let U/y denote the set {U (�im) : m < � and
maxU (�im) > maxy}.
Claim 5.3. For each V ⊆ Y in Ek and each n ≥ 1, if p is such that zpn = V̂ ∩ yn ,
then in fact V ⊆ V pn .
Proof. Let V ⊆ Y and n ≥ 1 be given, and let p be such that zpn = V ∩yn . Then
V/zpn = V/yn ⊆ Y/yn ⊆ Xpn , and every extension of zpn into Xpn is in fact in V pn . �
Our construction of Y was geared toward establishing the following.

Claim 5.4. Let V ⊆ Y be in Ek , and let 1 ≤ n < � be given. Let p be the integer
such that V̂ ∩ yn = zpn . Then

V � n − 1 ∈ ġ(V )⇐⇒ Y � n − 1 ∈ ġ(V pn ).
Proof. Given V ⊆ Y , 1 ≤ n < �, and p < |Sn| be such that V̂ ∩ yn = zpn .
By (∗), Apn decides whether or not n − 1 is in ġ(V pn ). Since Y ⊆Fin⊗k Apn , Y also
decides whether or not n ∈ ġ(V pn ). SupposeY � n−1 �∈ ġ(V pn ). Since V ⊆ V pn , by
monotonicity of ġ, we haveY � n−1 �∈ ġ(V ). Hence, alsoV � n−1 �∈ ġ(V ). Now
suppose thatY � n− 1 ∈ ġ(V pn ). Then for all pairsA ⊆Fin⊗k V ′ ⊆ Xp−1n satisfying
(i) and (ii), we have that A � n − 1 ∈ ġ(V ′). In particular, V � n − 1 ∈ ġ(V ). �
Nowwe define a finitarymonotone function ĝ : AR∗|Y → [�]<� whichY forces
to represent ġ on the cofinal subset Bk|Y of Ġk . Given x ∈ AR∗|Y , let m ≥ 1 be
the least integer such that x ⊆ ym. For each n ≤ m, let pn be the integer such that
zpnn = x ∩ yn, and define

ĝ(x) = {n − 1 : n ≤ m and Y � n − 1 ∈ ġ(V pnn )}. (19)

By definition, ĝ is monotone and initial segment preserving.

Claim 5.5. If Y is in Gk , then ĝ represents ġ on Bk � Y .
Proof. Let V ⊆ Y be in Gk . Let n ≥ 1 be given and let p such that zpn = V̂ ∩ yn .
Then Claims 5.3 and 5.4 imply that V � n − 1 ∈ ġ(V ), if and only if Y � n − 1 ∈
ġ(V pn ). This in turn holds if and only if n − 1 ∈ ĝ(V̂ ∩ yn). By the definition of ĝ,
we see that for each l < m, ĝ(V̂ ∩yl ) ⊆ ĝ(V̂ ∩ym). Thus, V � n− 1 ∈ ġ(V ) if and
only if n−1 is in ĝ(V̂ ∩ym) for allm ≥ n. Therefore,V � ġ(V ) =

⋃
n≥1 ĝ(V̂ ∩yn).

Thus, the claim holds. �
Finally, we can restrict ĝ to have domain AR|Y . Note that ĝ on this restricted
domain retains the property of being monotone and end-extension preserving.
It follows that Y forces ĝ on AR to represent g on Bk|Y . To see this, let V ⊆ Y
be in Bk . Then {ĝ(rl (V )) : l < �} is contained in {ĝ(V̂ ∩ yn) : n < �}, so⋃{ĝ(rl (V )) : l < �} ⊆

⋃{ĝ(V̂ ∩ yn) : n < �}. At the same time, for each n
there is an l ≥ n such that rl (V ) ⊇ V̂ ∩ yn , so monotonicity of ĝ implies that
ĝ(rl (V )) ⊇ ĝ(V̂ ∩ yn). Thus,

⋃{ĝ(rl (V )) : l < �} ⊇
⋃{ĝ(V̂ ∩ yn) : n < �}.
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Therefore, Y forces that ĝ on domain AR|Y represents ġ on Ḃk |Y , and hence ġ is
basic on Ḃk |Y . �

