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Kaneda’s (J. Fluid Mech., vol. 107, 1981, pp. 131–145) Lagrangian renormalized
approximation was extended to single-time spectral closure under two assumptions:
(i) Markovianization and (ii) the Lagrangian velocity response function is expressed
by G(k, τ )= exp(−C1(k)τ −C2(k)τ 2/2). The unknown functions C1(k) and C2(k) are
theoretically derived to be consistent with the exact short-time behaviour of G(k, τ )
and the asymptotic short-time behaviour of assumed exponential form of G(k, τ ), i.e.
the present closure is derived from the Navier–Stokes equation without introduction
of any adjustable parameters and it can calculate the statistical quantities by theory.
The results show that the present closure has good agreement with direct numerical
simulation for single- and two-point statistics.
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1. Introduction
Turbulence has a stochastic nature, so that the randomness and complexity of

turbulence make theoretical analysis difficult. However, such randomness may permit
the statistical description of turbulence, and it is believed that there is a certain
kind of universality at sufficiently small scales in fully developed turbulence away
from boundaries (Kolmogorov 1941a,b). A striking feature of such universality is the
existence of exact statistical laws for homogeneous isotropic turbulence at sufficiently
high Reynolds numbers. Starting with Kraichnan (1959), much effort has been
dedicated to deriving the statistical theory of turbulence using various field-theoretic
approaches from first principles such as the Navier–Stokes equation (Leslie 1973;
Monin & Yaglom 1975; McComb 1989, 2014). The goal is to accurately describe
and predict statistical quantities of turbulence while maintaining a strong connection
to the underlying dynamics of the Navier–Stokes equation. However, it has been long
known that the equations for any statistical quantities are never closed because of
the nonlinearity of the Navier–Stokes equation. The so-called closure problem has
remained as a fundamental unsolved problem of fluid mechanics despite much effort
by many researchers (Leslie 1973; Monin & Yaglom 1975; Davidson 2004; McComb
1989, 2014). The closure related to the present study belongs to the so-called spectral
closure theory that postulates a dynamic equation for the energy transfer function and
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its spirit is to address in theory the characteristics of different scales that constitute
a turbulent field. A major concern of the spectral closure theory of turbulence is a
derivation of the second-order moments such as spectrum from the Navier–Stokes
equation without any adjustable parameters.

As one of the great achievements in the statistical theory of turbulence, the
direct interaction approximation (DIA) will be highlighted. In DIA, the two-point
two-time correlation and the response function are introduced, and the nonlinear
interactions are involved in the response function. This yields the non-negativity of
the energy spectrum. Although DIA fails in the derivation of Kolmogorov’s −5/3
law, DIA is attractive in the sense that there are several ways to derive the DIA
equations, e.g. the weak dependence principle (Kraichnan 1959), self-consistent
method (Herring 1965) and renormalized perturbation method (Kraichnan 1977).
As a reason for the failure of DIA, the Eulerian coordinate system is unsuited
to distinguishing between two possible effects such as uniform convection and
distortion. To maintain Galilean invariance, the Lagrangian coordinate system
is suited to distinguishing between the above effects, and Lagrangian two-point
two-time spectral closures have succeeded in the derivation of Kolmogorov’s −5/3
law (Kraichnan 1965; Kraichnan & Herring 1978; Kaneda 1981). Kolmogorov’s
−5/3 law has been observed in various turbulent motions, the interstellar medium
(Armstrong, Rickett & Spangler 1995), solar wind (Matthaeus & Goldstein 1982)
and atmosphere (Nastrom & Gage 1985; Tsuji 2004). Among various closures,
abridged Lagrangian history DIA (ALHDIA), strain-based ALHDIA (SBALHDIA)
and Lagrangian renormalized approximation (LRA) are representative closures which
can provide Kolmogorov’s −5/3 law through systematic ways without any adjustable
parameters. As an exception to closures in the sense of the Eulerian viewpoint,
local energy transfer is highlighted (McComb & Shanmugasundaram 1984). Local
energy transfer is derived from a purely Eulerian viewpoint using a mapping function,
whereas the result is compatible with Kolmogorov’s −5/3 law. The Kolmogorov
constant K0 for an infinite Reynolds number is 1.77 and 1.72 for ALHDIA and
LRA, respectively. On the other hand, K0 for a finite Reynolds number is 1.78,
2.0, 1.67, 1.69 and 2.3 for ALHDIA, SBALHDIA, LRA, Markovianized LRA and
local energy transfer, respectively (Herring & Kraichnan 1979; Gotoh, Kaneda &
Bekki 1988; McComb & Shanmugasundaram 1984). Taking into account the facts
that K0 = 1.62 ± 0.17 (Sreenivasan 1995) in experiments and K0 = 1.8 ± 0.1 for
state-of-the-art high-resolution direct numerical simulation (DNS) (Ishihara et al.
2016), it is difficult to say which closure is superior. On the other hand, because
of facts such as (i) the so-called DIA families have been mainly limited to the
exploration of universal constants of extremely large-Reynolds-number turbulent flow
since the closed equation is a complex integro-differential equation having memory
effect and (ii) there has recently been a growing tendency to study the effect of finite
Reynolds number on the Kolmogorov theory since the clear Kolmogorov’s −5/3 law
is not observed even for state-of-the-art high-resolution DNS (Ishihara et al. 2016),
practical closure, e.g. eddy-damped quasi-normal Markovianization (EDQNM), has
been used in a wide range of turbulence studies (Sagaut & Cambon 2008). One of
the advantages of EDQNM is to deepen our understanding of the phenomenology
of turbulence including Reynolds number dependency (Bos, Clark & Rubinstein
2007a; Bos, Shao & Bertoglio 2007b), decaying law regardless of Reynolds and
Schmidt number (Lesieur & Ossia 2000; Briard et al. 2015) and the role of the
nonlinear term in comparison with linear theory (Sagaut & Cambon 2008). On the
other hand, the disadvantage of EDQNM is that the results quantitatively depend on
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adjustable parameters (Bos & Fang 2015). Therefore, it is of great importance for
the further development of turbulence theory to develop closure theory derived from
the Navier–Stokes equation without the introduction of any adjustable parameters
or taking phenomenology into account for closure itself. In this paper, we extend
Kaneda’s LRA, which has been recognized as the most sophisticated closure (Sagaut
& Cambon 2008), to two-point single-time spectral closure under a few assumptions
and legitimate mathematical procedures.

