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Using a regular Borel measure μ � 0 we derive a proper subspace D1
μ(RN ) of the

commonly used Sobolev space D1(RN ) when N � 3. The space D1
μ(RN ) resembles

the standard Sobolev space H1(Ω) when Ω is a bounded region with a compact
Lipschitz boundary ∂Ω. An equivalence characterization and an example are
provided that guarantee that D1

μ(RN ) is compactly embedded into L1(RN ). In
addition, as an application we prove an existence result of positive solutions to an
elliptic equation in R

N that involves the Laplace operator with the critical Sobolev
nonlinearity, or with a general nonlinear term that has a subcritical and superlinear
growth. We also briefly discuss the compact embedding of W 1,p

μ (RN ) to Lp(RN )
when N � 2 and 2 � p � N .
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1. Introduction

When N � 3 and Ω is a bounded region in RN that has a compact Lipschitz
boundary ∂Ω, we know that the standard Sobolev space H1(Ω) is continuously
embedded into the spaces Ls(Ω) for 1 � s � 2∗ := 2N/(N −2), and this embedding
is also compact for 1 � s < 2∗. When N = 2 this embedding is compact for
all 1 � s < ∞. Many generalizations have been made that can be found, for
example, in [1,13,26]. To recover the compact embedding results on RN one usually
uses spaces of special functions (for example, those that are radially symmetric) or
introduces weights to the function spaces.

In this paper we investigate which proper subspace of D1(RN ) for N � 3 (or
H1(RN ) for N = 2) can have the same embedding as H1(Ω). We borrow an idea
from Bucur and Buttazzo [8] to bring a Borel measure μ into the search of such
good subspaces of D1(RN ).

In fact, when μ is a non-negative regular Borel measure on RN , possibly infinite
valued, that vanishes on all sets of capacity zero, we define Lq̃

μ(RN ) as the linear
space (or the family of equivalent classes) of μ-measurable functions u ∈ D1(RN )
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that satisfy ∫
RN

|u|q̃ dμ < ∞ for some q̃ ∈ (1,∞). (1.1)

In this way we can obtain the desired subspace D1
μ(RN ) := D1(RN ) ∩ L2

μ(RN ) of
D1(RN ) that behaves like H1(Ω), provided that μ enables the constant functions
to be in the dual space of D1

μ(RN ). An equivalence condition on this is described
in terms of the qualitative behaviour of a characteristic partial differential equation
(PDE) that is discussed in § 3, including the case in which N = 2.

Recall that for problems involving the Laplace operator on RN , the space quite
often used when N � 3, instead of H1(RN ), is D1(RN ). In this sense, D1

μ(RN ) is
the authentic counterpart of H1(Ω). Also, when dμ = V (x) dx for a measurable
function V (x) � 0, V −1 ∈ L1(RN ) guarantees this compact embedding. Note that
no a priori assumption on μ is given to ensure an embedding of D1

μ(RN ) to L1(RN )
or L2(RN ), which seems to be a unique phenomenon only when N � 3.

On the other hand, to derive the same result when N = 2 we start with the space
H1(RN ). This has already been discussed in [8] and we will work a little bit more
on it in § 3.

As an application we study the existence of (distributional) positive solutions of

−Δu + α(x)uq−1 = λur + u2∗−1 in RN . (1.2)

This equation may be viewed as a combination of the equations discussed in [2,3,10].
For q = 2 and r = 1, (1.2) was also studied by Clapp and Ding [11] in a very different
situation. It is worth mentioning here that the assumptions we impose on α(x) are
different (see theorem 4.1).

We prove that problem (1.2) has a positive solution provided that 0 < r < 1,
q � 2 and λ > 0 is a sufficiently small constant, and this solution bifurcates from
zero since it decays to zero when λ → 0+. On the other hand, if one replaces u2∗−1

by a general nonlinear term f(x, u) (like in [4,28]) that satisfies certain subcritical
and superlinear growth conditions but doesn’t satisfy the well-known Ambrosetti–
Rabinowitz condition, then we can show the existence of a second positive solution
to (1.2) from the mountain pass theorem of Cerami. These cases are discussed in
§§ 4 and 5, where μ is generated through α(x).

Section 2 is devoted to detailed analyses of a Sobolev(-type) space Mq,p(RN ),
where each function u ∈ Mq,p(RN ) satisfies u ∈ Lq(RN ) and |∇u| ∈ Lp(RN ) for
p, q ∈ [1,∞].

A result concerning the compact embedding from W 1,p
μ (RN ) to Lp(RN ) when

p � 2, using an idea due to Maz’ya and Shubin [27], is also briefly described in § 6.

2. The function space Mq,p(RN)

In this section we describe a Sobolev(-type) space Mq,p(RN ) that may be viewed
as a natural generalization of the standard Sobolev space W 1,p(RN ), W 1,p(RN ) =
Mp,p(RN ).

We mention that some of the results discussed here have already been derived,
with details, in [17] when N � 3 and 1 � p < N , so we shall be sketchy from time
to time.
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Let Ω be a region, i.e. it is open and connected. In this paper all functions are
assumed to be real valued and (Borel) measurable. Lp(Ω), 1 � p � ∞, denotes the
space of pth integrable functions u on Ω, with norm written by ‖u‖p,Ω . A function u
is said to be in L1

loc(Ω), provided that u ∈ L1(K) for all compact subsets K � Ω. L

denotes the Lebesgue measure on RN , with dx (dy) its associated volume element,
and Hs denotes the s-dimensional Hausdorff measure.

Recall that a function u is said to be a Sobolev function provided that u ∈
W 1,1

loc (Ω). That is, u and its weak (distributional) derivatives Dju, with j = 1, 2, . . . ,
N , are in L1

loc(Ω).
W 1,p(Ω) denotes the standard Sobolev space of functions u on Ω such that u

and |∇u| are in Lp(Ω). It is a Banach space with respect to the usual W 1,p-norm

‖u‖W 1,p(Ω) := ‖u‖p,Ω + ‖|∇u|‖p,Ω . (2.1)

In particular, when p = 2 the notation H1(Ω) is commonly used instead of W 1,2(Ω).
Mq,p(Ω) (see [17]) is defined to be the space of functions u on Ω that are in Lq(Ω),

while |∇u| are in Lp(Ω). It is a Banach space with respect to the Mq,p-norm

‖u‖Mq,p(Ω) := ‖u‖q,Ω + ‖|∇u|‖p,Ω . (2.2)

Hereafter, ∇u := (D1u, D2u, . . . ,DNu) denotes the weak gradient of u.
In addition, a function u : Ω → R is said to be Hölder continuous with exponent

γ ∈ (0, 1], provided that |u(x)−u(y)| � C|x−y|γ for a constant C > 0 that depends
on γ, Ω. Write C0,γ(Ω̄) for the associated space. Then it is a Banach space under
the usual C0,γ-norm

‖u‖C0,γ(Ω̄) := sup
x∈Ω

{|u(x)|} + sup
y �=z∈Ω

{
|u(y) − u(z)|

|y − z|γ

}
. (2.3)

2.1. Ω is a bounded region having a compact Lipschitz boundary ∂Ω

Assume that N � 2. One easily sees that, when 1 � p, q < ∞, C1(Ω̄) is a dense
subset of Mq,p(Ω).

When p ∈ [1, N) we have

Mq,p(Ω) = W 1,p(Ω) for 1 � q � p∗,

Mq1,p(Ω) ⊆ Mq2,p(Ω) for p∗ � q2 � q1 � ∞.

}
(2.4)

In fact, Hölder’s inequality yields W 1,p(Ω) ⊆ Mq,p(Ω) for q ∈ [1, p], Poincaré’s and
Minkowski’s inequalities yield M1,p(Ω) ⊆ W 1,p(Ω), and then the Sobolev embed-
ding theorem yields (2.4). Also, when q ∈ [1,∞] there exists a constant Cp,q > 0,
depending on p, q, Ω, such that

‖u‖W 1,p(Ω) � Cp,q‖u‖Mq,p(Ω) ∀u ∈ Mq,p(Ω). (2.5)

Here, as usual, for p ∈ [1, N) we write the critical Sobolev exponent as p∗ :=
pN/(N − p). Below we use ‘⇀’ to denote weak convergence, and use ‘↪→’ to denote
compact embedding.
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When p = N we can just replace the Sobolev embedding theorem by the (compact)
embedding result W 1,p(Ω) ↪→ Ls(Ω), for 1 � s < ∞, to conclude that

M∞,p(Ω) ⊆ Mq,p(Ω) = W 1,p(Ω) for 1 � q < ∞. (2.6)

Moreover, the embedding ι : M∞,p(Ω) → Ls(Ω) is also continuous for 1 � s � ∞.
When p ∈ (N, ∞] we use Morrey’s inequality to obtain that

Mq,p(Ω) = W 1,p(Ω) for 1 � q � ∞. (2.7)

Furthermore, the Arzelà–Ascoli theorem, Evans and Gariepy [16, p. 135, theorem 1],
and Evans [15, theorem 5.6.5] state that the embedding ι : Mq,p(Ω) → C0,s(Ω̄) is
continuous if 0 � s � γ and also compact if 0 � s < γ for γ := 1 − N/p. Note that
u is Lipschitz continuous if and only if u ∈ Mq,∞(Ω) by [15, theorem 5.8.4] (see
also [16, p. 131, theorem 5]), since we only need |∇u| ∈ L∞(Ω).

All the preceding discussions imply that, among all Mq,p(Ω), W 1,p(Ω) is the
largest space. On the other hand, when p ∈ [1, N) we can prove the following
embedding result.

Proposition 2.1. When 1 � p < N and 1 � q � ∞, the embedding ι : Mq,p(Ω) →
Ls(Ω) is continuous if 1 � s � max{q, p∗} and also compact if 1 � s < max{q, p∗}.

Proof. This result follows (almost) directly from the proof of [16, p. 144, theorem 1]
in view of r := max{q, p∗} > 1 and (2.5), and was described in [17, proposition 2.2].

For the sake of completeness, we present a slightly simpler proof.
We keep the same notation as in [16, p. 144, theorem 1]. Suppose that {fk : k � 1}

is a bounded sequence in Mq,p(Ω). Note then that (2.4) and (2.5) together imply
that {fk : k � 1} is a bounded sequence in W 1,p(Ω) as well. So, we find a sequence
of functions {f̃k : k � 1} in W 1,p(RN ), where each f̃k is an extension of fk to RN .
As a result, we observe that

sup
k�1

‖f̃k‖W 1,p(RN ) � CΩ

{
sup
k�1

‖fk‖W 1,p(Ω)

}
� C ′

p,q

{
sup
k�1

‖fk‖Mq,p(Ω)

}
.