§6. TheTukey structure below thegeneric ultrafilters forced byP(�k)/Fin⊗k . The
recent paper [1] began the investigation of the Tukey theory of the generic ultrafilter
G2 forced by P(� × �)/Fin⊗2. It was well-known that G2 is the Rudin–Keisler
immediate successor of its projected selective ultrafilter �1(G2). In [1], Dobrinen
and Raghavan (independently) proved that G2 is strictly below the maximum Tukey
type ([c]<�,⊆). Further strengthening that result, Dobrinen proved that (G2,⊇) �≥T
([�1]<� ⊆), irregardless of the size of the continuum in the generic model. On
the other hand, in Theorem 39 in [1], Dobrinen proved that G2 >T �1(G2). Thus,
we knew that the Tukey type of G2 is neither maximum nor minimum. It was left
open what exactly is the structure of the Tukey types of ultrafilters Tukey reducible
to G2.
We solve that open problem here by showing that G2 is the immediate Tukey
successor of �1(G2), and moreover, each nonprincipal ultrafilter Tukey reducible to
G2 is Tukey equivalent to either G2 or else �1(G2). Thus, the initial Tukey structure
of nonprincipal ultrafilters below U is exactly a chain of order-type 2. Extending
this, we further show that for all k ≥ 2, the ultrafilter Gk generic for P(�k)/Fin⊗k
has initial Tukey structure (of nonprincipal ultrafilters) exactly a chain of size k. We
also show that the Rudin–Keisler structures below Gk is exactly a chain of size k.
Thus, the Tukey structure below Gk is analogous to the Rudin–Keisler structure
below Gk , even though each Tukey equivalence class contains many Rudin–Keisler
equivalence classes.
Let k ≥ 2. As in the previous section, let Gk be a generic ultrafilter forced by
P(�k)/Fin⊗k , and let Bk denote Gk ∩ Ek , where we are identifying [�]k with the
collection of strictly increasing sequences of natural numbers of length k. Then Bk
is a generic filter for (Ek,⊆Fin⊗k ), and Bk is cofinal in Gk .
We begin by showing that each Gk has at least k-many distinct Tukey types of
nonprincipal ultrafilters below it, forming a chain. The proof of the next propo-
sition is very similar to the proof of Proposition 39 in [1], which showed that
G2 >T �1(G2).
Proposition 6.1. Let k ≥ 2 and Gk be generic for P(�k)/Fin⊗k . Then in V [Gk ],
for each l < k, �l (Gk) <T �l+1(Gk).
Proof. Since themap �l : �′′l+1Wk → �′′l Wk witnesses that�l(Bk) ≤RK �l+1(Bk),
it follows that �l (Bk) ≤T �l+1(Bk). Thus, it remains only to show that these are not
Tukey equivalent. Let ġ : �l (Gk)→ �l+1(Gk) be a (Ek,⊆Fin⊗k )-name for amonotone
map. Without loss of generality, we may identify �′′l+1Wk with �.
Noting that �l (Ek) := {�l (X ) : X ∈ Ek} is isomorphic to El , and that �l (Ek)
is regularly embedded into Ek , it follows by a slight modification of the proof of
Theorem 5.2 that there is someA ∈ Bk such thatA forces that ġ � �l (Bk |A) is basic.
Thus, in V [Gk ], g is represented by finitary monotone initial segment preserving
map ĝ defined on AR|Y . Letting f denote the map on {�l(X ) : X ∈ Ek|A}
determined by ĝ, we see that f is actually in the ground model since (Ek,⊆Fin⊗k ) is
a 	-closed forcing.
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Let X ∈ Bk|A be given. If there is a Y ⊆ X in Bk such that f(�l (Y )) ∩ �l+1(Y )
does not contain a member of �l+1(Ek), then Y forces that f(�l(Ḃk)) �⊆ �l+1(Ḃk).
Otherwise, (a) for all Y ⊆ X in Bk , f(�l(Y )) ∩ �l+1(Y ) is a member of �l+1(Ek).
If there is a Y ⊆ X in Bk such that for all Z ⊆ Y in Bk , f(�l(Z)) �⊆ �l+1(Y ),
then Y forces that f � �l (Ḃk) is not cofinal into �l+1(Ḃk). Otherwise, (b) for all
Y ⊆ X in Bk , there is a Z ⊆ Y in Bk such that f(�l(Z)) ⊆ �l+1(Y ).
Now we are in the final case that (a) and (b) hold. Fix Y,W ⊆ X such that
�l (Y ) = �l (W ) but �l+1(Y ) ∩ �l+1(W ) = ∅. Take Y ′ ⊆ Y such that f(�l (Y ′)) ⊆
�l+1(Y ). Take W ′ ⊆ W such that �l (W ′) ⊆ �l (Y ′); then take W ′′ ⊆ W such
that f(�l (W ′′)) ⊆ �l+1(W ′). Since �l (W ′′) ⊆ �l (Y ′) and f is monotone, we have
that f(�l (W ′′)) ⊆ f(�l(Y ′)). Thus, f(�l (W ′′)) ⊆ �l+1(Y ). On the other hand,
f(�l (W ′′)) ⊆ �l+1(W ′), which is contained in �l+1(W ). Hence, f(�l(W ′′)) ⊆
�l+1(Y ∩W ), which is empty. Thus, W ′′ forces f(�l(Z)) to be the emptyset, for
each Z ⊆W ′′, soW ′′ forces f not to be a cofinal map. �
Applying Theorems 4.14 and 5.2, we shall prove the main theorem of this paper.

