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Undecidability in Rn: Riddled Basins,
the KAM Tori, and the Stability

of the Solar System*

Matthew W. Parker†‡

Some have suggested that certain classical physical systems have undecidable long-term
behavior, without specifying an appropriate notion of decidability over the reals. We
introduce such a notion, decidability in l (or d-l) for any measure l, which is particu-
larly appropriate for physics and in some ways more intuitive than Ko’s (1991) recursive
approximability (r.a.). For Lebesgue measure k, d-k implies r.a. Sets with positive k-
measure that are sufficiently “riddled” with holes are never d-k but are often r.a. This
explicates Sommerer and Ott’s (1996) claim of uncomputable behavior in a system with
riddled basins of attraction. Furthermore, it clarifies speculations that the stability of
the solar system (and similar systems) may be undecidable, for the invariant tori estab-
lished by KAM theory form sets that are not d-k.

1. Introduction. Several authors have suggested that the long-term behav-
ior of some deterministic physical systems, or of some classical models in
Rn, is in some sense uncomputable (Moore 1990, 1991; Moser 1978, 67–
68; Pitowsky 1996; Sommerer and Ott 1996; Wolfram 1985). At their most
explicit, these authors argue that the set of real-valued states leading even-
tually to a certain kind of behavior is undecidable. However, none of these
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1. One can extend Grzegorczyk-computability to functions on other metric spaces
(Myrvold 1997), and in disconnected spaces there are nontrivial sets with continuous,
computable characteristic functions.

authors gives a rigorous definition of decidability for sets of real-valued
states, and this warrants more concern than one might expect.

Intuitively, a set is decidable if there is a mechanical procedure that will
always determine whether or not a given object in the domain of discourse
is in that set. For sets of natural numbers, this intuitive notion seems to
be captured by the rigorous mathematical concept of a “recursive” set,
and this concept is nontrivial in extension. That is, there are many recur-
sive sets of natural numbers and many nonrecursive ones (setting aside
any constructivistic denial of nonrecursive sets).

For sets of real numbers or real n-tuples, however, there is no uniquely
standard notion of a decidable set. There is a standard notion of a com-
putable function on the reals or real n-tuples, called Grzegorczyk-computa-
bility, with many different formulations (Grzegorczyk 1955a, b, 1957; Ko
1991; Pour-El and Caldwell 1975; Pour-El and Richards 1983; Weihrauch
2000), but it does not directly suggest a useful concept of a decidable set of
reals. One might like to say that a set B of reals is decidable if the charac-
teristic function of B (i.e., vB(x) � 1 if x � B, vB(x) � 0 otherwise)
is Grzegorczyck-computable. However, this notion is practically unsatisfi-
able. Grzegorczyk-computable functions are always continuous (Grzegor-
czyk 1955a), but in Rn, only � and Rn have continuous characteristic func-
tions.1 Hence in the obvious sense for sets of real n-tuples, undecidability is
trivial.

Myrvold (1997) provides reasons to accept this concept of decidability
on Rn, uninformative as it may be, and concede that nontrivial sets of reals
are simply not decidable. Nonetheless, some sets of reals are more nearly
decidable than others, and various relaxed notions of a decidable set of
reals have been introduced (e.g., Blum, Shub, and Smale 1989; Ko 1991;
Myrvold 1997; Weihrauch 2000). Most of them are far from equivalent.

Here we discuss Ko’s (1991) notion of a recursively approximable (r.a.)
set, and a previously overlooked notion, which we dub decidability in l
(abbreviated d-l), where l is a measure. Both notions involve measures
and express the desire for a decision algorithm with a high probability of
success. Ko’s notion has intuitive and practical appeal, and we will make
some use of it here, but it also has certain features for which the motiva-
tions are unclear. We will see that d-l is closer to the classical concept of
a decidable set of natural numbers and that it captures certain intuitions
that r.a. does not. In particular, r.a. implies the existence of a decision
procedure that succeeds with probability arbitrarily close to one (given
certain assumptions about the relevant probability measure), while d-l
expresses the existence of a decision procedure that succeeds with a prob-
ability of exactly one.
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2. The evidence here supports a classical model with riddled basins, but of course such
models break down at the quantum level. Hence the evidence only supports approxi-
mate riddling, or riddling in the classical limit.

Applications of d-l are suggested by some interesting results in dynam-
ical systems. A dynamical system is a mathematical model consisting of a
space of states—phase space—and a flow function, by which the state of
the system at any time determines the state at any other time. Phase space
enables one to represent the values of all the variables of a system—such
as the position and momentum coordinates for several bodies—as a single
point. The basin of a set A of states is the set of states from which the
system will asymptotically approach A. A basin is riddled, as in ‘riddled
with holes,’ if every open set in phase space contains a positive-measure
portion of the complement of the basin (Alexander et al. 1992).

Classical models of physical systems have shown numerical evidence of
riddled basins (Sommerer and Ott 1993, 1996) and some actual systems
have shown observational evidence of riddling or approximate2 riddling
(Heagy, Carroll, and Pecora 1994). A riddled basin implies a kind of un-
predictability, since exact initial data are required in order to determine
whether the state of a system lies in such a basin, and hence to determine
the system’s qualitative behavior as time increases without bound. (Note
this is different from “chaos,” where very precise initial data are required
to determine finite-time behavior.) What is more, any computation that
determines the long-term behavior of a system with riddled basins must
use the complete exact initial data, which generally cannot be finitely ex-
pressed. Hence such computations are intuitively impossible, even if the
data are somehow available. On this basis, Sommerer and Ott (1996) argue
that a certain system that seems to have riddled basins exhibits “uncom-
putable” behavior.

