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Using a regular Borel measure u > 0 we derive a proper subspace D}L(]RN ) of the
commonly used Sobolev space D'(R™) when N > 3. The space D}, (R™) resembles
the standard Sobolev space H!(£2) when {2 is a bounded region with a compact
Lipschitz boundary 9f2. An equivalence characterization and an example are
provided that guarantee that DFIL (RYN) is compactly embedded into L*(RY). In
addition, as an application we prove an existence result of positive solutions to an
elliptic equation in RY that involves the Laplace operator with the critical Sobolev
nonlinearity, or with a general nonlinear term that has a subcritical and superlinear
growth. We also briefly discuss the compact embedding of Wﬁ’p(RN) to LP(RN)
when N > 2and 2 < p < N.
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1. Introduction

When N > 3 and {2 is a bounded region in R™ that has a compact Lipschitz
boundary {2, we know that the standard Sobolev space H!({2) is continuously
embedded into the spaces L*(£2) for 1 < s < 2* := 2N/(N —2), and this embedding
is also compact for 1 < s < 2*. When N = 2 this embedding is compact for
all 1 < s < oo. Many generalizations have been made that can be found, for
example, in [1,13,26]. To recover the compact embedding results on RY one usually
uses spaces of special functions (for example, those that are radially symmetric) or
introduces weights to the function spaces.

In this paper we investigate which proper subspace of D'(RY) for N > 3 (or
H'(RY) for N = 2) can have the same embedding as H'(£2). We borrow an idea
from Bucur and Buttazzo [8] to bring a Borel measure u into the search of such
good subspaces of D*(RY).

In fact, when y is a non-negative regular Borel measure on R, possibly infinite
valued, that vanishes on all sets of capacity zero, we define Lz(RN ) as the linear
space (or the family of equivalent classes) of u-measurable functions v € D*(RY)
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that satisfy
/ lu|7dp < oo for some G € (1,00). (1.1)
RN

In this way we can obtain the desired subspace D}(RY) := D*(RV) N L2 (RY) of
DY(R™) that behaves like H'(§2), provided that y enables the constant functions
to be in the dual space of D}L(RN ). An equivalence condition on this is described
in terms of the qualitative behaviour of a characteristic partial differential equation
(PDE) that is discussed in § 3, including the case in which N = 2.

Recall that for problems involving the Laplace operator on RY, the space quite
often used when N > 3, instead of H'(RY), is D'(R"). In this sense, D (RY) is
the authentic counterpart of H(2). Also, when du = V(x)dz for a measurable
function V(x) > 0, V=1 € L1(RY) guarantees this compact embedding. Note that
10 a priori assumption on y is given to ensure an embedding of D,(R™) to L' (RY)
or L?(RY), which seems to be a unique phenomenon only when N > 3.

On the other hand, to derive the same result when N = 2 we start with the space
H'(RV). This has already been discussed in [8] and we will work a little bit more
on it in §3.

As an application we study the existence of (distributional) positive solutions of

—Au+a(z)u? = " +u¥ 7 in RV, (1.2)

This equation may be viewed as a combination of the equations discussed in [2,3,10].
For ¢ = 2 and r = 1, (1.2) was also studied by Clapp and Ding [11] in a very different
situation. It is worth mentioning here that the assumptions we impose on a(x) are
different (see theorem 4.1).

We prove that problem (1.2) has a positive solution provided that 0 < r < 1,
q =2 2 and X > 0 is a sufficiently small constant, and this solution bifurcates from
zero since it decays to zero when A — 0. On the other hand, if one replaces u? ~*
by a general nonlinear term f(z,u) (like in [4,28]) that satisfies certain subcritical
and superlinear growth conditions but doesn’t satisfy the well-known Ambrosetti—
Rabinowitz condition, then we can show the existence of a second positive solution
to (1.2) from the mountain pass theorem of Cerami. These cases are discussed in
§84 and 5, where p is generated through a(z).

Section 2 is devoted to detailed analyses of a Sobolev(-type) space M?P(RM),
where each function u € M%P(RY) satisfies u € LY(RY) and |Vu| € LP(RY) for
P q € [1,00].

A result concerning the compact embedding from W,}’p (RM) to LP(RY) when
p = 2, using an idea due to Maz’ya and Shubin [27], is also briefly described in § 6.

2. The function space M%P(RY)

In this section we describe a Sobolev(-type) space M%P(RY) that may be viewed
as a natural generalization of the standard Sobolev space W1P(RY), WLP(RN) =
MPP(RN).

We mention that some of the results discussed here have already been derived,
with details, in [17] when N > 3 and 1 < p < N, so we shall be sketchy from time
to time.
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Let {2 be a region, i.e. it is open and connected. In this paper all functions are
assumed to be real valued and (Borel) measurable. LP(£2), 1 < p < oo, denotes the
space of pth integrable functions u on {2, with norm written by |||, . A function u
is said to be in L] (£2), provided that u € L' (K) for all compact subsets K € 2. £
denotes the Lebesgue measure on RV, with dx (dy) its associated volume element,
and H® denotes the s-dimensional Hausdorff measure.

Recall that a function w is said to be a Sobolev function provided that u €
Wlicl (£2). That is, u and its weak (distributional) derivatives D;u, with j = 1,2,...,
N, are in L _(£2).

WLP(£2) denotes the standard Sobolev space of functions u on {2 such that u
and |Vu| are in LP({2). It is a Banach space with respect to the usual W!P-norm

[ullwre2) = llullp,e + [[Vulllp,o- (2.1)

In particular, when p = 2 the notation H!(2) is commonly used instead of W2(£2).
M%P(£2) (see [17]) is defined to be the space of functions u on §2 that are in L9(12),
while |[Vu| are in LP(£2). It is a Banach space with respect to the M ?P-norm

[ullrar(@) = llullg.c + [IVulllp,0- (2.2)

Hereafter, Vu := (Dyu, Dau, ... ,Dyu) denotes the weak gradient of w.

In addition, a function u: {2 — R is said to be Hélder continuous with exponent
~ € (0, 1], provided that |u(z) —u(y)| < C|lz—y|" for a constant C' > 0 that depends
on v, 2. Write C%7(2) for the associated space. Then it is a Banach space under
the usual C%Y-norm

Jullns oy = sup{futo)l} + sup {HL=EIIL, (2.3

2.1. 2 is a bounded region having a compact Lipschitz boundary 92

Assume that N > 2. One easily sees that, when 1 < p,q < co, C1(£2) is a dense
subset of M?P({2).
When p € [1, N) we have

MPP(2)=WhP(2) for1<q<pt, (2.4)

M®BP() C M?2P(02) for p* < g2 < 1 < o0. ’
In fact, Hélder’s inequality yields WLP(§2) C M4P(§2) for q € [1,p|, Poincaré’s and
Minkowski’s inequalities yield M*P(£2) C W1P(£2), and then the Sobolev embed-

ding theorem yields (2.4). Also, when ¢ € [1, 00] there exists a constant Cj 4 > 0,
depending on p, q, {2, such that

llullwir2) < Cpgllullarar@y Yu € MTP(£2). (2.5)

Here, as usual, for p € [1,N) we write the critical Sobolev exponent as p* :=
pN/(N — p). Below we use ‘—’ to denote weak convergence, and use ‘—’ to denote
compact embedding.
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When p = N we can just replace the Sobolev embedding theorem by the (compact)
embedding result WP (£2) — L5(£2), for 1 < s < oo, to conclude that

M>P(Q) C MTP(Q2) = W'P(2) for 1< q < oo. (2.6)

Moreover, the embedding ¢: M°P(2) — L*({2) is also continuous for 1 < s < co.
When p € (N, o] we use Morrey’s inequality to obtain that

MP(0) = WhP(2) for 1 < q < oo. (2.7)

Furthermore, the Arzela—Ascoli theorem, Evans and Gariepy [16, p. 135, theorem 1],
and Evans [15, theorem 5.6.5] state that the embedding ¢: M%P(£2) — C%*(02) is
continuous if 0 < s < 7y and also compact if 0 < s < 7 for v := 1 — N/p. Note that
w is Lipschitz continuous if and only if w € M?°°(£2) by [15, theorem 5.8.4] (see
also [16, p. 131, theorem 5]), since we only need |Vu| € L= (£2).

All the preceding discussions imply that, among all M%P(£2), WP(£2) is the
largest space. On the other hand, when p € [1,N) we can prove the following
embedding result.

PROPOSITION 2.1. When 1 < p < N and 1 < q < oo, the embedding v: MTP(2) —
L5(82) is continuous if 1 < s < max{q,p*} and also compact if 1 < s < max{q,p*}.