The present paper is organized as follows. In § 2.1, LRA is briefly summarized. The
mathematical procedure for the extension to single-time spectral closure is described
in § 2.2. In § 3, the numerical methods for closure and DNS are described and the
numerical results for single- and two-point statistics are shown in § 4. Discussion and
conclusions are presented in § 5.

2. Spectral closure theory
2.1. Lagrangian renormalized approximation

Here, we briefly summarize the LRA (more details can be found in Kaneda (1981) or
Kida & Goto (1997)). The equations of incompressible fluid are

∂u
∂t
+ (u · ∇)u=−∇p+ ν1u+ f , (2.1a)

∇ · u=∇ · f = 0, (2.1b)

where u is velocity, p is pressure normalized by density, f is stirring force and ν
is kinematic viscosity. Kaneda (1981) introduced the Lagrangian position function
defined by

ψ(y, t|x, s)= δ(y− z(x, s|t)), (2.2)

where δ is the three-dimensional Dirac delta function and z(x, s|t) is the position of
a fluid element at time t which passes x at time s. The Lagrangian position function
obeys (

∂

∂t
+ u(y, t) · ∇y

)
ψ(y, t|x, s)= 0, (2.3a)

ψ(y, t|x, t)= δ(x− y). (2.3b)

Using the Lagrangian position function, the generalized velocity is defined as

v(x, s|t)=
∫

dyψ(y, t|x, s)u(y, t), (2.4)

and from (2.1a), (2.1b) and (2.3a), it obeys

∂v(x, s|t)
∂t

=

∫
dyψ(y, t|x, s)f (y, t)+ ν

∫
dyψ(y, t|x, s)∆yu(y, t)

−

∫
dyψ(y, t|x, s)∇yp(y, t). (2.5)

The closure problem considered here is to determine the subsequent statistical second-
order moments such as 〈u(x, t)u(y, t)〉 and 〈v(x, s|t)u(y, s)〉, where 〈· · ·〉 represents
an ensemble average. In LRA, the two-point two-time Lagrangian velocity correlation
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Q and Lagrangian velocity response function G are chosen as representatives. Here Q
and G are defined as

Qij(x, t|x′, s)≡ 〈Piα(∇x)vα(x, s|t)uj(x′, s)〉, t > s, (2.6a)

Gij(x, t|x′, s)≡
〈

Piα(∇x)δvα(x, s|t)
δfj(x′, s)

〉
, t > s, (2.6b)

where δ represents the functional derivative. The operator P plays a role of projecting
the arbitrary vector field with respect to x onto the solenoidal field. This operator
plays an important role in LRA to eliminate the irrelevant terms in the expansion. In
homogeneous turbulence, the closure theory is formulated in terms of the Fourier
representation of (2.1a)–(2.5). After lengthy algebra (the details are shown in
appendix A), we have(

∂

∂t
+ 2νk2

)
Q(k, t)= S(k, t)+Qf (k, t), (2.7a)(

∂

∂t
+ νk2

+ η(k, t, s)
)

Q(k, t, s)= 0, t> s, (2.7b)(
∂

∂t
+ νk2

+ η(k, t, s)
)

G(k, t, s)= 0, t> s, (2.7c)

G(k, t, t)= 1, (2.7d)

with

S(k, t)= 2π

∫ t

t0

ds
∫∫

∆

dp dqkpqbkpqQ(q, t, s)[G(k, t, s)Q(p, t, s)−Q(k, t, s)G(p, t, s)],

(2.8)

η(k, t, s)=π

∫∫
∆

dp dqkpq(1− y2)(1− z2)

∫ t

s
ds′Q(q, t, s′), (2.9)

where t0 is the initial time; Q(k, t)=Q(k, t, t)=E(k, t)/(2πk2); QF(k, t) is the forcing
spectrum; E(k) is the energy spectrum;

∫∫
∆

denotes the integration over all regions of
the p–q plane such that the three wavenumber vectors k, p and q form a triangle; x,
y and z are the cosines of the angles opposite to k, p and q in this triangle; and
bkpq is the geometrical factor given by bkpq = p/k(xy + z3). The LRA satisfies the
fluctuation–dissipation relation Q(k, t, s)=G(k, t, s)Q(k, s) for t > s. In LRA, an eddy
damping term η(k, t, s) comes from the Lagrangian acceleration of the pressure. In
(2.7b) and (2.7c), contributions from the random force are neglected because they are
not important for t> s in the same way as Gotoh, Nagaki & Kaneda (2000) for passive
scalar.

2.2. Extension to the single-time Markovianized LRA
When turbulence is quasi-stationary in the sense that the decay with respect to t
of Q(k, t, t) is much slower than that of G(k, t, s) for s, then Markovianization
Q(k, t, s)=Q(k, t)G(k, t, s) is applicable (Gotoh et al. 1988; Gotoh & Kaneda 2000).
Applying Markovianization in (2.7a), (2.7c) and (2.7d), we have the Markovianized
LRA (MLRA) equations:(
∂

∂t
+ 2νk2

)
Q(k, t)= 2π

∫∫
∆

dp dqkpqbkpqθkpq(t)Q(q, t)[Q(p, t)−Q(k, t)] +QF(k, t),

(2.10a)
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∂

∂τ
+ νk2

+ η(k, t, τ )
)

G(k, t, τ )= 0, τ > 0, (2.10b)

G(k, t, 0)= 1, (2.10c)

in which

θkpq(t)=
∫ t−t0

0
dsG(k, t, s)G(p, t, s)G(q, t, s), (2.11)

η(k, t, τ )=π

∫∫
∆

dp dqkpq(1− y2)(1− z2)Q(q, t)
∫ τ

0
ds′G(q, t, s′), (2.12)

where note that the evolution of G is with respect to time difference τ = t− s. Using
(2.10b), (2.10c) and (2.12), when τ→ 0, the Lagrangian velocity response function is
expanded as

G(k, t, τ )= c0(k, t)+ c1(k, t)τ +
c2(k, t)