However, the authors do not give a definition of ‘uncomputable set’
sufficient to distinguish it from the trivially satisfied notion mentioned
above. Here we clarify and bolster their claim with a simple theorem: no
riddled set with positive k-measure is d-k (Theorem III). (Throughout this
paper, k denotes Lebesgue measure, the standard notion of volume in Rn.)
Therefore if Sommerer and Ott are correct that their basins are riddled
and have positive measure, the basins are undecidable in the precise sense
to be defined here. Hence Sommerer and Ott’s uncomputability claims are
warranted, and since the proof of this result and the motivations for d-l
are similar to Sommerer and Ott’s arguments and motivations, it seems
that decidability in l captures the intuitions of at least two scientists.

Another application is the famous problem of the stability of the solar
system. There one models the solar system as point masses under New-
tonian gravitation, and the problem is to determine whether any of the
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3. Though Lebesgue measure is not always well-defined on the phase space of a me-
chanical system, planetary systems have natural phase spaces in Rn, and the classic
KAM theorems (e.g., Arnol’d 1963a, b, Moser 1973) assume contexts in which Le-
besgue measure is well-defined. It also seems likely that our results will extend to other
spaces and measures.

bodies will ever escape the system or collide with another body. If not, we
say that the orbit of the whole system in phase space is stable. (Though,
there are other notions of stability that it might not satisfy.) Such exalted
mathematicians as Lagrange, Laplace, and Poisson have obtained partial
stability results (see Poincaré 1891, 1898; Moser 1978; Diacu and Holmes
1996 for nontechnical reviews), but Poincaré famously revealed formida-
ble obstacles to any complete solution: the nonexistence of any constants
of motion beyond the known few, and the terribly complex interweaving
of orbits now known as the homoclinic tangle (1890, [1892–1899] 1993;
see also Moser 1978; Goroff’s introduction to Poincaré [1892–1899] 1993;
Diacu and Holmes 1996; Parker 1998). Some have suggested that the sta-
bility problem may even be undecidable (Moser 1978; Wolfram 1985), but
again, without articulating an appropriate nontrivial sense.

The concept of decidability in l fills this gap. In fact, modern KAM
theory (named for Kolmogorov, Arnol’d, and Moser), provides reasons
to suspect that the stability problem and many related problems are not
d-k (where again, k is Lebesgue measure).3 It shows that certain classes of
energy-conserving systems have many bounded orbits, confined to tori in
phase space. We will see that the tori of bounded orbits established by
KAM theory for a given system form a set that is not d-k. This itself is a
meaningful undecidability result for an important field, but moreover it
suggests that the stability of the solar system (and similar problems) may
not be d-k. The latter proposition depends on yet unknown facts (see
Section 6), but in any case our discussion will shed some light on the senses
in which such problems might be rigorously unsolvable.

It should be said, in fairness, that the authors cited above (Moore,
Pitowsky, Moser, Sommerer and Ott, and Wolfram) never set out to define
a rigorous and viable concept of decidability for sets in real space. How-
ever, the issue is not whether the machines to which they refer provide a
basis for such a definition (as oracle Turing machines will for us). These
authors have made claims and suggestions of undecidable behavior for
real-valued models of physical systems—they suggest not just that, for
example, none of Moore’s machines can decide the fate of certain Moore
machines, but that nothing within the traditional conception of a com-
puting machine or algorithm can decide the fate of certain Moore ma-
chines, or of other real-valued systems. Since taken in the obvious way
this is trivial, such suggestions are not clear until relevant nontrivial no-
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4. Some conclude (in private communications) that Moore’s (1990, 1991) arguments
show certain naturally interesting sets are not decidable in k, or not decidable disre-
garding boundaries in the sense of (Myrvold 1997). However, I fear there are subtle
complications involved in such inferences—and in Moore’s constructions—that would
be better addressed in another paper.

5. We consider computation only on Rn, but the concepts here easily extend to separable
metric spaces, including domains important to physics such as curved manifolds and
Hilbert spaces.

6. Our undecidability results are independent of these codings, but positive decidability
results require somewhat informative codings. Theorems II and IV assume that the
relation ||Qn(s1)—Qn(s2)|| � Qn(s3) is recursive.

7. It may seem strange to represent real points in this way rather than using, say, the
usual base-n digital expansions. We do so for the sake of comparability with Ko (1991).
In fact, base-n expansions would be sufficient for our study of decidability concepts,
but in Ko’s (1991) and Weirauch’s (2000) broader studies of computable functions and
computational complexity on the reals, base-n expansions lead to counterintuitive re-
sults: simple operations like addition turn out to be noncomputable. In adopting Cau-
chy oracles as our standard representations of real n-tuples, we follow Ko except in one
detail: Ko defines a “Cauchy function” with inclusive inequality (“�”) in place of our
strict inequality (“�”). The strict inequality gives Theorem I a more elegant form (see
note 8), and it does not change the extension of either r.a. or d-l.

tions of undecidability have been identified. Our goal here is not to indict
others for making vague claims, but to give sharper teeth to undecidability
claims by clarifying what precisely they could mean.4 Technical definitions
and proofs appear in the appendix.

2. Defining Decidability. We adopt the usual discrete conception of com-
putation as the systematic manipulation of finite symbol strings. Though
analog computation is worth studying, we restrict our attention to the
discrete approach, which dominates mathematical practice and has been
canonized by recursion theory.

In order to regard points in some space5 as subjects of discrete com-
putation, we must represent them using finite strings. There being no way
to code each point in an uncountable space with a single finite string, we
represent real points by approximation. Fix a finite alphabet A and a
coding of the natural numbers, i.e., a map taking the finite strings from A
onto N. Similarly, fix a coding of the rational n-tuples.6 We represent a
point x � Rn by a function from strings to strings that converges quickly
to x in the following sense: it takes a code for any natural number m to a
code for a rational n-tuple q such that ||q – x|| � 2�m. Let us call such a
function a Cauchy oracle for x (Definition 1(i) in Appendix). Note that
a given point is represented by many different Cauchy oracles, for there
are uncountably many sequences of rational points that converge quickly
to a given point.7
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For applications to empirical science, a Cauchy oracle represents an
infinite sequence of ever more accurate measurements of a particular quan-
tity. It embodies the idealizing assumption that with sufficient time, effort,
and funding, scientists can exact a measurement to any desired accuracy,
short of perfect. Unrealistic as it is, this idealization enables us to abstract
away from the specific limitations of various measurement techniques, and
to show what cannot be computed no matter how accurate the data.