Proof. This result follows (almost) directly from the proof of [16, p. 144, theorem 1]
in view of r := max{q,p*} > 1 and (2.5), and was described in [17, proposition 2.2].

For the sake of completeness, we present a slightly simpler proof.

We keep the same notation as in [16, p. 144, theorem 1]. Suppose that {fx: k > 1}
is a bounded sequence in M%?({2). Note then that (2.4) and (2.5) together imply
that {fi: k > 1} is a bounded sequence in W1P(£2) as well. So, we find a sequence
of functions {fy: k > 1} in W'?(R"), where each f} is an extension of f; to RV,
As a result, we observe that

sup [l fellwron) < Cof supllfillwrse) b < Cpo{ supll fullasnon }-
k>1 k>1 k>1

Here, Cq, C’p > ( are some constants that depend on p, ¢ and (2. Hence, we can
follow steps 1-6 in [16, p. 144, theorem 1] to obtain a function f € L"(f2) such that
fr, = fin L*(2) when 1 < s < pand fr, — f in L"(£2). Take s € [p,r) and set
0 :=p(r—s)/s(r—p) € (0,1] to derive

Jin (1S, = fllse < Jim {1, — flp.allfi; = Flle (2.8)

Notice that when p > 1 we also have f € M%P(2). (Thisis not trueifp =1.) O

2.2. 2is RN
When N > 3 and 1 < p < N the notation DV?(RY) is widely used to denote the
space of functions u such that u € LP" (RV) and |Vu| € LP(RY). By the Gagliardo-
Nirenberg—Sobolev inequality, there is a sharp constant C, y > 0, depending on p,
N, such that
| < ConlIVullpgn Ve DP(RY). (2.9)

Notice that when p = 2 the notation D'(R") is commonly used in the literature.
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When 1 < p < N Lieb and Loss gave us an equivalent definition: DVP(RY) is
the subspace of functions in LL _(RY) that vanish at infinity and have LP-integrable
gradients in RV . Here, a function u € L{, .(RY) is said to vanish at infinity provided
that £({z € RY: |u(z)| > ¢}) < oo for all constants ¢ > 0. See Sobolev’s inequality
for gradients [23, §§8.2 and 8.3]. We can thus use Chebyshev’s inequality and an

interpolation inequality, like (2.8), to observe that

MaP(RN) € M2P(RY)  when either 1 < ¢1 < g < p*or p* < g2 < q1 < 0.
(2.10)
When p = 1 we have (2.10) only if 1 < ¢1 < g2 < 1%, directly via a density
argument.
When N =2 and 1 < p < N we again have DVP(RY) and (2.9). In addition, as
above, we also have (2.10) when 1 < p < N, yet have (2.10) only if 1 < ¢1 < g2 < 1*

when p = 1.
Clearly, we notice that WL?(RY) ¢ DVP(RY) and H(RY) € DY(RY) by den-
sity.

It is perhaps helpful to stress the importance of Lieb and Loss’s result: it is very
easy to see that C}(RY) is dense in W1P(RY) (for all p, N), and thus in M4P(RY)
when N > 2, p € [1,N) and ¢ € [p,p*], but from their result we also have the
density of CH(RY) in M%P(RY) when N > 2, p € (1,N) and ¢q € [1,00). More
details can be found in [17, §2].

When N > 2 and p = N we know that the embedding WV (RY) — L3(RY)
is continuous for N < s < oo. Let M%N(RY) be the completion of C}(RY) with
respect to (2.2) for now. We can prove a more general result that can be interpreted
as saying that, like (2.6),

MBP(RN) C M®2P(RY) when 1 < ¢ < g2 < 0. (2.11)

PROPOSITION 2.2. When N > 2 and q € [1,00) the embedding 1: MM (RY) —
L*(RYN) is continuous if ¢ < s < co. When q = oo this embedding is continuous
only for s = oco.

Proof. Recall that estimate (14) in [15, theorem 5.6.1] says, for all u € MY (RY),
that

(N—1)/N
(/ | SN/ N =1) dx) < cLN/ \V\u|“|dx=ﬁC17N/ ||V dz.
RN RN RN

Use Holder’s and Young’s inequalities and set k1 := 14 g(N —1)/N > 1 to derive
that

K
[[ully
K

1 N/(N—1),RN lq

< m O lull 5w |Vl ||y gy
< Oy (JJullpn + 1Vullly ga)
< Cl;l”uHEQ»N(]RN)'

Here and below, Cy,,C'

%,> Cry, Cl, > 0 are absolute constants depending on ¢, N.
Since

HlN
N -1

=q+1+

>
N_1 q,
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an application of an interpolation inequality, like (2.8), says that u € L*(RY) for
each s € [¢,¢+ 1+ 1/(IN —1)]. Next, set ka := 14 K1 > 2 to observe that

[ullwy vy (v—1) &Y < Cyllull e v/ov—n,v @y < Cpy llullagay @)y

KJQN_I{lN 14 1
N—-1 N-1 N-1

we thereby can extend s to be in [¢, ¢+ 2 + 2/(N — 1)]. Continuing like this to set
Km i=m—14+ Kk =m+q(N —1)/N > m, we can likewise extend s to be in the
interval [¢,q + m +m/(N — 1)] for each m > 1. As a consequence, we finally arrive
at s € [g,00). O

When N > 2, p € (N,00] and ¢ € [1,00], we can simply adapt the proof of
Morrey’s inequality [15, theorem 5.6.4] to see that, for v := 1 — N/p and some
constants Cq,C7 > 0,

Suﬂg\,“u(x”}<CI||UHM‘LP(RN) and  lullcon gyy < Cplluflarar@n).-
(A

In particular, we have (2.11) when 1 < q; < g2 < 00, as M4P(RY) C L>(RY).

All the foregoing discussions may be viewed as a certain complement to Lions [24,
lemma I.1] for the (most important) case in which p = 2. (Lieb and Loss’s result
plays a key role.)

As a final remark, note that the space L(RY) is often defined via the family of
equivalent classes [u] of functions u, and two functions uy,us € [u] are identified
when u; = uy almost everywhere (a.e.) (that is, if we ignore a subset of RV of
Lebesgue measure zero). Define, for all 2 € RV,

1

lim 7/ u(y)dy if this limit exists,
u*(z) = 4 70" LBR) JBr()

(2.12)

0 otherwise.

Then u* € [u] and u} = u}. Henceforth, we will use this precise representative u* of
[u]. Hereafter, Br(z) denotes the ball of radius R centred at x, and By := Br(0).

3. The function space MJP (RN)

In this section we describe a compact embedding result that may be treated as a
counterpart to proposition 2.1 on RY when N > 2,1 <p < N and 1 < ¢ < oc.
In particular, for D), (RY) defined as D'(R™) N L2 (RY) when N > 3, we see that
D} (RY) behaves like H'(£2) on RY. We recall here that when N > 2 this has been
described in [8] using the space H!(RY).
We first briefly review the concept of p-capacity (see [13,16,26] for more details).
When N > 2 and 1 < p < N define the p-capacity of a subset A of RN to be

Cap,(A) := inf { / |VaulP dz: u € DY?(RY) and A C {u > 1}0}. (3.1)
RN
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On the other hand, when p = N define the N -capacity of A to be
Capy(4A) = inf{||uH%1,N(]RN cu € WHY(RN) and A C {u > 1}°}. (3.2)

Note that A is required to lie entirely inside the interior of the set {u > 1}.
Capacity is used to characterize precisely some fine properties of Sobolev func-
tions.
The result below describes some relations between capacity and Hausdorff mea-
sure.

PROPOSITION 3.1. When 1 < p < N and HY"P(A) < oo, Cap,(A) = 0. When
1 <p < oo and Cap,(A) =0, H*(A) =0 for all s > N —p. Cap, (A) < HN"1(A),
and Cap,(A) = 0 if and only if HN ~1(A) = 0 when A is compact. Also, Cap,(A\A) =
MNP Cap,(A) for all X > 0 and £(A) < cl[Capp(A)]N/(pr) when 1 < p < N.

Here, ¢,¢cq > 0 are absolute constants.

For each u € D (RY) (or WL (RY)) there is a Borel subset E of RY with
Cap,(E) = 0 such that the limit in (2.12) exists and is identically equal to u*(x)
when x € RM \ E. Moreover, for all ¢ > 0 there exists a continuous function
ue: RN — R such that Cap,({uc # u*}) < e That is, u* is p-quasi-continu-
ous. Remembering that we have identified the function u € [u] with its p-quasi-
continuous precise representative u*, a pointwise condition can therefore be imposed
on u(x) for quasi-everywhere (q.e.) z € RY (that is, if we ignore a subset of RY of
p-capacity zero).

