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Abstract
To improve mobile robot positioning accuracy in building environments and construct structural three-dimensional
(3D) maps, this paper proposes a stereo visual-inertial odometry (VIO) system based on structural lines and points
belonging to lines. The 2-degree-of-freedom (DoF) spatial structural lines based on the Manhattan world assumption
are used to establish visual measurement constraints. The property of point belonging to a line (PPBL) is used to
initialize the structural lines and establish spatial distance-residual constraints between point and line landmarks
in the reconstructed 3D map. Compared with the 4-DoF spatial straight line, the 2-DoF structural line reduces the
variables to be estimated and introduces the orientation information of scenes to the VIO system. The utilization of
PPBL makes the proposed system fully exploit the prior geometric information of environments and then achieves
better performance. Tests on public data sets and real-world experiments show that the proposed system can achieve
higher positioning accuracy and construct 3D maps that better reflect the structure of scenes than existing VIO
approaches.

1. Introduction
Simultaneous localization and mapping (SLAM), aiming to estimate the moving system’s pose and
construct a 3D map for the unknown environments, is widely used in applications such as self-driving
cars, AGV, and unmanned aerial vehicles [1–3]. Among all SLAM techniques, the visual SLAM, which
utilizes a camera as the primary sensor, has attracted more and more attention due to its simple config-
uration and low cost. In the last decade, various visual SLAM programs have been proposed, such as
PTAM [4], SVO [5], and ORB-SLAM [6]. Compared with the pure vision methods, with the aid of an
inertial measurement unit (IMU), the visual-inertial odometry (VIO) [7–9] can achieve better accuracy
and robustness.

Most current popular SLAM/VIO systems only use point features as landmarks and rarely use the
environment’s prior geometric information. When the scene is poorly texture or has weak illumination,
the quality of point features worsens and results in a large drift of the reconstructed map and low posi-
tioning accuracy. In such cases, line features are good complements to point landmarks. Compared with
point features, line features can better depict the geometric structure information of the environment.
More importantly, as shown in Fig. 1, in such a structural building scene that can be seen everywhere,
most spatial straight lines are parallel or orthogonal to each other. These parallel or orthogonal struc-
tural lines encode the global orientation information of the scene. If these structural lines are used as
landmarks in a VIO system, the accumulated orientation errors can be eliminated, thereby improving
the positioning accuracy.
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Figure 1. (a) Typical structured environment; (b) point features and line features extracted from the
environment.

The Manhattan world assumption [10] can be used to describe such a structural scene. In a Manhattan
world frame, the three axes are orthogonal to each other, and all structural lines are aligned with the
directions of the three axes. A Manhattan world frame can be seen as a structural scene with a unified
orientation. The structural scene is modeled as a Manhattan world, and its global orientation can be
roughly estimated according to the image observations of structural lines and optimized later. With the
Manhattan world assumption, the structural lines can be parameterized simply.

Previous works [11–13] have demonstrated that using both points and lines as landmarks in SLAM
systems can achieve better performance than only using one of them. However, researchers seldomly
consider the correlation between points and lines. They often separately establish the visual measure-
ment residual constraints of points and lines and then add these residuals to a unified optimization
framework. Such operations mean that the point features and line features are treated independently.
However, as shown in Fig. 1(b), most point features belong to the line features. If the property of point
belonging to a line (PPBL) can be included, more prior geometric information can be introduced into
the VIO system. On the one hand, it facilitates the initialization of structural line features. On the other
hand, the distance constraints between a feature point and the line landmarks it belongs to in the recon-
structed 3D map can be established as residual items added to optimization, thereby further reducing
mapping errors and improving the positioning accuracy.

Based on the ideas mentioned above, this paper presents the SLC-VIO system, a stereo VIO that takes
structural lines and points as landmarks and utilizes the PPBL. The experiments have been conducted
on both public data sets and in real-world scenes to test the performance of the proposed system. The
results show that compared to the existing VIO methods that do not consider the structural regularity
of environments, the proposed SLC-VIO achieves higher positioning accuracy and constructs 3D maps
that better reflect the structure of scenes. The main contributions of this paper are as follows:

(1) We take structural lines as additional landmarks in the optimization-based VIO system. The
2-DoF spatial structural lines are defined based on the Manhattan world assumption. Moreover,
the Jacobian matrices related to structural lines are derived.

(2) We take into account the property of PPBL. This property is used to initialize the spatial structural
lines and establish distance-residual constraints between spatial point and line landmarks in the
reconstructed map.

(3) The positioning accuracy and mapping performance of the proposed SLC-VIO were tested on
some public data sets and real-world experiments and compared with VINS-Fusion [8] and PL-
VIO [14].

2. Related work
Although point feature-based methods are popular in visual SLAM/VIO systems, some researchers have
also tried to use line features as landmarks for pose estimation in the early years. In 1997, Neira et al.
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[15] first proposed a monocular SLAM system using vertical line segments as landmarks to construct a
2D map. Their system utilizes two endpoints to denote a spatial straight line and optimizes the estimated
variables based on the EKF (Extended Kalman filter) framework. Gee et al. [16] proposed a real-time
UKF-based (Unscented Kalman filter) SLAM system using line segments, where the spatial line seg-
ments are also denoted by two endpoints. Recently, Ruben et al. [12] proposed PL-SLAM, a stereo
SLAM system using both point and line features. Their system uses LSD [17] and LBD [18] algorithms
to detect and match 2D line features in images. The estimated variables are refined by the nonlinear
optimization in the system, which minimizes a cost function composed of the re-projected errors of
both points features and line features. However, they used two endpoints to denote a spatial straight line.
The disadvantage of parameterizing spatial straight lines by endpoints is obvious: a spatial straight line
has 4 DoF, while two endpoints introduce six parameters, thereby resulting in over-parameterization. It
increases the number of variables to be optimized and makes the convergence worse during optimization.

