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In this paper a non-convex vector optimization problem among infinite-dimensional
spaces is presented. In particular, a generalized Lagrange multiplier rule is
formulated as a necessary and sufficient optimality condition for weakly minimal
solutions of a constrained vector optimization problem, without requiring that the
ordering cone that defines the inequality constraints has non-empty interior. This
paper extends the result of Donato (J. Funct. Analysis 261 (2011), 2083–2093) to
the general setting of vector optimization by introducing a constraint qualification
assumption that involves the Fréchet differentiability of the maps and the tangent
cone to the image set. Moreover, the constraint qualification is a necessary and
sufficient condition for the Lagrange multiplier rule to hold.
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1. Introduction

In this paper we deal with the following constrained vector optimization problem
having an objective function with values in a non-empty subset of a partially ordered
linear space and both cone and equality constraints.

Let (X, ‖·‖X) and (Z2, ‖·‖Z2) be real Banach spaces, let (Y, ‖·‖Y ) and (Z1, ‖·‖Z1)
be partially ordered normed spaces, and let CY ⊂ Y and CZ1 ⊂ Z1 be, respectively,
the closed, convex and pointed cones in Y and Z1, with int(CY ) �= ∅, where int(CY )
denotes the interior of the set CY . These cones induce a partial order relation �CY

,
�CZ1

on Y , Z1, respectively, as follows:

∀y1, y2 ∈ Y, y1 �CY
y2 ⇐⇒ y2 − y1 ∈ CY ,

∀z1, z2 ∈ Z1, z1 �CZ1
z2 ⇐⇒ z2 − z1 ∈ CZ1 .

Let Y ∗, Z∗
1 , Z∗

2 be, respectively, the topological dual spaces of Y , Z1, Z2 and let

C∗
Y = {u ∈ Y ∗ : u(y) � 0 ∀y ∈ CY }
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be the dual cone of CY . Let S be a non-empty convex subset of X and let f : X → Y ,
g : X → Z1, h : X → Z2 be three general maps. Fixing the constraint set as

K = {x ∈ S : g(x) ∈ −CZ1 , h(x) = θZ2}, (1.1)

where θZ2 is the zero element in the space Z2, we consider the following constrained
vector optimization problem:

find x̄ ∈ K such that f(x̄) = min
x∈K

f(x). (1.2)

This problem is interpreted in the following way: determine a minimal solution
x̄ ∈ K, which is defined as the inverse image of a minimal element f(x̄) of the
image set f(K).

The solution concepts for a vector optimization problem are as follows.

Definition 1.1.

(a) A point x̄ ∈ K is called a minimal solution (or an efficient solution) of the
problem (1.2) if f(x̄) is a minimal element of the image set f(K):

f(x̄) �CY \{θY } f(x) ∀x ∈ K,

where the inequality means that f(x̄) − f(x) /∈ CY \{θY } for all x ∈ K.

(b) A point x̄ ∈ K is called a weakly minimal solution (or a weakly efficient
solution) of problem (1.2) (when int(CY ) �= ∅) if f(x̄) is a weakly minimal
element of the image set f(K):

f(x̄) �int(CY ) f(x) ∀x ∈ K,

where the inequality means that f(x̄) − f(x) /∈ int(CY ) for all x ∈ K.

(c) A point x̄ ∈ K is called a local weakly minimal solution (or a local weakly
efficient solution) of problem (1.2) if there exists a neighbourhood U of x̄ such
that:

f(x̄) �int(CY ) f(x) ∀x ∈ K ∩ U,

where the inequality means that f(x̄) − f(x) /∈ int(CY ) for all x ∈ K ∩ U .

The following lemma shows that under suitable assumptions every minimal ele-
ment of a set is also a weakly minimal element of the same set. Hence, a necessary
condition for weakly minimal elements is a necessary condition for minimal elements
as well.

Lemma 1.2. Let N be a non-empty subset of a partially ordered linear space W
with an ordering cone C for which C �= W and int(C) �= ∅. Then every minimal
element of the set N is also a weakly minimal element of the set N .