2
τ 2
+ · · · , (2.13)

where

c0(k, t)=G(k, t, 0)= 1, (2.14a)

c1(k, t)=
∂G(k, t, τ )

∂τ

∣∣∣∣
τ=0

=−νk2, (2.14b)

c2(k, t)=
∂2G(k, t, τ )

∂τ 2

∣∣∣∣
τ=0

= (νk2)2 −µ(k, t), (2.14c)

with

µ(k, t)=
∫∫

∆

dp dqπkpq(1− y2)(1− z2)Q(q, t)= 2π

∫
∞

0
dqkq3Q(q, t)J

(q
k

)
, (2.15)

where the latter expression is derived from the exact integral on p, and J(x) is given
by

J(x)=
[
(1− x)4(1+ x)4

32x4
log

1+ x
|1− x|

−
1+ x2

48x3
(3x4
− 14x2

+ 3)
]
. (2.16)

It is noted that J(x)= J(1/x) and J(x→ 0)= 8/15x+O(x3). As mentioned by Kaneda
(1993) and Gotoh & Kaneda (2000), the short-time behaviours of Q and G have
important information about the statistical quantities. For the long-time behaviour of
G, we assume

G(k, t, τ )' exp
[
−C1(k, t)τ −

C2(k, t)
2

τ 2

]
≡ G(k, t, τ ), (2.17)

where unknown coefficients C1 and C2 are chosen to match asymptotic behaviours of
(2.17) at τ → 0 with the exact short-time behaviours (2.14b) and (2.14c). We then
obtain

C1(k, t)= νk2, C2(k, t)=µ(k, t). (2.18a,b)
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This choice with respect to G is equivalent to solving the following differential
equation: (

∂

∂τ
+ νk2

+µ(k, t)τ
)
G(k, t, τ )= 0, τ > 0. (2.19)

Using (2.17) and (2.18), θkpq(t) in the nonlinear term can be calculated in a
straightforward way as follows:

θkpq(t) '
∫ t−t0

0
dsG(k, t, s)G(p, t, s)G(q, t, s)

=

√
π

2dkpq(t)
exp

(
c2

kpq

2dkpq(t)

)

×

[
erf

(
ckpq√

2dkpq(t)
+

√
dkpq(t)

2
(t− t0)

)
− erf

(
ckpq√

2dkpq(t)

)]
, (2.20)

with

ckpq = ν(k2
+ p2
+ q2), (2.21a)

dkpq =µ(k, t)+µ(p, t)+µ(q, t). (2.21b)

For t� t0 or t0 =−∞, θkpq(t) can be simplified as

θkpq(t)=
√

π

2dkpq(t)
exp

(
c2

kpq

2dkpq(t)

)
erfc

(
ckpq√

2dkpq(t)

)
. (2.22)

In the numerical calculation, there are various rational approximations for the error
function (Abramowitz & Stegun 1964). We, however, calculated it by means of a
built-in function. For x= ckpq/

√
(2dkpq(t))→∞, the integrand is calculated using the

asymptotic property of the error function (Gradshteyn & Ryzhik 2014) as follows:

θkpq(t)=

√
1

2dkpq

1
x

∞∑
k=0

(−1)k
(2k− 1)!!
(2x2)k

. (2.23)

Thus, equations (2.20), (2.21a) and (2.21b) are used to calculate the nonlinear term
in the single-time MLRA. The computational cost of the single-time MLRA by this
approximation is of the same order as that of the EDQNM, test field model (Kraichnan
1971) and Lagrangian Markovianized field approximation (Bos & Bertoglio 2013).
The present method is also promising for anisotropic turbulence. In EDQNM, an
eddy damping term is derived phenomenologically on the dimensional ground
and anisotropic effects are not incorporated in an eddy damping term. Thus, the
single-time MLRA is more sophisticated compared to the other spectral closures
since it can calculate the statistical quantities by theory without introduction of any
adjustable parameters.
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3. Numerical method
Hereinafter, the single-time MLRA is termed closure for the sake of simplicity.

In closure, we solved (2.10a) with (2.22). The time derivative was estimated with a
first-order forward time scheme. The viscous, energy transfer and forcing terms are
estimated explicitly. We used QF ∼ exp(−k2/k2

f ) in this study and we have confirmed
that the form of forcing spectrum is negligible for statistical quantities, where kf = 2.5.
The wavenumbers were discretized logarithmically, namely ki = kmin × 2i−1/F, where
kmin = 1, F = 8 and i ∈ [1, . . . , N]. Here N was chosen to satisfy kmaxη > 2 at
the statistical steady state. Statistical quantities were evaluated when a criterion√
(K(t)−K(t− dt))2/K(t)6 1× 10−6 is satisfied, where dt is the time step and K(t)

is the turbulence kinetic energy (TKE) at time t.
In DNS, the spectral method was used with periodic boundary conditions of periods

of 2π in each of the three Cartesian coordinate directions. For time integration, we
used the fourth-order Runge–Kutta scheme and the so-called phase shift method was
used for de-aliasing, in which the maximum wavenumber of the retained Fourier
modes is about

√
2/3N, where N3 is the number of grid points. In this study, we

force the turbulence as

f (k, t)=
ε(t)− (K(t)−K∞)/τf

2Kf (t)
û(k, t)[H(k)−H(k− kf )], (3.1)

where K∞ is the ideal TKE, τf is the time scale to control forcing, Kf is the TKE
composed of wavenumbers lower than forced wavenumber kf = 2.5 and H is the
Heaviside step function. Here, the parameters were set as K∞ = 1/2 and τf = 5dt =
O(τη), where τη is the Kolmogorov time scale. Under this condition, TKE is well
controlled, e.g. the value is 1/2 with standard deviation O(10−7) for lowest Reynolds
number DNS and with O(10−5) for highest Reynolds number DNS. Here, E(k, 0)∼
k4 exp(−k2/k2

L) with kL=2.5 was used for the initial energy spectrum in all DNSs. We
started all runs with the same initial energy spectrum instead of using the final state of
the run with the smaller N as the initial state of the new runs as done by Kaneda et al.
(2003). After 5 eddy-turnover times based on the initial energy spectrum, we carried
out DNSs a further 10 eddy-turnover times for calculating the single-point statistics.
For two-point statistics, the statistics were calculated every eddy-turnover time, i.e. 10
data gatherings in total. In the present code, hybrid parallelization was implemented
using the message-passing interface library and OpenMP.