To avoid over-parameterization, Bartoli et al. [19] proposed the orthonormal representation, which
uses four parameters to define a spatial straight line. Since then, the orthonormal representation has
been adopted in many SLAM systems, which takes the line features as landmarks. In these systems, they
often use Plücker coordinates to denote spatial straight lines when calculating re-projected errors and
then convert the Plücker coordinates to orthogonal representation during optimization. Apart from pure
visual SLAM systems, some researchers have integrated line features into VIO systems. Zheng et al. [20]
proposed a tightly coupled filtering-based stereo VIO system using both points and lines. Nevertheless,
they still used two endpoints to represent a spatial straight line. In a recent work called PL-VIO [14],
built upon VINS [8], a state-of-the-art VIO system, they used both points and lines as landmarks and
adopted the Plücker coordinates and orthogonal representation for line parameterization.

In recent years, some researchers considered using structural regularity in man-made building scenes
to improve SLAM/VIO performance. In some pure visual SLAM [21] systems or VIO [22] systems, they
used vanishing points to reduce the accumulated orientation errors, thereby improving positioning accu-
racy. However, they only used line features detected in images to calculate vanishing points and then used
the vanishing points to get the global orientation information of scenes. They did not use lines as land-
marks. Kim et al. [23] proposed a SLAM method using vertical lines detected from an omni-direction
camera image. In ref. [24], Zhang et al. proposed a monocular SLAM system that used vertical lines and
floor lines as landmarks. Besides, they also used vanishing points to reduce accumulated heading error
and to perform loop closing. Zhou et al. [25] proposed an EKF-based visual SLAM system using the
building’s structure lines. In their system, each structural line is represented by a point on a parameteriz-
ing plane and a dominant direction. Another VIO system [26] also uses similar methods for representing
structural lines. In the recent work named StructVIO [27], Zou et al. proposed an EKF-based VIO sys-
tem that adopts multiple Manhattan worlds to model the structural scenes. In their work, structural lines
are defined in a local Manhattan world, which allows their system to deal with structural lines in multiple
different orientations. However, among all these SLAM/VIO systems that adopt both points and lines
or structural lines as landmarks, the correlation between points and lines is not considered.

3. System overview
The framework of the proposed SLC-VIO system is shown in Fig. 2. It is divided into two sections:
measurement processing and sliding window optimization. The system starts with the measurement
processing, where the measurements from IMU and stereo images are processed. By propagating the
IMU measurements forward, the initial value of the latest IMU pose can be obtained. In addition, the
residual for preintegrating IMU measurements within two consecutive camera frames are added to slid-
ing window optimization. The point and line features are detected and tracked by two separate threads
in stereo image processing. Based on the detected 2D line features, the system detects the Manhattan
world and identifies structural lines. Then, according to the image observations in images, the system
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Figure 2. Flowchart of the proposed SLC-VIO.

identifies the PPBL. Finally, points and structural lines are triangulated to obtain an initial estimation of
their spatial position.

The sliding window optimization proceeds with a sliding window-based tightly coupled optimization
framework that fuses the preintegration constraints of IMU, the visual measurement constraints of point
and structural line features, and the distance constraints between the point and the line landmarks it
belongs to. In the sliding window, to limit the size of the state vector, marginalization is adopted. Some
measurements related to marginalized states are converted into prior information.

4. Definition of structural lines
A structural scene is modeled as a Manhattan world. The Manhattan world frame {M} is established
with its origin coinciding with the origin of the global world frame {W} where odometry starts. The
three coordinate axes of the Manhattan world frame are aligned with the structural lines. Especially, the
Z-axis of the Manhattan world frame is aligned with the vertical lines. The orientation of the Manhattan
world frame in the global world frame can be initially estimated according to the image observations of
structural lines. Figure 3 shows the Manhattan world model and the structural lines in it.

For a spatial structural line, regardless of its endpoints, there must be an intersection point on the
Manhattan world frame’s coordinate plane. For example, as shown in Fig. 3, L0is a vertical line and
intersects the X-Y plane of the Manhattan world frame {M} with point PM

L0
= (a0, b0, 0)

T The direction
vector of L0 in the Manhattan world frame is dM

L0
= (0, 0, 1)

T . Similarly, for the horizontal structural lines
such as L1 and L2, their intersection points on the coordinate planes of {M} are PM

L1
= (a1, 0, b1)

T and
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Figure 3. Illustration of the Manhattan world model and the structural lines. L0, L1, and L2 are 3D
structural lines. PM

L0
, PM

L1
, and PM

L2
are their respective intersection point on coordinate planes of the

Manhattan world frame {M}.

PM
L2

= (0, a2, b2)
T , respectively, and their direction vectors in {M} are dM

L1
= (0,1,0)

T and dM
L2

= (1,0,0)
T ,

respectively. Generally, the direction vector dM
Ll

of a spatial structural line Ll can be obtained by identify-
ing structural line features from all detected line features in the image and then used as fixed parameters.
Each spatial structural line is considered as an infinitely long straight line. So, as long as the two nonzero
parameters (al, bl) of the intersection point PM

Ll
are determined, the 3D structural line Ll in the Manhattan

world can also be determined. As a result, a spatial straight line with 4-DoF becomes a structural line
with only 2-DoF in the Manhattan world frame.

In the following descriptions, in order not to consider the camera intrinsic parameters, all image
observations are transformed from pixel coordinates to homogeneous coordinates in the camera frame.
To re-project a spatial structural line Ll onto the homogeneous coordinate plane in the camera frame {Ci}
(i is the sequence number of camera frames in sliding window), it requires to transform its intersection
point PM

Ll
and direction vector dM

Ll
from {M} to the camera frame (Ci).