The aim of this paper is to present an extension of results in [6, 17] to a more
general context: the vector optimization framework. More precisely, in [6] Donato
provided a generalized Lagrange multiplier rule as necessary and sufficient opti-
mality conditions for infinite-dimensional convex optimization problems by using a
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new constraint qualification called assumption S. This assumption was introduced
in [3] to guarantee the strong duality between a convex optimization problem and
its Lagrange dual in the scalar context (that is, when the objective functional is
real-valued) without requiring that the ordering cone, which defines the inequality
constraints, has non-empty interior. Moreover, in [17] Maugeri and Puglisi intro-
duce a new constraint qualification condition, assumption S′. For other results in
the literature regarding the infinite-dimensional duality theory for scalar convex
optimization problems, see also [1–5,7–10,13,18].

This paper intends to provide an extension of the aforementioned results, from
scalar convex optimization problems to vector optimization problems, without re-
quiring any convexity assumption on the objective function and by introducing
assumption S′

V . This assumption, which involves the Fréchet derivatives of maps
and uses the tangent cone in the image set, turns out to be necessary and sufficient
for the infinite-dimensional Lagrange multiplier rule. Finally, it is worth comparing
the main results of this paper (theorem 3.3 and theorem 3.5) with [14, theorem 7.4]
for the necessary condition and with [14, theorem 7.20] for the sufficient condition.
Let us observe that theorem 3.3 generalizes theorem 7.4 of [14]. In fact the require-
ment that the ordering cone, which defines the inequality constraints, has non-
empty interior is removed and the regularity condition, in theorem 3.3, is replaced
by the assumption S′

V . For other approaches concerning the Lagrange multiplier
rule for vector optimization problems, see [11,12,15]. More precisely, in [11] Durea
et al . study the non-convex vector optimization in infinite-dimensional spaces by
using a very different scalarization approach to the ones used in the literature.
In [12] Dutta and Tammer show the boundedness of the set of Lagrange multipli-
ers for vector optimization problems in infinite-dimensional spaces. In [15] Jiménez
et al . introduce a basic constraint qualification for non-convex infinite-dimensional
vector optimization problems by assuming the Hadamard differentiability of maps.

2. Preliminaries and definitions

We devote this section to recalling some basic definitions and results that will play
an important role in this paper. For the proofs and further details we refer the
reader to [14,16] and references therein.

Definition 2.1. Let X be a real linear space, let Y be a real topological linear
space, let S be a non-empty subset of X, and let f : S → Y be a given map. If for
x̄ ∈ S and h ∈ X the limit

f ′(x̄)(h) := lim
λ→0+

1
λ

(f(x̄ + λh) − f(x̄))

exists, then f ′(x̄)(h) is called the directional derivative of f at x̄ in the direction h.
If the limit exists for all h ∈ X, then f is called directionally differentiable at x̄.

The following definition represents a generalization of the directional derivative.

Definition 2.2. Let X and Y be real linear spaces, let S be a non-empty subset
of X and let T be a non-empty subset of Y . Moreover, let a map f : S → Y and an
element x̄ ∈ S be given. A map f ′(x̄) : S −{x̄} → Y is called a directional variation
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of f at x̄ with respect to T if the following holds: if there is an element x ∈ S with
x �= x̄ and f ′(x̄)(x − x̄) ∈ T , then there is a λ̄ > 0 with

x̄ + λ(x − x̄) ∈ S ∀λ ∈ (0, λ̄]

and
1
λ

(f(x̄ + λ(x − x̄)) − f(x̄)) ∈ T ∀λ ∈ (0, λ̄].

Remark 2.3. It is important to observe that when Y is a real topological space, if
there is λ̄ > 0 with x̄+λ(x− x̄) ∈ S for all λ ∈ (0, λ̄], and if f ′(x̄) is the directional
derivative of f at x̄ in the direction x − x̄, then f ′(x̄) is a directional variation of f
at x̄ with respect to all non-empty open subsets of Y .

Definition 2.4. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be real normed spaces, let S be a
non-empty open subset of X, and let f : S → Y be a given map. Furthermore, let
an element x̄ ∈ S be given. If there is a continuous linear map f ′(x̄) : X → Y with
the property

lim
‖h‖X→0

‖f(x̄ + h) − f(x̄) − f ′(x̄)(h)‖
‖h‖X

= 0,

then f ′(x̄) is called the Fréchet derivative of f at x̄ and f is called Fréchet differ-
entiable at x̄.