4. Numerical results
Turbulence characteristics are summarized in table 1. Here, K, ε, L, λ and η are the

TKE, TKE dissipation rate, integral length scale, Taylor microscale and Kolmogorov
scale, respectively. These variables are, in spectral space, defined as K =

∫
∞

0 dkE(k),
ε = 2ν

∫
∞

0 dkk2E(k), L = 3π/(4K)
∫
∞

0 dkE(k)/k, λ2
= 10νK/ε and η = (ν3/ε)1/4,

respectively (Davidson 2004). Here Reλ is the turbulence Reynolds number based on
the Taylor microscale Reλ ≡

√
2K/3λ/ν and Cε is the normalized TKE dissipation

rate Cε ≡ εL/(2K/3)3/2. Figure 1 shows the relation between Cε and Reλ obtained
by closure and DNS together with DNS data of other researchers. The functional
form (Doering & Foias 2002) Cε = a[1 +

√
1+ (b/Reλ)2] with a = 0.217 and b =

88.65 agrees with the present results obtained by closure and DNS. The parameters
were evaluated by means of the Levenberg–Marquardt least-squares method for closure
results. The fitting curve is within the acceptable range of ±3 standard deviations for
DNS data.
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Jimenez et al. (1993)
Cao et al. (1999)
Gotoh et al. (2002)
Kaneda et al. (2003)
Present closure
Present DNS
Fitting curve

FIGURE 1. Normalized TKE dissipation rate Cε versus turbulence Reynolds number Reλ
with ±3σ uncertainty error bars for present DNS, where σ is the standard deviation. Also
included are DNS data from Jiménez et al. (1993), Cao, Chen & Doolen (1999), Gotoh,
Fukayama & Nakano (2002) and Kaneda et al. (2003).

Method N K ε L λ η Reλ Cε

DNS 128 0.500 1.987× 10−1 1.973 1.563 2.589× 10−1 9.400 2.026
DNS 128 0.500 1.601× 10−1 1.827 1.421 2.016× 10−1 1.282× 10 1.511
DNS 128 0.500 1.338× 10−1 1.575 1.099 1.254× 10−1 1.983× 10 1.088
DNS 128 0.500 1.113× 10−1 1.371 8.491× 10−1 7.794× 10−2 3.064× 10 0.791
DNS 128 0.500 9.779× 10−2 1.220 6.418× 10−1 4.790× 10−2 4.632× 10 0.616
DNS 128 0.500 8.717× 10−2 1.153 4.800× 10−1 2.930× 10−2 6.929× 10 0.521
DNS 128 0.500 8.648× 10−2 1.069 3.404× 10−1 1.745× 10−2 9.827× 10 0.480
DNS 256 0.500 7.324× 10−2 1.165 2.192× 10−1 8.282× 10−3 1.808× 102 0.441
DNS 512 0.500 7.678× 10−2 1.068 1.353× 10−1 4.116× 10−3 2.791× 102 0.425
DNS 1024 0.500 7.873× 10−2 1.026 8.388× 10−2 2.031× 10−3 4.403× 102 0.416
Closure 36 1.003 1.414 0.846 5.932× 10−1 9.771× 10−2 9.771 2.189
Closure 40 0.941 9.458× 10−1 0.797 5.215× 10−1 6.818× 10−2 1.510× 10 1.517
Closure 47 0.892 6.109× 10−1 0.716 3.921× 10−1 3.718× 10−2 2.872× 10 0.954
Closure 56 0.889 4.684× 10−1 0.642 2.543× 10−1 1.704× 10−2 5.748× 10 0.659
Closure 67 0.921 4.188× 10−1 0.590 1.423× 10−1 6.572× 10−3 1.211× 102 0.514
Closure 78 0.944 4.023× 10−1 0.564 7.736× 10−2 2.534× 10−3 2.407× 102 0.454
Closure 90 0.964 4.013× 10−1 0.550 3.911× 10−2 8.959× 10−4 4.920× 102 0.429
Closure 102 0.965 3.994× 10−1 0.545 1.960× 10−2 3.167× 10−4 9.890× 102 0.421
Closure 114 0.966 4.009× 10−1 0.543 9.793× 10−3 1.120× 10−4 1.975× 103 0.421
Closure 126 0.960 3.997× 10−1 0.543 4.887× 10−3 3.960× 10−5 3.934× 103 0.423
Closure 138 0.953 3.973× 10−1 0.543 2.439× 10−3 1.400× 10−5 7.838× 103 0.426
Closure 150 0.953 3.992× 10−1 0.544 1.217× 10−3 4.949× 10−6 1.562× 104 0.429

TABLE 1. Turbulence characteristics in the numerical simulations.

Figure 2 shows the normalized energy spectra and compensated energy spectra. As
shown in figure 2, the spectra collapse well in the inertial subrange and dissipation
range for both DNS and closure. The differences between closure and DNS are
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FIGURE 2. Normalized energy spectra for (a) DNS and (b) closure and compensated
energy spectra for (c) DNS and (d) closure. Insets in (c) and (d) show the log-linear
plots. The dashed grey line in (a) is a closure result for the highest Reynolds number. In
(c), DNS data only for the top four highest Reynolds numbers are shown to emphasize
the spectral bump.

mainly observed in the energy-containing range due to the different forcing function
and the degree of spectral bump. However, the energy spectra obtained in closure
qualitatively agree with those of DNS. As shown in figure 2(b), a slight bump is
observed in the closure; however, its degree is suppressed compared to EDQNM
(Lesieur & Ossia 2000). The estimated Kolmogorov constant is K0 = 1.51 for the
closure and is slightly smaller than values in DNSs and theoretical estimation of LRA
(K0= 1.72). Figure 3 shows the energy flux Π(k) normalized by ε, where energy flux
is defined as Π(k) =

∫
∞

k dkT(k) = −
∫ k

0 dkT(k), where T(k) is the energy transfer
function. For high-Reynolds-number turbulent flows, Π(k) = ε is satisfied in the
inertial subrange according to Kolmogorov (1941a). As shown in figure 3, Π(k)= ε
in the inertial subrange is satisfied for high-Reynolds-number cases in both closure
and DNS. The difference between closure and DNS is mainly observed around the
energy-containing and bump ranges.