PCi
Ll

= R−1
WCi

(
RWMPM

Ll
− tWCi

)
(1)

dCi
Ll

= R−1
WCi

RWMdM
Ll

. (2)

RWMin (1) and (2), a rotation matrix, represents the orientation of the Manhattan world frame {M} in
the global world frame {W}. RWCi and tWCi represent the orientation and translation of the camera frame
{Ci} in the global world frame {W}, respectively. PCi

Ll
= (p1, p2, p3)

Tand dCi
Ll

= (d1, d2, d3)
T are coordinates

of the intersection point and direction vector in the camera frame {Ci}, respectively. The corresponding
ones in homogeneous coordinates arePCi

Ll
= (p1/p3, p2/p3, 1)

T and dCi
Ll

= (d1/d3, d2/d3, 1)
T , respectively.

The homogeneous coordinate of a direction vector in the camera frame represents a vanishing point
that is a common intersection point of a set of observed 2D line features. The spatial lines correspond-
ing to the set of observed 2D line features are aligned with this direction vector. So, the homogenous
coordinate dCi

Ll
is a vanishing point corresponding to the direction vector dM

Ll
.

Therefore, the theoretical re-projected line lCi
l of the spatial structural line Ll on the homogeneous

coordinate plane is given by
lCi

l =PCi
Ll

× dCi
Ll

. (3)

With the above definitions, the re-projected line is expressed as

lCi
l = f

(
PM

Ll
, dM

Ll
, R

WM
, RWCi , tWCi

)
(4)

In a VIO system, the camera pose is usually represented by the IMU pose. Therefore, the above
expression is further rewritten as

lCi
l = f

(
PM

Ll
, dM

Ll
, R

WM
, RWIi , tWIi

, RIC, tIC

)
(5)
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Figure 4. Illustration of the bidirectional matching strategy. The current frame is first matched with
the previous frame. And then, the previous frame is matched with the current frame. The green lines are
successful matches, and the blue lines are failed matches.

where RWIi and tWIi denote the IMU pose in the global word frame {W}. RIC and tIC are extrinsic
parameters between the IMU and the camera, which can be obtained by calibration. If only consid-
ering the variables to be refined in the VIO system, the simplified version of the above expression is as
follows:

lCi
l = f

(
PM

Ll
, RWM, RWIi , tWIi

)
(6)

As a result, the relationship between the spatial structural line Ll and the corresponding 2D
re-projected line lCi

l is established.

5. Measurement processing
The measurement processing involves both inertia and visual measurements. The visual measurements
involve point and structural line features. Here we only present the details of the processing of structural
line features. The processing of IMU and point features can be found in VINS [8].

5.1. Detection and tracking of line features
The LSD line detector [28] is employed to detect line features from images. For stereo matching and
frame-to-frame tracking, the binary descriptor of the LBD method [18] is used to find correspondences
among line features in different images. To improve the match of line features, as shown in Fig. 4, a
bidirectional matching strategy is presented.

First, we match line features in the current frame with line features in the previous frame by the LBD
descriptor with a relatively loose threshold to get as many candidate matches as possible. Second, some
outliers are removed according to geometric constraints between the two matched line features, such as
the difference of orientation and length, and the distance between their respective endpoints. Lastly, we
match line features in the previous frame to line features in the current frame with the same method used
in the first matching. For a line feature, only when the correspondences obtained in the bidirectional
matching are the same, its match is regarded as correct. The bidirectional matching strategy is also
used when matching left and right stereo images. The bidirectional matching strategy can improve the
accuracy of matching considerably without reducing the number of candidate matches.

5.2. Detection of the Manhattan world and identification of structural line features
Detection of the Manhattan world is conducted independently in the first ten left images during the
initialization. Due to errors in the extraction of vanishing points, more than one Manhattan world could
be detected. The most frequently detected Manhattan world is identified as the global Manhattan world.
It involves clustering 2D line features into three groups to identify structural lines in three orthogonal
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directions based on the vanishing points. Our system clusters line features by the RANSAC algorithm
to identify structural line features and obtain a rough estimation of the corresponding vanishing points.
After that, the vanishing points are refined by nonlinear least-squares optimization. The details about the
identification of structural lines by the RANSAC clustering algorithm and the optimization of vanishing
points can be found in ref. [29].

The normalized coordinates of a vanishing point are also the direction vectors of the corresponding
spatial structural lines in the camera frame [30]. If the normalized coordinates of the three detected
vanishing points are approximately orthogonal, the Manhattan world is detected in the current image.
Due to errors in observation and calculation, the three vanishing points need to be orthogonalized by
the Schmidt method.

VX = V ′
X

VY = V ′
Y − VT

XV ′
Y

VT
XVX

VX

V z = V ′
Z − VT

XV ′
Z

VT
XVX

VX − VT
YV ′

Z

VT
YVY

VY (7)

where V ′
i (i = X,Y,Z) are the normalized coordinates of the three detected vanishing points, V i(I =

X, Y , Z) are the results of the orthogonalization.
After that, the orientation RCiM of the detected Manhattan world frame {M} relative to the current

camera frame {Ci} is denoted by

RCiM = [
VX , VY , V z

]
(8)

where the column vectors of RCiM are three unit vectors obtained from the homogeneous coordinates of
the three orthogonal vanishing points. Among them, the vertical direction is set as V z, and the direction
close to the camera heading is set to VX . Then, the rotation matrix RWM is given by

RWM = RWCiRCiM, (9)

where the rotation matrix RWCi can be initially estimated by the EPnP [31] method.
The rotation matrix RWM is obtained by the above procedures on each left image during system initial-

ization. When the difference between the obtained rotation matrices is less than a preset threshold, it is
regarded that the Manhattan worlds detected in each image are the same. In such a case, the Manhattan
world is successfully detected, and its orientation is also roughly obtained. After initialization, the
Manhattan world orientation RWM is further refined in sliding window optimization.