Definition 2.5. Let X and Y be real linear spaces, let CY be a convex cone in Y
and let S be a non-empty convex subset of X. A map f : S → Y is called convex
(or CY -convex) if for all x, y ∈ S and all λ ∈ [0, 1],

λf(x) + (1 − λ)f(y) − f(λx + (1 − λ)y) ∈ CY .

The following theorem gives a characterization of a convex Fréchet differentiable
map.

Theorem 2.6. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be real normed spaces, let S be a
non-empty open convex subset of X, let CY be a closed convex cone in Y , and let
a map f : S → Y be given that is Fréchet differentiable at every x ∈ S. Then the
map f is convex if and only if

f(x) − f(y) − f ′(y)(x − y) ∈ CY ∀x, y ∈ S.

Proposition 2.7. Let CY be a pointed convex cone of the partially ordered normed
space Y with int(CY ) �= ∅. If t ∈ C∗

Y \{θY ∗} and y ∈ − int(CY ), then t(y) < 0.

In order to obtain a necessary condition for weakly minimal solutions of the
vector optimization problem we use the concept of the tangent cone. Given a point
x ∈ X and a subset C of X, the set

T (C, x) =
{

u ∈ X : u = lim
n→∞

λn(xn − x), λn ∈ R and λn > 0 ∀n ∈ N,

xn ∈ C ∀n ∈ N and lim
n→∞

xn = x
}
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is called the tangent cone (or Bouligand tangent cone or contingent cone) to C at
x. Of course, if T (C, x) �= ∅, then x ∈ cl C. For every x ∈ cl C we have

T (C, x) ⊂ cl cone(C − {x}).

When the set C is convex we have

T (C, x) = cl cone(C − {x}),

where
cone(C) = {λx : x ∈ C, λ ∈ R, λ � 0}

is the cone generated by C and clC denotes the closure of a set C.
Furthermore, it is important to note that the tangent cone is a closed set and

θX ∈ T (C, x). In addition, if C ⊂ D ⊂ X and x ∈ cl C, then T (C, x) ⊂ T (D, x).
The following result gives a first-order necessary optimality condition for a vector

optimization problem.

Theorem 2.8. Let M be a non-empty convex subset of a real normed space X and
let Y be a real normed space partially ordered with ordering cone CY �= Y with
non-empty interior. Let f : X → Y be a Fréchet differentiable map at x̄. If x̄ ∈ M
is a weakly minimal solution of the vector optimization problem

min
x∈M

f(x),

then
f ′(x̄)(u) /∈ − int(CY ) ∀u ∈ T (M, x̄).

In the next section we obtain the necessary optimality condition for the weakly
minimal solution by using the following strict separation theorem.

Theorem 2.9. Let X be a real normed space and let C ⊆ X be a closed cone. If
x0 ∈ X\C, then there exists x∗ ∈ X∗ with x∗

0 �= θX∗ such that

〈x∗
0, x0〉 < 0 � inf

y∈C
〈x∗

0, y〉.

Finally, the following generalized convexity concept will be useful in obtaining
the sufficiency of the generalized multiplier rule.

Definition 2.10. Let S be a non-empty convex subset of a real linear space X
and let Y be a partially ordered linear space with an ordering cone CY . A map
F : S → Y is called quasi-convex if x1, x2 ∈ S with F (x1) − F (x2) ∈ CY implies
that

F (x1) − F (λx1 + (1 − λ)x2) ∈ CY ∀λ ∈ [0, 1].

The following concept extends the quasi-convexity of maps.

Definition 2.11. Let S be a non-empty subset of a real linear space X and let C
be a non-empty subset of a real linear space Y . Let x̄ ∈ S be a given element. A
map f : S → Y is called C-quasi-convex at x̄ if the following holds: if there is some
x ∈ S\{x̄} with F (x̄) − F (x) ∈ C, then there is some x̃ ∈ S\{x̄} with

λx̃ + (1 − λ)x̄ ∈ S ∀λ ∈ (0, 1],
F (x̄) − F (λx̃ + (1 − λ)x̄) ∈ C ∀λ ∈ (0, 1].
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Definition 2.12. Let S be a non-empty subset of a real linear space X and let C1
and C2 ⊂ C3 be non-empty subsets of a real linear space Y . Moreover, let x̄ ∈ S
be a given element and let a map F : S → Y have a directional variation at x̄ with
respect to C3. The map F is called differentiably C1-C2-quasi-convex at x̄ if the
following holds: if there is some x ∈ S with x �= x̄ and F (x)−F (x̄) ∈ C1, then there
is an x̃ ∈ S\{x̄} with λx̃ + (1 − λ)x̄ ∈ S for all λ ∈ (0, 1] and F ′(x̄)(x̃ − x̄) ∈ C2.