The spatial second- and third-order structure functions are given by

S2(r)= 4
∫
∞

0
dkE(k)f (kr), f (x)= 1−

sin x− x cos x
x3

, (4.1a,b)

S3(r)= 12r
∫
∞

0
dkT(k)g(kr), g(x)=

3 sin x− 3x cos x− x2 sin x
x5

. (4.1c,d)
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FIGURE 3. Normalized energy fluxes for (a) DNS and (b) closure. For a description, refer
to figure 2.
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FIGURE 4. Normalized second-order structure functions for (a) DNS and (b) closure
and compensated second-order structure functions for (c) DNS and (d) closure. For a
description, refer to figure 2. Here, vη = (νε)1/4 is the Kolmogorov velocity.

Here S2(r)∼ (εr)2/3 and S3(r)=−4/5εr are believed to be satisfied in the inertial
subrange for high-Reynolds-number turbulent flows. These expressions in physical
space are equivalent to the −5/3 law of energy spectrum and Π(k)= ε in wavenumber
space. Using Taylor expansions, it is found that S2(r→ 0) = εr2/15ν + O(r4) and
S3(r→ 0) = − 2

35 r3
∫
∞

0 dkk2T(k) + O(r5) for dissipation range. Figure 4 shows the
second- and third-order structure functions and skewness function. The Kolmogorov
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FIGURE 5. Normalized third-order structure functions for (a) DNS and (b) closure and
skewness functions for (c) DNS and (d) closure. For a description, refer to figure 2.

constant in the second-order structure function is given as C0 = 27/55Γ (1/3)K0.
The estimated C0 in the present closure is 2.0, and its value is slightly lower
than the DNS value. The Reynolds number dependency of S3(r → 0)/S2(r →
0)3/2 = 〈(∂u/∂x)3〉/〈(∂u/∂x)2〉3/2 is observed for both closure and DNS as in
Sreenivasan & Antonia (1997). In the present closure, S3(r → 0)/S2(r → 0)3/2
approaches −0.6 with an increase of Reλ and is slightly smaller than for LRA,
S3(r → 0)/S2(r → 0)3/2 = −0.66, for an infinite Reynolds number (Kaneda 1993).
Compared to the EDQNM (Bos et al. 2007a), the present closure is closer to DNS
at moderate Reynolds numbers (Gotoh et al. 2002). It is noted that the present
closure does not contradict the boundedness of the velocity derivative skewness for
high-Reynolds-number turbulent flows (Antonia et al. 2015).

As shown in figures 1–5, the present closure yields quantitative agreement with
DNS and its extension to anisotropic turbulence will be performed in the future.

Before closing this paper, we discuss the eddy damping and briefly comment
on the capability of the intermittency effect. In EDQNM, the response function
is regarded as having the form G(k, t, τ ) = exp[−(νk2

+ µEDQNM(k, t))τ ], where

µEDQNM(k, t)= α
√∫ k

0 dpp2E(p, t) is the inverse of the rotation time or that of strain
time. In EDQNM, one can adjust K0 through the parameter α and its relation is
given as K0≈ 2.76α2/3 (Lesieur & Ossia 2000). Figure 6 shows the eddy damping for
the present closure and EDQNM. In the inertial subrange using Kolmogorov’s −5/3
law, µ(k) in the present closure takes the form µ(k)= 1.06K0ε

2/3k4/3 (Kaneda 1993),
whereas [µEDQNM(k)]2 = 3/4α2K0ε

2/3k4/3 in EDQNM. In the present closure, µk is
regarded as the inverse of the squared Lagrangian time scale, where the Lagrangian
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FIGURE 6. Eddy damping for (a) present closure and (b) EDQNM.

time scale in wavenumber space is given as ε−1/3k−2/3 (Sagaut & Cambon 2008). The
behaviours of energy-containing range and dissipation range can be understood by
analysing the non-local interaction of eddy damping. For k� kc 6 p∼ q, we assume
that the contribution of integration

∫∫
∆

dp dq mainly comes from p > kc and q > kc,
where kc is the convenient cut-off wavenumber. We then have

µ(k� kc)= 2
∫
∞

kc

dp
∫ p

p−k
dq

kp
q
(x+ yz)2E(q)≈

8
15

k2
∫
∞

kc

dpE(p), (4.2)

where the change of variable using z = (k2
+ p2
− q2)/(2kp) and Taylor expansions

at k/p � 1 were used in the derivation. It is found from (4.2) that µ(k) ∼ Kk2

at low wavenumber for the present closure, whereas [µEDQNM(k)]2 ∼ k3E(k) at low
wavenumber for EDQNM. In this study, the forcing spectrum is given as k2 at low
wavenumber, so that k5 behaviours can be seen for the eddy damping in EDQNM as
shown in figure 6. In other words, eddy damping of the present closure is independent
of the energy spectrum at low wavenumber. On the other hand, for q 6 kc � k ∼ p
(or p 6 kc� k∼ q), we assume that the contribution of integration

∫∫
∆

dp dq mainly
comes from q 6 kc (or p 6 kc). We then have

µ(k� kc)= 2
∫ kc

0
dq
∫ k+q

k−q
dp

kp
q
(x+ yz)2E(q)≈

8
15

∫ kc

0
dqq2E(q), (4.3)

where the change of variable using y = (k2
+ q2
− p2)/(2kq) and Taylor expansions

at q/k� 1 were used in the derivation. It is found from (4.3) that µ(k) approaches
4/15τ 2

η for high wavenumber for the present closure, in which τη =
√
ν/ε is

the Kolmogorov time scale. For EDQNM, [µEDQNM(k)]2 = α2τ 2
η /2 for the high-

wavenumber limit. Thus, the eddy damping in the present closure qualitatively agrees
with squared eddy damping in EDQNM for high wavenumber, whereas there is a
qualitative difference for low wavenumber.