A straightforward method, rather than clustering, is used to identify structural line features in the
subsequent images. Once the rotation matrices RWM of the Manhattan world and RWCi of the current
camera frame have been estimated, the orientation of the Manhattan world {M} relative to the current
camera frame {Ci} is given by

RCiM = R−1
WCi

RWM (10)

Then, with the rotation matrix RWCi , we can get three vanishing points corresponding to three coordinate
axis directions of the Manhattan world frame in the current image. Note that, when detecting a Manhattan
world during initialization, three vanishing points are used to obtain the rotation matrix RCiM, whereas
here, the rotation matrix RCiM is used to obtain three vanishing points.

For a newly detected line feature in the current image, an auxiliary line connecting the line feature’s
midpoint and one of the vanishing points is drawn. By checking the angle between the auxiliary line
and the line feature, it can be determined that whether the line feature is a structural line that belongs
to the vanishing point. In this way, the structural lines can be identified from all newly detected line
features.
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Figure 5. Illustration of the line features’ search areas. The search area of l1, l2, and l3 are area A, area
A+B and area B+C+D, respectively. p1 and p2 are point features that may belong to l3.

5.3. Identification of points belonging to lines
The points belonging to lines are identified by two steps:

(1) A point feature is classified into one of four areas according to its pixel coordinates. A line feature
is classified into areas according to the coordinates of points on it, as illustrated in Fig. 5.

(2) The PPBL between candidate point features and line features in the same area is checked and
identified if both the following two conditions are satisfied:

Condition A: The vertical distance between the line feature and the point feature is less than a preset
threshold.

Condition B: The point feature is inside the line feature, such as p1 inside l3 in Fig. 5; or the point
feature is outside the line feature, such as p2 outside l3 in Fig. 5, but the distance from the point feature
to the nearest endpoint of the line feature is less than a preset threshold.

When a point feature and a line feature satisfy the above two conditions, it is deemed that the point
belongs to the line. However, due to the influence of visual angle, the PPBL in one image does not mean
an authentic one. Only when the PPBL is detected in both left and right images and continues for at least
four consecutive frames, the PPBL is verified.

5.4. Triangulation of structural lines
The direction of a structural line Ll in the Manhattan world frame {M} can be directly obtained.
Therefore, triangulation is carried out to acquire the initial value of the intersection point PM

Ll
. There

are two ways to triangulate the structural lines, one is to triangulate by the points belonging to lines and
the other is to triangulate by the midpoints. And for a structural line, if there exist triangulated point
features belonging to it, its triangulation can be simplified.

As shown in Fig. 6, P0 belongs to line L0 and has been triangulated. To triangulate the structural line
L0, P0 is transformed from the global world frame {W} to the Manhattan world frame {M}.

PM
P0

= R−1
WMPW

P0
(11)

PW
P0

in (10) are the coordinates of P0 in the global world frame {W}. And PM
P0

= (p1, p2, p3)
T are the

coordinates of P0 in the Manhattan word frame {M}. Assuming that L0 is identified as a structural line
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Figure 6. Triangulation of structural lines. P0 has been identified as belonging to structural line feature
L0. The red lines are observations of structural lines in the image, and the blue dotted lines are the results
of the triangulation.

parallel to the Z-axis of the Manhattan world frame {M}, so its corresponding intersection point is
PM

L0
= (p1, p2, 0)

T . Similarly, for structural lines in other directions, the initial value of their intersection
points PM

Ll
can also be easily obtained according to triangulated points belonging to them.

For other structural lines, like L1 in Fig. 6, if there are no triangulated points belonging to them, an
initial estimation for the endpoints is obtained by a conventional method [14]. Due to the calculation
and observation errors, the direction of the 3D line L′

1 composed of these two endpoints is not precisely
parallel to the direction obtained in the identification procedures. So, in the Manhattan world frame {M},
the midpoint of these two endpoints is projected onto the plane perpendicular to the structural line. And
then, the projection point is taken as the intersection point PM

L1
= (a0, b0,0)T (a0 = PM

sX+PM
eX

2
, b0 = PM

sY +PM
eY

2
)

of the structural line L1.

6. Sliding window optimization
After the initial values of camera pose and landmarks position are estimated by the measurement pro-
cessing, the state variables are optimized in a tightly coupled sliding window. The landmarks consist of
spatial point features and structural line features.

6.1. Sliding window formulation
Figure 7 illustrates the sliding window formulation. The state vector in the sliding window is
defined as

χ = [x0, x1, · · · xn, RWM, λ0, λ1, · · · λm, L0, L1, · · · Lk]

xi =
[
RWIi , tWIi , vWIi

, ba, bg

]
, i ∈ [0, n]

Ll = [θl, ρl]
T =

[
tan−1 (bl/al) , 1/

√
a2

l + b2
l

]T

, l ∈ [0, k] (12)

where xi represents the IMU states, including rotation RWIi , position tWIi , velocity vWIi in the global world
frame, biases of acceleration ba, angular velocity bg in the IMU body frame at the ith time step when
an image is captured, and n is the number of keyframes in the sliding window. Since the use of polar
coordinate and inverse depth [θl, ρl]

T has better optimization performance [27], we convert Cartesian
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Figure 7. Illustrating the sliding window formulation. Among the points and lines, P2 belongs to the
structural line L1. The state variables to be optimized are the IMU states, the spatial position of points
and structural lines, and the orientation of the Manhattan world frame.

coordinate parameters [al, bl]
T into [θl, ρl]

T . This work is under a keyframe-based paradigm, and the
selection strategy of keyframe is the same as VINS [7]. m and k are the numbers of spatial point features
and structural line features observed by keyframes in the sliding window, respectively. RWMrepresents
the orientation of the Manhattan world frame {M} in the global world frame {W}. λp is the inverse depth
of the pth spatial point feature from its first observed keyframe. Ll represents two nonzero parameters of
the intersection point PM

Ll
of the lth spatial structural line in the Manhattan world frame {M}. Considering

numerical stability [32], the inverse depth representation (θl, ρl), instead of (al, bl), is used as a parameter
of structural lines.