We use the term ‘oracle’ here because our decidabilities will be defined
in terms of oracle Turing machines. A Turing machine is a hypothetical
device consisting of an infinite tape (the work tape) and a head that moves
back and forth along the tape reading and writing symbols (say from our
alphabet A). The head has finitely many possible internal states, and at
each step, its motion, the symbol it writes (if any), and the next internal
state it takes on are determined by (i) its present internal state, (ii) the
symbol immediately under the head, and (iii) its program (a finite list of
instructions that determines its response to each symbol in each state).
This model can be treated rigorously, and it is well known that the func-
tions it can compute on N are precisely the recursive and partial recursive
functions—the same functions picked out by several other notions of com-
putability (Turing 1936; and, e.g., Davis and Weyuker 1983; Soare 1987).
This supports the Church-Turing thesis that such functions are precisely
the intuitively computable functions on N.

An oracle Turing machine (OTM) is a Turing machine that can “ask
questions” of a hypothetical black box called an oracle. In particular, a
function OTM is a Turing machine with a second tape (the query tape)
where in the course of its computations it may write a query in the form
of a finite string, and the oracle will then replace that string with another
finite string (Figure 1). Hence the oracle is just a function from finite
strings to finite strings. While it plays a role in a machine, the oracle itself
is not a machine and it need not be a computable function. In classical
recursion theory, an uncomputable oracle increases an OTM’s computing
power, and given a particular oracle, one considers what functions on N
become computable (Soare 1987).

Here, however, we do not use an oracle as an aid to computation but
as an input, a representation of the real-valued point on which we wish to
perform a computation. When we consider whether an OTM M correctly
performs some computation on a point x, we assume that M’s oracle is a
Cauchy oracle for x. M can ask this oracle for an approximation of x with
any specified accuracy, and the oracle will provide it. We then ask, “If M
is provided with such an oracle, will it give an output appropriate to x?”
“If M is provided a Cauchy oracle for y, will it give an output appropriate
to y?” etc. Thus the oracle defines the particular instance of a problem
that M must solve. The oracle may still be an uncomputable string func-

https://doi.org/10.1086/375472 Published online by Cambridge University Press

https://doi.org/10.1086/375472


  Rn 365

Figure 1. A function oracle Turing machine. When the machine M enters the query state
qi, the finite string on the query tape is replaced by another, as determined by the oracle
function �; the read/write head returns to the “origin,” where the new string begins; and M
enters the answer state qj. If � is a Cauchy oracle for x and the string on the query tape is a
code for, say, 11, then the new string codes a rational point with a distance from x less than
2–11.

tion; after all, for us the oracle represents a sequence of ever more accurate
measurements of some real-world quantity, and there is no reason to ex-
pect such a sequence to be computable. Neither, though, is there any worry
that an uncomputable oracle will make an OTM inappropriately powerful,
for we treat oracles as inputs: given a particular function on oracles, we
ask on which oracles does an OTM compute that function.

We omit further details of OTMs and adopt the standard assumption
that any systematic procedure involving queries to an oracle can be carried
out by an OTM. This is the relativized Church-Turing thesis used in higher
recursion theory (Soare 1987). It licenses us to prove computability results
by appeal to informal algorithms rather than complicated Turing pro-
grams.

Both Ko’s (1991) recursive approximability and our decidability in l
are defined in terms of OTMs and measures. Ko’s notion amounts to the
existence of an approximately accurate decision algorithm in the form of
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an OTM such that the set of points where the OTM errs (the error set)
can be made arbitrarily small in Lebesgue measure (or outer measure).
The upper bound for the measure of the error set can be specified as an
input on the machine’s work tape. Also, Ko requires this machine to halt
(finish computing and give an output) on every Cauchy oracle. In sum, a
set is recursively approximable (r.a.) if there is an OTM that (1) halts on
every Cauchy oracle and (2) computes the set’s characteristic function
correctly, except perhaps on some set with Lebesgue outer measure less
than 2�n for specified n (Definition 3 in Appendix).

Ko explains that such a machine would decide a set “with an error
probability less than or equal to 2�n, where the probability is measured
by the natural Lebesgue measure” (1991). However, this motivating re-
mark raises a few questions.

Firstly, is it legitimate to equate probability with Lebesgue measure?
The connection between probability and Lebesgue measure, or the closely
related “microcanonical” measure on an energy surface, has been much
discussed by philosophers in relation to thermodynamics and statistical
mechanics (Poincaré 1907; Sklar 1973, 1993; Malament and Zabell 1980;
Batterman 1998; Vranas 1998) and is still debated. Yet, that discussion at
least illustrates how attractive it is to relate probabilities to Lebesgue mea-
sure or something much like it—in particular to suppose that, barring
special circumstances, the probability associated with a measure-zero set
of states in phase space is zero. We adopt this assumption here as a mo-
tivation both for r.a. and for our results below involving d-k, where k is
Lebesgue measure. However, d-l will be defined for any measure l, and
even r.a. generalizes easily to an arbitrary measure or outer measure.
Hence these decidability concepts, if not the results below, can be applied
to the appropriate probability measure whatever it may be.