It is known that the drawback of spectral closures is neglect of the intermittency
effects. However, as discussed by Yoshida, Ishihara & Kaneda (2003), it is non-trivial
whether or not the closure theories do not yield anomalous scaling since the present
closure is similar in a sense to the exact closure equation for the Kraichnan model
(Kraichnan 1994) which has a solution exhibiting anomalous scaling. Thus, the
problem related to intermittency still remains unsolved and further studies are required.
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5. Discussion and conclusion
In the present study, we derived the two-point single-time spectral closure starting

from LRA and the use of assumptions (i) Markovianization and (ii) the Lagrangian
velocity response function being expressed by G(k, τ ) = exp(−C1(k)τ − C2(k)τ 2/2).
The unknown functions C1(k) and C2(k) are theoretically derived from being
consistent with the exact short-time behaviour of G(k, τ ) and the asymptotic short-time
behaviour of assumed exponential form of G(k, τ ). It is found that C1(k) is the
inverse of the viscous time scale and C2(k) is the inverse of the squared Lagrangian
time scale in the present closure. The main difference between the present closure
and other single-time spectral closures (EDQNM, test field model and Lagrangian
Markovianized field approximation) is in the form of the response function, where
G(k, τ ) = exp(−C(k)τ ) is assumed for the other single-time spectral closures. In
the inertial subrange, it is found that C2(k) and C(k)2 are proportional to ε2/3k4/3

regardless of closure. On the other hand, a difference can be seen for eddy damping
in the energy-containing range.

More generally speaking, most closures proposed so far take the form of (2.8) for
the energy transfer function in homogeneous isotropic turbulence and the differences
in closures originate from the Lagrangian velocity response function and Lagrangian
velocity correlation. From the perspective of the renormalization theory, these
differences come from the different representatives, and a more suitable choice of
representatives may improve the level of approximation. However, taking into account
attractive points in LRA, e.g. (i) satisfactory nature of the fluctuation–dissipation
theorem and (ii) the simple closed equations compared to ALHDIA and SBALHDIA,
the present closure based on LRA is not only promising for an extension to closure
in anisotropic turbulence but also reduces the computational cost as well as the other
two-point single-time closures.

The numerical results show that the single-time MLRA has good agreement
with DNS for single- and two-point statistics including the finite Reynolds number
dependency. Thus, the single-time MLRA is more sophisticated compared to other
two-point single-time spectral closures in the sense that (i) it can calculate the
statistical quantities by theory without the introduction of any adjustable parameters,
(ii) it involves simple closed equations and (iii) it shows quantitatively good
agreements with DNS. An extension of the present closure to anisotropic turbulence
will be performed in future work.
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Appendix A

The Fourier coefficient of Lagrangian velocity is defined as

v̂i(k, s|t)=
1

(2π)3

∫
vi(x, s|t) exp(−ik · x) dx (A 1)

and that of the Lagrangian position function is defined as

ψ̂(k, t|k′, s)=
1

(2π)6

∫∫
ψ(y, t|x, s) exp(−i(k · y+ k′ · x)) dy dx, (A 2)

with an initial condition ψ̂(k, s|k′, s)= δ(k+k′)/(2π)3 as understood from (2.3b). Here
i=
√
−1. From (2.4), (A 1) and (A 2), we have

v̂i(k, s|t)= (2π)3
∫

dk′ûi(k′, t)ψ̂(−k′, t|k, s), (A 3)

with an initial condition v̂i(k, s|s)= ûi(k, s). Hereinafter, f̂ (k, t) represents the Fourier
representation of f (x, t). From (2.5) and (A 1), the equation for v̂(k, s|t) is given as

∂

∂t
v̂i(k, s|t) = (2π)3

∫
dk′ f̂i(k′, t)ψ̂(−k′, t|k, s)− ν(2π)3

∫
dk′k′2ûi(k′, t)ψ̂(−k′, t|k, s)

+αi(2π)3
∫

dk′ψ̂(−k′, t|k, s)
k′ik
′

jk
′

k

k′2

∫
k′=p+q

ûj(p, t)ûk(q, t) dp, (A 4)

where α = 1 is the bookkeeping parameter for the convenience of perturbation
expansion and is introduced for the convolution terms. From (A 4), the equations of
the Lagrangian velocity correlation Qij(k, t, s) = Piα(k)v̂α(k, s|t)v̂j(−k, s|s) and the
Lagrangian velocity response function Gij = Piα(k)δv̂α(k, s|t)/δf̂j(k′, s) are given as

∂

∂t
Qij(k, t, s) = (2π)3Piα(k)

∫
dk′ f̂α(k′, t)ûj(−k, s)ψ̂(−k′, t|k, s)︸ ︷︷ ︸

A

−ν(2π)3Piα(k)
∫

dk′k′2ûα(k′, t)ûj(−k, s)ψ̂(−k′, t|k, s)︸ ︷︷ ︸
B

+αi(2π)3Piα(k)
∫

dk′ψ̂(−k′, t|k, s)
k′αk′βk′γ

k′2

∫
k′=p+q

ûj(−k, s)ûβ (p, t)ûγ (q, t) dp︸ ︷︷ ︸
C

,

(A 5)

∂

∂t
Gij(k, t|k′, s) = (2π)3Piα(k)

∫
dk′′δαjδ(k′′ + k′)δ(t− s)ψ(−k′′, t|k, s)︸ ︷︷ ︸

D

−ν(2π)3Piα(k)
∫

dk′′k′′2GE
αj(k
′′, t|k′, s)ψ(−k′′, t|k, s)︸ ︷︷ ︸

E
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+α2i(2π)3Piα(k)
∫

dk′′ψ̂(−k′′, t|k, s)
k′′αk′′βk′′γ

k′′2

∫
k′′=p+q

dpûβ (p, t)GE
γ j(q, t|k′, s)︸ ︷︷ ︸

F

+(2π)3Piα(k)
∫

dk′ f̂α(k′′, t)Ψj(−k′′, t|k, k′, s)︸ ︷︷ ︸
G

−ν(2π)3Piα(k)
∫

dk′′ûα(k′′, t)Ψj(−k′′, t|k, k′, s)︸ ︷︷ ︸
H

+αi(2π)3Piα(k)
∫

dk′′Ψ̂j(−k′′, t|k, k′, s)
k′′αk′′βk′′γ

k′′2

∫
k′′=p+q

dpûβ (p, t)ûγ (q, t)︸ ︷︷ ︸
I

,

(A 6)

where GE
αj(k

′′, t|k′, s) is the Eulerian response function defined as GE
αj(k

′′, t|k′, s) =
δûα(k′′, t)/δf̂j(k′, s) (Kraichnan 1959). Function Ψj(k′′, t|k,k′, s) is the response function
of ψ̂(k′′, t|k, s) for f̂j(k′, s) and is defined as Ψj(k′′, t|k, k′, s)= δψ̂(k′′, t|k, s)/δf̂j(k′, s)
for t > s and zero for t< s.