When p € [1,N) and £ is as in §2.1, we write W, ?(£2) to be the space of
functions u € W1P(£2) that satisfy u = 0 q.e. in RV \ .Q WP (£2) is a subspace of
DYP(RY) in terms of the gradient LP-norm. (Often there is no need to involve the
norm [Jull.0.)

Below, unless otherwise specified, we assume that N > 2, p € (1,N) and ¢ €
(1,00).

Let 1 > 0 be a regular Borel measure on R”, possibly infinite-valued, that
vanishes on each set of p-capacity zero. Use DLP(RN) to define LI(RY), as in
(1.1), and write MZP(RY) := M@P(RN) N LL(RY). Tt is a Banach subspace of
DYP(RY) under the norm

HU’HM,Z”’(]RN) = HU'HM‘Z«P(RN) + Hu||q,1RN- (3.3)

Here, we define HUHqRN to be ([pn [u[?dp)'/? and always assume 1 < § < oc.

For brevity, denote by M* the space of linear functionals on M P(RYN). Also, for
© € M*, we say that ¢ > 0 provided that ¢(u) > 0 for all u > 0 in Mq’p(RN)
Take ¢ > 0in M* and consider the characteristic PDE (clearly in the dlstrlbutlonal
sense) of the space Mg’p(RN)

—Apu+ ™+ = (3.4)

We look for weak solutions u € MZP(RN) to (3.4) that satisfy

/RN |Vu|P~2Vu - Vo dx + /]RN lu|? 2w da + /]RN lu| T 2uv dp = @(v) (3.5)
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for all v € M2P?(RY). Note that solutions u to (3.4) or (3.5), if they exist, are
unique and can be found as critical points of the associated energy functional
F: MPP(RY) — R, defined by

1 1 1 .
F(u) ::];/RN |Vu|pdx—|—6/RN |u\qu+5/ﬂw [u|?du — @(u).

Since ¢(u) < Cyllullprarmn), F is coercive. Besides, F(u) > F(u™). Thus, we
may, without loss of generality, seek the minimum of F in the cone of positive
functions in Mg’p(RN). Here, as usual, we write u := max{u,0}. As we are only
interested in finding out when the constant functions are in M*, we shall take p = 1
from now on. (This does not mean that 1 € M*.)

We first show the following integral version of Damascelli [12, lemma 2.1].

LEMMA 3.2. Let 2 be a region in RN for N > 1, and let f, g be two functions in
L"(82) for 1 < r < oo. Then there is a constant C, > 0 depending on r, N such
that

C’r”f -9
r—2 r—2
L2 = la )¢ =) da > .
"2+ llgllr2)?T
Proof. Clearly, we only need to show the second estimate via Holder’s inequality.

Precisely, when r > 2 we trivially have (|f|"=2f — |g|"29)(f —g) = C.|f — g|"
from estimate (2-6) in [12]; on the other hand, when 1 < r < 2 estimate (2-2)

in [12] says that (|f|""2f — |9]""29)(f — ) = C;[f — g*/(|f] +1g])*>~". Thus, for
the latter, it follows that

0 when r > 2,

when 1 < r < 2.

lf —gl" (2—7)/2
f-lro= [ I+ 19y @ 2 do
|| || 82 o (‘f| ¥ |g|)7‘(2,7«)/2(| | | |)

{ oot {forrarad ™

r/2
< {c:l [ =1a 20 - ) dw}

<Al + lgllr2} 27772,

where Minkowski’s inequality was used. This clearly leads to the desired estimate.
O

For the sake of brevity, henceforth, we shall use the notation
Dhlfial = [ (57721 = lal" 20)(f — g)da. (36)

For each B C RY define

0 when Cap, (AN B) =0,
400 otherwise.

OOB(A) = {
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Write
p[BRr = p + 00N\ B, - (3.7)

Then
=1 B
# Rgnoo'u’— R
(as measures), and M1'p (RY) is a subspace of Mg”(Bg), where each function
u € M{'?(BR) satisfies u = 0 q.e. in RY \ Br. We note that 1 is in the dual space

of the space MZ’[I;BR (RN). Therefore, we can prove the following easy result.

PRrROPOSITION 3.3. When 1 < p < N and 1 < q,q < 00, there exists a unique

weak solution w,,, >0 of (5.4) in Mz’r’;gR (RN) associated with the linear functional
p=1.

Proof. Recall that F is coercive. Suppose that {ux > 0: k > 1} is a minimizing
sequence in Mz’ﬁgR (RY) that clearly is bounded. Then we can find a function w,,
and a subsequence {ur > 0: k > 1}, using the same notation, such that u; —
Wup € MZ’&R(RN). (By reflexivity, |Vug| — |Vw,,| in the space LF(RY), and
up — wy,, in the spaces L9(RY) and LZFB (RM).) Noting that F is differentiable,

R
one has, for each u € My (RY) and all v € M/ (RV),

F'(u)(v) = /B |Vu|P~2Vu - Vo de +/ |u|? 2y da +/ |u|T2uv dp — @(v).
R

Br Br
As F'(ur) — 0 and F'(w,,,) is a linear functional on Mz’ﬁgn (RY), one sees that

k—o0

0 =i {F(un)uk = 0un) = F )0~ ) + [ (01 = )

= kli_)n;o {’D%RHVukL [Vwupl] + Dg,, [uk, wyp] + DI(meBR [uk,w,m]}.

R

So, we can apply lemma 3.2 to derive that up — w,, > 0 in Mg’ﬁgR (RN) when

k — oo. O

Note that w,, is p-quasi-continuous and equals zero q.e. in RN \ Bg. When
R1 < Ry we have Wyp, = Wyp, O Bp, by uniqueness. This observation enables us
to define

wy = I%iixlmw#R >0 inRY, (3.8)
which formally solves (3.5) (¢ = 1). To remove the word formally, we only need
to see that 1 € M*. The next two results provide us with an equivalence condition
and an example for this.

LEMMA 3.4. Let p € (1,N) and let q,¢ € (1,00). Then 1 € M* if and only if
w, € LY(RY).

Proof. When 1 € M* we can solve (3.5) directly to give a weak solution w, €

M2P(RN) associated with (3.4). Also, we have w, € L*(R") by letting v = w,
in (3.5).
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On the other hand, if w, € LY(RY), the monotone convergence theorem implies
that

IV@urllly By + lwnnlly B, + | uRHqRN py, = wnallBr < llwallizy. (3.9)

So, from (3.8), {w,, = 0: R > 0} is a bounded sequence that converges weakly
to the function w, € Mq’p(RN) As a result, taking test functions v € C}(RM) N

M P(RY) in the equation satisfied by Wy, and then letting R — oo shows that w),
solveb (3.5) for ¢ = 1 on RN by a standard density argument about the functions
v. As (3.9) implies that [|w,[ a2 ®y) < 00, we have 1 € M*. O

We note the application above of the density results described in §2.2.

EXAMPLE 3.5. Let p € (1, ) let ,G € (1,00) and let V(z): RV — (0,00) be a
measurable function with V=2 ¢ LY(RY) for some 3 € (0,1/(§ — 1)]. Then, for
dp :=V(z)dx, one has 1 € M*.

Proof. Define

Blg—1) 1+6(1-9) g—1

q+Bg—q)’ U::q+ﬁ(q—d) and 5::q+ﬁ(q—d);

see table 1. Then, r,9,3 € (0,1) and r+9y+3 = 1. We set r; :=1~ !, ro :=p~! and
rg := 3! to derive

- a1
/RN wudxz/RN(ng)F(wu)l qxﬁdx
5 1/1"1 (1 ~) 1/1"2 1 1/7“3
g V q T1Fd r2(l—qr d d
(Luvepras) ([ nremas) ([ o)

- 1/7‘1 1/T2 1 1/T3

q q R
(o) (L) (Lo

from which we easily deduce that [Jw,[,ry < [[V7P|l;gv < oo. That is, 1 €
M*. O

r=

Finally, we shall describe a result that resembles proposition 2.1 on RY when
N > 2. Note that we assume that 1 < ¢ < co and p is such that 1 belongs to the
dual space of M2P(RY).

THEOREM 3.6. Let p € (1,N) and let g € (1,00). Then the embedding
v MPP(RY) — L*(RY)
is continuous if 1 < s < max{q,p*} and also compact if 1 < s < max{q,p*}.