Secondly, why require a machine that always halts? Assuming we have
a machine that sometimes gives incorrect output, the epistemological sit-
uation would seem no worse if in principle that machine could also fail to
halt, but with probability zero. This would not affect the probability of
obtaining a correct output, and in application we could be confident that
nonhalting cases would never arise.

Finally, why should one be satisfied with an arbitrarily small, possibly
nonzero probability of error? A probability of error exactly equal to zero
would be intuitively better.

In short, why not simply demand a machine that, with probability one
(whatever the probability measure may be), will halt and give correct out-
put? With this in mind, we say a set is decidable in l (or d-l), where l is
a measure, if some OTM will compute its characteristic function except
perhaps on some set with l-measure zero, where the OTM might decide
incorrectly or not at all (Definition 4 in Appendix). Otherwise, the set is
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undecidable in l (or u-l). We will see below that r.a. and d-l are not
equivalent, and in particular d-k is strictly stronger than r.a.

Our intent in defining d-l is that l should be chosen to reflect the
likelihood of a physical system taking on a state in a given set, at least to
some extent. Specifically, l should be a measure in which the relevant
probability is absolutely continuous—assigning probability zero to all
measure-zero sets. Then if a given set is d-l, there is a machine M such
that the probability of a state arising that M does not correctly decide is
zero. Though it might still be strictly possible for such a state to occur, we
can safely assume that none will (and this assumption is reasonable
whether the probability in question is an objective fact or merely a reflec-
tion of our expectations).

It is not claimed here that d-l is the best concept of decidability in every
respect for every real-valued context. In fact, r.a. is in some ways more
pragmatic, for an extremely minuscule probability of error is usually good
enough for practical purposes. However, it is just this pragmatism that
makes r.a. less analogous to classical decidability than d-l, for the classical
concept of decidability in discrete recursion theory (or for that matter,
logic [Gödel 1931]) is highly theoretical. It concerns what can be decided
in all cases using a single algorithm (or effectively axiomatized theory).
Though only trivial sets of reals are decidable in this absolute sense, clearly
those sets that are decidable all the way up to measure zero come closer
to that standard than those that can only be decided up to an arbitrarily
small nonzero measure.

One could define still stronger notions of decidability, which might be
preferable in some respects. One strengthening is obtained by appending
to the definition of d-l the requirement that M must halt on every Cauchy
function. However, this is too strong; if l is a reasonably nice measure,
only measure-zero sets and their complements are decidable in this sense
(Proposition 2). Hopefully other strengthenings will be explored in future
writings. Strictly speaking though, no stronger decidability could entail
any greater probability of correct output. If we can indeed safely assume
that barring special circumstances, no state in a given measure-zero set
will actually arise, then d-l already guarantees us an algorithm that in
practice will always succeed. Also, a stronger notion of decidability would
imply a weaker notion of undecidability, and this would be undesirable,
for one of our tasks here is to find the most meaningful undecidability
results possible for certain dynamical systems.

3. The Topological Use Principle. All of the results here are based on the
Use Principle of classical recursion theory. This states that if an OTM
halts, then it does so after finitely many steps and after scanning only
finitely many symbols provided by the oracle (see, e.g., Soare 1987). In
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8. If “�” in the definition of a Cauchy oracle is replaced with “�” as in Ko (1991),
then “of x” in Theorem I must be replaced with “whose closure contains x.”

our context this implies that an OTM must make its “decisions” based on
approximate input, without ever “knowing” the exact position of a point.
Consequently, if M outputs q on a given point, then it outputs q on a
neighborhood of that point. More precisely,

Theorem I (Topological Use Principle). If an OTM M halts with output q
on some Cauchy oracle for x, then there is a neighborhood U of x such
that M halts with output q on some Cauchy oracle for each point in U.8

(See Appendix for proof.)

This implies that if a set B is d-l as witnessed by an OTM M, and M
outputs, say, 1 (for “Yes, x � B”) on some Cauchy oracle for x, then we
can determine a neighborhood around x that is contained in B except
perhaps for a subset of measure zero. If we have chosen a reasonable
coding of rationals, this enables us to show

Theorem II. D-k implies r.a.

For, given an algorithm M that shows B is d-k, we can effectively construct
two sequences of neighborhoods: some on which M halts and which nearly
fill Rn, and others covering the gaps. It is then simple to give an algorithm
that halts on all Cauchy oracles and correctly decides B almost everywhere
except on the latter neighborhoods, which form an arbitrarily small set.

4. Riddled Sets. In some work on dynamical systems, a set B is called riddled
(Alexander et al. 1992) if it is significantly pervaded with holes, i.e., if its
complement has positive Lebesgue measure (k) in every nonempty neigh-
borhood (Definition 5; see Figure 2). For example, any nowhere-dense sub-
set of Rn is riddled, but one can also construct dense riddled sets.

It follows from the Topological Use Principle that no algorithm cor-
rectly computes the characteristic function of a set B � Rn at the boundary
of B. Of course, a riddled set is entirely included in its own boundary. This
makes it possible to show:

Theorem III. Every riddled set with positive Lebesgue measure is u-k. (See
Figure 2.)

As we will see, this explicates and justifies Sommerer and Ott’s uncom-
putability claims, and it also shows that the KAM tori are u-k.

Consider a simple example of a riddled set, a generalized Cantor set.
This is constructed in stages: beginning with the unit interval, remove an
interval from the middle, then remove a much smaller interval from each
remaining piece, and repeat (Figure 3). If the intervals removed decrease
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Figure 2. Riddling and Theorem III. Here A is riddled: every neighborhood, like the mag-
nified inset, contains positive-measure portions of the complement AC. If an OTM M gives
output q given some Cauchy oracle for x, it will also do so for each point in a small neigh-
borhood of x (Theorem I). Therefore it incorrectly decides A on a positive-measure set within
that neighborhood (Theorem III).