All the state variables mentioned above are optimized in the sliding window by minimizing the sum
of cost functions:

min
χ

{
‖rP − Hpχ‖2

�P
+
∑

i∈B
‖rB

(
Zbibi+1 , χ

) ‖2

�
bi
bi+1

+
∑

(i,j)∈P
ρ

(
‖rP

(
ZCi

Pj
, χ
)

‖2

�
Ci
Pj

)

+
∑

(i,l)∈L
ρ

(
‖rL

(
ZCi

Ll
, χ
) ‖2

�
Ci
Ll

)
+
∑

(j,l)∈C
ρ

(
‖rC

(
ZCi

Pj
, χ
)

‖2

�
Pj
Ll

)}
(13)

where
{
rP, Hp

}
are the prior information and information matrix obtained after marginalizing out a

camera frame. IMU measurements and features are selectively marginalized from the sliding win-
dow. Meanwhile, the measurements corresponding to marginalized states are converted into a prior.
rB
(
Zbibi+1 , χ

)
is the residual for IMU measurement, and B is the set of all IMU measurements in the

sliding window. rP (ZCi
Pj

, χ ) and rL
(
ZCi

Ll
, χ
)

are respective residuals for visual measurements of point
features and structural line features. Pand L are respective sets of point features and structural line fea-
tures observed by keyframes. rC

(
ZCi

Pj
, χ
)

is the residual for the spatial distance between the point and
the line it belongs to. C is the set of points and lines. ρ is the robust kernel function used to suppress
outliers. The Ceres solver [33] is used to solve this nonlinear optimization problem.

The residual terms related to IMU measurements and visual measurements of point features are
established with methods similar to VINS [8]. Therefore, in the following sections, we only present the
details of residuals related to structural line features.
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6.2. Structural line measurement residual
For the lth structural line, according to the inverse depth representation Ll = [θl, ρl]

T , the nonzero
parameters [al, bl]

Tof the intersection point PM
Ll

is obtained by[
al

bl

]
=
[

cosθl/ρl

sinθl/ρl

]
(14)

With the parameters [al, bl]
T and the direction vector dM

Ll
of the structural line in the Manhattan world

{M}, its intersection point PM
Ll

can be directly obtained, as is described in Section 3. Then, the corre-
sponding re-projected 2D line lCi

l = (l1, l2, l3)
T on the homogeneous coordinate plane of the ith camera

frame {Ci} is obtained by (6). The structural line measurement residual is defined as the re-projected
error, that is, the distance between the endpoints of ZCi

Ll
and the re-projected 2D line lCi

l . The residual
rL
(
ZCi

Ll
, χ
)
is given by

rL
(
ZCi

Ll
, χ
)=

[
sT lCi

l /
√

l2
1 + l2

2

eT lCi
l /
√

l2
1 + l2

2

]
(15)

where s = (s1, s2, 1)
T , e = (e1, e2, 1)

T are the coordinates of two endpoints on the homogeneous coordi-
nate plane of {Ci}.

For this residual term, the state variables to be optimized include the IMU state xi, the rotation matrix
RWM, and Ll. The corresponding Jacobian matrices can be obtained by the chain rule:

JL = ∂rL
∂lCi

l

∂lCi
l

∂
(
PCi

Ll
, dCi

Ll

) [∂
(
PCi

Ll
, dCi

Ll

)
∂xi

∂
(
PCi

Ll
, dCi

Ll

)
∂RWM

∂
(
PCi

Ll
, dCi

Ll

)
∂Ll

]
. (16)

with

∂rL
∂lCi

l

=

⎡
⎢⎢⎢⎢⎢⎢⎣

s1(
l2
1 + l2

2

) 1
2

+ −l1sT lCi
l(

l2
1 + l2

2

) 3
2

s2(
l2
1 + l2

2

) 1
2

+ −l2sT lCi
l(

l2
1 + l2

2

) 3
2

1(
l2
1 + l2

2

) 1
2

e1(
l2
1 + l2

2

) 1
2

+ −l1eT lCi
l(

l2
1 + l2

2

) 3
2

e2(
l2
1 + l2

2

) 1
2

+ −l2eT lCi
l(

l2
1 + l2

2

) 3
2

1(
l2
1 + l2

2

) 1
2

⎤
⎥⎥⎥⎥⎥⎥⎦

2×3

∂lCi
l

∂
(
PCi

Ll
, dCi

Ll

) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
1

p3

−p1

p2
3

0
−1

d3

d1

d2
3

−1

p3

0
p1

p2
3

1

d3

0
−d1

d2
3

d2

p3

−d1

p3

−d2p1+d1p2

p2
3

−p2

d3

p1

d3

p2d1+p1d2

d2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3×6

, (17)

where PCi
Ll

= (p1, p2, p3)
T and dCi

Ll
= (d1, d2, d3)

T are intersection point and direction vector of the lth
structural line in the ith camera frame {Ci}, respectively, which are obtained by (1) and (2).