Here, CΩ , C ′
p,q > 0 are some constants that depend on p, q and Ω. Hence, we can

follow steps 1–6 in [16, p. 144, theorem 1] to obtain a function f ∈ Lr(Ω) such that
fkj → f in Ls(Ω) when 1 � s � p and fkj ⇀ f in Lr(Ω). Take s ∈ [p, r) and set
θ := p(r − s)/s(r − p) ∈ (0, 1] to derive

lim
j→∞

‖fkj − f‖s,Ω � lim
j→∞

{‖fkj − f‖θ
p,Ω‖fkj − f‖1−θ

r,Ω } = 0. (2.8)

Notice that when p > 1 we also have f ∈ Mq,p(Ω). (This is not true if p = 1.)

2.2. Ω is RN

When N � 3 and 1 � p < N the notation D1,p(RN ) is widely used to denote the
space of functions u such that u ∈ Lp∗

(RN ) and |∇u| ∈ Lp(RN ). By the Gagliardo–
Nirenberg–Sobolev inequality, there is a sharp constant Cp,N > 0, depending on p,
N , such that

‖u‖p∗,RN � Cp,N‖|∇u|‖p,RN ∀u ∈ D1,p(RN ). (2.9)

Notice that when p = 2 the notation D1(RN ) is commonly used in the literature.

https://doi.org/10.1017/S0308210515000670 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210515000670


Compact embedding of Sobolev spaces and positive solutions 697

When 1 < p < N Lieb and Loss gave us an equivalent definition: D1,p(RN ) is
the subspace of functions in L1

loc(R
N ) that vanish at infinity and have Lp-integrable

gradients in RN . Here, a function u ∈ L1
loc(R

N ) is said to vanish at infinity provided
that L({x ∈ RN : |u(x)| � c}) < ∞ for all constants c > 0. See Sobolev’s inequality
for gradients [23, §§ 8.2 and 8.3]. We can thus use Chebyshev’s inequality and an
interpolation inequality, like (2.8), to observe that

Mq1,p(RN ) ⊆ Mq2,p(RN ) when either 1 � q1 � q2 � p∗ or p∗ � q2 � q1 < ∞.
(2.10)

When p = 1 we have (2.10) only if 1 � q1 � q2 � 1∗, directly via a density
argument.

When N = 2 and 1 � p < N we again have D1,p(RN ) and (2.9). In addition, as
above, we also have (2.10) when 1 < p < N , yet have (2.10) only if 1 � q1 � q2 � 1∗

when p = 1.
Clearly, we notice that W 1,p(RN ) � D1,p(RN ) and H1(RN ) � D1(RN ) by den-

sity.
It is perhaps helpful to stress the importance of Lieb and Loss’s result: it is very

easy to see that C1
c (RN ) is dense in W 1,p(RN ) (for all p, N), and thus in Mq,p(RN )

when N � 2, p ∈ [1, N) and q ∈ [p, p∗], but from their result we also have the
density of C1

c (RN ) in Mq,p(RN ) when N � 2, p ∈ (1, N) and q ∈ [1,∞). More
details can be found in [17, § 2].

When N � 2 and p = N we know that the embedding W 1,N (RN ) → Ls(RN )
is continuous for N � s < ∞. Let Mq,N (RN ) be the completion of C1

c (RN ) with
respect to (2.2) for now. We can prove a more general result that can be interpreted
as saying that, like (2.6),

Mq1,p(RN ) ⊆ Mq2,p(RN ) when 1 � q1 � q2 < ∞. (2.11)

Proposition 2.2. When N � 2 and q ∈ [1,∞) the embedding ι : Mq,N (RN ) →
Ls(RN ) is continuous if q � s < ∞. When q = ∞ this embedding is continuous
only for s = ∞.

Proof. Recall that estimate (14) in [15, theorem 5.6.1] says, for all u ∈ Mq,N (RN ),
that( ∫

RN

|u|κN/(N−1) dx

)(N−1)/N

� C1,N

∫
RN

|∇|u|κ| dx = κC1,N

∫
RN

|u|κ−1|∇u| dx.

Use Hölder’s and Young’s inequalities and set κ1 := 1 + q(N − 1)/N > 1 to derive
that

‖u‖κ1
κ1N/(N−1),RN � κ1C1,N‖u‖κ1−1

q,RN ‖|∇u|‖N,RN

� Cκ1(‖u‖κ1
q,RN + ‖|∇u|‖κ1

N,RN )

� C ′
κ1

‖u‖κ1
Mq,N (RN ).

Here and below, Cκ1 , C
′
κ1

, Cκ2 , C
′
κ2

> 0 are absolute constants depending on q, N .
Since

κ1N

N − 1
= q + 1 +

1
N − 1

> q,
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an application of an interpolation inequality, like (2.8), says that u ∈ Ls(RN ) for
each s ∈ [q, q + 1 + 1/(N − 1)]. Next, set κ2 := 1 + κ1 > 2 to observe that

‖u‖κ2N/(N−1),RN � Cκ2‖u‖Mκ1N/(N−1),N (RN ) � C ′
κ2

‖u‖Mq,N (RN ).

As
κ2N

N − 1
=

κ1N

N − 1
+ 1 +

1
N − 1

,

we thereby can extend s to be in [q, q + 2 + 2/(N − 1)]. Continuing like this to set
κm := m − 1 + κ1 = m + q(N − 1)/N > m, we can likewise extend s to be in the
interval [q, q + m + m/(N − 1)] for each m � 1. As a consequence, we finally arrive
at s ∈ [q, ∞).

When N � 2, p ∈ (N, ∞] and q ∈ [1,∞], we can simply adapt the proof of
Morrey’s inequality [15, theorem 5.6.4] to see that, for γ := 1 − N/p and some
constants C1, C

′
1 > 0,

sup
x∈RN

{|u(x)|} � C1‖u‖Mq,p(RN ) and ‖u‖C0,γ(RN ) � C ′
1‖u‖Mq,p(RN ).

In particular, we have (2.11) when 1 � q1 � q2 � ∞, as Mq,p(RN ) ⊆ L∞(RN ).
All the foregoing discussions may be viewed as a certain complement to Lions [24,

lemma I.1] for the (most important) case in which p = 2. (Lieb and Loss’s result
plays a key role.)

As a final remark, note that the space Lq(RN ) is often defined via the family of
equivalent classes [u] of functions u, and two functions u1, u2 ∈ [u] are identified
when u1 = u2 almost everywhere (a.e.) (that is, if we ignore a subset of RN of
Lebesgue measure zero). Define, for all x ∈ RN ,

u�(x) :=

⎧⎪⎨⎪⎩
lim

R→0+

1
L(BR)

∫
BR(x)

u(y) dy if this limit exists,

0 otherwise.

(2.12)

Then u� ∈ [u] and u�
1 ≡ u�

2. Henceforth, we will use this precise representative u� of
[u]. Hereafter, BR(x) denotes the ball of radius R centred at x, and BR := BR(0).

3. The function space Mq,p
μ (RN)

In this section we describe a compact embedding result that may be treated as a
counterpart to proposition 2.1 on RN when N � 2, 1 < p < N and 1 < q < ∞.
In particular, for D1

μ(RN ) defined as D1(RN ) ∩ L2
μ(RN ) when N � 3, we see that

D1
μ(RN ) behaves like H1(Ω) on RN . We recall here that when N � 2 this has been

described in [8] using the space H1(RN ).
We first briefly review the concept of p-capacity (see [13,16,26] for more details).
When N � 2 and 1 � p < N define the p-capacity of a subset A of RN to be

Capp(A) := inf
{ ∫

RN

|∇u|p dx : u ∈ D1,p(RN ) and A ⊆ {u � 1}o

}
. (3.1)
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On the other hand, when p = N define the N -capacity of A to be

CapN (A) := inf{‖u‖N
W 1,N (RN ) : u ∈ W 1,N (RN ) and A ⊆ {u � 1}o}. (3.2)

Note that A is required to lie entirely inside the interior of the set {u � 1}.
Capacity is used to characterize precisely some fine properties of Sobolev func-

tions.
The result below describes some relations between capacity and Hausdorff mea-

sure.

Proposition 3.1. When 1 < p < N and HN−p(A) < ∞, Capp(A) = 0. When
1 � p < ∞ and Capp(A) = 0, Hs(A) = 0 for all s > N − p. Cap1(A) � cHN−1(A),
and Cap1(A) = 0 if and only if HN−1(A) = 0 when A is compact. Also, Capp(λA) =
λN−p Capp(A) for all λ > 0 and L(A) � c1[Capp(A)]N/(N−p) when 1 � p < N .
Here, c, c1 > 0 are absolute constants.

For each u ∈ D1,p(RN ) (or W 1,N (RN )) there is a Borel subset E of RN with
Capp(E) = 0 such that the limit in (2.12) exists and is identically equal to u�(x)
when x ∈ RN \ E. Moreover, for all ε > 0 there exists a continuous function
uε : RN → R such that Capp({uε �= u�}) � ε. That is, u� is p-quasi-continu-
ous. Remembering that we have identified the function u ∈ [u] with its p-quasi-
continuous precise representative u�, a pointwise condition can therefore be imposed
on u(x) for quasi-everywhere (q.e.) x ∈ RN (that is, if we ignore a subset of RN of
p-capacity zero).

When p ∈ [1, N) and Ω is as in § 2.1, we write W 1,p
0 (Ω) to be the space of

functions u ∈ W 1,p(Ω) that satisfy u = 0 q.e. in RN \ Ω. W 1,p
0 (Ω) is a subspace of

D1,p(RN ) in terms of the gradient Lp-norm. (Often there is no need to involve the
norm ‖u‖p,Ω .)

Below, unless otherwise specified, we assume that N � 2, p ∈ (1, N) and q ∈
(1,∞).