Figure 3. Construction of a generalized cantor set C with positive Lebesgue measure.
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9. Under other definitions of attractor, all points near an attractor lie in its basin. So
defined, an attractor cannot have a riddled basin. Sommerer and Ott actually define
attractor differently from Milnor, but immaterially so.

10. This is plausible, but not obvious. The shape of the potential V shows that there is
no “attractor at infinity,” but there could be a positive-measure set of orbits that do
not approach either attractor.

rapidly in size, the set remaining after infinitely many stages will have
positive measure. Clearly such a set is riddled, and if the construction is
sufficiently systematic, the resulting set is r.a. Hence, in virtue of Theorem
III, we obtain the following:

Theorem IV. There exists a set that is r.a. but not d-k.

With Theorem II, this shows that d-k is strictly stronger than r.a., and the
generalized Cantor set serves as a simple model for the kind of undecid-
ability that appears to occur in Sommerer and Ott’s example and the n-
body stability problem.

5. Riddled Basins of Attraction. Sommerer and Ott’s model (1996) consists
of a point particle in a two-dimensional potential, with an additional force
given as a sinusoidal function of time. The motion is governed by

d d d d2 2( , ) ( , ) ( , ) sin( ),x y t x y t V x y a t/ /= − − ∇ +γ ωi (1)

where c is the friction coefficient, i is the unit vector in the positive x
direction, a is the amplitude of the periodic force ia sin(xt), x/2p gives the
frequency of the periodic force, and �V(x, y) is the gradient of the poten-
tial given by

V x y x sy x p ky( , ) ( ) ( ) .= − + − +1 2 2 2 2 4 (1a)

(See Figure 4.) The parameters s, p, and k may be varied to obtain a family
of potentials. With fixed parameters, the solutions of (1) form a dynamical
system on a five-dimensional phase space: two dimensions to represent the
position of the particle, two for momentum or velocity, and since the
periodic force depends on time, we include time itself as a state variable.

Sommerer and Ott refer to Milnor’s (1985) definition of attractor—
essentially, a set whose basin of attraction has positive Lebesgue measure.9

They give an analytic argument that their system (with chosen parameters)
has at least two attractors, one in each well of the potential. Numerically
approximated graphs seem to show the disjoint basins of both attractors
occupying significant portions of each neighborhood in phase space, sug-
gesting that the basins are riddled (Figure 5). The authors also remark
that the full measure of the phase space is divided between these two
basins,10 implying that the basins have positive measure. Inferring that a
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Figure 4. Sommerer and Ott’s potential. Motion defined by equation (1) can be visualized
as a marble rolling on this surface while the surface rocks to the left and right, representing
the periodic force ia sin(xt).

computation must make full use of exact data in order to determine mem-
bership in one of these basins, Sommerer and Ott conclude that the basins
are uncomputable.

Theorem III implies that if indeed Sommerer and Ott’s basins are rid-
dled and have positive measure, then neither basin is d-k. This seems to
reflect the intuitions behind Sommerer and Ott’s uncomputability claim,
for what makes the undecidability of their example strong is the fact that
the complement of a riddled set has positive measure in every neighbor-
hood. Therefore any algorithm will fail to decide it not just in a few iso-
lated cases, but on a set of cases with positive measure and, intuitively,
with a positive probability that some case in that set will actually occur.
This is precisely the worry that motivated our definitions of d-l and u-l.
Also, Sommerer and Ott’s intuition that an algorithm cannot actually use
infinitely precise data about the position of a point is essentially the Top-
ological Use Principle, the main insight used to establish Theorem III.
Hence u-k seems to be roughly the undecidability they had in mind. Re-
gardless, it is one rigorously defined undecidability that follows from their
claims.
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Figure 5. Sommerer and Ott’s riddled basins (1996). Slices of the five-dimensional phase
space of the dynamical system defined by equation (1). The attractors intersect these planes
along the x-axis. For each initial condition in each 760 � 760 grid, Sommerer and Ott
simulated an orbit until it came within 10–5 of an attractor, with velocity transverse to the
attractor less than 10–6. Initial states leading to the left attractor were colored black, and
those leading to the right attractor, white. Blow-ups (b) and (c) of insets in (a), and (d) of
the inset in (c), suggest that both basins are riddled.

On the other hand, r.a. is apparently not the concept of computability
Sommerer and Ott had in mind when claiming that their basins were un-
computable. Rather, r.a. explicates their claims that the basins are in a
sense computable—sufficiently computable that the authors could pro-
duce qualitatively accurate graphs revealing the riddled structure of those
basins. In fact, Sommerer and Ott’s argument for the validity of their
numerical data (1996) is almost an argument that the basins are r.a.
(though they do not use that term). For simpler systems with riddled ba-
sins studied previously (Ott, Alexander, et al. 1994), they sketch a proce-
dure to determine, with an arbitrarily small but nonzero chance of error,
whether a given point lies in a given basin. The existence of such a pro-
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cedure is the central feature of r.a., and in fact the basins in some of those
simpler systems can be proven r.a. The authors suppose that the same
procedure will work for their new, more realistic example and in fact use
it to produce their graphs (Figure 5). It is therefore likely that their basins
are r.a., so r.a. does not reflect the undecidability in their dynamical sys-
tem.

6. The KAM Tori. KAM theory establishes tori of bounded orbits for
certain energy-conserving systems. For a given system of the right kind,
these tori form “a set of positive measure . . . but a complicated Cantor
set” (Moser 1973, 8) akin to the generalized Cantor set that exemplified
Theorem IV. Specifically, the union of such tori is nowhere dense, hence
riddled, has positive k-measure, and is therefore u-k, where k continues to
denote Lebesgue measure (see note 3). This suggests (without proof) that
in particular the stability of the solar system may be undecidable in the
precise sense that the union of stable orbits is u-k.