The role of P is to enforce the dilatational component of Lagrangian velocity to be
zero since v̂(k, s|t) satisfies the solenoidal condition at t= s, but does not necessarily
satisfy it at t 6= s. As shown later, this operator eliminates the irrelevant terms in the
expansion and simplifies the closed equations.

Assuming that variables can be expanded in terms of α, e.g. û(k, t)=
∑
∞

n=0 α
nû(n)

(k, t), ψ̂(k, t|k′, s) =
∑
∞

n=0 α
nψ̂ (n)(k, t|k, s), GE

ij(k, t|k′, s) =
∑
∞

n=0 α
nGE(n)

ij (k, t|k′, s)
and so on, and substituting the perturbation expansions into each equation and
equating powers of α, we find that, for example, ψ̂ (0)(k, t|k′, s) = δ(k + k′)/(2π)3,
GE(0)

ij (k, t|k′, s)=G(0)
ij (k, t, s)δ(k+ k′)/(2π)3 with G(0)

ij (k, t, s)= Pij(k) exp(−νk2(t− s))
and so on for zeroth-order solutions. The first-order solutions are also obtained using
the zeroth-order solutions, e.g. û(1)i (k, t)=

∫ t
t0

dsG(0)
iα (k, t, s)Mαβγ (k)

∫
k=p+q dpû(0)β (p, s)

û(0)γ (q, s) and so on.
In the derivation of closed equations of LRA, the following assumptions are made:

(a) û(0), G(0), ψ̂ (0) and Ψ̂ (0) are statistically independent of each other, and
(b) the probability distribution of û(0) is assumed to be Gaussian, i.e. the odd

moments are zero and the even moments can be expressed by the second
moments.

It is noted that the basic ideas for the derivations are different between LRA and
Lagrangian DIA, although the closed equations of LRA and Lagrangian DIA have the
same forms. Here is shown the systematic derivation of LRA equations.

A.1. Two-point single-time Eulerian velocity correlation
After lengthy algebra using the perturbation expansions and assumptions, we have
the following equation for the two-point single-time Eulerian velocity correlation
Qij(k, t, t):(

∂

∂t
+ 2νk2

)
Qij(k, t, t)= α2Dij(k, t, t)+QF

ij(k, t, t)+QF∗
ji (k, t, t), (A 7)
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where
Dij(k, t)=Hij(k, t)+Hji(−k, t)+O(α), (A 8)

with

Hij(k, t) = Miαβ(k)
∫

k=p+q
dp

×

[
2
∫ t

t0

ds′G(0)
jγ (−k, t, s′)Mγ δε(−k)Q(0)

αδ (p, t, s′)Q(0)
βε (q, t, s′)

+ 4
∫ t

t0

ds′G(0)
αγ (p, t, s′)Mγ δε(p)Q(0)

jδ (−k, t, s′)Q(0)
βε (q, t, s′)

]
+O(α), (A 9)

where Q(0)
ij (k, t, s)= 〈û(0)i (k, t)û(0)j (−k, s)〉, QF

ij(k, t)= 〈 f̂i(k, t)û∗j (k, t)〉, the superscript
∗ denotes the complex conjugate and Miαβ(k)=−i/2[kαPiβ(k)+ kβPiα(k)]. See Leslie
(1973) and McComb (1989, 2014) for the derivation of equation of Qij(k, t, t).

A.2. Two-point two-time Lagrangian velocity correlation
We consider the ensemble average of (A 5). Substituting the perturbation expansions
into (A 5) and taking the ensemble average, 〈A〉 and 〈B〉 are given as

〈A〉 =QF(0)
ij (k, t, s)+O(α), (A 10)

〈B〉 =−νk2Q(0)
ij (k, t, s)+O(α). (A 11)

After lengthy algebra using similar procedures, 〈C〉 is given as

〈C〉 = α24iPiα(k)
kαkβkγ

k2

∫
k=p+q

dp
∫ t

t0

ds′G(0)
γ δ (q, t, s′)Mδεζ (q)Q(0)

jε (k, s′, s)Q(0)
βζ (p, t, s′)

+α22iPiα(k)
kαkβkγ

k2

∫
k=p+q

dp
∫ s

t0

ds′G(0)
jδ (−k, s, s′)

×Mδεζ (−k)Q(0)
βε (p, t, s′)Q(0)

γ ζ (q, t, s′)

−α22Piα(k)
∫

k=p+q
dp
∫ t

s
ds′

pαpβpγ pδ
p2

Q(0)
γ δ (−q, t, s′)Q(0)

βj (k, t, s)+O(α3),

(A 12)

where the first and second terms disappear because of Piα(k)kαkβkγ /k2
= 0. In

the derivation of (A 12), symmetries of the integral with respect to p and q and
Miαβ(k)δ(k) = 0 were used. Summarizing the above equations, the equation for
two-point two-time Lagrangian velocity correlation is given as

∂

∂t
QL

ij(k, t, s)=−νXij(k, t, s)− α2Iij(k, t, s)+ Zij(k, t, s), (A 13)

where

Xij(k, t, s)= k2Q(0)
ij (k, t, s)+O(α), (A 14)

Iij(k, t, s)= 2Piα(k)
∫ t

s
ds′
∫

k=p+q
dp

pαpβpγ pδ
p2

Q(0)
γ δ (−q, t, s′)Q(0)