Proof. This result follows easily from proposition 2.1 and (2.10) if we can prove it
for the case in which s = 1. Since 1 € M*, one has w,, € L'(RV)NM2?(R"Y), which
satisfies

/]RN |Vw,|P2Vw, - Vuder/RN wﬁflvder/RN wq Lodpu = /RNvdz, (3.10)
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Table 1. Table showing how to choose the ¢, v, 3 in example 3.5, and
giving the best choice of the upper bound £ of 3 € (0,€] when q,G € (1,00).

best
L >0 r<l1 n>0 <1 3>0 3<1 choice

1<G<q anytl ¢<-2 egfl any ¢ anyl  anyl £< —
q - g

1
g<ig<oo <1 1<% g R By P SPS
qd—q g—1 g—1 4d—q qd—q qd—q Gg—1

so that [[v]|; gy < Cu, |0l prer@yy < oo for each v € MoP(RN). Here, C,, > 0 is
a constant that depends on w),. That is, M1 (R™) is continuously embedded into
LY (RN).

Now, given a sequence {uy: k > 1} of functions in Mg’p(RN) with up — 0, we
may assume that it is bounded. Notice that uy — 0 in L*(Bg) for all R > 0. So,
as measures, we have

lim |ug| = dv = V00000, With vy := lim limsup/ lug| dz > 0,
k—oo R=00 ksoo Jiz|>R

where an idea from [7, proposition 2] was used.

We see that vs, = 0. Actually, there is a decreasing function yp € C°(RY)
such that xg = 1 on |z| < R and xg = 0 on |z| > R?, which satisfies 1/R? <
1IVXE|llcory < 6/R?* whenever R > 2 (see [17, appendix (i)]). Set g := 1 — xg.
Then, in view of (3.10), it follows that

1/p
-1
/RN kBl do < [Vl 255, (/RN |4k VO3 + 0 Vugl? d:z:>

g—1

-1 i
ol s, el + loullzh | Jurlosy.
which clearly tends to zero as R — oo, by virtue of the estimate
IV (uebr)llpry < Vurlllprs + [IVOR|lloorn l[tkllp,Ba\Br
< Vurlllp ey + VR lloo rx [E(Br2)]YN ugllpe mx

and (2.9). As a consequence, MZ? (RY) is compactly embedded into L'(RY). [

3.1. q € [1,p*]

In this case it is superfluous to get L4(R¥Y) involved via (2.10). So, we define
N2P(RN) := DVP(RN) N L (RY) instead. It is a Banach space under the norm

lull vgr @y = llullgry + [1Vulllpp- (3.11)

In particular, we will use the notation D} ?(R") to denote D*?(RN) N L& (RN).
We note that D}?(RY) is a reflexive Banach space under the norm (3.11).
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Let ¢ > 0 be a linear functional on Ng’p(RN ) and consider the characteristic

PDE

—Apu+ pud™t = . (3.12)
We look for the unique solution w, > 0 in NZP(RY) to (3.12) for ¢ = 1 that
satisfies

/ \un|p72un-Vvdx+/ wqulvd,u:/ vdz VUENS”’(RN). (3.13)
RN RN RN

Then, assuming that u enables w, € L'(RY), we have the following parallel
result.

COROLLARY 3.7. Letp € (1,N) and let g € (1,00). Then the embedding
v: NPP(RY) — L5(RY)
is continuous if 1 < s < p* and also compact if 1 < s < p*.

When N > 3 and p = 2 we simply denote D*(R™) N L2(R™) by D} (RN). It is a
Hilbert space with respect to the inner product

<U7'U>D‘1L(]RN) = / uvdp + Vu - Vodz. (3.14)
RN RN
This space behaves like H!(£2) on RY if we assume that p enables w,, € L'(RY).
Next, let V(x): RN — (0,00) be a measurable function with V=7 € LY(RN).
Applying a similar calculation as before, we can introduce wﬁ* and use (2.9) to
observe that when 3 € (0,1/(q — 1)] we have w,, € L*(RY) with du := V() da.

3.2. p=N

We recall that this has been discussed in [8]. The interesting case to us is when
N = 2, where H}(R") behaves like H*(£2) on R", provided that y enables w, €
LY(RN).

When ¢ € [N, 0) one can define M%" (RY) directly (see the descriptions above
(2.2) and above (2.11)) as the space of u € LI(RY) with |Vu| € LV (RY) by the
density of CH(RY) in M®N(RYN). Actually, to see this fact, for u € MV (RY) set
upg := ubg to derive

|

u—ugllgry < l|ullgrv\By

and

IV (u—up)lllney <IVulllveysr + VIRl ry Ul N, B2\ Br

<
< Vulllv e\ By

+[IVOR| oom¥ [E(BRQ)](q_N)/qN”qu,RN\BR-

As ug has compact support, the density result on bounded regions confirms the
answer.

On the other hand, if we simply select a measure p, with density V(z) > 0, that
is absolutely continuous with respect to the Lebesgue measure, one actually can
modify the preceding proofs very slightly to observe, in view of proposition 2.2, the
following embedding result.
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COROLLARY 3.8. Assume that N > 2, that q,4 € (1,00) and that du := V(x)dz
with V=P € LY(RN) for some 3 € (0,1/(G — 1)]. Then the embedding

v MPN(RY) — L3(RY)
s compact if 1 < s < 00.

Here, we write MZN(RY) := M®N (RN) N LI (RY) with norm given by (3.3).

Finally, let V(z) be a measurable function in RY such that V > 0 and V1! €
L'(RY) when N > 3 and such that V > 1 and (V — 1)~! € L!(R?). Define the
Hilbert space § := D} (RY) when N > 3 and § := H}(R?) through V, where we
write H}(R?) := H*(R?) N L%(R?) as in [8]. Define Lu := —div(Vu) + Vu on RV,
Concerning the eigenvalue problem

Lw = w in RV, (3.15)
we can simply modify [15, theorems 6.5.1 and 6.5.2] to prove the following result.

THEOREM 3.9. There exists a sequence of increasing eigenvalues {\p > 0: k > 1}
for problem (3.15) such that limyg_oo \ie — 00, and a family of associated eigen-
functions {wy: k = 1} in $) that provides an orthonormal basis for $). In addition,
the first eigenvalue A1 is simple and isolated, and every associated eigenfunction of
it does not change sign in RV

The inner product on H,(R?), with dp := (V — 1) dx for V(z) > 1, is given by

[Vu - Vo +w]dr + / uv dp. (3.16)
R2

(u, v) 1 (r2) = /

R2

Proof. Define S := L™'. Then S is a compact linear symmetric operator, and the
existence of {A\y > 0: k > 1}, with limg_,oo Ay — o0, and {wy: k > 1} follows
immediately from [15, theorem D.6.7]; moreover, {wg: k > 1} in fact provides an
orthonormal basis to L2(RY).

We only prove the remaining parts for D}L(RN). Note that <wk1awk2>Dh(RN) =0
if and only if (wg,, wk,)o gy = 0. Assume that {wy/v/Ax: k > 1} and {wi: k > 1}
are orthonormal bases of D} (RY) and L?(RY), respectively. For each w € D}, (RY)
write w = wt — w™. Then Vwt, Vw™ are well defined. Follow steps 1-6 of [15,
theorem 6.5.2] to derive
HszD}L (RN)
1= min ——2—-=

weDb &), Tl o
w#0

and LwT = \ywi. We can simply take w; = w” > 0 by [30, theorem 1].

Finally, let w] be an eigenfunction associated with A; in D}L(RN ). Assume that
|w}||2,ry = 1. Consider w; := wy —w} and suppose that w; # 0. Then we have, say,
w1 > 0 on RY as well since Lw; = \;w;. However, noticing that (i, w; +wi)ory =
0, a contradiction follows. O

https://doi.org/10.1017/50308210515000670 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210515000670

706 Q. Han

4. Existence results for (1.2)

In this section we study (1.2) when N > 3. Precisely, we shall prove the following
result.

THEOREM 4.1. Let r € (0,1), let ¢ € [2,00) and let § = 1/(q —1). Let a(x) = 0
be a measurable function such that =" € LY(RYN) if ¢ € [2,2*), while a > 1 and
(a—1)"P € LYRYN) if g € [2*,00). Let A > 0 be a constant. Then there is a \g > 0
such that problem (1.2) has a solution uy > 0 for each 0 < XA < Ag, and uy — 0
when A — 0T,

These solutions are sought in the space D},(RY) when ¢ = 2, in N»?(R") when
q € (2,2*], and in Mg’z(RN) when ¢ € (2%, 00), where we shall take ¢ = ¢ from now
on.