Theorem 6.2. Let k ≥ 2, and let Gk be generic for the forcing P(�k)/Fin⊗k .
If V ≤T Gk and V is nonprincipal, then V ≡T �l (Gk), for some l ≤ k.
Proof. Let Gk be a P(�k)/Fin⊗k generic ultrafilter on �k , and let B denote Bk .
Let V be a nonprincipal ultrafilter on base set�which is Tukey reducible toGk . Then
there is a monotone cofinal map g : Gk → V witnessing that V is Tukey reducible
to Gk . By Theorem 5.2, there is an A ∈ B such that g on B|A is basic, represented
by a finitary, monotone, end-extension preserving map ĝ : AR|A→ [�]<� .
For each X ∈ B|A, let aX = rn(X ) where n is least such that ĝ(rn(X )) �= ∅.
Let F = {aX : X ∈ B|A}. Note that F is a front on B|A. For X ∈ B|A, recall
that F|X denotes {a ∈ F : a ≤fin X}. We let 〈B � F〉 denote the filter on the
base set F generated by the collection of sets F|X , X ∈ B|A. Define f : F → �
by f(a) = min ĝ(a). By genericity of Gk and arguments for Facts 5.3 and 5.4 and
Proposition 5.5 in [7], it follows that V = f(〈B � F〉); that is, V is the ultrafilter
which is the Rudin–Keisler image via f of the filter 〈B � F〉.
By Theorem 4.14 and genericity of Gk , there is a B ∈ B|A such that f � F|B is
canonical, represented by an inner Nash-Williams functionϕ. Recall from the proof
of Theorem 4.14 that ϕ is a projection function, where ϕ(a) =

⋃{�ri (a)(a(i)) : i <
|a|}, for a ∈ F|B.
For l ≤ k andX ∈ Ek|B, we say that (∗)l(X ) holds if and only if for eachY ≤ X ,
for each Z ≤ Y , there is a Z′ ≤ Z such that �l(Z′) ⊆ ϕ(F|Y ) and, if l < k, then
also �l+1(X ) ∩ ϕ(F|X ) = ∅.
Claim 6.3. If (∗)l (X ) and ¬(∗)l+1(X ), then X forces ϕ(Gk |F) ≡T �l (Gk).
Proof. Let l ≤ k be given and suppose that (∗)l (X ) holds, and if l < k, then
also ¬(∗)l+1(X ). By definition of ϕ, we know that for each Y ≤ X , ϕ(F|Y ) ⊆⋃
i≤k �i(Y ). By ¬(∗)l+1(X ), we have that ϕ(F|Y ) must actually be contained in⋃
i≤l �i(Y ). (∗)l (X ) implies that X forces that for each Y ≤ X in Ġk , there is a
Z′ ≤ Y in Ġk such that �l (Z′) ⊆ ϕ(F|Y ). Then �l (Gk) is actually equal to the
filter generated by the sets (

⋃
ϕ(F|Y )) ∩ �l(Ek), Y ∈ Gk , since they are cofinal

in each other. Moreover, the filter generated by the sets (
⋃
ϕ(F|Y )) ∩ �l (Ek),
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Y ∈ Gk , is Tukey equivalent to ϕ(Gk |F), as can be seen by the map ϕ(F|Y ) �→
(
⋃
ϕ(F|Y )) ∩ �l (Ek), which is easily seen to be both cofinal and Tukey. �
Claim 6.4. For each W ∈ Ek |B, there is an X ≤ W and an l ≤ k such that
(∗)l (X ) holds.
Proof. LetW ∈ Ek|B be given. For all pairs j ≤ l ≤ k, define

Hjl = {a ∈ F|W : ∃n < |a|(n ∈ Nkj ∧ ϕrn (a) = �l )}. (20)