Let μ � 0 be a regular Borel measure on RN , possibly infinite-valued, that
vanishes on each set of p-capacity zero. Use D1,p(RN ) to define Lq̃

μ(RN ), as in
(1.1), and write Mq,p

μ (RN ) := Mq,p(RN ) ∩ Lq̃
μ(RN ). It is a Banach subspace of

D1,p(RN ) under the norm

‖u‖Mq,p
μ (RN ) := ‖u‖Mq,p(RN ) + ‖u‖q̃,RN

μ
. (3.3)

Here, we define ‖u‖q̃,RN
μ

to be (
∫

RN |u|q̃ dμ)1/q̃ and always assume 1 < q̃ < ∞.
For brevity, denote by M� the space of linear functionals on Mq,p

μ (RN ). Also, for
ϕ ∈ M�, we say that ϕ � 0 provided that ϕ(u) � 0 for all u � 0 in Mq,p

μ (RN ).
Take ϕ � 0 in M� and consider the characteristic PDE (clearly in the distributional
sense) of the space Mq,p

μ (RN )

−Δpu + uq−1 + μuq̃−1 = ϕ. (3.4)

We look for weak solutions u ∈ Mq,p
μ (RN ) to (3.4) that satisfy∫

RN

|∇u|p−2∇u · ∇v dx +
∫

RN

|u|q−2uv dx +
∫

RN

|u|q̃−2uv dμ = ϕ(v) (3.5)
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for all v ∈ Mq,p
μ (RN ). Note that solutions u to (3.4) or (3.5), if they exist, are

unique and can be found as critical points of the associated energy functional
F : Mq,p

μ (RN ) → R, defined by

F(u) :=
1
p

∫
RN

|∇u|p dx +
1
q

∫
RN

|u|q dx +
1
q̃

∫
RN

|u|q̃ dμ − ϕ(u).

Since ϕ(u) � Cϕ‖u‖Mq,p
μ (RN ), F is coercive. Besides, F(u) � F(u+). Thus, we

may, without loss of generality, seek the minimum of F in the cone of positive
functions in Mq,p

μ (RN ). Here, as usual, we write u+ := max{u, 0}. As we are only
interested in finding out when the constant functions are in M�, we shall take ϕ = 1
from now on. (This does not mean that 1 ∈ M�.)

We first show the following integral version of Damascelli [12, lemma 2.1].

Lemma 3.2. Let Ω be a region in RN for N � 1, and let f , g be two functions in
Lr(Ω) for 1 < r < ∞. Then there is a constant Cr > 0 depending on r, N such
that

∫
Ω

(|f |r−2f − |g|r−2g)(f − g) dx �

⎧⎪⎨⎪⎩
Cr‖f − g‖r

r,Ω when r � 2,

Cr

‖f − g‖2
r,Ω

(‖f‖r,Ω + ‖g‖r,Ω)2−r
when 1 < r < 2.

Proof. Clearly, we only need to show the second estimate via Hölder’s inequality.
Precisely, when r � 2 we trivially have (|f |r−2f − |g|r−2g)(f − g) � Cr|f − g|r

from estimate (2-6) in [12]; on the other hand, when 1 < r < 2 estimate (2-2)
in [12] says that (|f |r−2f − |g|r−2g)(f − g) � Cr|f − g|2/(|f | + |g|)2−r. Thus, for
the latter, it follows that

‖f − g‖r
r,Ω =

∫
Ω

|f − g|r
(|f | + |g|)r(2−r)/2 (|f | + |g|)r(2−r)/2 dx

�
{ ∫

Ω

|f − g|2
(|f | + |g|)2−r

dx

}r/2{ ∫
Ω

(|f | + |g|)r dx

}(2−r)/2

�
{

C−1
r

∫
Ω

(|f |r−2f − |g|r−2g)(f − g) dx

}r/2

× {‖f‖r,Ω + ‖g‖r,Ω}r(2−r)/2,

where Minkowski’s inequality was used. This clearly leads to the desired estimate.

For the sake of brevity, henceforth, we shall use the notation

Dr
Ω [f, g] :=

∫
Ω

(|f |r−2f − |g|r−2g)(f − g) dx. (3.6)

For each B � RN define

∞B(A) :=

{
0 when Capp(A ∩ B) = 0,

+∞ otherwise.
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Write
μ�BR := μ + ∞RN \BR

. (3.7)

Then
μ = lim

R→∞
μ�BR

(as measures), and Mq,p
μ�BR

(RN ) is a subspace of Mq,p
0 (BR), where each function

u ∈ Mq,p
0 (BR) satisfies u = 0 q.e. in RN \ BR. We note that 1 is in the dual space

of the space Mq,p
μ�BR

(RN ). Therefore, we can prove the following easy result.

Proposition 3.3. When 1 < p < N and 1 < q, q̃ < ∞, there exists a unique
weak solution ωμR

� 0 of (3.4) in Mq,p
μ�BR

(RN ) associated with the linear functional
ϕ = 1.

Proof. Recall that F is coercive. Suppose that {uk � 0: k � 1} is a minimizing
sequence in Mq,p

μ�BR
(RN ) that clearly is bounded. Then we can find a function ωμR

and a subsequence {uk � 0: k � 1}, using the same notation, such that uk ⇀
ωμR

∈ Mq,p
μ�BR

(RN ). (By reflexivity, |∇uk| ⇀ |∇ωμR
| in the space Lp(RN ), and

uk ⇀ ωμR
in the spaces Lq(RN ) and Lq̃

μ�BR
(RN ).) Noting that F is differentiable,

one has, for each u ∈ Mq,p
μ�BR

(RN ) and all v ∈ Mq,p
μ�BR

(RN ),

F ′(u)(v) =
∫

BR

|∇u|p−2∇u · ∇v dx +
∫

BR

|u|q−2uv dx +
∫

BR

|u|q̃−2uv dμ − ϕ(v).

As F ′(uk) → 0 and F ′(ωμR
) is a linear functional on Mq,p

μ�BR
(RN ), one sees that

0 = lim
k→∞

{
F ′(uk)(uk − ωμR

) − F ′(ωμR
)(uk − ωμR

) +
∫

BR

(uk − ωμR
) dx

}
= lim

k→∞

{
Dp

BR
[|∇uk|, |∇ωμR

|] + Dq
BR

[uk, ωμR
] + Dq̃

R
N
μ�BR

[uk, ωμR
]
}

.

So, we can apply lemma 3.2 to derive that uk → ωμR
� 0 in Mq,p

μ�BR
(RN ) when

k → ∞.

Note that ωμR
is p-quasi-continuous and equals zero q.e. in RN \ BR. When

R1 � R2 we have ωμR1
≡ ωμR2

on BR1 by uniqueness. This observation enables us
to define

ωμ := lim
R→∞

ωμR
� 0 in RN , (3.8)

which formally solves (3.5) (ϕ = 1). To remove the word formally, we only need
to see that 1 ∈ M�. The next two results provide us with an equivalence condition
and an example for this.

Lemma 3.4. Let p ∈ (1, N) and let q, q̃ ∈ (1,∞). Then 1 ∈ M� if and only if
ωμ ∈ L1(RN ).

Proof. When 1 ∈ M� we can solve (3.5) directly to give a weak solution ωμ ∈
Mq,p

μ (RN ) associated with (3.4). Also, we have ωμ ∈ L1(RN ) by letting v = ωμ

in (3.5).
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On the other hand, if ωμ ∈ L1(RN ), the monotone convergence theorem implies
that

‖|∇ωμR
|‖p

p,BR
+ ‖ωμR

‖q
q,BR

+ ‖ωμR
‖q̃

q̃,RN
μ�BR

= ‖ωμR
‖1,BR

� ‖ωμ‖1,RN . (3.9)

So, from (3.8), {ωμR
� 0: R � 0} is a bounded sequence that converges weakly

to the function ωμ ∈ Mq,p
μ (RN ). As a result, taking test functions v ∈ C1

c (RN ) ∩
Mq,p

μ (RN ) in the equation satisfied by ωμR
and then letting R → ∞ shows that ωμ

solves (3.5) for ϕ = 1 on RN by a standard density argument about the functions
v. As (3.9) implies that ‖ωμ‖Mq,p

μ (RN ) < ∞, we have 1 ∈ M�.

We note the application above of the density results described in § 2.2.

Example 3.5. Let p ∈ (1, N), let q, q̃ ∈ (1,∞) and let V (x) : RN → (0,∞) be a
measurable function with V −β ∈ L1(RN ) for some β ∈ (0, 1/(q̃ − 1)]. Then, for
dμ := V (x) dx, one has 1 ∈ M�.

Proof. Define

x :=
β(q − 1)

q + β(q − q̃)
, y :=

1 + β(1 − q̃)
q + β(q − q̃)

and z :=
q − 1

q + β(q − q̃)
;

see table 1. Then, x, y, z ∈ (0, 1) and x + y + z = 1. We set r1 := x−1, r2 := y−1 and
r3 := z−1 to derive∫

RN

ωμ dx =
∫

RN

(V ωq̃
μ)x(ωμ)1−q̃x 1

V x
dx

�
( ∫

RN

(V ωq̃
μ)r1x dx

)1/r1
( ∫

RN

(ωμ)r2(1−q̃x) dx

)1/r2
( ∫

RN

1
V r3x

dx

)1/r3

�
( ∫

RN

ωq̃
μ dμ

)1/r1
( ∫

RN

ωq
μ dx

)1/r2
( ∫

RN

1
V β

dx

)1/r3

,

from which we easily deduce that ‖ωμ‖1,RN � ‖V −β‖1,RN < ∞. That is, 1 ∈
M�.

Finally, we shall describe a result that resembles proposition 2.1 on RN when
N � 2. Note that we assume that 1 < q̃ < ∞ and μ is such that 1 belongs to the
dual space of Mq,p

μ (RN ).

Theorem 3.6. Let p ∈ (1, N) and let q ∈ (1,∞). Then the embedding

ι : Mq,p
μ (RN ) → Ls(RN )

is continuous if 1 � s � max{q, p∗} and also compact if 1 � s < max{q, p∗}.

Proof. This result follows easily from proposition 2.1 and (2.10) if we can prove it
for the case in which s = 1. Since 1 ∈ M�, one has ωμ ∈ L1(RN )∩Mq,p

μ (RN ), which
satisfies∫

RN

|∇ωμ|p−2∇ωμ · ∇v dx +
∫

RN

ωq−1
μ v dx +

∫
RN

ωq̃−1
μ v dμ =

∫
RN

v dx, (3.10)
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Table 1. Table showing how to choose the x, y, z in example 3.5, and
giving the best choice of the upper bound � of β ∈ (0, �] when q, q̃ ∈ (1, ∞).

best
� x > 0 x < 1 y > 0 y < 1 z > 0 z < 1 choice

1 < q̃ � q any � � � q

q̃ − 1
� � 1

q̃ − 1
any � any � any � � � 1

q̃ − 1

q < q̃ < ∞ � � q

q̃ − q
� � q

q̃ − 1
� � 1

q̃ − 1
� � q

q̃ − q
� � q

q̃ − q
� � 1

q̃ − q
� � 1

q̃ − 1

so that ‖v‖1,RN � Cωμ‖v‖Mq,p
μ (RN ) < ∞ for each v ∈ Mq,p

μ (RN ). Here, Cωμ > 0 is
a constant that depends on ωμ. That is, Mq,p

μ (RN ) is continuously embedded into
L1(RN ).