Below, we assume that duy = V dz for V := a when ¢ € [2,2*) and use (3.11) to

define [|ul| yq.2 g~y with
¢ . 4 qo-
Jully = [ Vil

when ¢ € (2*%,00) we set V := a — 1 and define

ull ooy = lullysy + 1170llzn (4.1)
with

q .— q — q
fulliy = [ Vit = [ aluta.

slightly different from (3.3); when ¢ = 2* we apply (3.11) to define HUHNE*’Q(]RN)
with V' := a — 1. We note that all these assumptions are imposed to guarantee the
conclusions of theorem 3.6 as well as of corollary 3.7.

When g # 2* these solutions are found as critical points of the associated energy
functional J: NP?(RY) — R if ¢ € [2,2%) or J: MZ*(RN) — R if ¢ € (2%, 00),
which is defined by

1 2 1 1/ +y2* A / +yr+l
== [ |VuPdet- ¢ da— da— dz.
Jw=g [ 1vaPae [ ahitar—g [ @ de- 25 [t

Before we proceed to the proof of theorem 4.1, we derive the following result.

PROPOSITION 4.2. When q € [2,2%) and ¢ < SN/2/N — KX/(@=1=") " the func-
tional J satisfies the (PS),-condition. Here, K = K(N,,q,r) > 0 is an absolute
constant.

Recall that a sequence {uy: k > 1} of functions in NZ?(R") is said to be a
Palais—Smale sequence of J at level ¢, a (PS) -sequence, provided that J (ux) — ¢
and J'(ug) — 0 as k — oo. J is said to satisfy the Palais—Smale condition at level
¢, the (PS) -condition, provided that each (PS).-sequence of 7 admits a strongly
convergent subsequence in N2?(RY).

Here, S := CQ_JQV by (2.9) and the norm of D, (RV) is defined via (3.14).

Proof. First, given a (PS).-sequence {ug: k > 1} of J in Nng(RN), one observes
easily that it is bounded. Actually, a routine calculation of J (ug)—(1/2*) T (ug) (ux)
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will do. Hence, we may without loss of generality assume that there is a function
u € N#?(RY) such that up, — win L{,(R"Y) and L¥ (RN, |Vug| — |Vu| in L2(RY),
whereas uy, — u in L™ (RY). Here, we write LY, (RY) as the subspace of functions
u € D'(RY) that satisfy |lull,ry < oo

From the classical result of Lions [25, lemma I.1] and [7, proposition 2], we have

|Vug|? = dp > |[Vu)? + ZML + Hooboos
=1
(4.2)
2 3, 12" c- 4
|ug] dv = |ul* + Zuzaxi + Voo 0o,
i=1

in the sense of measures, as k — co. Here, ¢, is the Dirac delta function at ;vl e RV,
and u, v are the generated measures. AlSo, [, fioo, Vi, Voo = 0 satisfy Sv; 2/2° < 1
and Sugf < fhoo-

Recall that 0r € C®(RY) and |[|[VOg||.ory = O(1/R?). We have uyfr €
N22(RN) and

0= lim J’(uk)(quR)
k— o0

= lim {/ |Vuk|293dx—/ (uZ‘)Z*HRdx}
k—o0 RN RN

+ lim { Vuy -VHRukdx—I—/ V|uk|q93dx—)\/ (u:)”’lﬁRdx}.
RN RN RN

k—o0

Note that V' = «. By the definition of fr and (2.9) it follows that, for every k > 1,

/N Vg - VOrug| de < [||VOR|] oo mv [E(Br2)]" V([ Vurl|2zn\ py u
R

—0

2* RN\Bpg

when R — oo, by virtue of [3, lemma 2.2]. Next, define

Voo := lim hmsup/ V0ug|?dz > 0.
|z|>R

R—=oo koo

Then we have fioo + U = Voo, 80 that either poo = Voo = Voo = 0 0OF Vo = fino =
SN/2 > 0 by a straightforward computation. However, when the latter holds we
have

k—oc0

Hoo 1 1\ . 1
> et IVl + (3 = 52 )t (5= 5 e

Ao I
- Ca( 57~ 3 ISl + Tl i)

c= lim {J(uk)— tjl(uk)(“k)}

N/2
S Hoo _ peyattami-n) 5 S22 psana-1on)
N

>0,
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provided that A > 0 is sufficiently small. Here, C; > 0 is a constant that depends
on the embedding constant of ¢: N»?(RY) < L™ (RY). So, we must have fi, =
Voo = Voo = 0.

The remaining case in which the points z; are involved can be discussed similarly.
Thus, ugx — « in L* (RY) and we have

Jim { /RN IV —Vu\QdJH—/ V (Jul72ug — [u]?2u) (u, — u) dx}
= lim {(" () = () (s — ) + D '] + ADE i, w]}
=0. (4.3)
As a consequence, we can apply lemma 3.2 to show that uy — u in NIZ’Q(RN). O

Proof of theorem 4.1. First we assume that g € [2,2*). Using (2.9), we see that

1 *_
T > |w||§,RN{1 Ac2|||Vu|||2RN}

1-
*IlquRw{l Achully -
Here, cs, ¢f > 0 are some constants depending on Cs. Select a ¢ € (0,1) with

2 ox o 1

27022’]\]{92 2 > 5 > 0.

Then a Ao := min{o' ™" /4ca, 097177 /2¢4} > 0 exists such that
J (u) > min{0?/32, 07/227} > 0

for each 0 < A < Ao if 0/2 < [[|Vulll2 v, [[ullgry < 0. Fix this Ag > 0. Let ug > 0
in N22(RYN) satisfy [|[Vuol[ory = uollgry = 0. As J(tug) < 0 for sufficiently
small ¢ > 0, one has

1—

—00 < o(A) 1= inf J(u) <O0. (4.4)

HUHNE*2(1RN)<Q

Take \g smaller if necessary so that SN/z/N—K)\q/(q’lfr) > 0when 0 < A < Ag.
Apply Ekeland’s variational principle to get a minimizing sequence {uy > 0: k > 1}
such that ||uk||Nq 2y < 0, while J(ug) = o(A) and J'(uy) — 0 as k — oo. Note
that the (PS),(x)- “condition is satisfied and J () < J(u). It is easy to see that J
achieves a local minimum uy > 0 in N22(RY) with Hu,\||Nq 2gyy < 0. Since ¢ > 2
and uy # 0, [30, theorem 1] then says that uy > 0in RY

Because we are only interested in the bifurcation phenomenon near zero, we select
a 01 € (0,0) to be such that ¢ — CETNQ%* > 10} As J'(uyn) = 0, using (2.9), we
observe that

[urll yg2@ny < {20037 50 as A — 07 (4.5)

Next, when g = 2* we define the energy functional J : Ni*’Q (RY) — R by

~ 1 1 . A -
J(u) ::5/]1@1\7 \Vu|2dx+27/ﬂw(a—l)|u|2 dz — 7“—}—1/RN(U+) tlda.
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Clearly, J is coercive. Follow the proof of proposition 3.3 to derive a minimum

uy > 0 of J in N2 2(RY) for each A > 0. Also, assuming that Hu)\||N2*,‘ 2gry < 1,
we similarly have
||u,\HN2* ®N) S <A1 00 as A — 0t (4.6)

Finally, for ¢ € (2*,00) we first recall the compact embedding ¢: M g>2(RN ) —

L* (RYN). Furthermore, we follow the discussion for ¢ € [2,2*) to find a minimizing
sequence {tg > 0: k > 1} with 4 — wy, and repeat (4.3) and apply lemma 3.2 to
obtain 1, — u)y in M372(RN). So, uy is a local minimum of J and uy > 0 in RY.
As J'(uy) =0, we have (4.5) again.

Combining the preceding three situations, we thus finish the proof completely. [

5. Some variants of (1.2)
In this section we study some variants of (1.2) when N > 2, and we start with
—Au+ afz)u?™ = "+ f(r,u) in RY, (5.1)

where we assume that ¢ > 2, r € (0,1), A > 0 is a constant and f(z,u) satisfies the
following conditions.

(f1) f(x,u) € C(RYN x R;R) and lim, ¢ f(z,u)/u?"! = 0 uniformly in x.
(f2) f(z,u) =0 when u > 0 and lim,_, 4 o f(z,u)/u?"! = co uniformly in z.

(f3) We have

f(z,u)
uggloo u2*—1 :O
uniformly in z when N > 3, and
i L@w

u—+oo efu? — 1

uniformly in z when N = 2 for each £ > 0.

