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Pressure fluctuations are an important ingredient in turbulence, e.g. in the pressure
strain terms which redistribute turbulence among the different fluctuating velocity
components. The variation of the pressure fluctuations inside a turbulent boundary
layer has hitherto been out of reach of experimental determination. The mechanisms
of non-local pressure-related coupling between the different regions of the boundary
layer have therefore remained poorly understood. One reason for this is the difficulty
inherent in measuring the fluctuating pressure. We have developed a new technique
to measure pressure fluctuations. In the present study, both mean and fluctuating
pressure, wall pressure, and streamwise velocity have been measured simultaneously in
turbulent boundary layers up to Reynolds numbers based on the momentum thickness
Rθ � 20 000. Results on mean and fluctuation distributions, spectra, Reynolds number
dependence, and correlation functions are reported. Also, an attempt is made to test,
for the first time, the existence of Kolmogorov’s −7/3 power-law scaling of the
pressure spectrum in the limit of high Reynolds numbers in a turbulent boundary
layer.

1. Introduction
There is an immense body of literature on the behaviour, distribution and scaling

of velocity fluctuations in turbulent boundary layers. However, so far very little is
known about the corresponding behaviour of pressure fluctuations. The main reason
for the lack of such results is that no measurement technique so far has been able to
measure this quantity inside the boundary layer.

On the other hand wall pressure measurements beneath a turbulent boundary layer
have been reported extensively. Extended reviews are given by Willmarth (1975),
Eckelmann (1989), and Bull (1996), in which several unresolved issues and questions
are summarized. One such point is the allowable ratio between the pressure transducer
size and the smallest length scale in the flow. It is well known that insufficient
resolution gives an attenuation of the spectrum in the high-frequency range. The
effect of spatial averaging on the wall pressure was carefully studied by Schewe (1983)
and correction methods have also been suggested (Corcos 1963). Recent progress has
been made by the application of very small sensors based on MEMS (micro-electro-
mecanical systems) technology. A survey of and outlook for microsensors can be
found in Löfdahl & Gad-el-Hak (1999).
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For incompressible flows, a Poisson equation for the pressure fluctuations is readily
derived from the Navier–Stokes equation. The source term is composed of two parts
with distinctly different character. One reflects the direct interaction between the
gradient of the mean velocity field and the gradient of the turbulent fluctuating
velocity field. The other part reflects turbulence–turbulence interaction. The two parts
generate what is often referred to as the rapid and slow parts, respectively, of the
pressure fluctuation field.

Early theoretical procedures relating a variety of pressure statistics to velocity
and velocity derivative statistics were presented about fifty years ago. Heisenberg
(1948), Obukhov (1949), Yaglom (1949), Batchelor (1951) and Inoue (1951) derived
the spectral form and Reynolds number dependence of statistical moments under
various assumptions. These results are summarized well in Monin & Yaglom (1971).
The form of the pressure spectrum in the inertial range has in particular been
the subject of many theoretical investigations. The direct parallel with the −5/3
Kolmogorov velocity fluctuation spectrum for the pressure field is a −7/3 region
for the wavenumber dependence. However, in shear flows mean-shear interaction
(and other factors) give other possibilities for the wavenumber dependence in this
region.

Pioneering experiments to measure pressure fluctuations were performed by Kobashi
(1957) and Kobashi, Kono & Nishi (1960), who measured the static pressure
fluctuation behind the wake of a cylinder using a microphone. This technique was
subsequently used by Toyoda, Okamoto & Shirahama (1993) for eduction of vortical
structures in a non-circular jet, Iida et al. (1998) for detecting the aerodynamic sound
source in the wake of a circular cylinder, and Naka et al. (2005) for evaluating the
velocity–pressure correlation in a turbulent mixing layer. Jones et al. (1979) measured
the one-dimensional power spectra of the turbulent static pressure fluctuations in the
driven mixing layer of a subsonic circular jet. They also reported a simple dimensional
analysis of the pressure spectrum in flows with mean shear. George, Beuther & Arndt
(1984) developed a spectral model for turbulent pressure fluctuations and observed
different types of power-law scaling forms for spectra from measurements in the
mixing layer of an axisymmetric jet.

Pressure and velocity fluctuations were measured simultaneously by Elliot (1972) in
an atmospheric boundary layer. He reported that the pressure spectra do not change
with height above the surface, and found a power-law behaviour with a mean slope
of −1.7 for high frequencies. A dominant feature of the pressure–velocity relationship
is that the large-scale pressure fluctuations are approximately in phase with the
streamwise velocity fluctuations. The effect of pressure forces on the energy flux from
the streamwise velocity fluctuations was evaluated. This intercomponent redistributive
energy flux was found to typically correspond to 0.45 of the streamwise turbulence
production term (i.e. the transfer of energy from the mean flow to the streamwise
fluctuating component). Albertson et al. (1998) also measured pressure fluctuations
in the atmospheric surface layer over a grassy forest clearing and observed pressure
spectra with a −1.5 power law.

Earlier experimental studies were focused on the shape of pressure spectra, but
lacked information on the variation of pressure intensity across the boundary layer.
Validation of experimentally obtained spectral data has been extremely difficult, but
Tsuji & Ishihara (2003) were able to compare the experimental results with direct
numerical simulation (DNS) data. They reported that the probability density function
of pressure matched that of DNS well, and a power law close to −7/3 was realized in
the range of Reynolds numbers based on the Taylor microscale (λ) and the intensity

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

60
76

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112007006076


Pressure statistics and their scaling at high Reynolds numbers 3

of the streamwise velocity fluctutations (ur.m.s.) Rλ � 600. These Reynolds numbers
are about a factor of three higher than those needed for the velocity fluctuations to
exhibit Kolmogorov scaling. They observed a spectral constant that is not universal
but depends on Reynolds number.