Now, given a sequence {uk : k � 1} of functions in Mq,p
μ (RN ) with uk ⇀ 0, we

may assume that it is bounded. Notice that uk → 0 in L1(BR) for all R > 0. So,
as measures, we have

lim
k→∞

|uk| ⇀ dυ := υ∞δ∞, with υ∞ := lim
R→∞

lim sup
k→∞

∫
|x|>R

|uk| dx � 0,

where an idea from [7, proposition 2] was used.
We see that υ∞ = 0. Actually, there is a decreasing function χR ∈ C∞

c (RN )
such that χR ≡ 1 on |x| � R and χR ≡ 0 on |x| � R2, which satisfies 1/R2 �
‖|∇χR|‖∞,RN � 6/R2 whenever R > 2 (see [17, appendix (i)]). Set θR := 1 − χR.
Then, in view of (3.10), it follows that

∫
RN

|ukθR| dx � ‖|∇ωμ|‖p−1
p,RN \BR

( ∫
RN

|uk∇θR + θR∇uk|p dx

)1/p

+ ‖ωμ‖q−1
q,RN \BR

‖uk‖q,RN + ‖ωμ‖q̃−1
q̃,RN

μ�RN \BR

‖uk‖q̃,RN
μ

,

which clearly tends to zero as R → ∞, by virtue of the estimate

‖|∇(ukθR)|‖p,RN � ‖|∇uk|‖p,RN + ‖|∇θR|‖∞,RN ‖uk‖p,BR2\BR

� ‖|∇uk|‖p,RN + ‖|∇θR|‖∞,RN [L(BR2)]1/N‖uk‖p∗,RN

and (2.9). As a consequence, Mq,p
μ (RN ) is compactly embedded into L1(RN ).

3.1. q ∈ [1, p∗]

In this case it is superfluous to get Lq(RN ) involved via (2.10). So, we define
Nq,p

μ (RN ) := D1,p(RN ) ∩ Lq
μ(RN ) instead. It is a Banach space under the norm

‖u‖Nq,p
μ (RN ) := ‖u‖q,RN

μ
+ ‖|∇u|‖p,RN . (3.11)

In particular, we will use the notation D1,p
μ (RN ) to denote D1,p(RN ) ∩ Lp

μ(RN ).
We note that D1,p

μ (RN ) is a reflexive Banach space under the norm (3.11).
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Let ϕ � 0 be a linear functional on Nq,p
μ (RN ) and consider the characteristic

PDE
−Δpu + μuq−1 = ϕ. (3.12)

We look for the unique solution ωμ � 0 in Nq,p
μ (RN ) to (3.12) for ϕ = 1 that

satisfies∫
RN

|∇ωμ|p−2∇ωμ · ∇v dx +
∫

RN

ωq−1
μ v dμ =

∫
RN

v dx ∀v ∈ Nq,p
μ (RN ). (3.13)

Then, assuming that μ enables ωμ ∈ L1(RN ), we have the following parallel
result.

Corollary 3.7. Let p ∈ (1, N) and let q ∈ (1,∞). Then the embedding

ι : Nq,p
μ (RN ) → Ls(RN )

is continuous if 1 � s � p∗ and also compact if 1 � s < p∗.

When N � 3 and p = 2 we simply denote D1(RN ) ∩ L2
μ(RN ) by D1

μ(RN ). It is a
Hilbert space with respect to the inner product

〈u, v〉D1
μ(RN ) :=

∫
RN

uv dμ +
∫

RN

∇u · ∇v dx. (3.14)

This space behaves like H1(Ω) on RN if we assume that μ enables ωμ ∈ L1(RN ).
Next, let V (x) : RN → (0,∞) be a measurable function with V −β ∈ L1(RN ).

Applying a similar calculation as before, we can introduce ωp∗

μ and use (2.9) to
observe that when β ∈ (0, 1/(q − 1)] we have ωμ ∈ L1(RN ) with dμ := V (x) dx.

3.2. p = N

We recall that this has been discussed in [8]. The interesting case to us is when
N = 2, where H1

μ(RN ) behaves like H1(Ω) on RN , provided that μ enables ωμ ∈
L1(RN ).

When q ∈ [N, ∞) one can define Mq,N (RN ) directly (see the descriptions above
(2.2) and above (2.11)) as the space of u ∈ Lq(RN ) with |∇u| ∈ LN (RN ) by the
density of C1

c (RN ) in Mq,N (RN ). Actually, to see this fact, for u ∈ Mq,N (RN ) set
uR := uθR to derive

‖u − uR‖q,RN � ‖u‖q,RN \BR

and

‖|∇(u − uR)|‖N,RN � ‖|∇u|‖N,RN \BR
+ ‖|∇θR|‖∞,RN ‖u‖N,BR2\BR

� ‖|∇u|‖N,RN \BR

+ ‖|∇θR|‖∞,RN [L(BR2)](q−N)/qN‖u‖q,RN \BR
.

As uR has compact support, the density result on bounded regions confirms the
answer.

On the other hand, if we simply select a measure μ, with density V (x) � 0, that
is absolutely continuous with respect to the Lebesgue measure, one actually can
modify the preceding proofs very slightly to observe, in view of proposition 2.2, the
following embedding result.
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Corollary 3.8. Assume that N � 2, that q, q̃ ∈ (1,∞) and that dμ := V (x) dx
with V −β ∈ L1(RN ) for some β ∈ (0, 1/(q̃ − 1)]. Then the embedding

ι : Mq,N
μ (RN ) → Ls(RN )

is compact if 1 � s < ∞.

Here, we write Mq,N
μ (RN ) := Mq,N (RN ) ∩ Lq̃

μ(RN ) with norm given by (3.3).
Finally, let V (x) be a measurable function in RN such that V � 0 and V −1 ∈

L1(RN ) when N � 3 and such that V � 1 and (V − 1)−1 ∈ L1(R2). Define the
Hilbert space H := D1

μ(RN ) when N � 3 and H := H1
μ(R2) through V , where we

write H1
μ(R2) := H1(R2) ∩ L2

μ(R2) as in [8]. Define Lu := − div(∇u) + V u on RN .
Concerning the eigenvalue problem

Lw = λw in RN , (3.15)

we can simply modify [15, theorems 6.5.1 and 6.5.2] to prove the following result.

Theorem 3.9. There exists a sequence of increasing eigenvalues {λk > 0: k � 1}
for problem (3.15) such that limk→∞ λk → ∞, and a family of associated eigen-
functions {wk : k � 1} in H that provides an orthonormal basis for H. In addition,
the first eigenvalue λ1 is simple and isolated, and every associated eigenfunction of
it does not change sign in RN .

The inner product on H1
μ(R2), with dμ := (V − 1) dx for V (x) � 1, is given by

〈u, v〉H1
μ(R2) :=

∫
R2

[∇u · ∇v + uv] dx +
∫

R2
uv dμ. (3.16)

Proof. Define S := L−1. Then S is a compact linear symmetric operator, and the
existence of {λk > 0: k � 1}, with limk→∞ λk → ∞, and {wk : k � 1} follows
immediately from [15, theorem D.6.7]; moreover, {wk : k � 1} in fact provides an
orthonormal basis to L2(RN ).

We only prove the remaining parts for D1
μ(RN ). Note that 〈wk1 , wk2〉D1

μ(RN ) = 0
if and only if 〈wk1 , wk2〉2,RN = 0. Assume that {wk/

√
λk : k � 1} and {wk : k � 1}

are orthonormal bases of D1
μ(RN ) and L2(RN ), respectively. For each w ∈ D1

μ(RN )
write w = w+ − w−. Then ∇w+, ∇w− are well defined. Follow steps 1–6 of [15,
theorem 6.5.2] to derive

λ1 = min
w∈D1

μ(RN ),
w �≡0

‖w‖2
D1

μ(RN )

‖w‖2
2,RN

and Lw±
1 = λ1w

±
1 . We can simply take w1 ≡ w+

1 > 0 by [30, theorem 1].
Finally, let w∗

1 be an eigenfunction associated with λ1 in D1
μ(RN ). Assume that

‖w∗
1‖2,RN = 1. Consider w̄1 := w1−w∗

1 and suppose that w̄1 �≡ 0. Then we have, say,
w̄1 > 0 on RN as well since Lw̄1 = λ1w̄1. However, noticing that 〈w̄1, w1+w∗

1〉2,RN =
0, a contradiction follows.
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4. Existence results for (1.2)

In this section we study (1.2) when N � 3. Precisely, we shall prove the following
result.

Theorem 4.1. Let r ∈ (0, 1), let q ∈ [2,∞) and let β = 1/(q − 1). Let α(x) � 0
be a measurable function such that α−β ∈ L1(RN ) if q ∈ [2, 2∗), while α � 1 and
(α− 1)−β ∈ L1(RN ) if q ∈ [2∗,∞). Let λ > 0 be a constant. Then there is a λ0 > 0
such that problem (1.2) has a solution uλ > 0 for each 0 < λ � λ0, and uλ → 0
when λ → 0+.

These solutions are sought in the space D1
μ(RN ) when q = 2, in Nq,2

μ (RN ) when
q ∈ (2, 2∗], and in Mq,2

μ (RN ) when q ∈ (2∗,∞), where we shall take q̃ = q from now
on.

Below, we assume that dμ = V dx for V := α when q ∈ [2, 2∗) and use (3.11) to
define ‖u‖Nq,2

μ (RN ) with
‖u‖q

q,RN
V

:=
∫

RN

V |u|q dx;

when q ∈ (2∗,∞) we set V := α − 1 and define

‖u‖Mq,2
μ (RN ) := ‖u‖q,RN

V
+ ‖|∇u|‖2,RN (4.1)

with
‖u‖q

q,RN
V

:=
∫

RN

(1 + V )|u|q dx =
∫

RN

α|u|q dx,

slightly different from (3.3); when q = 2∗ we apply (3.11) to define ‖u‖
N2∗,2

μ (RN )
with V := α − 1. We note that all these assumptions are imposed to guarantee the
conclusions of theorem 3.6 as well as of corollary 3.7.