(f4) There exist constants s>q and ¥ > 1 such that, for H(z,u) := uf(z,u) —
sF(z,u) with F(z,u) := [ f(x,v)dv, we have H(x v) < YH(x,u) uniformly
in ¢ when 0 < v < u.

Recall that problem (5.1) was studied in [4,28] without the sublinear term Au”.
Here we study it with a more general nonlinearity f(z,u) that does not satisfy the
Ambrosetti-Rabinowitz condition (see condition (f4')), following the idea from Lam
and Lu [22] via the mountain pass theorem of Cerami [9]. Note that condition (f4)
was introduced by Jeanjean [19].

Now, under the above hypotheses, we can prove the following existence result.

THEOREM 5.1. Assume that ¢ € [2,2*) when N > 3, and that ¢ € [2,00) when
N =2. Letr € (0,1) and let 8 = 1/(qg — 1). Let o > 0 satisfy a=? € LY(RV)
when N >3, and let « > 1 and (o — 1)78 € LY(R?). Let f(x,u) satisfy conditions
(f1)—(f4), and let A > 0 be a constant. Then there exists a Ay > 0 such that problem
(5.1) has two solutions ux,uy > 0 for each 0 < X < Ay.
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These solutions are sought in M??(R?) (in H}(R?) if ¢ = 2) and in NZ*(RN)
(in D}L (RN) if ¢ = 2) when N > 3, where we shall again take ¢ = ¢ from now on.
In addition, the norms on D}, (R") and H}(R?) are generated through (3.14) and
(3.16), respectively.

Since we are only interested in obtaining positive solutions, we define

f(z,u) when

fr(@,u) € CRY xR;R) tobe fi(z,u):= {0 hen

Just like (1.2), these solutions are found to be critical points of the associated energy
functional G: M??(R?) — R, or G: N2?(RY) — R when N > 3, which is defined
by

1 A
Lt 2 - q _ _ +\r+1
G(u) := 2/]RN|VU| dx—&—q/RN alu|?dx /RN Fi(z,u)dz 7’+1/RN(U ) da

Here, Fy (z,u) := [;' f+(x,v) dv denotes the primitive of the function fy (z,u) > 0.

PROPOSITION 5.2. G: N#2(RY) — R satisfies the (C),-condition for all ¢ € R.

Recall that a sequence {ug: k > 1} of functions in NZ2(RN) is said to be a
Cerami sequence of G at level ¢, a (C),-sequence, provided that G(uy) — ¢ while
1+ ||uk||N5,2(RN))Q"(uk) — 0 when k& — oo. Then we say that G satisfies the
Cerami condition at level ¢, the (C)_-condition, provided that each (C) -sequence
of G admits a strongly convergent subsequence in N, ;{*2 (RM).

Proof. Since we are looking for positive solutions, without loss of generality let
{ur > 0: k > 1} be a (C) -sequence of G in N2?(R"). Thus, for V := o and large
k, one has

V12 s+ 1 gy = / el uuede + N7 g +o(1). (52)

First, we prove that {ux > 0: k > 1} is bounded. On the contrary, suppose that
it is unbounded. Then, as 0 < r < 1 and ¢ > 2, for sufficiently large k it follows
from (5.2) that

1
§(|||vuk|”§,RN+||uk||§,]1{1‘y) < /RN Fe (@, upyuy de <[V urll3 g+ l[urllf gy - (5-3)

Set wy, 1= uk/||uk||Ng,z(RN) for all k > 1 with ||wk||N5,z(RN = 1. Then we may
assume that wy — w in LP(RY) and wy(z) — w(x) a.e. in RY for all 1 < p < 2*
and some w € N#2(RY).

We have w = 0. In fact, if £(62) > 0 for 2 := {x € RY: w(x) > 0}, we take an
x € {2 to see that

khjEO ug(z) = klggo wk(x)HukHNﬂ.z(RN) = o0.
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Thus, limg_, o f+(x,uk(1‘))/uz_1(az) = 0o by condition (f2), which, together with
(5.3), (3.11) and Fatou’s lemma, leads to the contradiction

fo (s un (@))ug ()

uj ()

Jon o (2, up)ug dz

wg(m)] dz < liminf [

00 = lim inf {
k—oco

0 k—oo ||uk||(11vg>2(RN)

< O(1).
Now, take a subsequence {wj > 0: k > 1}, using the same notation, with

[[Vwg|llogy = 5. (It is similar if we select lwellgry > % instead.) Let t;, € [0,1]
satisfy G(tpur) = maxyejo,1) G(tug). In view of conditions (f1) and (f3),

(e w) <arlult™ + (27/CF N K ) u

for any K > 0 with a sufficiently large ax > 0. Noting that HukHNﬁ’Q(RN) > K
when k is large, we have
K2 KT ag K1 K?

G(trur) > G(Kwy) > TS| okl Ty gy — ——llwelll gv =1 — 5 1

as k — oco. The arbitrariness of K leads to limy_ o G(tpur) = 00, so that t € (0,1)
and

eIVl 1Z pn + tillukll] g = /RN Fa (o, tur) (beur) do + M a7 - (5.4)

By the definition of G(ux) and G(trug), (5.2), (5.4) and condition (f4), we verify
that

G(trur) = G(truy) — %g/(tkuk)(tkuk)

11\, , 11
= (53 )BNvaliEas + (5 - 3 )tz

1 1 1
+1 r+1
o /\<T +1 - s>t7l; ||uk||7‘+17RN + S /]RN Hy (x, trug) do

for Hy (z,u) :=ufi(z,u) — sFy(x,u), with Hy (z, tpug) < 9Hy (z,ur), as well as

9 1 1

1 1
. Hi(z,u)de < 19(8 - 2) H|Vuk|||§,RN + ‘9(8 - q) H“’CHZ,M

1 1 ,
— w( - m) lurll7 11 g +O().

S

Hence, noting that tZH > t% t} and ¥ > 1, we combine the two previous estimates
to derive

11 . 11 .
) + (5= 3 )0~ DIVl + (5 3 )0 = 6 el

A )\ s T T
<o 7 - 20— gVl +lal;g) + 0. (55)
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from which we have a contradiction with the assumption that {ug: k > 1} is
unbounded.?

As a result, {ur > 0: k > 1} is bounded. So, we may simply assume that there
exists a function u € N#?(RY) such that uy — uin L{,(RY) and L* (RY), |Vu,| —
|Vu| in L2(RY), while u, — u in LP(RY) for each 1 < p < 2*. Using (4.2), for
ufr € NI?(RY) we have

0= lim G (ux)(urbr)

= lim {/ |Vuk|29Rdx7/ f+(x,uk)(uk93)d:c}
k—o00 RN RN

+ lim { Vuy - Vlguy do —|—/ V0ug|%9r de — A
RN RN

k—o0

(u ) og dx}.
RN

From conditions (f1) and (f3), we have f(z,u) < ac|u|9™! +¢lul>* ~! for all e > 0
and some sufficiently large constant a. > 0 that depends only on €. Thus, it follows
that

0< [ folesun)(wnbr) de < acllun g g, + el zvpy = v (5:6)
RN ’

when k, R — oo. Hence, we observe that po, + U0 < €V, and then Sui{z* < oo <
EVso; that is, vo, = 0 since S > 0 via the arbitrariness of . As a consequence, we
have fioo = Uso = 0. The remaining case in which the points z; are involved can be
discussed similarly. So, uj, — u in L?" (RY) and therefore in N22(RN). O

Analogously, we can prove the following result.
PROPOSITION 5.3. G: M1?(R?) = R satisfies the (C), -condition for all c € R.

Here, we define the (C), -sequence and the (C),-condition for G: M??(R?) — R
similarly to before; also, we set V := o — 1 and use (4.1) to define ||u||M5,z(R2) for

HU'HZJR%/ = fRz a|u|qu'

Before we proceed to the proof of proposition 5.3, we recall Ruf [29, proposi-
tion 2.1], which is related to the Trudinger—Moser inequality.

LEMMA 5.4. When u € H'(R?) satisfies ||ul| g1 ge) < 1, we have

/ (% 1) da < C¢ (5.7)
R2
provided that 0 < & < 4w, where C¢ > 0 is a constant that depends only on §.