Take X ≤ W homogeneous for Hjl for all j ≤ l ≤ k. Let l ≤ k be maximal such
that, for some j ≤ l , F|X ⊆ Hjl . We point out that F|W ⊆ H00, so such an l ≤ k
exists. We claim that (∗)l (X ) holds.
Note that, if l < k, then for all l < l ′ ≤ k, (F|X ) ∩ Hjl ′ = ∅, whenever j ≤ l ′.
Thus, for each a ∈ F|X , there is no n < |a| for which ϕrn(a) = �l ′ . Therefore, for
each a ∈ F|X , ϕ(a) ⊆ ⋃

i≤l �i(X ).
Now let j ≤ l such that F|X ⊆ Hjl , and let Z ≤ Y ≤ X be given. If there is a
C ∈ Ej such that C ⊆ {�j(a(n)) : a ∈ F|Z, n < |a|, n ∈ Nkj , and ϕrn(a) = �l},
then there is aZ′ ≤ Z such that �j(Z′) ⊆ C . It follows that �l (Z′) ⊆ C ⊆ ϕ(F|Z).
Such a C ∈ Ej must exist, for if there is none, then there is a C ′ ∈ Ej such that
C ′ ∩ {�j(a(n)) : a ∈ F|Z, n < |a|, n ∈ Nkj = ∅. In this case there is a Z′ ≤ Z such
that �j(Z′) ⊆ C ′. But then �l (Z′) ∩ ϕ(F|Z) = ∅, contradicting that F|X ⊆ Hjl .
Thus, there is a Z′ ≤ Z such that �l (Z′) ⊆ ϕ(F|Z), which in turn is contained in
ϕ(F|Y ). Therefore, (∗)l(X ) holds. �
Thus, by Claims 6.3 and 6.4, it is dense in Ek to force that ϕ(Gk |F) ≡T �l (Gk) for
some l ≤ k. �
Wefinish by showing that each ultrafilter Rudin–Keisler reducible toGk is actually
Rudin–Keisler equivalent to �l (Gk) for some l ≤ k.
Theorem 6.5. Let k ≥ 2, and let Gk be generic for the forcing P(�k)/Fin⊗k .
If V ≤RK G and V is nonprincipal, then V ≡RK �l (Gk), for some l ≤ k.
Proof. Let V ≤RK Gk . Note that Gk is isomorphic to the ultrafilter Gk � AR1
having base set AR1. Thus, there is a function h : AR1 → � which witnesses that
h(Gk � AR1) = V . Such an h induces an equivalence relation on AR1. Applying
Theorem 4.14, there is an A ∈ Gk such that h � AR1|A is represented by an
irreducible map on AR1|A. The only irreducible maps on first approximations are
the projection maps �l , l ≤ k. Thus, h(Gk � AR1) must be exactly �l (G � AR1) for
some l ≤ k. Hence, V is isomorphic to �l (Gk), for some l ≤ k. �
Thus, the initial Tukey structure mirrors the initial Rudin–Keisler structure, even
though each Tukey type contains many Rudin–Keisler isomorphism classes.

§7. Further directions. Noticing that [�]k is really a uniformbarrier on� of rank
k, we point out that our method of constructing Ellentuck spaces of dimension k
can be extended transfinitely using uniform barriers of any countable rank. This is
the subject of a forthcoming paper of the author.
In [5], Dobrinen, Mijares, and Trujillo presented a template for constructing
new topological Ramsey spaces which have on level 1 the Ellentuck space, and on
level 2 some finite product of finite structures from a Fraı̈ssé class of ordered rela-
tional structures with the Ramsey property. They showed that any finite Boolean
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algebra appears as the initial Tukey structure of a p-point associated with some
space constructed by that method. Moreover, that template also constructs topo-
logical Ramsey spaces for which the maximal filter is essentially a Fubini product of
p-points, and which has initial Tukey structure consisting of all Fubini iterates of
a collection of p-points which is Tukey ordered as ([�]<�,⊆). (See for instance the
spaceH� in Example 25 ub [5].)
Problem 7.1. Construct topological Ramsey spaces with associated ultrafilters
which are neither p-points nor Fubini products of p-points, but which have initial Tukey
structures which are not simply chains.

We conclude with a conjecture about what is actually necessary to prove the
Abstract Nash-Williams Theorem for general topological Ramsey spaces. In our
proof of the Ramsey-classification theorem for equivalence relations on fronts, the
Abstract Nash-Williams Theorem was sufficient; we did not need the full strength
of the Abstract Ellentuck Theorem. The fact that (in earlier versions of this paper),
we proved the Abstract Nash-Williams Theorem for the spaces Ek without using
A.3 (b) leads to the following conjecture.

Conjecture 7.2. Let (R,≤, r) be a space for whichR is a closed subspace ofAR�
and axioms A.1 through A.4 minus A.3 (b) hold. Then the Abstract Nash-Williams
Theorem holds.
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