βj (k, t, s)+O(α),

(A 15)
Zij(k, t, s)=QF(0)

ij (k, t, s)+O(α). (A 16)
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A.3. Lagrangian velocity response function
As in two-point two-time Lagrangian velocity correlation, we consider the ensemble-
averaged equation of (A 6) for k′=−k, i.e. Gij(k, t|−k, s)=Gij(k, t, s). Substituting the
perturbation expansions into (A 6), replacing k′=−k and taking the ensemble average,
〈D〉 with k′ =−k is given as

〈D〉 = Pij(k)δ(t− s)+O(α). (A 17)

Similarly, 〈E〉 for k′ =−k is given as

〈F〉 =−νk2G(0)
ij (k, t, s)+O(α). (A 18)

After lengthy algebra using similar procedures, 〈F〉 for k′ =−k in (A 6) is given as

〈F〉 = −α22Piα(k)
∫

k=p+q
dp

pαpβpγ pδ
p2

∫ t

s
ds′Q(0)

γ δ (−q, t, s′)G(0)
βj (k, t, s)

+α24iPiα(k)
∫

k=p+q
dp

kαkβkγ
k2

∫ t

s
ds′G(0)

βδ (p, t, s′)

×Mδεζ (p)Q(0)
γ ε (q, t, s′)G(0)

ζ j (k, s′, s)+O(α3), (A 19)

where the second term disappears because of Pij(k)kαkβkγ /k2
= 0. Substituting

perturbation expansions into G and H in (A 6), replacing k′ = −k and taking the
ensemble average, it is found that the zeroth-order terms of 〈G〉 and 〈H〉 are zeros,
i.e. 〈G〉 and 〈H〉 start with O(α). Furthermore, the second-order term of 〈I〉 is zero,
i.e. 〈I〉 in (A 6) starts with O(α3).

Summarizing the above equations, the equation for the Lagrangian velocity response
function is given as

∂

∂t
Gij(k, t, s)=−νYij(k, t, s)− α2Jij(k, t, s)+Wij(k, t, s), (A 20)

where

Yij(k, t, s)= k2G(0)
ij (k, t, s)+O(α), (A 21)

Jij(k, t, s)= 2Piα(k)
∫

k=p+q
dp

pαpβpγ pδ
p2

∫ t

s
ds′Q(0)

γ δ (−q, t, s′)G(0)
βj (k, t, s)+O(α),

(A 22)
Wij(k, t, s)= Pij(k)δ(t− s)+O(α). (A 23)

A.4. Renormalized expansion
In order to close equations by the representatives, the renormalized expansion is used
as in Kraichnan (1977) and Kaneda (1981). The procedure is as follows:

(a) Begin with the primitive perturbation expansion for Q(k, t, t), Q(k, t, s) and
G(k, t, s) in terms of Q(0) and G(0)

Qij(k, t, t)=Q(0)
ij (k, t, t)+ αU(Q(0),G(0))+ · · · , (A 24)

Qij(k, t, s)=Q(0)
ij (k, t, s)+ αV(Q(0),G(0))+ · · · , (A 25)

Gij(k, t, s)=G(0)
ij (k, t, s)+ αW(Q(0),G(0))+ · · · . (A 26)
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(b) Expand D, I and J in terms of Q(0) and G(0)

Dij(k, t, s)= α2D(Q(0),G(0))+O(α3)+ · · · , (A 27)

Iij(k, t, s)= α2I(Q(0),G(0))+O(α3)+ · · · , (A 28)

Jij(k, t, s)= α2J (Q(0),G(0))+O(α3)+ · · · . (A 29)

(c) Revert these primitive expansions to obtain Q(0) and G(0) as functional power
expansions in Q and G

Q(0)
ij (k, t, s)=Qij(k, t, s)+ αX (Q,G)+ · · · , (A 30)

Q(0)
ij (k, t, s)=Qij(k, t, s)+ αY(Q,G)+ · · · , (A 31)

G(0)
ij (k, t, s)=Gij(k, t, s)+ αZ(Q,G)+ · · · . (A 32)

(d) Substituting (A 30)–(A 32) into (A 27)–(A 29), D, I and J can be expressed in
terms of representatives Q and G.

(e) Truncate the renormalized expansion at the lowest order and put α equal to unity.

The following equations are the final equations of LRA:(
∂

∂t
+ 2νk2

)
Qij(k, t)=Hij(k, t)+H∗ji(k, t)+QF

ij(k, t)+QF∗
ji (k, t), (A 33)(

∂

∂t
+ νk2

)
Qij(k, t, s)= Iij(k, t, s) t> s, (A 34)(

∂

∂t
+ νk2

)
Gij(k, t, s)= Jij(k, t, s) t> s, (A 35)

where

Hij(k, t) = Miαβ(k)
∫

k=p+q
dp

×

[
2
∫ t

0
ds′Gjγ (−k, t, s′)Mγ δε(−k)Qαδ(p, t, s′)Qβε(q, t, s′)

+ 4
∫ t

0
ds′Gαγ (p, t, s′)Mγ δε(p)Qjδ(−k, s, s′)Qβε(q, t, s′)

]
, (A 36)

Iij(k, t, s)=−2Piα(k)
∫

k=p+q
dp

pαpβpγ pδ
p2

∫ t

s
ds′Qγ δ(−q, t, s′)Qβj(k, t, s), (A 37)

Jij(k, t, s)=−2Piα(k)
∫

k=p+q
dp

pαpβpγ pδ
p2

∫ t

s
ds′Qγ δ(−q, s′, s)Gβj(k, t, s), (A 38)

where the contributions from the random force in (A 35) and (A 35) are neglected
because they are not important for t > s. In homogeneous isotropic turbulence, the
Lagrangian velocity correlation and Lagrangian velocity response function are given
as

Qij(k, t, s)= 1
2 Q(k, t, s)Pij(k), (A 39)

Gij(k, t, s)=G(k, t, s)Pij(k). (A 40)
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The closed equations for homogeneous isotropic turbulence can be obtained by
substituting these expressions into (A 33)–(A 38). For details of the derivation of the
closed equation for isotropic turbulence, the reader is referred to Leslie (1973) and
McComb (1989, 2014). For anisotropic turbulence, the reader is referred to Sagaut &
Cambon (2008).
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