In the case in which C1 = C2 = C, the map F is called differentiably C-quasi-
convex at x̄.

3. Lagrange multiplier rule under a new constraint qualification

The aim of this section is to give a necessary and sufficient optimality condition for
the non-convex vector optimization problem (1.2) in order to ensure the existence
of Lagrange multipliers. To this end we introduce a new constraint qualification
condition that involves the Fréchet derivatives of maps and uses the tangent cone
in the image space. This new condition turns out to be necessary and sufficient for
the infinite-dimensional generalized Lagrange multiplier rule.

The constraint qualification assumption, called assumption S′
V , is the following.

Definition 3.1. Given three maps f , g, h, Fréchet differentiable at x̄ ∈ K, we say
that x̄ verifies assumption S′

V if and only if

T (M̂, θY ×Z1×Z2) ∩ (− int(CY ) × {θZ1} × {θZ2}) = ∅,

where

M̂ = {(f ′(x̄)(x − x̄) + y, g(x̄) + g′(x̄)(x − x̄) + z1, h
′(x̄)(x − x̄))

∈ Y × Z1 × Z2 : x ∈ S \ K, y ∈ CY , z1 ∈ CZ1}

and the tangent cone to the subset M̂ of the image space Y ×Z1 ×Z2 at θY ×Z1×Z2

is

T (M̂, θY ×Z1×Z2)

=
{

a = lim
n→+∞

γn[(f ′(x̄)(xn − x̄) + yn,

g(x̄) + g′(x̄)(xn − x̄) + z1n, h′(x̄)(xn − x̄)) − (θY , θZ1 , θZ2)] :

{γn} ⊂ R, γn > 0 ∀n ∈ N, xn ∈ S\K ∀n ∈ N, {yn} ⊆ CY , {z1n} ⊆ CZ1 ,

lim
n→+∞

(f ′(x̄)(xn − x̄) + yn) = θY , lim
n→+∞

(g(x̄) + g′(x̄)(xn − x̄) + z1n) = θZ1 ,

lim
n→+∞

(h′(x̄)(xn − x̄)) = θZ2

}
.

Remark 3.2. We can observe that if T (M̂, θY ×Z1×Z2) = ∅, then assumption S′
V

is clearly verified. If T (M̂, θY ×Z1×Z2) �= ∅, assumption S′
V is verified when for all

(r, θZ1 , θZ2) ∈ T (M̂, θY ×Z1×Z2) with r = limn→+∞ γn(f ′(x̄)(xn − x̄) + yn) one has
that r /∈ − int(CY ).

First, we formulate the Lagrange multiplier rule as a necessary optimality condi-
tion. It is important to emphasize that we require the convexity of the constraint
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set K but we do not assume any convexity assumption on the objective function
f , and furthermore, thanks to assumption S′

V , we do not require that the ordering
cone CZ1 has non-empty interior.

Theorem 3.3. Let the vector optimization problem (1.2) be given and let x̄ ∈ K be
a weakly minimal solution of (1.2) with the set K convex. Let f , g and h be Fréchet
differentiable at x̄. If assumption S′

V is fulfilled at x̄, then there exist continuous
linear functionals t ∈ C∗

Y \ {θY ∗}, λ ∈ C∗
Z1

and µ ∈ Z∗
2 such that

t(f ′(x̄)(x − x̄)) + λ(g′(x̄)(x − x̄)) + µ(h′(x̄)(x − x̄)) � 0 ∀x ∈ S, (3.1)

λ(g(x̄)) = 0. (3.2)

Proof. We define the set

M̃ = {(f ′(x̄)(x − x̄) + y, g(x̄) + g′(x̄)(x − x̄) + z1, h
′(x̄)(x − x̄)) ∈ Y × Z1 × Z2 :

x ∈ S, y ∈ CY , z1 ∈ CZ1},

which can be written in the following way:

M̃ = (f ′(x̄), g′(x̄), h′(x̄))(S − {x̄}) + CY × ({g(x̄)} + CZ1) × {θZ2}.