Proof of proposition 5.3. Let {uj, > 0: k > 1} be a (C) -sequence of G in M??(R?)
and suppose that it is unbounded. Then for wi := uk/||uk| 792 g2y We have wy — 0
in LP(R?) for every 1 < p < oo, using condition (f2). Choose a subsequence {wy, >
0: k > 1} (using the same notation) with [|[Vwy|||2,r2 > 3, and let ¢, € [0, 1] satisfy

L From the proof, we know that we can replace s by ¢ when A = 0, or use a (PS).-sequence
when ¥ > 1.
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G(trur) = maxepo,1) G(tug). Via conditions (f1) and (f3), for each K > 0 with a
sufficiently large ax > 0, it yields that

fr(zu) <aglul" + (el/(A+Ca) 2P _ 1y

1
KvCar
Here, C3 > 0 is a constant that depends on the embedding constant of

v: MP?*(R?) — L*(R?)

by corollary 3.8. So, for Kwy with ||wk||M;{,2(R2) = 1, we apply lemma 5.4 to see
that

#‘/ /Kwk (eTl"U2/(1+C3)K2 o 1) d'l}dl’
K\ Cor Jr2 Jo

1 / 2
< Wy, e™wi/(1+Cs) _ 1) qy
VCar Jr2 ( )
1 2 1/2
< —getondame{ [ e (2n ) - 1] e}
Cor R2 ||wk||H1(R2)
< [Jwill2 gz — 0 (5.8)

as k — oo. Here, Holder’s inequality and the elementary estimate (z —y)? < 2% —y?
with > y > 0 are used. So, we have limy_,o, G(tyur) = oo and t; € (0,1).
Therefore, we may continue as before and apply condition (f4) to see that {u, >
0: k> 1} is bounded in M??(R?).

Thus, there exists a function v € M?(R?) such that uy — win L}, (R?), [Vug| =
|Vau| in L?(R?) and uj, — win LP(R?) for all 1 < p < oo. Suppose that |[ug| g1 (r2) <
K for every k > 1, and ||u|| g1 (r2) < K. From conditions (f1) and (f3),

(e KN

fo(z,u) <aglul ' +
0271'

for some sufficiently large constant ax > 0. In view of (5.7) and (5.8), one has

/ Py i) fur — ul de < agllunll] g2 llue — ullgee + lur —ullagz =0 (5.9)
R2

as k — co. Similarly, [5, f4 (@, u)|ur —uldz — 0 as k — co. Hence, we derive
[ o) = F o) = w)do 0 (5.10)
R

when k£ — oo, so that we can apply lemma 3.2 to observe that ugy — u € Mg’z (R?).
O

Proof of theorem 5.1. We only detail the proof for N > 3 since that for N = 2 is
similar.

In view of conditions (f1) and (f3), we have f (z,u) < gelu|9™" + 2*b.|ul? ~* for
all € > 0 and some sufficiently large constant b, > 0 depending only on . Thus, we
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obtain

G(u) > *IIIVUIHQRN{l—2€C4|||VUI||2RN san — e[Vl 5

r+1—
*HUII"RN{l —qeCa = Adjlull 7 5 -

Here, Cy > 0 is a constant depending on the embedding constant of .: N2 (RY) —
LA(RN). Take an 0 < ¢ < 1/2¢C4 and select a o € (0,1) with 1 — 2eCy0972 —
20.C3 yo* =% > 1/3 > 0. Then, for Ay := min{p' ™" /6cy, 097"~ !/4ch} > 0, we
observe that G(u) = 209 := mm{g /48, 07/4¢q29} > 0 for each 0 < A < Ay, provided
that 0/2 < [|[Vul[[2 g~ lullgry < o Fix this Ay > 0.

Let ug > 0 in N22(RN) satisfy [||[Vuglllozy = [uollgmy = o. Then (4.4) holds
like before for G, since Fy (z,u) > 0. We use Ekeland’s variational principle to see
that G achieves a local minimum uy > 0 in N2?(RY) with G(ux) < 0. (Note the
minimizing sequence is bounded.)

On the other hand, we can take \; := )\%*, for example, and therefore have

1 1
G(u) 2 SllIVulls ey = AcsllVully gy + o IIUIIQRN Achully Ty

where ¢3 = ¢9/2,¢5 = ¢4 /q > 0 are constants and 0 < A < A1. Note that
3= 0
g1(z) = %xQ —Aezz™ >0

when z > (6¢3\)"/ =7 and

min g1 () - {3A\(r + 1)(3}2/(1_T)

x>0 - 6(7’ + 1)
at = {3A(r + 1)z} while

1
92(y) = —y — Aehy™ T >0

2q
when y > (2qcs )/ (@71 and
_rtl- a/(q—r—1)
ryﬂ;ggz(y) 240+ ){%(T + 1)z}

at y = {2A(r + 1)c5}/(@="=1 "both in the range of z,y < O(0? ). Take \; smaller
if necessary to see that

Jnin {g(z,y) = g1(@) + 92(y)} = e0 > 0.

That is, meu” 42y = G(u) > oo > 0. In addition, because condition (f2) implies

that

1Yol 12 g + [[uoll? o
= B ufe = K Ju)

+\T,u =
ol

for some sufficiently large constant K’ > 0 uniformly in z, we easily see that
G(tug) — —oo when t — oo.
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Hence, the mountain pass theorem of Cerami provides the existence of a critical
point of G in

C:={h e C(0,1; NF*(RY)): h(0) =0, h(1) = wo}

with ¢ := infpec max.c(o,1) G(h(2)) = 0o. Here, wy := toug for some sufficiently
large t9 > 0 such that G(wg) < 0. Denote @) to be this critical point of G. Then
G(@y) > 0 and @y > 0. This finishes our proof for N > 3.

On the other hand, when N = 2, by conditions (f1) and (£3), one has

/

b
fo(z,u) < gelul" + T€|u‘2q71(em2 —1
27

for all £ > 0 and some sufficiently large constant . > 0 depending on . Without
loss of generality, assume that v > 0 and ||u|g1(ge) < 1. Then we have

1 2g—1 2 1 9 2
— v (e™ —1)dvda < u(e™ —1)dx
\% 0271' /IR2 A \% C27T R2

<l
< CUIVulls + ul?%s ). (5.11)

Here, C'y > 0 is a constant depending on the embedding constant of +: M 2(R?) —
L4q(R2) Thus, when ||uHMq 2(ga) is sufficiently small that [|ul| g1 (r2) < 1, We observe
that

G(u) > ;

2 2q—2
= 2eCyll|Vull gz — 26LCHIIVulll35a — Acal|[Vullly 52

1 r+1—
+cllul? g 11— 0=Ci = @b Chllull gy = Aeg ull 7.

Let ¢ > 0 and g € (0,1) satisfy

1—2eCy0?7% = 20LC0* %2 > 1 and 1—qeCy— qbLCho® > 1.

Then, for A} = min{o!~"/6ca, 097 "71/8c4} > 0, we see that G(u) > 2¢f =
min{p?/48, 07/8¢2¢} > 0 for all 0 < A < A|, provided that o/2 < |||[Vull2 g,
||u||q7R%/ < o. Fix this A} > 0. Since 2¢ > ¢, we can proceed exactly as before to
finish the N = 2 case and so our proof completely. O

On the other hand, we can consider the problem
—Au+V(z)u = Nul|"%u + f(z,u) inRY (5.12)

as well, where 1 < ¢ < 2, X is a constant, and f(x,u) satisfies condition (f1) and
the following conditions.

(f3") There exist some constants ¢4, ¢ > 0 such that |f(z,u)
5 € (2,00) when N = 2, and § € (2,2*) when N >
uniformly in z.

< g + |ul®~! with
3 for every u € R,

(f4") There are constants K > 0 and s > 2 such that uf(x u) = sF(x,u) > 0 when
|u| > K, uniformly in x, where F(z,u) := fo (z,v)do.
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(f5) f(z,u) is odd in u, that is, f(x, —u) = —f(x,u) for all x € RN and u € R.

Problem (5.12) was originally studied on bounded regions in [2] and extended
in [5] using the so-called fountain theorems. In fact, the latter results are very gen-
eral, and the only requirements are a decomposition or direct sum of the Hilbert
space and associated compact embedding. In view of the results of §3 and theo-
rem 3.9, the result below is easily proved.

THEOREM 5.5. Define $) := H(R?) or $ := D} (R") when N > 3 through V (x).
Suppose that f(x,u) satisfies conditions (f1), (f3’), (f4') and (f5). Then, for all X €
R, problem (5.12) has a sequence {u,} of solutions with G(ug) > 0 and |Jug|lg — oo
as k — oo; moreover, when A\ > 0, it also has a sequence {li;} of solutions with
G(iiy) < 0 and fiy — 0 as k — oo.

Here, G: $ — R is the energy functional defined by

G(u) ;:%/ [\Vu\2+V|u|2]dx—/ F(x,u)dx—i/ lu|? da.
RN RN q JrN

The proof of theorem 5.5 follows easily from [31, theorems 3.7 and 3.20] via
a minor modification. Note that [20, theorem 1] (see also [18, lemma 3.2 and
remark 3.3]) was applied in deriving that u; — 0 as k — oo, which was also
used in [17, §5.1].