When q �= 2∗ these solutions are found as critical points of the associated energy
functional J : Nq,2

μ (RN ) → R if q ∈ [2, 2∗) or J : Mq,2
μ (RN ) → R if q ∈ (2∗,∞),

which is defined by

J (u) := 1
2

∫
RN

|∇u|2 dx+
1
q

∫
RN

α|u|q dx− 1
2∗

∫
RN

(u+)2
∗
dx− λ

r + 1

∫
RN

(u+)r+1 dx.

Before we proceed to the proof of theorem 4.1, we derive the following result.

Proposition 4.2. When q ∈ [2, 2∗) and c < SN/2/N − Kλq/(q−1−r), the func-
tional J satisfies the (PS)c-condition. Here, K = K(N, α, q, r) > 0 is an absolute
constant.

Recall that a sequence {uk : k � 1} of functions in Nq,2
μ (RN ) is said to be a

Palais–Smale sequence of J at level c, a (PS)c-sequence, provided that J (uk) → c
and J ′(uk) → 0 as k → ∞. J is said to satisfy the Palais–Smale condition at level
c, the (PS)c-condition, provided that each (PS)c-sequence of J admits a strongly
convergent subsequence in Nq,2

μ (RN ).
Here, S := C−2

2,N by (2.9) and the norm of D1
μ(RN ) is defined via (3.14).

Proof. First, given a (PS)c-sequence {uk : k � 1} of J in Nq,2
μ (RN ), one observes

easily that it is bounded. Actually, a routine calculation of J (uk)−(1/2∗)J ′(uk)(uk)
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will do. Hence, we may without loss of generality assume that there is a function
u ∈ Nq,2

μ (RN ) such that uk ⇀ u in Lq
V (RN ) and L2∗

(RN ), |∇uk| ⇀ |∇u| in L2(RN ),
whereas uk → u in Lr+1(RN ). Here, we write Lq

V (RN ) as the subspace of functions
u ∈ D1(RN ) that satisfy ‖u‖q,RN

V
< ∞.

From the classical result of Lions [25, lemma I.1] and [7, proposition 2], we have

|∇uk|2 ⇀ dμ � |∇u|2 +
∞∑

i=1

μiδxi
+ μ∞δ∞,

|uk|2∗
⇀ dν = |u|2∗

+
∞∑

i=1

νiδxi + ν∞δ∞,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (4.2)

in the sense of measures, as k → ∞. Here, δxi is the Dirac delta function at xi ∈ RN ,
and μ, ν are the generated measures. Also, μi, μ∞, νi, ν∞ � 0 satisfy Sν

2/2∗

i � μi

and Sν
2/2∗

∞ � μ∞.
Recall that θR ∈ C∞(RN ) and ‖|∇θR|‖∞,RN = O(1/R2). We have ukθR ∈

Nq,2
μ (RN ) and

0 = lim
k→∞

J ′(uk)(ukθR)

= lim
k→∞

{ ∫
RN

|∇uk|2θR dx −
∫

RN

(u+
k )2

∗
θR dx

}
+ lim

k→∞

{ ∫
RN

∇uk · ∇θRuk dx +
∫

RN

V |uk|qθR dx − λ

∫
RN

(u+
k )r+1θR dx

}
.

Note that V = α. By the definition of θR and (2.9) it follows that, for every k � 1,∫
RN

|∇uk · ∇θRuk| dx � ‖|∇θR|‖∞,RN [L(BR2)]1/N‖|∇uk|‖2,RN \BR
‖uk‖2∗,RN \BR

→ 0

when R → ∞, by virtue of [3, lemma 2.2]. Next, define

υ̃∞ := lim
R→∞

lim sup
k→∞

∫
|x|>R

V |uk|q dx � 0.

Then we have μ∞ + υ̃∞ = ν∞, so that either μ∞ = υ̃∞ = ν∞ = 0 or ν∞ � μ∞ �
SN/2 > 0 by a straightforward computation. However, when the latter holds we
have

c = lim
k→∞

{
J (uk) − 1

2∗ J ′(uk)(uk)
}

� μ∞
N

+
1
N

‖|∇u|‖2
2,RN +

(
1
q

− 1
2∗

)
υ̃∞ +

(
1
q

− 1
2∗

)
‖u‖q

q,RN
V

− C2

(
λ

r + 1
− λ

2∗

)
(‖|∇u|‖r+1

2,RN + ‖u‖r+1
q,RN

V
)

� μ∞
N

− Kλq/(q−1−r) � SN/2

N
− Kλq/(q−1−r)

> 0,
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provided that λ > 0 is sufficiently small. Here, C2 > 0 is a constant that depends
on the embedding constant of ι : Nq,2

μ (RN ) ↪→ Lr+1(RN ). So, we must have μ∞ =
υ̃∞ = ν∞ = 0.

The remaining case in which the points xi are involved can be discussed similarly.
Thus, uk → u in L2∗

(RN ) and we have

lim
k→∞

{ ∫
RN

|∇uk − ∇u|2 dx +
∫

RN

V (|uk|q−2uk − |u|q−2u)(uk − u) dx

}
= lim

k→∞
{(J ′(uk) − J ′(u))(uk − u) + D2∗

RN [u+
k , u+] + λDr+1

RN [u+
k , u+]}

= 0. (4.3)

As a consequence, we can apply lemma 3.2 to show that uk → u in Nq,2
μ (RN ).

Proof of theorem 4.1. First we assume that q ∈ [2, 2∗). Using (2.9), we see that

J (u) � 1
2
‖|∇u|‖2

2,RN

{
1 − 2

2∗ C2∗

2,N‖|∇u|‖2∗−2
2,RN − λc2‖|∇u|‖r−1

2,RN

}
+

1
q
‖u‖q

q,RN
V

{1 − λc
′
2‖u‖r+1−q

q,RN
V

}.

Here, c2, c
′
2 > 0 are some constants depending on C2. Select a � ∈ (0, 1) with

1 − 2
2∗ C2∗

2,N�2∗−2 � 1
2

> 0.

Then a λ0 := min{�1−r/4c2, �
q−1−r/2c′

2} > 0 exists such that

J (u) � min{�2/32, �q/2q2q} > 0

for each 0 < λ � λ0 if �/2 � ‖|∇u|‖2,RN , ‖u‖q,RN
V

� �. Fix this λ0 > 0. Let u0 � 0
in Nq,2

μ (RN ) satisfy ‖|∇u0|‖2,RN = ‖u0‖q,RN
V

= �. As J (tu0) < 0 for sufficiently
small t > 0, one has

−∞ < ı(λ) := inf
‖u‖

N
q,2
μ (RN )

��
J (u) < 0. (4.4)

Take λ0 smaller if necessary so that SN/2/N −Kλq/(q−1−r) > 0 when 0 < λ � λ0.
Apply Ekeland’s variational principle to get a minimizing sequence {uk � 0: k � 1}
such that ‖uk‖Nq,2

μ (RN ) < �, while J (uk) → ı(λ) and J ′(uk) → 0 as k → ∞. Note
that the (PS)ı(λ)-condition is satisfied and J (u+) � J (u). It is easy to see that J
achieves a local minimum uλ � 0 in Nq,2

μ (RN ) with ‖uλ‖Nq,2
μ (RN ) < �. Since q � 2

and uλ �≡ 0, [30, theorem 1] then says that uλ > 0 in RN .
Because we are only interested in the bifurcation phenomenon near zero, we select

a �1 ∈ (0, �) to be such that �2
1 − C2∗

2,N�2∗

1 � 1
2�2

1. As J ′(uλ) = 0, using (2.9), we
observe that

‖uλ‖Nq,2
μ (RN ) � {2λC2}1/(q−1−r) → 0 as λ → 0+. (4.5)

Next, when q = 2∗ we define the energy functional J̃ : N2∗,2
μ (RN ) → R by

J̃ (u) := 1
2

∫
RN

|∇u|2 dx +
1
2∗

∫
RN

(α − 1)|u|2∗
dx − λ

r + 1

∫
RN

(u+)r+1 dx.
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Clearly, J̃ is coercive. Follow the proof of proposition 3.3 to derive a minimum
uλ > 0 of J̃ in N2∗,2

μ (RN ) for each λ > 0. Also, assuming that ‖uλ‖
N2∗,2

μ (RN ) � 1,
we similarly have

‖uλ‖
N2∗,2

μ (RN ) � {λC2}1/(2∗−1−r) → 0 as λ → 0+. (4.6)

Finally, for q ∈ (2∗,∞) we first recall the compact embedding ι : Mq,2
μ (RN ) ↪→

L2∗
(RN ). Furthermore, we follow the discussion for q ∈ [2, 2∗) to find a minimizing

sequence {ũk � 0: k � 1} with ũk ⇀ uλ, and repeat (4.3) and apply lemma 3.2 to
obtain ũk → uλ in Mq,2

μ (RN ). So, uλ is a local minimum of J and uλ > 0 in RN .
As J ′(uλ) = 0, we have (4.5) again.

Combining the preceding three situations, we thus finish the proof completely.

5. Some variants of (1.2)

In this section we study some variants of (1.2) when N � 2, and we start with

−Δu + α(x)uq−1 = λur + f(x, u) in RN , (5.1)

where we assume that q � 2, r ∈ (0, 1), λ > 0 is a constant and f(x, u) satisfies the
following conditions.

(f1) f(x, u) ∈ C(RN × R; R) and limu→0 f(x, u)/uq−1 = 0 uniformly in x.

(f2) f(x, u) � 0 when u � 0 and limu→+∞ f(x, u)/uq−1 = ∞ uniformly in x.

(f3) We have

lim
u→+∞

f(x, u)
u2∗−1 = 0

uniformly in x when N � 3, and

lim
u→+∞

f(x, u)
eξu2 − 1

= 0

uniformly in x when N = 2 for each ξ > 0.

(f4) There exist constants s > q and ϑ � 1 such that, for H(x, u) := uf(x, u) −
sF (x, u) with F (x, u) :=

∫ u

0 f(x, v) dv, we have H(x, v) � ϑH(x, u) uniformly
in x when 0 < v < u.