Since S − {x̄} is a convex set, cones CY and CZ1 are convex sets and f ′(x̄), g′(x̄),
h′(x̄) are linear maps, we can see that M̃ is a non-empty and convex set.

Now, we prove that

T (M̃, θY ×Z1×Z2) ∩ (− int(CY ) × {θZ1} × {θZ2}) = ∅. (3.3)

We consider the element (r, θZ1 , θZ2) ∈ T (M̃, θY ×Z1×Z2). By definition of the tan-
gent cone, we have that there exist, for all n ∈ N, γn > 0, xn ∈ S and yn ∈ CY

such that

lim
n→+∞

(f ′(x̄)(xn − x̄) + yn) = θY and r = lim
n→+∞

γn(f ′(x̄)(xn − x̄) + yn).

To prove condition (3.3), we must have that r /∈ − int(CY ).
We consider the sequence xn ∈ S for all n ∈ N.

• If xn ∈ S \ K for all n ∈ N, then the element (r, θZ1 , θZ2) ∈ T (M̂, θY ×Z1×Z2).
Hence, by assumption S′

V , we have r /∈ − int(CY ).

• If xn ∈ K ⊆ S for all n ∈ N, by assumption, x̄ is a weakly minimal point of
f on K, and thus

f ′(x̄)(u) /∈ − int(CY ) ∀u ∈ T (K, x̄). (3.4)

To prove that r /∈ − int(CY ), we proceed by contradiction. We assume that
r = limn→+∞ γn(f ′(x̄)(xn − x̄)+yn) ∈ − int(CY ). For sufficiently large n ∈ N
one has γn(f ′(x̄)(xn − x̄) + yn) ∈ − int(CY ), which implies that

f ′(x̄)(xn − x̄) ∈ −CY − int(CY ) = − int(CY )

for sufficiently large n ∈ N. But this contradicts condition (3.4). In fact, by
the convexity of K, we find that for sufficiently large n ∈ N there exists a
feasible direction un = xn − x̄ ∈ T (K, x̄) such that f ′(x̄)(xn − x̄) ∈ − int(CY ).
Hence, r /∈ − int(CY ).
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• If xn ∈ S \ K for a finite number of indexes n, then the sequence {xn}n∈N

definitely belongs to K and the conclusion of the second case holds.

• If xn ∈ S \ K for an infinite number of indexes n, then we can consider a
subsequence xnk

∈ S \ K and we proceed as in the first case.

Given the above, we have that

(− int(CY ) × {θZ1} × {θZ2}) � T (M̃, θY ×Z1×Z2),

that is, for all s ∈ − int(CY ) the element (s, θZ1 , θZ2) /∈ T (M̃, θY ×Z1×Z2). Further-
more, since M̃ is a convex set, the set T (M̃, θY ×Z1×Z2) = cl cone(M̃ −{θY ×Z1×Z2})
is a closed and convex cone. Thus, by virtue of the strict separation theorem (the-
orem 2.9), it follows that there exists (t, λ, µ) ∈ Y ∗ × Z∗

1 × Z∗
2 with (t, λ, µ) �=

θY ∗×Z∗
1 ×Z∗

2
such that

t(s) < 0 � t(f ′(x̄)(x − x̄) + y) + λ(g(x̄) + g′(x̄)(x − x̄) + z1) + µ(h′(x̄)(x − x̄))
∀x ∈ S, y ∈ CY , z1 ∈ CZ1 .

From the above inequality and the linearity of t, it follows that t(−s) > 0 for all
s ∈ − int(CY ), that is, t ∈ C∗

Y \{θY ∗}. Hence,

t(f ′(x̄)(x − x̄) + y) + λ(g(x̄) + g′(x̄)(x − x̄) + z1) + µ(h′(x̄)(x − x̄)) � 0
∀x ∈ S, y ∈ CY , z1 ∈ CZ1 . (3.5)

By inequality (3.5), for x = x̄ and y = θY we get

λ(g(x̄) + z1) � 0 ∀z1 ∈ CZ1 .

In particular, since CZ1 is a convex cone, by choosing z1 = z̄1 − g(x̄) ∈ CZ1 one
has

0 � λ(g(x̄) + z1) = λ(z̄1) ∀z̄1 ∈ CZ1 ,

which implies that λ ∈ CZ∗
1
. Furthermore, by assuming that z1 = θZ1 ∈ CZ1 , it

follows that λ(g(x̄)) � 0. By assumption, g(x̄) ∈ −CZ1 , and then λ(g(x̄)) � 0.
Consequently, the thesis (3.2) holds:

λ(g(x̄)) = 0.