The main KAM theorems concern Hamiltonian dynamical systems that
are nearly integrable. (There are similar theorems for other classes of sys-
tems, e.g., Moser 1973, 49.) Hamiltonian systems are those governed by
Hamilton’s equations,

d d d dq p p q/ / / /t H t H= ∂ ∂ = −∂ ∂, , (2)

where H, the Hamiltonian, is a function of the 2m variables q � (q1, . . . ,
qm), p � (p1, . . . , pm). For a collection of n point masses, q might consist
of the 3n rectangular position coordinates of the bodies and p the 3n mo-
mentum components, where H is the total energy of the system; but other
coordinates can be chosen.

A Hamiltonian system is integrable if q, p, and H in (2) can be chosen
so that H � H0(p) is independent of q. In this case, (2) is easily solved,
and all bounded solutions are periodic or quasi-periodic, meaning that
each is confined to an m-dimensional torus in phase space (which it fills
densely), is simple in a certain sense, and will again and again come ar-
bitrarily close to repeating itself (Figure 6).

A nearly integrable system is a small perturbation of such a system. For
example, a Newtonian system of two gravitating bodies is integrable; add-
ing a very small third body produces a nearly integrable system. Such a
perturbation can transform some of the invariant tori into much more
complicated sets of chaotic orbits, while other tori are only slightly de-
formed. KAM theory establishes (among other things) sufficient condi-
tions under which a particular torus is only slightly deformed by a per-
turbation. The deformed invariant tori so established are called the KAM
tori. In the case of an n-body system, the orbits that lie on the KAM tori
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Figure 6. Merely schematic illustration of the invariant tori in an integrable system. A
quasiperiodic orbit wraps around a torus filling it densely. The cut-away shows such tori
filling the phase space.

11. Smoothness and nondegeneracy conditions on the Hamiltonian are also required.

12. Arnol’d’s (1963b, 147) nonresonance conditions for the planetary problem are
slightly different, but they imply conditions of the form (3) and are implied by other
conditions of the form (3), so what is said here applies to them as well.

avoid escape and collision; they are stable in the sense of the historic n-
body stability problem.

In order for the methods of KAM theory to show that a particular
invariant torus survives a perturbation, the torus must meet certain
“nonresonance” conditions.11 Essentially, the partial derivatives xi �
�H0(p)/�pi (“frequencies”) of the unperturbed, integrable Hamiltonian
H0(p) on that torus must be far from commensurable, which is usually12

expressed by a condition of the form

Σ Ω Σ1 11≤ ≤ ≥ ( ) ∀ ∈i m i i i m
mj j j jω / , ( , , ) \{ }.… Z 0 (3)

If the function X is chosen to grow quickly, the set D of frequency
vectors (x1, . . . , xm) satisfying this condition has positive k-measure (see
De la Llave 2001). Also, D is nowhere dense, since it is obtained from Rm

by removing a small neighborhood around each m-tuple of commensu-
rable frequencies, and such m-tuples are dense. D is therefore riddled,
and by Theorem III, u-k.

Now, D itself is not the union of the KAM tori in the 2m-dimensional
phase space. It is a set of m-tuples (x1, . . . , xm) such that each KAM
torus corresponds to an m-tuple in D. However, this correspondence is
such as to ensure that the KAM tori are u-k. Under mild conditions, there
exists a diffeomorphism on an open set Tm � P that maps Tm � N � Tm

� P onto the KAM tori, where Tm is the m-dimensional torus, P an open
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Figure 7. Schematic cross-section of the invariant tori in a nearly integrable system, show-
ing riddled structure. (In phase spaces with dimension greater than three, orbits are not
trapped inside such tori.)

subset of Rm, and N a positive-measure subset of D (Pöschel 1982). Since
Tm � N is nowhere dense and diffeomorphisms preserve this property, the
union of KAM tori is nowhere dense. Therefore the latter set is riddled,
and the KAM theorems state explicitly that it has positive k-measure.
Hence, the KAM tori themselves form a u-k set (Figure 7).

In physical applications, the coordinates (q, p) in which H0 is indepen-
dent of q will rarely be the most natural phase space coordinates; it is
usually necessary to change variables in order to meet the conditions of
KAM theorems. However, the coordinates used in KAM theory are al-
ways related to the natural coordinates by “canonical” transformations,
which preserve both the topology and the natural measure. Hence, when
k is the natural measure, the KAM tori are riddled, positive-measure, and
therefore u-k even in the natural physical coordinates.

Though these tori form u-k sets, whether the stability problem itself is
u-k is still an open question. There might be many more stable orbits not
on the KAM tori, in which case the set of all orbits that are stable in our
sense might not be riddled. However, Arnol’d (1964) has constructed ex-
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amples of orbits of nearly integrable systems that escape, and conjectured
that the existence of such orbits is generic. If further almost all orbits not
lying on the KAM tori escape, then the positive-measure set of stable
orbits is riddled and therefore u-k, and the stability of the solar system is
undecidable in that concrete sense. Similar claims might also hold for other
physical problems subject to KAM theory, such as that of the stability of
particle trajectories in an accelerator (Moser 1978).

Incidentally, it is not hard to see that D is r.a., at least if X in (3) is
Grzegorczyk-computable and points are coded in a reasonably informa-
tive way. The proof idea is just this: To determine with high accuracy
whether (x1, . . . , xm) � D, determine whether (3) holds for a large number
of integer m-tuples (j1, . . . , jm). Also there should be little difficulty in
showing that the KAM tori themselves are r.a. if the relevant transfor-
mations are sufficiently computable. Hence again, u-k characterizes cases
of significant undecidability that r.a. obscures.

7. Conclusions. Decidability in a measure l is a natural relaxation of the
concept of decidability, especially in physical contexts. When l is appro-
priately chosen, d-l amounts to the existence of a decision procedure that
succeeds with probability one. It is also nontrivial in extension and distinct
from other relaxed decidabilities.