The Jacobian matrices of
(
PCi

Ll
, dCi

Ll

)
with respect to xi, RWM, and Ll are defined as follows:

∂
(
PCi

Ll
, dCi

Ll

)
∂δxi

=
⎡
⎣R−1

IC

[
R−1

WIi

(
RWMPM

Ll
− tWIi

)]∧ −R−1
IC R−1

WIi
0 0 0

R−1
IC

[
R−1

WIi

(
RWMdM

Ll

)]∧ 0 0 0 0

⎤
⎦

6×15

∂
(
PCi

Ll
, dCi

Ll

)
∂RWM

=
[−R−1

IC R−1
WIi

RWM

[
PM

Ll

]∧
−R−1

IC R−1
WIi

RWM

[
dM

Ll

]∧
]

6×3
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∂
(
PCi

Ll
, dCi

Ll

)
∂Ll

=
[

R−1
IC R−1

WIi
RWM

0

]
6×3

⎡
⎢⎣

− sin θl/ρl − cos θl/ρ
2
l

cos θl/ρl − sin θl/ρ
2
l

0 0

⎤
⎥⎦

3×2

, (18)

where [·]∧ represents the skew-symmetric matrix of a three-dimension vector.
The covariance matrix �Ci

Ll
used to normalize the structural line measurement residuals is defined as

�Ci
Ll

=
[

σ 2
Ll

0

0 σ 2
Ll

]
2×2

(19)

where σLl is set by assuming that the measurement noise of endpoints is 1 to 2 pixels.

6.3. Distance residual between points and lines
When the jth point feature has been identified as belonging to the lth structural line feature, the distance
residual between them is given by

rC
(
ZCi

Pj
, χ
)

= 	
(
PM

Ll

)− 	
(
PM

Pj

)
(20)

PM
Pj

= R−1
WM

(
RWIi

(
RICZCi

Pj

1

λj

+ tIC

)
+ tWIi

)
(21)

	
(
PM

Ll

)=
[

al

bl

]
=
[

cos θl/ρl

sin θl/ρl

]
(22)

where ZCi
Pj

is the image observation of the jth point feature in the ith camera frame. PM
Pj

is the spatial

coordinate of the jth point feature in the Manhattan world frame {M}. 	
(
PM

Pj

)
represents projecting PM

Pj

onto the plane of {M} perpendicular to the lth structural line and then resize the 3D coordinates to the
2D ones by removing zero-value components. Similarly, 	

(
PM

Ll

)
represents resizing the 3D coordinates

of PM
Ll

to 2D ones.
For this residual term, the state variables to be optimized are

[
xi RWM Ll λj

]
. The related Jacobian

matrices are defined as follows:

JC = ∂rC
∂
(
PM

Ll
, PM

Pj

)
⎡
⎣∂

(
PM

Ll
, PM

Pj

)
∂xi

∂
(

PM
Ll

, PM
Pj

)
∂RWM

∂
(

PM
Ll

, PM
Pj

)
∂ Ll

∂
(

PM
Ll

, PM
Pj

)
∂ λj

⎤
⎦ (23)

with

∂rC
∂
(
PM

Ll
, PM

Pj

) =
[

1 0 0 −1 0 0

0 1 0 0 −1 0

]
2×6

∂
(

PM
Ll

, PM
Pj

)
∂xi

=
⎡
⎣ 0

−R−1
WMRWIi

[
RIC(ZCi

Pj
/ λj) + tIC

]∧
0

R−1
WM

0 0 0
0 0 0

⎤
⎦

6×15

∂
(

PM
Ll

, PM
Pj

)
∂RWM

=
⎡
⎣ 0[

R−1
WMRWIi

(
RIC(ZCi

Pj
/ λj

)
+ tIC) + tWIi

]∧

⎤
⎦

6×3
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Figure 8. (a) Identified points and lines they belong to in one image. (b) The corresponding spatial
structural lines to be optimized in the sliding window. The blue lines are new landmarks added to the
map, and the green lines are existing ones.

∂
(

PM
Ll

, PM
Pj

)
∂ Ll

=

⎡
⎢⎢⎢⎢⎣

0
− sin θl/ρl − cos θl/ρ

2
l

cos θl/ρl − sin θl/ρ
2
l

0 0

⎤
⎥⎥⎥⎥⎦

6×2

∂
(

PM
Ll

, PM
Pj

)
∂ λj

=
[

0
−R−1

WMRWIiRICZCi
Pj
/λ2

j

]
6×1

. (24)

Similar to the covariance matrix of structural lines measurement, the covariance matrix �
Pj
Ll

used
to normalize the distance residual is defined as a 2 × 2 diagonal matrix by assuming that the spatial
distance error is about 0.1–0.2 m.

7. Experimental results
To evaluate the performance of SLC-VIO, we first tested it on Euroc [34] data sets and TUM VI [35] data
sets, and then conducted a real-world experiment using our devices. Two state-of-the-art VIO methods,
VINS [8] and PL-VIO [14], were also implemented with their open-source code for comparison pur-
poses. VINS [7] is a typical VIO system that only uses point features as visual measurement. The stereo
version VINS-Fusion and monocular version VINS-Mono were adopted for comparative experiments,
and the loop closing was disabled to evaluate the odometry performance only. PL-VIO uses both point
features and line features as visual measurements. It uses Plücker coordinates to describe spatial lines
and does not consider structural regularity and correlation between points and lines. All experiments
were conducted on a computer with an AMD Ryzen Core 3600 CPU (@ 3.6GHz) and 16GB RAM.