Recall that problem (5.1) was studied in [4, 28] without the sublinear term λur.
Here we study it with a more general nonlinearity f(x, u) that does not satisfy the
Ambrosetti–Rabinowitz condition (see condition (f4′)), following the idea from Lam
and Lu [22] via the mountain pass theorem of Cerami [9]. Note that condition (f4)
was introduced by Jeanjean [19].

Now, under the above hypotheses, we can prove the following existence result.

Theorem 5.1. Assume that q ∈ [2, 2∗) when N � 3, and that q ∈ [2,∞) when
N = 2. Let r ∈ (0, 1) and let β = 1/(q − 1). Let α � 0 satisfy α−β ∈ L1(RN )
when N � 3, and let α � 1 and (α − 1)−β ∈ L1(R2). Let f(x, u) satisfy conditions
(f1)–(f4), and let λ > 0 be a constant. Then there exists a λ1 > 0 such that problem
(5.1) has two solutions uλ, ũλ > 0 for each 0 < λ � λ1.
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These solutions are sought in Mq,2
μ (R2) (in H1

μ(R2) if q = 2) and in Nq,2
μ (RN )

(in D1
μ(RN ) if q = 2) when N � 3, where we shall again take q̃ = q from now on.

In addition, the norms on D1
μ(RN ) and H1

μ(R2) are generated through (3.14) and
(3.16), respectively.

Since we are only interested in obtaining positive solutions, we define

f+(x, u) ∈ C(RN × R; R) to be f+(x, u) :=

{
f(x, u) when u � 0,

0 when u � 0.

Just like (1.2), these solutions are found to be critical points of the associated energy
functional G : Mq,2

μ (R2) → R, or G : Nq,2
μ (RN ) → R when N � 3, which is defined

by

G(u) := 1
2

∫
RN

|∇u|2 dx+
1
q

∫
RN

α|u|q dx−
∫

RN

F+(x, u) dx− λ

r + 1

∫
RN

(u+)r+1 dx.

Here, F+(x, u) :=
∫ u

0 f+(x, v) dv denotes the primitive of the function f+(x, u) � 0.

Proposition 5.2. G : Nq,2
μ (RN ) → R satisfies the (C)c-condition for all c ∈ R.

Recall that a sequence {uk : k � 1} of functions in Nq,2
μ (RN ) is said to be a

Cerami sequence of G at level c, a (C)c-sequence, provided that G(uk) → c while
(1 + ‖uk‖Nq,2

μ (RN ))G′(uk) → 0 when k → ∞. Then we say that G satisfies the
Cerami condition at level c, the (C)c-condition, provided that each (C)c-sequence
of G admits a strongly convergent subsequence in Nq,2

μ (RN ).

Proof. Since we are looking for positive solutions, without loss of generality let
{uk � 0: k � 1} be a (C)c-sequence of G in Nq,2

μ (RN ). Thus, for V := α and large
k, one has

‖|∇uk|‖2
2,RN + ‖uk‖q

q,RN
V

=
∫

RN

f+(x, uk)uk dx + λ‖uk‖r+1
r+1,RN + o(1). (5.2)

First, we prove that {uk � 0: k � 1} is bounded. On the contrary, suppose that
it is unbounded. Then, as 0 < r < 1 and q � 2, for sufficiently large k it follows
from (5.2) that

1
2
(‖|∇uk|‖2

2,RN +‖uk‖2
q,RN

V
) �

∫
RN

f+(x, uk)uk dx � ‖|∇uk|‖q
2,RN +‖uk‖q

q,RN
V

. (5.3)

Set wk := uk/‖uk‖Nq,2
μ (RN ) for all k � 1 with ‖wk‖Nq,2

μ (RN ) = 1. Then we may
assume that wk → w in Lp(RN ) and wk(x) → w(x) a.e. in RN for all 1 � p < 2∗

and some w ∈ Nq,2
μ (RN ).

We have w ≡ 0. In fact, if L(Ω) > 0 for Ω := {x ∈ RN : w(x) > 0}, we take an
x ∈ Ω to see that

lim
k→∞

uk(x) = lim
k→∞

wk(x)‖uk‖Nq,2
μ (RN ) = ∞.
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Thus, limk→∞ f+(x, uk(x))/uq−1
k (x) = ∞ by condition (f2), which, together with

(5.3), (3.11) and Fatou’s lemma, leads to the contradiction

∞ =
∫

Ω

lim inf
k→∞

[
f+(x, uk(x))uk(x)

uq
k(x)

wq
k(x)

]
dx � lim inf

k→∞

[∫
RN f+(x, uk)uk dx

‖uk‖q

Nq,2
μ (RN )

]
� O(1).

Now, take a subsequence {wk � 0: k � 1}, using the same notation, with
‖|∇wk|‖2,RN � 1

2 . (It is similar if we select ‖wk‖q,RN
V

� 1
2 instead.) Let tk ∈ [0, 1]

satisfy G(tkuk) = maxt∈[0,1] G(tuk). In view of conditions (f1) and (f3),

f+(x, u) � aK |u|q−1 + (2∗/C2∗

2,NK2∗
)|u|2∗−1

for any K > 0 with a sufficiently large aK > 0. Noting that ‖uk‖Nq,2
μ (RN ) � K

when k is large, we have

G(tkuk) � G(Kwk) � K2

8
− λKr+1

r + 1
‖wk‖r+1

r+1,RN − aKKq

q
‖wk‖q

q,RN − 1 → K2

8
− 1

as k → ∞. The arbitrariness of K leads to limk→∞ G(tkuk) = ∞, so that tk ∈ (0, 1)
and

t2k‖|∇uk|‖2
2,RN + tqk‖uk‖q

q,RN
V

=
∫

RN

f+(x, tkuk)(tkuk) dx + λtr+1
k ‖uk‖r+1

r+1,RN . (5.4)

By the definition of G(uk) and G(tkuk), (5.2), (5.4) and condition (f4), we verify
that

G(tkuk) = G(tkuk) − 1
s
G′(tkuk)(tkuk)

=
(

1
2

− 1
s

)
t2k‖|∇uk|‖2

2,RN +
(

1
q

− 1
s

)
tqk‖uk‖q

q,RN
V

− λ

(
1

r + 1
− 1

s

)
tr+1
k ‖uk‖r+1

r+1,RN +
1
s

∫
RN

H+(x, tkuk) dx

for H+(x, u) := uf+(x, u) − sF+(x, u), with H+(x, tkuk) � ϑH+(x, uk), as well as

ϑ

s

∫
RN

H+(x, uk) dx � ϑ

(
1
s

− 1
2

)
‖|∇uk|‖2

2,RN + ϑ

(
1
s

− 1
q

)
‖uk‖q

q,RN
V

− λϑ

(
1
s

− 1
r + 1

)
‖uk‖r+1

r+1,RN + O(1).

Hence, noting that tr+1
k > t2k, tqk and ϑ � 1, we combine the two previous estimates

to derive

G(tkuk) +
(

1
2

− 1
s

)
(ϑ − tr+1

k )‖|∇uk|‖2
2,RN +

(
1
q

− 1
s

)
(ϑ − tr+1

k )‖uk‖q

q,RN
V

� C2

(
λ

r + 1
− λ

s

)
(ϑ − tr+1

k )(‖|∇uk|‖r+1
2,RN + ‖uk‖r+1

q,RN
V

) + O(1), (5.5)
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from which we have a contradiction with the assumption that {uk : k � 1} is
unbounded.1

As a result, {uk � 0: k � 1} is bounded. So, we may simply assume that there
exists a function u ∈ Nq,2

μ (RN ) such that uk ⇀ u in Lq
V (RN ) and L2∗

(RN ), |∇uk| ⇀
|∇u| in L2(RN ), while uk → u in Lp(RN ) for each 1 � p < 2∗. Using (4.2), for
ukθR ∈ Nq,2

μ (RN ) we have

0 = lim
k→∞

G′(uk)(ukθR)

= lim
k→∞

{ ∫
RN

|∇uk|2θR dx −
∫

RN

f+(x, uk)(ukθR) dx

}
+ lim

k→∞

{ ∫
RN

∇uk · ∇θRuk dx +
∫

RN

V |uk|qθR dx − λ

∫
RN

(u+
k )r+1θR dx

}
.

From conditions (f1) and (f3), we have f+(x, u) � aε|u|q−1 + ε|u|2∗−1 for all ε > 0
and some sufficiently large constant aε > 0 that depends only on ε. Thus, it follows
that

0 �
∫

RN

f+(x, uk)(ukθR) dx � aε‖uk‖q
q,RN \BR

+ ε‖uk‖2∗

2∗,RN \BR
→ εν∞ (5.6)

when k, R → ∞. Hence, we observe that μ∞ + υ̃∞ � εν∞, and then Sν
2/2∗

∞ � μ∞ �
εν∞; that is, ν∞ = 0 since S > 0 via the arbitrariness of ε. As a consequence, we
have μ∞ = υ̃∞ = 0. The remaining case in which the points xi are involved can be
discussed similarly. So, uk → u in L2∗

(RN ) and therefore in Nq,2
μ (RN ).

Analogously, we can prove the following result.

Proposition 5.3. G : Mq,2
μ (R2) → R satisfies the (C)c-condition for all c ∈ R.

Here, we define the (C)c-sequence and the (C)c-condition for G : Mq,2
μ (R2) → R

similarly to before; also, we set V := α − 1 and use (4.1) to define ‖u‖Mq,2
μ (R2) for

‖u‖q
q,R2

V
:=

∫
R2 α|u|q dx.

Before we proceed to the proof of proposition 5.3, we recall Ruf [29, proposi-
tion 2.1], which is related to the Trudinger–Moser inequality.

Lemma 5.4. When u ∈ H1(R2) satisfies ‖u‖H1(R2) � 1, we have∫
R2

(eξu2 − 1) dx � Cξ (5.7)

provided that 0 � ξ � 4π, where Cξ > 0 is a constant that depends only on ξ.

Proof of proposition 5.3. Let {uk � 0: k � 1} be a (C)c-sequence of G in Mq,2
μ (R2)

and suppose that it is unbounded. Then for wk := uk/‖uk‖Mq,2
μ (R2) we have wk → 0

in Lp(R2) for every 1 � p < ∞, using condition (f2). Choose a subsequence {wk �
0: k � 1} (using the same notation) with ‖|∇wk|‖2,R2 � 1

2 , and let tk ∈ [0, 1] satisfy

1 From the proof, we know that we can replace s by q when λ = 0, or use a (PS)c-sequence
when ϑ > 1.
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G(tkuk) = maxt∈[0,1] G(tuk). Via conditions (f1) and (f3), for each K > 0 with a
sufficiently large aK > 0, it yields that

f+(x, u) � aK |u|q−1 +
1

K
√

C2π

(e(π/(1+C3)K2)u2 − 1).