Finally, by inequality (3.5), for y = θY and z1 = −g(x̄) we get

t(f ′(x̄)(x − x̄)) + λ(g′(x̄)(x − x̄)) + µ(h′(x̄)(x − x̄)) � 0 ∀x ∈ S.

Corollary 3.4. Let the same assumptions of theorem 3.3 be satisfied and in addi-
tion let S = X. If x̄ ∈ K is a weakly minimal solution of problem (1.2), then there
exist continuous linear functionals t ∈ C∗

Y \ {θY ∗}, λ ∈ C∗
Z1

and µ ∈ Z∗
2 such that

t(f ′(x̄)) + λ(g′(x̄)) + µ(h′(x̄)) = θX∗ .
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Proof. In this case condition (3.1) becomes

t(f ′(x̄)(x − x̄)) + λ(g′(x̄)(x − x̄)) + µ(h′(x̄)(x − x̄)) � 0 ∀x ∈ X,

which implies, because of the linearity of the considered mappings,

t(f ′(x̄)) + λ(g′(x̄)) + µ(h′(x̄)) = θX∗ .

To achieve the sufficiency of the generalized Lagrange multiplier rule we have
to consider additional assumptions on maps. To this end we make a generalized
convexity assumption on the objective functional f , a convexity assumption on the
map g and an affine-linearity assumption on the map h. It is important to observe
that by making these assumptions on maps g and h, the constraint set K is convex.

Theorem 3.5. Let X be a linear topological space and let S ⊆ X be non-empty
and convex. Let Y and Z1 be real normed spaces ordered by closed, convex and
pointed cones CY and CZ1 , respectively, with int(CY ) �= ∅, and let Z2 be a real
normed space. Let us suppose that there exists a non-empty open subset G0 with
− int(CY ) ⊂ G0 ⊂ Y . Let f : S → Y be a map with directional derivative at x̄ ∈ K
in every direction x − x̄, with arbitrary x ∈ S. Assume that f is differentiably
− int(CY )-quasi-convex at x̄. Let g : X → Z1 be a Fréchet differentiable at x̄ and
CZ1-convex map. Let h : X → Z2 be a Fréchet differentiable and affine-linear map.
If there exist continuous linear functionals t ∈ C∗

Y \ {θY ∗}, λ ∈ C∗
Z1

, µ ∈ Z∗
2 such

that

t(f ′(x̄)(x − x̄)) + λ(g′(x̄)(x − x̄)) + µ(h′(x̄)(x − x̄)) � 0 ∀x ∈ S, (3.6)

λ(g(x̄)) = 0. (3.7)

Then x̄ ∈ K is a weakly minimal solution to the vector optimization problem (1.2).
Moreover, if the map f is also Fréchet differentiable at x̄, then assumption S′

V is
fulfilled at x̄.

Proof. We suppose by contradiction that x̄ ∈ K is not a weakly minimal solution
to problem (1.2), and thus there exists x ∈ K with x �= x̄ such that

f(x) − f(x̄) ∈ − int(CY ).

Since f has directional derivative at x̄ in every direction x − x̄, it follows, from
remark 2.3, that f ′(x̄) is a directional variation of f at x̄ with respect to all non-
empty open subsets of Y . Hence, by the differentiable − int(CY )-quasi-convexity of
the map f at x̄, there exists x̃ ∈ K, with x̃ �= x̄, such that γx̃ + (1 − γ)x̄ ∈ K for
all γ ∈ (0, 1] and

f ′(x̄)(x̃ − x̄) ∈ − int(CY ).