7.1. Tests on Euroc data sets
The Euroc data sets consist of stereo images (frame rate: 20 FPS) and synchronized IMU measurements
(sample rate: 200 Hz) [34]. They were collected by the visual-inertial sensor mounted on a micro-aerial
vehicle (MAV) flying in a machine hall. As shown in Figs. 8 and 10, the machine hall is a typical struc-
tured environment with plenty of structural lines. More importantly, some scenes with weak illumination
are also included in the data sets, which may challenge the positioning accuracy of VIO systems. Besides,
the Euroc data sets also provide the ground truth trajectories. At the beginning of each sequence, the
UAV is on a wooden frame. Due to the lack of structural lines in three orthogonal directions, it is dif-
ficult for SLC-VIO to detect a Manhattan world during initialization. Therefore, the beginning of each
sequence is skipped until the machine hall can be observed.
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VINS-Fusion

(a) (b) (c)

PL-VIO SLC-VIO

Figure 9. Estimated trajectories by VINS-Fusion, PL-VIO, and our SLC-VIO.

Figure 10. Illustration of scenes in Euroc data sets, where most line features are aligned with orthog-
onal directions. The blue lines are identified as vertical lines. The red and green lines are identified as
horizontal lines.

To separately demonstrate the effects of structural lines and PPBL, we first tested SL-VIO (no PPBL)
that only utilizes structural lines. Then, SLC-VIO that utilizes structural lines and PPBL was tested. The
default parameters provided by authors in VINS-Fusion [7] and PL-VIO were used. The absolute pose
error (APE), that is, the position difference between the ground truth and the estimated ones, was used
to evaluate the positioning accuracy.

Table I presents the root-mean-square error (RMSE) of APE on five sequences. It shows that the
proposed SLC-VIO achieves the best performance on almost all sequences, except for MH_01_easy.
The results that SL-VIO (no PPBL) is better than VINS-Fusion, VINS-Mono, and PL-VIO on most
sequences illustrate the advantage of using structural lines. Besides, by comparing SLC-VIO with SL-
VIO(no PPBL), it can be found that the positioning accuracy of VIO system is further improved by
using PPBL. It is also found that, compared to VINS-Mono, VINS-Fusion does not show a distinct
advantage in accuracy since VINS-Fusion aims to improve the robustness and applicability. On the last
two sequences, VINS-Fusion achieves better performance than the monocular version. The reason could
be that VINS-Mono skipped some frames to ensure real-time performance and failed to match or track
sufficient point features in cases of poor illumination.

Figure 8(a) demonstrates the points belonging to line features on MH_02_easy. Figure 8(b) shows
the corresponding 3D structural lines in the reconstructed map. In Fig. 8(b), most of the structural lines
marked in blue are constrained by distance residuals. It can be found that there are sufficient points and
lines they belong to in the environment.

To visually compare the accuracy of VINS-Fusion, PL-VIO, and SLC-VIO, the estimated trajectories
of the three methods on MH_04_difficult sequence are presented in Fig. 9. The amplitude of errors is
denoted by colors. It can be seen that the trajectory estimated by SLC-VIO is the closest to the ground
truth, especially in area A characterized by weak illumination (see in Fig. 10(b)) and area B characterized
by sparse structural lines (see in Fig. 10(c)). The results demonstrate that the utilization of structural

https://doi.org/10.1017/S0263574721001958 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001958


Robotica 2779

Table I. RMSE on Euroc data sets (unit: meters).

Sequence VINS-Fusion VINS-Mono PL-VIO SL-VIO (no PPBL) SLC-VIO
MH_01_easy 0.194 0.206 0.095 0.130 0.120
MH_02_easy 0.182 0.172 0.207 0.238 0.166
MH_03_medium 0.130 0.140 0.106 0.103 0.089
MH_04_difficult 0.306 0.352 0.223 0.215 0.182
MH_05_difficult 0.203 0.346 0.256 0.229 0.179

Table II. Average time consumption on each frame (unit: millisecond).

Sequence VINS-Fusion PL-VIO SLC-VIO
MH_01_easy 56 100 72
MH_02_easy 55 101 72
MH_03_medium 56 93 69
MH_04_difficult 52 88 64
MH_05_difficult 51 98 68

Table III. The average execution time of each key operation in SLC-VIO (unit: millisecond).

Operations Time
Measurement processing Detection and tracking of point features 19

Detection and tracking of line features 66
Identification of structural line features <1
Identification of points belongs to lines <1
Triangulation of point/line features <1
Merging of redundant line features 2

Sliding window optimization 57

lines and PPBL can further improve the positioning accuracy of the VIO system in a weak-illumination
environment.

The average time consumption was evaluated on Euroc data sets, and the results are shown in Table II.
It can be concluded that the computation efficiency of VIN-Fusion is the highest since it only takes point
features as landmarks. Whereas in PL-VIO and SLC-VIO, both point features and line features are used
as landmarks, the efficiency is relatively low. Moreover, with the 2-DoF spatial structural lines, the
number of variables to be optimized in SLC-VIO is less than that in PL-VIO. Therefore, the efficiency
of SLC-VIO is higher than PL-VIO.

Table III presents the average execution time of each key operation in SLC-VIO. The detection and
tracking of line features and sliding window optimization are the most time-consuming processes. The
processing time of sliding window optimization depends on the number of features in an image and
fluctuates in the range of 42–62 ms. The time consumption is ensured by limiting the maximum number
of features (the maximum number of points and lines is 150 and 35, respectively) extracted from an
image. Since the measurement processing and sliding window optimization run in parallel, the efficiency
of SLC-VIO is mainly determined by these two processes. SLC-VIO adopts LSD and LBD algorithms to
detect and track line features, which can be further accelerated by GPU. Therefore, the efficiency of this
algorithm might be improved with the aid of hardware acceleration. In sliding window optimization,
marginalization is another time-consuming operation due to the dense Hessian matrix. This problem
can be potentially solved by discarding part of point and line features to obtain a sparse Hessian matrix.
Skipping frames is another solution to ensure real-time performance. In this implementation, frames
are skipped to ensure the oncoming frame is processed timely if the actual frame rate exceeds 10 Hz.
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Figure 11. (a) Illustration of scenes in TUM VI data sets. (b) Illustration of the corridor in the
real-world experiment. (c) The automated vehicle used in the real-world experiment.