Here, C3 > 0 is a constant that depends on the embedding constant of

ι : Mq,2
μ (R2) ↪→ L2(R2)

by corollary 3.8. So, for Kwk with ‖wk‖Mq,2
μ (R2) = 1, we apply lemma 5.4 to see

that

1
K

√
C2π

∫
R2

∫ Kwk

0
(eπv2/(1+C3)K2 − 1) dv dx

� 1√
C2π

∫
R2

wk(eπw2
k/(1+C3) − 1) dx

� 1√
C2π

‖wk‖2,R2

{ ∫
R2

[
exp

(
2π

w2
k

‖wk‖2
H1(R2)

)
− 1

]
dx

}1/2

� ‖wk‖2,R2 → 0 (5.8)

as k → ∞. Here, Hölder’s inequality and the elementary estimate (x−y)2 � x2−y2

with x � y � 0 are used. So, we have limk→∞ G(tkuk) = ∞ and tk ∈ (0, 1).
Therefore, we may continue as before and apply condition (f4) to see that {uk �
0: k � 1} is bounded in Mq,2

μ (R2).
Thus, there exists a function u ∈ Mq,2

μ (R2) such that uk ⇀ u in Lq
V (R2), |∇uk| ⇀

|∇u| in L2(R2) and uk → u in Lp(R2) for all 1 � p < ∞. Suppose that ‖uk‖H1(R2) �
K for every k � 1, and ‖u‖H1(R2) � K. From conditions (f1) and (f3),

f+(x, u) � aK |u|q−1 +
1√
C2π

(e(π/K2)u2 − 1)

for some sufficiently large constant aK > 0. In view of (5.7) and (5.8), one has∫
R2

f+(x, uk)|uk − u| dx � aK‖uk‖q−1
q,R2‖uk − u‖q,R2 + ‖uk − u‖2,R2 → 0 (5.9)

as k → ∞. Similarly,
∫

R2 f+(x, u)|uk − u| dx → 0 as k → ∞. Hence, we derive∫
R2

(f+(x, uk) − f+(x, u))(uk − u) dx → 0 (5.10)

when k → ∞, so that we can apply lemma 3.2 to observe that uk → u ∈ Mq,2
μ (R2).

Proof of theorem 5.1. We only detail the proof for N � 3 since that for N = 2 is
similar.

In view of conditions (f1) and (f3), we have f+(x, u) � qε|u|q−1 + 2∗bε|u|2∗−1 for
all ε > 0 and some sufficiently large constant bε > 0 depending only on ε. Thus, we

https://doi.org/10.1017/S0308210515000670 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210515000670


714 Q. Han

obtain

G(u) � 1
2
‖|∇u|‖2

2,RN {1 − 2εC4‖|∇u|‖q−2
2,RN − 2bεC

2∗

2,N‖|∇u|‖2∗−2
2,RN − λc2‖|∇u|‖r−1

2,RN }

+
1
q
‖u‖q

q,RN
V

{1 − qεC4 − λc
′
2‖u‖r+1−q

q,RN
V

}.

Here, C4 > 0 is a constant depending on the embedding constant of ι : Nq,2
μ (RN ) ↪→

Lq(RN ). Take an 0 < ε � 1/2qC4 and select a � ∈ (0, 1) with 1 − 2εC4�
q−2 −

2bεC
2∗

2,N�2∗−2 � 1/3 > 0. Then, for λ1 := min{�1−r/6c2, �
q−r−1/4c′

2} > 0, we
observe that G(u) � 2�0 := min{�2/48, �q/4q2q} > 0 for each 0 < λ � λ1, provided
that �/2 � ‖|∇u|‖2,RN , ‖u‖q,RN

V
� �. Fix this λ1 > 0.

Let u0 � 0 in Nq,2
μ (RN ) satisfy ‖|∇u0|‖2,RN = ‖u0‖q,RN

V
= �. Then (4.4) holds

like before for G, since F+(x, u) � 0. We use Ekeland’s variational principle to see
that G achieves a local minimum uλ > 0 in Nq,2

μ (RN ) with G(uλ) < 0. (Note the
minimizing sequence is bounded.)

On the other hand, we can take λ̃1 := λ2∗

1 , for example, and therefore have

G(u) � 1
6
‖|∇u|‖2

2,RN − λc3‖|∇u|‖r+1
2,RN +

1
2q

‖u‖q

q,RN
V

− λc
′
3‖u‖r+1

q,RN
V

,

where c3 = c2/2, c′
3 = c′

2/q > 0 are constants and 0 < λ � λ̃1. Note that

g1(x) = 1
6x2 − λc3x

r+1 � 0

when x � (6c3λ)1/(1−r) and

min
x�0

g1(x) =
r − 1

6(r + 1)
{3λ(r + 1)c3}2/(1−r)

at x = {3λ(r + 1)c3}1/(1−r), while

g2(y) =
1
2q

yq − λc
′
3y

r+1 � 0

when y � (2qc′
3λ)1/(q−r−1) and

min
y�0

g2(y) =
r + 1 − q

2q(r + 1)
{2λ(r + 1)c′

3}q/(q−r−1)

at y = {2λ(r + 1)c′
3}1/(q−r−1), both in the range of x, y � O(�2∗

). Take λ1 smaller
if necessary to see that

min
x+y=�

{g(x, y) := g1(x) + g2(y)} � �0 > 0.

That is, inf‖u‖
N

q,2
μ (RN )

=� G(u) � �0 > 0. In addition, because condition (f2) implies
that

F+(x, u) �
‖|∇u0|‖2

2,RN + ‖u0‖q

q,RN
V

‖u0‖q
q,RN

|u|q − K ′|u|

for some sufficiently large constant K ′ > 0 uniformly in x, we easily see that
G(tu0) → −∞ when t → ∞.
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Hence, the mountain pass theorem of Cerami provides the existence of a critical
point of G in

C := {h ∈ C([0, 1];Nq,2
μ (RN )) : h(0) = 0, h(1) = w0}

with c := infh∈C maxz∈[0,1] G(h(z)) � �0. Here, w0 := t0u0 for some sufficiently
large t0 > 0 such that G(w0) < 0. Denote ũλ to be this critical point of G. Then
G(ũλ) > 0 and ũλ > 0. This finishes our proof for N � 3.

On the other hand, when N = 2, by conditions (f1) and (f3), one has

f+(x, u) � qε|u|q−1 +
b′
ε√

C2π

|u|2q−1(eπu2 − 1)

for all ε > 0 and some sufficiently large constant b′
ε > 0 depending on ε. Without

loss of generality, assume that u � 0 and ‖u‖H1(R2) � 1. Then we have

1√
C2π

∫
R2

∫ u

0
v2q−1(eπv2 − 1) dv dx � 1√

C2π

∫
R2

u2q(eπu2 − 1) dx

� ‖u‖2q
4q,R2

� C ′
4(‖|∇u|‖2q

2,R2 + ‖u‖2q
q,R2

V
). (5.11)

Here, C ′
4 > 0 is a constant depending on the embedding constant of ι : Mq,2

μ (R2) ↪→
L4q(R2). Thus, when ‖u‖Mq,2

μ (R2) is sufficiently small that ‖u‖H1(R2) � 1, we observe
that

G(u) � 1
2
‖|∇u|‖2

2,R2{1 − 2εC4‖|∇u|‖q−2
2,R2 − 2b′

εC
′
4‖|∇u|‖2q−2

2,R2 − λc2‖|∇u|‖r−1
2,R2}

+
1
q
‖u‖q

q,R2
V
{1 − qεC4 − qb′

εC
′
4‖u‖q

q,R2
V

− λc
′
2‖u‖r+1−q

q,R2
V

}.

Let ε > 0 and � ∈ (0, 1) satisfy

1 − 2εC4�
q−2 − 2b′

εC
′
4�

2q−2 � 1
3 and 1 − qεC4 − qb′

εC
′
4�

q � 1
4 .

Then, for λ′
1 := min{�1−r/6c2, �

q−r−1/8c′
2} > 0, we see that G(u) � 2�′

0 :=
min{�2/48, �q/8q2q} > 0 for all 0 < λ � λ′

1, provided that �/2 � ‖|∇u|‖2,R2 ,
‖u‖q,R2

V
� �. Fix this λ′

1 > 0. Since 2q > q, we can proceed exactly as before to
finish the N = 2 case and so our proof completely.

On the other hand, we can consider the problem

−Δu + V (x)u = λ|u|q−2u + f(x, u) in RN (5.12)

as well, where 1 < q < 2, λ is a constant, and f(x, u) satisfies condition (f1) and
the following conditions.

(f3′) There exist some constants c4, c
′
4 > 0 such that |f(x, u)| � c4 + c′

4|u|s̃−1 with
s̃ ∈ (2,∞) when N = 2, and s̃ ∈ (2, 2∗) when N � 3 for every u ∈ R,
uniformly in x.

(f4′) There are constants K > 0 and s > 2 such that uf(x, u) � sF (x, u) > 0 when
|u| � K, uniformly in x, where F (x, u) :=

∫ u

0 f(x, v) dv.
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(f5) f(x, u) is odd in u, that is, f(x,−u) = −f(x, u) for all x ∈ RN and u ∈ R.

Problem (5.12) was originally studied on bounded regions in [2] and extended
in [5] using the so-called fountain theorems. In fact, the latter results are very gen-
eral, and the only requirements are a decomposition or direct sum of the Hilbert
space and associated compact embedding. In view of the results of § 3 and theo-
rem 3.9, the result below is easily proved.

Theorem 5.5. Define H := H1
μ(R2) or H := D1

μ(RN ) when N � 3 through V (x).
Suppose that f(x, u) satisfies conditions (f1), (f3 ′), (f4 ′) and (f5). Then, for all λ ∈
R, problem (5.12) has a sequence {uk} of solutions with G̃(uk) > 0 and ‖uk‖H → ∞
as k → ∞; moreover, when λ > 0, it also has a sequence {ũk} of solutions with
G̃(ũk) < 0 and ũk → 0 as k → ∞.

Here, G̃ : H → R is the energy functional defined by

G̃(u) := 1
2

∫
RN

[|∇u|2 + V |u|2] dx −
∫

RN

F (x, u) dx − λ

q

∫
RN

|u|q dx.