We have seen that any riddled set with positive Lebesgue measure is
undecidable in k (Theorem III), though such a set may be r.a. (Theorem
IV). It therefore appears that u-k is just the kind of undecidability that
Sommerer and Ott intended to assert in 1996. If they are correct in
concluding from the numerical evidence that their example has riddled,
positive-measure basins, then those basins are u-k, though there is good
reason to suspect they are nonetheless r.a.

We have also seen that the KAM tori are u-k, since they too form
riddled, positive-measure sets. This suggests that the stability of the solar
system, and the qualitative long-term behavior of many other conservative
systems, may be undecidable in the concrete sense of u-k. Whether this is
so depends on yet unknown facts, but in any case, the concept of unde-
cidability in a measure l defined here is one rigorous notion of undecid-
ability that can be meaningfully applied to such problems.

One may raise doubts about the physical significance of undecidability
results such as those presented here. The models we have considered are
highly idealized and grounded in the out-dated prequantum worldview.
In particular, questions about the unbounded future of a model may have
no physical meaning, since it is intuitively doubtful that any real system
will last forever, or more precisely, retain its form—adhere to one model—
forever.

There might still be ways in which some actual physical system could
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nonetheless behave undecidably in a meaningful sense, but let us not pur-
sue this here. Our primary concern has not been with the occurrence of
actual undecidable motion, but with illustrating the concept of decidability
in l. We have not been concerned with the actual solar system, which, due
to energy dissipation if nothing else, will no doubt crumble one day.
Rather, we have sought to clarify some speculations about a mathematical
problem raised by classical physics, and to do so in a manner appropriate
to that context. More generally, our results on riddled basins and KAM
theory have demonstrated fundamental theoretical difficulties that arise
even for the prediction of simple models, long before real-world contin-
gencies are brought to bear—difficulties quite different from chaos and
from quantum indeterminacy. We have seen that even if the world were
deterministic, classical, susceptible to exact measurement, and well cap-
tured by idealized models, some systems could still present significant com-
putational barriers to prediction.

Appendix

Let ||•|| denote the Euclidean norm on Rn. Fix a finite alphabet A and
let A* be the set of finite strings from A. Fix a coding N: A* r N onto
N, and for each n, a coding Qn: A* r Qn onto Qn, such that the relation
||Qn(s1) � Qn(s2)|| � Qn(s3) is recursive.

Definition 1.

(i) A Cauchy oracle for x is a function �: A* r A* such that ||Qn(�(s))
� x|| � 2�N(s) for all s � A*. COx denotes the set of Cauchy oracles
for x.

(ii) When an OTM M is supplied with a particular oracle � we refer to
it as M�. If M� halts on an input string s, we write M�(s)f and denote
the output string by M�(s) or M�(s)f.

(iii) Let r : {0, 1, . . . , k} r A* be a finite sequence of strings. We say
that length(r) � k � 1. For any �: N r A*, we write r � � and
� � r if r(i) � �(i) for all i � dom(r) � {0, 1, . . . , k}.

(iv) We write Mr(n)f � x if for some oracle function � � r, M�(n)f �
x and M�(n) queries the oracle only with numbers in dom(r)—i.e.,
M� never enters the query state with a string s on the oracle tape such
that N(s) � length(r). If no such � exists, we write Mr(n)F.

Proposition 1 (Use Principle). M�(n)f � x ⇔ (∃r � �) Mr(n)f � x.

Proof. See Soare (1987). �
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Definition 2. B(x, e) (B[x, e]) denotes the open (closed) ball with center x
and radius e.

Theorem I (Topological Use Principle). If M�(n)f � q for some � � COx,
then there is a neighborhood U of x such that (∀y � U)(∃w � COy)
Mw(n)f � q.
Proof. Fix x � Rn and suppose � satisfies the antecedent. By the Use Prin-
ciple, choose a finite sequence r such that r � � and Mr(n)f � q. Let
U � �i � length(r) B(�(i), 2–i). To see that U satisfies the consequent, let y �
U. Choose h � COy and let

ψ
σ φ σ
θ σ

( )
( ) ( )

i
i i i

i
=

= ≤
>





 if length( )

(i) if length( ).

Then w � COy, and by the Use Principle, Mw(n)f � Mr(n)f � q. �

Definition 3. A set B � Rn is recursively approximable (r.a.) if there is an
OTM M such that (∀x � Rn, � � COx, m � Z�)(M�(m)f and k*EM, m(B)
� 2–m), where k* denotes Lebesgue outer measure and EM, m(B) �
{x � Rn | (∃� � COx) M�(m) � vB(x)}.

Definition 4. For any measure l on Rn, a set B � Rn is decidable in l (or
d-l) if there exists an OTM M such that

E B x CO M x MM
n

x B( ) ( ) ( ) ( ) ( )= ∈ ∃ ∈ ∅ ↓ ≠ ∅ ↑ { }R φ χφ φ or 

is l-measurable and lEM(B) � 0. (The null string � here is an arbitrary
choice.) Otherwise, B is undecidable in l (or u-l).

Note that without the alternative M�(�)F here, only measure-theoreti-
cally trivial sets would be d-l:

Proposition 2. Suppose l* is a regular outer measure on Rn (i.e., if U � �
is open in the Euclidean topology then l*U � 0), B � Rn, M is an OTM,
lEM(B) � 0, and (∀x � Rn)(∀� � COx) M�(�)f � {0, 1}. Then lB � 0
or l(BC) � 0, where BC � Rn \ B.