Taking into account that t ∈ C∗
Y \ {θY ∗}, it follows that

t(f(x̄)(x̃ − x̄)) < 0. (3.8)

If the map g is Fréchet differentiable at x̄ and CZ1-convex, one has

g(x̄) − g(x) + g′(x̄)(x − x̄) ∈ −CZ1 ∀x ∈ S.

https://doi.org/10.1017/S0308210515000463 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210515000463


306 M. B. Donato

Since λ ∈ C∗
Z1

, one has

λ(g′(x̄)(x − x̄)) � λ(g(x) − g(x̄)) = λ(g(x)) � 0 ∀x ∈ K,

and hence
λ(g′(x̄)(x − x̄)) � 0 ∀x ∈ K. (3.9)

Moreover, h being Fréchet differentiable at x̄, we have that h′(x̄)(d) = θZ2 for all
d ∈ T (K, x̄). In fact, for fixed d ∈ T (K, x̄), there exist, for all n ∈ N, xn ∈ K, αn > 0
such that limn→+∞ xn = x̄ and limn→+∞ αn(xn − x̄) = d, where αn(xn − x̄) = dn

for all n ∈ N. Thus, by the definition of the Fréchet derivative we obtain

h′(x̄)(d) = h′(x̄)
(

lim
n→+∞

αnh′(x̄)(xn − x̄)
)

= − lim
n→+∞

αn(h(xn) − h(x̄) − h′(x̄)(xn − x̄))

= − lim
n→+∞

‖dn‖ (h(xn) − h(x̄) − h′(x̄)(xn − x̄))
‖xn − x̄‖

= θZ2 .

Moreover, the set K being convex, one has

h′(x̄)(x − x̄) = θZ2 ∀x ∈ K. (3.10)

Consequently, taking into account (3.8)–(3.10), it follows that

t(f ′(x̄)(x̃ − x̄)) + λ(g′(x̄)(x̃ − x̄)) + µ(h′(x̄)(x̃ − x̄)) < 0,

which contradicts the statement (3.6). Then x̄ ∈ K is a weakly minimal solution
to (1.2).

Now, let us show that assumption S′
V holds true. From conditions (3.6) and (3.7)

one has that the affine hyperplane

H = {(ỹ, z̃1, z̃2) ∈ Y × Z1 × Z2 : t(ỹ) + λ(z̃1) + µ(z̃2) = 0}

separates the sets

(f ′(x̄), g′(x̄), h′(x̄))(S − {x̄}) + ({θY } × {g(x̄)} × {θZ2}) = A

and
− int(CY ) × (−CZ1) × {θZ2} = B.

Hence,
A ⊆ H+, B ⊆ H−,

where H+ and H− denote the half-spaces

H+ = {(ỹ, z̃1, z̃2) ∈ Y × Z1 × Z2 : t(ỹ) + λ(z̃1) + µ(z̃2) � 0},

H− = {(ỹ, z̃1, z̃2) ∈ Y × Z1 × Z2 : t(ỹ) + λ(z̃1) + µ(z̃2) � 0}.

Clearly,

M̃ = (f ′(x̄), g′(x̄), h′(x̄))(S − {x̄}) + CY × ({g(x̄)} + CZ1) × {θZ2} ⊆ H+;
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in fact, if there exists m̃ = (m̃1, m̃2, m̃3) ∈ M̃ such that

t(m̃1) + λ(m̃2) + µ(m̃3) < 0,

where m̃ = m̄ − m̂, m̄ = (m1,m2,m3) ∈ A and m̂ = (m̂1, m̂2, m̂3) ∈ (−CY ) ×
(−CZ1) × {θZ2}, it results that

t(m̃1) + λ(m̃2) + µ(m̃3) = t(m1) + λ(m2) + µ(m3) − t(m̂1) − λ(m̂2) − µ(m̂3) < 0.

Namely,

0 � t(m1) + λ(m2) + µ(m3) < t(m̂1) + λ(m̂2) + µ(m̂3) � 0,

which is impossible.
Moreover, one has that

T (M̃, θY ×Z1×Z2) = cl cone(M̃ − {θY ×Z1×Z2}) ⊆ cl cone(H+) = H+,

− int(CY ) × {θZ1} × {θZ2} ⊆ B ⊆ H−.

Hence, H separates T (M̃, θY ×Z1×Z2) and − int(CY ) × {θZ1} × {θZ2}, so we can
conclude that

T (M̂, θY ×Z1×Z2) ∩ − int(CY ) × {θZ1} × {θZ2} = ∅. (3.11)

In fact, by properties of the tangent cone, since M̂ ⊂ M̃ , one has

T (M̂, θY ×Z1×Z2) ⊂ T (M̃, θY ×Z1×Z2),

and thus we get (3.11). Hence, assumption S′
V is fulfilled.
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