The proof of theorem 5.5 follows easily from [31, theorems 3.7 and 3.20] via
a minor modification. Note that [20, theorem 1] (see also [18, lemma 3.2 and
remark 3.3]) was applied in deriving that ũk → 0 as k → ∞, which was also
used in [17, § 5.1].

As a final remark, applying the variants of the fountain theorems of [32], combi-
nations of the preceding conditions can be made to prove theorem 5.5 with broader
nonlinearities.

6. Embedding results for Lp(RN)

When N � 2 and p ∈ [1, N ], Bartsch and Wang [4, theorem 2.1] derived a compact
embedding W 1,p

b (RN ) ↪→ Lp(RN ), provided that b(x) satisfies infx∈RN b(x) � b0 > 0
and b−1(x) vanishes at infinity in the sense of Lieb and Loss. Here,

W 1,p
b (RN ) :=

{
u ∈ W 1,p(RN ) :

∫
RN

b|u|p dx < ∞
}

is a reflexive Banach space with respect to the norm

‖u‖p

W 1,p
b (RN )

:=
∫

RN

[|∇u|p + b|u|p] dx. (6.1)

We in fact can weaken the condition ‘b−1 vanishes at infinity’ (see § 2) to

lim
|x|→∞

L(Bd(x) ∩ VM ) = 0 (6.2)

for every M > 0, where d ∈ (0, 1] is the radius of the ball Bd(x). Actually, we have∫
RN

|u|p dx =
∫

VM

|u|p dx +
∫

RN \VM

|u|p dx �
∫

ṼM

|u|p dx +
1
M

‖u‖p

W 1,p
b (RN )

.

Here, VM := {x ∈ RN : b(x) � M}, while ṼM (⊇ VM ) is an open set that again sat-
isfies (6.2). By virtue of Edmunds and Evans [13, theorem V5.17 and lemma X6.12],
we are done.
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When N � 2 and 2 � p � N a (much) weaker condition is available to ensure
this compact embedding, essentially due to Molchanov (see [21]), and Maz’ya and
Shubin [27]. In fact, just to consider a simpler case, the condition

inf
F ∈Nρ

{μ(Bd(x) \ F )} → ∞ when |x| → ∞ (6.3)

suffices, where μ is a positive regular Borel measure on RN vanishing on all sets of
p-capacity zero, and Nρ is the family of F � Bd(x) with Capp(F ) � ρ Capp(Bd)
for some ρ ∈ (0, 1).

When p = N we will use the relative N -capacity of A, as given in [13, § VIII1],

CapN (A) := inf
{ ∫

RN

|∇u|N dx : u ∈ W 1,N
0 (B2d(x)) and A ⊆ {u � 1}o

}
. (6.4)

Below we prove an estimate using [27, lemma 4.2] (see also [13, lemma VIII2.5]).

Proposition 6.1. Let N � 2 and let 2 � p � N . Then there exists a constant
C5 > 0 depending on p, N such that, for each ρ ∈ (0, 1) and u ∈ W 1,p(Bd(x)), we
have∫

Bd(x)
|u|p dy � C5d

p

ρ

∫
Bd(x)

|∇u|p dy +
C5d

N

infF ∈Nρ{μ(Bd(x) \ F )}

∫
Bd(x)

|u|p dμ.

(6.5)

It is worth remarking here, assuming (6.3) and (6.5), that one can follow exactly
[27, propositions 4.3 and 4.4] to conclude that the embedding from W 1,p

b (RN ) to
Lp(RN ) is compact.

Before proceeding to the proof of proposition 6.1, we show the following estimate.

Proposition 6.2. Let N � 2 and let 2 � p � N . Then there is an absolute
constant C6 > 0 such that, for all u ∈ W 1,p(Bd(x)) with u �≡ 0 on Bd(x) yet u ≡ 0
on K � Bd(x), we have

Capp(K) � C6L(Bd)

∫
Bd(x) |∇u|p dy∫
Bd(x) |u|p dy

. (6.6)

Proof. First, recall that Poincaré’s inequality says that, for every N � 1 and p � 2,∫
Bd(x)

|u − ū|p dy �
(

d

πp

)p ∫
Bd(x)

|∇u|p dy ∀u ∈ W 1,p(Bd(x)). (6.7)

Here,

ū :=
1

L(Bd)

∫
Bd(x)

u(y) dy,

and πp = 2π((p − 1)1/p/p sin(π/p)) is given by Esposito et al . [14]. When p = 2,
this best constant is given by Payne and Weinberger, as well as Bebendorf [6].

Next, let u ∈ W 1,p(Bd(x)) satisfy our hypotheses. Suppose that u � 0 and

1
L(Bd)

∫
Bd(x)

up dy = 1.
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Then we easily see that 0 < ū � 1 by Hölder’s inequality, and φ := 1−u ≡ 1 on K.
Note that φ̄ � 0. As ‖u‖p

p,Bd(x) = L(Bd) and ‖ū‖p
p,Bd(x) = ūpL(Bd), it follows that

0 � φ̄ = 1 − ū = [L(Bd)]−1/p{‖u‖p,Bd(x) − ‖ū‖p,Bd(x)}.

As 0 � ‖u‖p,Bd(x) − ‖ū‖p,Bd(x) � ‖u − ū‖p,Bd(x), by (6.7), one has

‖φ̄‖p
p,Bd(x) � ‖u − ū‖p

p,Bd(x) �
(

d

πp

)p

‖∇u‖p
p,Bd(x),

from which, and again with (6.7), we observe that

‖φ‖p
p,Bd(x) � 2p−1{‖φ − φ̄‖p

p,Bd(x) + ‖φ̄‖p
p,Bd(x)}

�
(

2d

πp

)p

‖∇u‖p
p,Bd(x). (6.8)

Finally, we can use the symmetry of Bd(x) to extend φ to a new function ψ in
RN such that ψ(y) := φ(y) when y ∈ B̄d(x), and

ψ(y) := φ

(
x + (y − x)

d2

|y − x|2

)
when y ∈ Bc

d(x) in every ray emanating from x. Thus,

‖ψ‖p
p,B3d(x) � c5‖φ‖p

p,Bd(x) and ‖|∇ψ|‖p
p,B3d(x) � c5‖|∇φ|‖p

p,Bd(x)

for a constant c5 > 0 independent of d (by the definition of a definite integral).
Let η ∈ C∞

c (B3d) satisfy η = 1 when |x| � d and η = 0 when |x| � 2d, with
‖|∇η|‖∞,RN � d−1. Then we have

Capp(K) � ‖|∇(ψη)|‖p
p,RN

� 2p−1
c5{‖|∇u|‖p

p,Bd(x) + ‖|∇η|‖p
∞,RN ‖φ‖p

p,Bd(x)},

which together with (6.8) yields estimate (6.6) for C6 = 2p−1c5[1 + (2/πp)p].

Proof of proposition 6.1. Let u ∈ W 1,p(Bd(x)) and let τ > 0. Set

Eτ := {y ∈ Bd(x) : |u(y)| � τ}.

As 0 � |u| � [|u| − τ ]+ + τ , we have

‖u‖p,Bd(x) � τ [L(Bd)]1/p + ‖|u| − τ‖p,Bd(x)\Eτ
,

so that
‖u‖p,Bd(x) � 2‖|u| − τu‖p,Bd(x)\Eτu

(6.9)

for τu := ‖u‖p,Bd(x)[L(Bd)]−1/p/2. When Capp(Eτu
) � ρ Capp(Bd) we can apply

(6.6) and (6.9) to the function [|u| − τu]+ � 0, which vanishes on Eτu , to observe
that

ρ Capp(Bd) � Capp(Eτu) � 2pC6L(Bd)

∫
Bd(x) |∇u|p dy∫
Bd(x) |u|p dy

.
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So, noting that Capp(Bd) = dN−p Capp(B1) and L(Bd) = dNL(B1), we derive
that ∫

Bd(x)
|u|p dy � C6L(B1)

Capp(B1)
(2d)p

ρ

∫
Bd(x)

|∇u|p dy.

When Capp(Eτu) � ρ Capp(Bd) we can follow [27, p. 936] to observe that∫
Bd(x)

|u|p dμ � τp
u{μ(Bd(x) \ Eτu

)} �
infF ∈Nρ

{μ(Bd(x) \ F )}
dN2pL(B1)

∫
Bd(x)

|u|p dy.

As a result, we are done with C5 = max{2pC6L(B1) Cap−1
p (B1), 2pL(B1)} > 0.

Now, we can follow [21, theorems 6.1 and 6.2] to show that condition (6.2) will
work.

First, when N � 3 and 2 � p < N , we use L(F ) � c1[Capp(F )]N/(N−p) to see
that, for d > 0, L(F ) � �L(Bd) implies that F ∈ Nρ, provided that � > 0 is
sufficiently small. In fact, we have

L(F ) � c1[Capp(F )]N/(N−p) � σdL(Bd) � σdc1[Capp(Bd)]N/(N−p), (6.10)

so that Capp(F ) � σ
(N−p)/N
d Capp(Bd), where � � σd < 1 are constants. When

N � 2 and p = N , one instead applies L(F )/L(B2d) � c6 CapN (F ) for an absolute
constant c6 > 0 (see [13, lemma VIII1.4]) to observe that L(F ) � �L(Bd) implies
that F ∈ Nρ again for sufficiently small � > 0, as

L(F )
L(B2d)

� c6 CapN (F ) � σd
L(Bd)
L(B2d)

� σdc6 CapN (Bd). (6.11)

All of these discussions indicate that (6.3) can be replaced by a stronger condition

inf
F ∈M�

{μ(Bd(x) \ F )} → ∞ when |x| → ∞. (6.12)

Here, μ is a measure on RN that is absolutely continuous with respect to the
Lebesgue measure, and M� is the family of F � Bd(x) such that L(F ) � �L(Bd)
for very small � ∈ (0, 1).

Finally, let dμ := b dx with b satisfying (6.2), and let F ∈ M� with L(Bd(x)\F ) �
3
4L(Bd). Then, for all M > 0, condition (6.2) implies that

L({y ∈ Bd(x) : b(y) � M} ∩ {Bd(x) \ F }) � 1
2L(Bd),

from which one deduces that

inf
F ∈M�

∫
Bd(x)\F

b(x) dx � 1
2ML(Bd).

That is, (6.12) is satisfied.
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