As a final remark, applying the variants of the fountain theorems of [32], combi-
nations of the preceding conditions can be made to prove theorem 5.5 with broader
nonlinearities.

6. Embedding results for LP(RYV)

When N > 2 and p € [1, N], Bartsch and Wang [4, theorem 2.1] derived a compact
embedding W, P (RY) < LP(RY), provided that b(x) satisfies inf,cpn b(x) = by > 0
and b~!(x) vanishes at infinity in the sense of Lieb and Loss. Here,

WEP(RY) = {u c WhP(RN): /RN blulP dz < oo}

is a reflexive Banach space with respect to the norm

p —
[l = [ [Val? + bluP) . (6.1)
We in fact can weaken the condition ‘b~! vanishes at infinity’ (see §2) to
| llim L£(Bg(x)NVy) =0 (6.2)
xT|—00

for every M > 0, where d € (0, 1] is the radius of the ball By(z). Actually, we have

1
|u|? dz = / |u|P dz + / |u|? dz < / [ulP dz + —|Jul|? ;. .
AN VZW RN\VJW VIM M Wbl p(RN)

Here, V) := {z € RN : b(z) < M}, while Vj;(D Vi) is an open set that again sat-
isfies (6.2). By virtue of Edmunds and Evans [13, theorem V5.17 and lemma X6.12],
we are done.
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When N > 2 and 2 < p < N a (much) weaker condition is available to ensure
this compact embedding, essentially due to Molchanov (see [21]), and Maz’ya and
Shubin [27]. In fact, just to consider a simpler case, the condition

inf B F)} — h — 6.3
Flen%{ﬂ( a(z) \ F)} = oo when [z] = oo (6.3)
suffices, where 1 is a positive regular Borel measure on RY vanishing on all sets of
p-capacity zero, and .4, is the family of F' € Bg(x) with Cap,(F') < pCap,(Ba)
for some p € (0,1).
When p = N we will use the relative N -capacity of A, as given in [13, § VIII1],

Capy(A) := inf {/ |VulN dz: u e Wi (Bag(z)) and A C {u > 1}"}. (6.4)
RN

Below we prove an estimate using [27, lemma 4.2] (see also [13, lemma VIII2.5]).

PROPOSITION 6.1. Let N > 2 and let 2 < p < N. Then there exists a constant
Cs > 0 depending on p, N such that, for each p € (0,1) and u € WHP(By(z)), we
have

/ P dy <
Bg(x)

It is worth remarking here, assuming (6.3) and (6.5), that one can follow exactly
[27, propositions 4.3 and 4.4] to conclude that the embedding from W, ?(RN) to
LP(RY) is compact.

Before proceeding to the proof of proposition 6.1, we show the following estimate.

Csd? CsdN

VulP dy + -
/Bm Vel Ay e T (Bale) )} Ve

|u|P dp.
(6.5)

PROPOSITION 6.2. Let N > 2 and let 2 < p < N. Then there is an absolute
constant Cg > 0 such that, for allu € W P(By(z)) with u # 0 on By(x) yet u=0
on K € By(x), we have

de(m) |VulP dy

Bg(x)

(6.6)

Proof. First, recall that Poincaré’s inequality says that, for every N > 1 and p > 2,

d

P
/ lu —alP dy < () / |VulPdy Yu € WHP(By(z)). (6.7)
Ba(z) Tp Bq(x)

Here,
1

i /B )

and 7, = 27((p — 1)V/?/psin(n/p)) is given by Esposito et al. [14]. When p = 2,
this best constant is given by Payne and Weinberger, as well as Bebendorf [6].
Next, let u € W1P(By(x)) satisfy our hypotheses. Suppose that u > 0 and

5 ),
—_— uPdy = 1.
L£(Ba) /By
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Then we easily see that 0 < @ < 1 by Holder’s inequality, and ¢ :=1—u=1on K.

Note that ¢ > 0. As Hqu Bu(x) = = £(By) and ||u\|p Bu(x) = = aPL(By), it follows that

0<¢=1-a=[e(Ba)] " "{llulpBaw) — lullp,B.0)}-
As 0 < ||u

p.Ba(z) — 1@llp,Bae) < [lw— 1|y By(a), Dy (6.7), one has

_ _ d
1617 ) < =01y < (2 190,
from which, and again with (6.7), we observe that

917 ey < 216 = I ooy + 161 g}
2d
< (% )nvnpm (6.5)
p

Finally, we can use the symmetry of By(x) to extend ¢ to a new function ¢ in
RY such that ¥ (y) := ¢(y) when y € By(z), and

o) = o+ -0 )

when y € B(z) in every ray emanating from x. Thus,

112 sy < sl017 3y a0 IVEIE 5oy < s IIVEIIE 5

for a constant ¢5 > 0 independent of d (by the definition of a definite integral).
Let n € C°(Bsq) satisfy n = 1 when |z| < d and n = 0 when |z| > 2d, with
[IVn|lloo gy < d™'. Then we have

Cap,(K) < |||V(¢77)|||pRN
<2 {IVUlZ gy + VI g 91 5
which together with (6.8) yields estimate (6.6) for Cg = 2P~ 1¢5[1 + (2/mp)P]. O
Proof of proposition 6.1. Let u € WHP(By(x)) and let 7 > 0. Set
E; :={y € By(z): |u(y)| < T}.

As 0 < |u] < [|Ju| = 7]T + 7, we have

”qu,Bd(z) < T[E(Bd)]l/p + [lul = THP,Bd(l’)\ET?
so that

ullp, Ba(2)\Er, (6.9)

for 7, := ||ullp, B4 (x) [£(Ba)] /7 /2. When Cap,(E.,) > pCap,(Baq) we can apply
(6.6) and (6.9) to the function [|u| — 7,]T > 0, which vanishes on E, , to observe

that
de(w) |VulP dy
de(m) |ulP dy .

[ullp,Ba(2) < 2|ul -

p Cap,(Ba) < Cap,(E.,) < 2°Cs£(Ba)
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So, noting that Cap,(Bg) = d"~? Cap,(Bi) and £(By) = dV£(B1), we derive
that
CeL(B1) (2d)?P

\ulpdysi—/ [VulP dy.
/Bd(a:) Cap,(B1) p JBy@)

When Cap,,(E-,) < pCap,(Bg) we can follow [27, p. 936] to observe that

infre v, {(Ba(z) \ F)}
dN2rg(By) Bu(w)

L/ A Bt \ B > P dy.
Bd CE)

As a result, we are done with C5 = max{2PCs£(B1) Capgl(Bl), 2¢(By)} >0. O

Now, we can follow [21, theorems 6.1 and 6.2] to show that condition (6.2) will
work.

First, when N > 3 and 2 < p < N, we use £(F) < cl[Capp(F)]N/(N_p) to see
that, for d > 0, £(F) < p£(By) implies that F € .4, provided that o > 0 is
sufficiently small. In fact, we have

L(F) < cl[Capp(F)]N/(N_p) < 048(Byg) < adc1[Capp(Bd)]N/(N_p)7 (6.10)

so that Cap,(F) < a((jN_p)/N Cap,(Bg), where ¢ < 04 < 1 are constants. When
N > 2 and p = N, one instead applies £(F)/£(Baq) < ¢s Capy (F) for an absolute
constant ¢g > 0 (see [13, lemma VIII1.4]) to observe that £(F) < o£(By) implies
that F € .4, again for sufficiently small ¢ > 0, as

£(B ) < 04Cg CapN(Bd). (611)

L(F) d
£(Ba4)

£(Badq)

< ¢ Capy (F) < 0qg

All of these discussions indicate that (6.3) can be replaced by a stronger condition

inf B F hy . 12

Jint {#(Bu(@) \ F)} 00 when [] - o (6.12)

Here, p is a measure on RY that is absolutely continuous with respect to the

Lebesgue measure, and .#, is the family of F € By(x) such that £(F) < o£(By)

for very small o € (0,1).

Finally, let dp := bdx with b satisfying (6.2), and let F € .#, with £(Bg(x)\F) >

32(By). Then, for all M > 0, condition (6.2) implies that
£({y € Ba(x): b(y) > M} N {Ba(x) \ F}) > 5£(Bua),

from which one deduces that

inf b(x)dz > 1 ML(B,).
Fedy JB,@)\F @) 2 ME(Ba)

That is, (6.12) is satisfied.
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