Proof. Assume antecedents. Let U � {x | (∃� � COx) M�(�)f � 1}, V
� {x | (∃� � COx) M�(�)f � 0}. By Theorem I, U and V are open. Since
(∀x � Rn)(∀� � COx) M�(�)f � {0, 1}, U � V � Rn. Since Rn is con-
nected, either U � �, V � �, or U � V � �. But U � V � EM(B), so
l(U � V) � 0. Since U � V is open and l* is regular, U � V � �.
Therefore U � � or V � �. Hence B � EM(B) or BC � EM(B). Since
lEM(B) � 0, either lB � 0 or l(BC) � 0. �
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Theorem II. If B � Rn is d-k then B is r.a.

Proof. See main text for strategy. Let S: N r A** be an effective enumer-
ation of the finite sequences of strings in A*. Define U(i) as the set of
points with Cauchy oracles � such that S(i) � �, i.e., U(i) � �j � length(S(i))

B(Qn(S(i)j), 2–j) where S(i)j is the jth string in S(i). Where length(S(i)) � 2j,
let V(i) � �k � jB(Qn(S(i)2k � 1), Qn(S(i)2k)).

Suppose an OTM M satisfies Definition 4. For each m � N, construct
recursive sequences of integers u[m, i], v[m, i] as follows:

1. Set R, i � 1.
2. Simulate MS(j) for all j � N simultaneously (by dovetailing). When-

ever MS(j)(�)f for some j, let u[m, i] � j and i � i � 1. Once k(B[0,
R] \ �k�i U(u[m, k])) � 2–m � R � 1, proceed to 3. (Volumes of finite
unions, intersections, and differences of rational balls can be com-
puted to any accuracy, since we assume ||Qn(s1) � Qn(s2)|| � Qn(s3)
is recursive.)

3. By trial and error, fix v[m, R] such that kV(v[m, R]) � 2–m � R � 1 and
B[0, R] � �j � iU(u[m, j]) � �j � R V(v[m, j]). Let R � R � 1 and
go to 2.

Each repetition of 2 and 3 will halt because B[0, R] is compact. Note
�i[U(u[m, i]) � V(v[m, i])] � Rn, and k�iV(v[m, i]) � 2–m.

Now an algorithm for a machine M� satisfying Definition 3 proceeds
thus: given input m and oracle � � COx, evaluate for each i (again by
dovetailing) whether x � U(u[m, i]) and whether x � V(v[m, i]). If x �
U(u[m, i]), output MS(u[m, i])(�). If x � V(v[m, i]), output 0.

Since �i[U(u[m, i]) � V(v[m, i])] � Rn, M� will halt on every Cauchy
oracle. Also, EM�, m(B) � EM(B) � �iV(v[m, i]). Since kEM(B) � 0 and
k�iV(v[m, i]) � 2–m, kEM�, m(B) � 2–m. �

Definition 5. A set B � Rn is riddled if for every open set U � � in the
Euclidean topology, k*(U \B) � 0.

Theorem III. If B � Rn is riddled and k*B � 0, then B is u-k.

Proof. Assume the antecedents and suppose M is an OTM. We show that
k*EM(B) � 0.

Case 1: C(∃x � Rn)(∀� � COx) M�(�) � 1. Then EM(B) � B, so
k*EM(B) � k*B � 0.

Case 2: (∃x � Rn)(∀� � COx) M�(�) � 1. Then by Theorem I, there is
a neighborhood U of x such that (∀y � U)(∃w � COy) Mw(�)f � 1.
Therefore U \B � EM(B). But by riddling, k*(U \B) � 0. Therefore
k*EM(B) � 0, so B is u-k. �
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Theorem IV. There exists a subset of R that is r.a. but not d-k.

Proof. Say a closed interval I is maximal in a set S � R if I � S and for
every closed interval J � S, J � I � � ⇒ J � I. We construct a generalized
Cantor set C as follows:

(i) Let C0 � [0, 1].
(ii) For each i � Z�, let Ci � Ci � 1\�{B([a � b]/2, 2–i � 1[b � a]) |

[a, b] is maximal in Ci � 1}.
(iii) Let C � �iCi.

Part (ii) dictates that we obtain Ci by removing the middle (2i)th of each
maximal interval in Ci � 1. The set C is the limit of this process, and is
clearly riddled by construction.

We show that kC � 0. Since the Ci are all measurable, kC � 1 � �i

k(Ci � 1\Ci). Our construction (ii) removes the middle (2i)th part from each
component of Ci � 1. Therefore, k(Ci � 1\Ci) � 2–ikCi � 1 � 2–i, with strict
inequality for i � 1. So �i k(Ci – 1\ Ci) � �i 2–i � 1. Thus kC � 0. By
Theorem III, C is u-k.

We now show that C is r.a. by sketching an OTM that approximates
C. The algorithm is this: given input m, let M� request from its oracle �
the value of �(2m � 3), and determine whether the Q[�(2m � 3)] is in
Cm�1. (This can be done effectively since one can construct the rational
endpoints of Cm�1 following (i)-(iii), and we code rationals so that |q1 �
q2| � q3 is recursive.) If Q[�(2m � 3)] � Cm�1, let M�(m) � 1; otherwise
M�(m) � 0.

Since |Q[�(2m � 3)] � x| � 2–(2m�3) any x � EM, m(Cm�1) must be close
to one of the 2m�2 endpoints of Cm�1, within distance 2–(2m�3). Therefore
k*EM, m(Cm�1) � (2m�2)(2–(2m�3)) � 2–(m�1). So, if k(Cm�1\C) � 2–(m�1), then
k*EM, m(C) � 2–(m�1) � 2–(m�1) � 2–m. This is in fact the case, for we now
show that for all i, k(Ci\C) � 2–i. For i � 0 we have k(C0\C) � kC0 � kC
� 1 � 20, since kC � 0. For i � 0 we have k(Ci\C) � Rj � i k(Cj � 1 � Cj)
� (by construction) Rj � i 2�jkCj � 1 � Rj � i 2�j � 2�i. Therefore k*EM, m(C)
� 2–m, so C is r.a. �
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