Generally, this method can improve the efficiency of SLC-VIO with little influence on the positioning
accuracy. However, the number of matched and tracked point/line features may decrease if some frames
are skipped while the camera is moving at high speed, and the accuracy deteriorates in these cases.

7.2. Tests on TUM VI data sets and real-world experiment
Because the scenes in TUM VI [35] data sets (see in Fig. 11(a)) and real-world experiments (see in
Fig. 11(b)) are similar low-texture corridors, the two experiments are described and analyzed together.
Since there are not enough point features, such low-texture corridors are also a great challenge for visual
SLAM/VIO systems.

The TUM VI data sets are collected by a handheld device and also provide the ground truth trajecto-
ries. Since the images’ distortions in TUM data set are relatively large, we used an equidistant camera
model [36] rather than a pinhole camera model to cope with the distortions. As shown in Fig. 11(c), the
real-world experiment was carried out on an automated vehicle equipped with a visual-inertial sensor.
The automated vehicle ran in the corridor at a speed of 1 m/s to collect data. Data acquisition started
and ended at the same location. Unlike the public data sets, there is no ground truth for the evaluation of
positioning accuracy in the real-world experiment. However, since the actual starting point and endpoint
are the same, the positioning error can be determined by the distance between the starting point and the
endpoint of the estimated trajectory.

Table IV presents the RMSE of APE tested on TUM VI data sets. Figure 12 and Table V show the
estimated trajectories and positioning errors of the three VIO systems in a real-world experiment, respec-
tively. It can be seen that in these two experiments, due to the lack of point features, the positioning error
of VINS-Fusion is significantly larger than that of PL-VIO and SLC-VIO. This result demonstrates the
advantages of using line features for VIO system in low-texture environments. The result that SLC-VIO
performed better than PL-VIO indicates that using structural line features as landmarks and considering
the PPBL can further improve the accuracy of VIO system in structured environments, especially in
environments with low texture.
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Table IV. RMSE on TUM VI data sets (unit: meters).

VINS-Fusion PL-VIO SLC-VIO
RMSE 0.306 0.235 0.219

Table V. Positioning error in real-world experiments.

Total length Positioning Percentage
Methods (m) error (m) error (%)
VINS-Fusion 42.347 10.425 24.63
PL-VIO 51.76 1.068 2.06
SLC-VIO 49.762 0.539 1.08

Figure 12. The estimated trajectories in the real-world experiment.

Figures 13 and 14, respectively, show the reconstructed 3D map by VINS-Fusion, PL-VIO, and SLC-
VIO in the tests of the TUM VI data sets and real-world experiments. It can be seen that, compared
with the map composed of only sparse point features, the map composed of line features can better
reflect the environment’s geometric structure information. And in Fig. 14(a), there is an apparent drift
in the 3D map obtained by VINS-Fusion. It demonstrates that the mapping performance of the VIO
system using only point features will deteriorate in a low-texture environment. In contrast, as shown in
Fig. 14(b)–(c), in the reconstructed 3D maps utilizing line features, the drift is significantly reduced.
Besides, as shown in Figs. 13(b) and 14(b), there are many disordered line features in the 3D map
obtained by PL-VIO. In contrast, as shown in Figs. 13(c) and 14(c), the 3D map obtained by SLC-
VIO more correctly reflects the geometric structure of scenes. The reason is that after using the prior
environmental geometric information, the 2-DoF structural line in SLC-VIO has better convergence than
the 4-DoF straight line represented by Plück coordinates in PL-VIO during optimization. This result
illustrates the advantages of using structural lines to reconstruct a 3D map.

8. Conclusion
This paper presents the SLC-VIO system, which is a stereo VIO using both point features and structural
line features as landmarks and considering the property of PPBL. The man-made structure environment
is modeled as a Manhattan world, and then 2-DoF spatial structure lines are defined in it. By adding
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Figure 13. Reconstructed 3D maps by VINS-Fusion (a), PL-VIO (b), and SLC-VIO (c) on TUM VI data
sets. The blue lines in (c) are new landmarks added to the map, and the red points or lines are the old
landmarks in the map. The green line is the trajectory of camera.

the image observations of structural lines to visual measurements and establishing distance-residual
constraints between points and lines in the reconstructed 3D map, the proposed system makes full use
of the prior geometric information of structured environments and thereby achieves better positioning
accuracy.

The proposed system was tested on public data sets and in the real-world environment and compared
with the state-of-the-art VIO methods, including VINS [8] and PL-VIO [14]. The results illustrate that
taking structural line features as landmarks and considering the PPBL can significantly reduce the drift
in the reconstructed 3D maps and improve the positioning accuracy, especially in low-texture or poor
illumination environments. However, in environments where it is hard to find line features, the proposed
system degenerates into a VIO system that uses only point features, just like VINS [7]. In addition, it can
be seen that the spatial structural line with 2-DoF has better convergence and optimization efficiency
than the general spatial line with 4-DoF represented by Plücker coordinates during optimization.
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Figure 14. Reconstructed 3D maps by VINS-Fusion (a), PL-VIO (b), and SLC-VIO (c) in the real-world
experiment. The blue lines in (c) are new landmarks added to the map, and the red points or lines are
the old landmarks in the map. The green line is the trajectory of camera.
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