This Reynolds number dependence is in accordance with the results of Gotoh &
Rogallo (1999) who found that scaling of pressure and pressure gradient by Kolmo-
gorov units appears inappropriate. A theoretical explanation of the Reynolds number
dependence was given, which assumes that the small-scale pressure field is driven by
coherent small-scale vorticity–strain domains. Similar results were obtained by Hill
& Wilczak (1995) who derived a relationship between the pressure structure function
and the fourth-order two-point correlation of velocity derivatives without using the
joint Gaussian assumption. A modification of the spectral power-law exponent to
account for the effect of turbulence intermittency was derived.

Direct numerical simulations have made a significant contribution to revealing the
pressure characteristics in turbulence. For instance, Pumir (1994), Gotoh & Rogallo
(1999), Vedula & Yeung (1999), Cao, Chen & Doolen (1999), Gotoh & Fukayama
(2001), and Ishihara et al. (2003) have reported the statistical properties of pressure
in a periodic box. For Rλ � 732 Ishihara et al. (2003) found that pressure has a
power-law exponent different from that of the enstrophy and the energy dissipation
rate. Alvelius & Johansson (2000) performed large-eddy simulation (LES) of forced
anisotropic turbulence (at Rλ = 516) and identified a distinct −7/3 region in the
pressure spectrum which was somewhat smaller than the corresponding −5/3 region
for the velocity fluctuation spectrum. Pumir (1994) reported the pressure probability
density function (PDF), which has an exponential tail on the negative side. Pumir
observed this tail to be independent of Reynolds number for Rλ � 60. The joint
PDFs of strain, vorticity, and pressure show a strong asymmetry between positive
and negative pressure fluctuations.

Pressure fluctuations in a turbulent channel flow were investigated by Kim
(1989), who examined probability density distributions, power spectra, and two-point
correlations. When the pressure source term is divided into rapid (linear) and slow
(nonlinear) parts, he found that the slow pressure fluctuations dominate throughout
the channel except very near the wall. This result may appear somewhat unintuitive
in view of the high values of non-dimensional shear rate in the near-wall region, but
is a reflection of the non-local character of the pressure. Abe, Matsuo & Kawamura
(2005) later confirmed the same trend in channel flow up to Reτ =1020.

It has generally been found that the high-vorticity regions are strongly correlated
with the low-pressure regions, implying that the pressure is one of the candidates
to educe vortex structures (Kida & Miura 1998). Cadot, Douady & Couder (1995)
characterized the low-pressure filaments by studying the correlations between the
flow visualization and local measurement of pressure and velocity. The Lagrangian
particle acceleration, ai ≡ Dui/Dt = −ρ−1∂p/∂xi+ν∂2ui/∂xj∂xj , can be approximated
by the pressure derivative at sufficiently high Reynolds number. Voth, Satyanarayan
& Bodenschatz (1998) and La Porta et al. (2001) reported acceleration measurements
using a detector adapted from high-energy physics to track particles in a laboratory
water flow. They found that the Kolmogorov scaling of acceleration variance is
attained at high Reynolds numbers.

On the other hand Hill (2002) derived asymptotic formulae for fluid particle
acceleration ai , pressure gradient −ρ−1∂p/∂xi and viscous force ν∂2ui/∂xj∂xj . He
concluded that fluid particle acceleration does not obey Kolmogorov scaling at
any Reynolds number. Also Vedula & Yeung (1999) studied the scaling properties of
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acceleration statistics using DNS data up to Rλ = 230 and concluded that Kolmogorov
scaling was inappropriate.

The present study is the first attempt, as far as we know, to investigate the detailed
pressure statistics in high-Reynolds-number turbulent boundary layers. Some of the
results have been presented in Tsuji et al. (2005a). The accuracy of measured data is
examined carefully and compared with DNS by Skote (2001), who computed the zero-
pressure-gradient flow up to Reynolds numbers based on the momentum thickness
(θ) and the free-stream velocity Rθ = 716. We believe that the present study reveals
novel features of the pressure fluctuation field in high-Reynolds-number turbulent
boundary layers.

The paper is organized as follows. The basic equations related to the pressure field
are given in § 2 as well as a description of theoretical arguments for the scaling of the
pressure spectrum. In § 3, the experimental conditions are detailed and the yaw angle
effect, spatial resolution, resonance effect, and calibration methods are discussed in
Appendix A. The experimental results are presented and discussed in § 4, and in the
last section, we draw some final conclusions.

2. Theoretical considerations
2.1. Basic equation for pressure fluctuation

By taking the divergence of the Navier–Stokes equations, we obtain the Poisson
equation for the instantaneous pressure p̃,

1

ρ
∇2p̃ = − ∂ũi

∂xj

∂ũj

∂xi

, (2.1)

where ũi is the instantaneous velocity for the ith-component. The Reynolds
decomposition (p̃ = P +p, ũi = Ui + ui) of equation (2.1) leads to a Poisson equation
for p with two source terms:

1

ρ
∇2p = −2

∂Ui

∂xj

∂uj

∂xi

− ∂2

∂xi∂xj

(uiuj − 〈uiuj 〉), (2.2)

where 〈. . .〉 denotes the time average. On the basis of this equation, the fluctuating
pressure field can be decomposed into three contributions:

p = p(r) + p(s) + p(h). (2.3)

The rapid pressure p(r) satisfies

1

ρ
∇2p(r) = −2

∂Ui

∂xj

∂uj

∂xi

, (2.4)

the slow pressure p(s) satisfies

1

ρ
∇2p(s) = − ∂2

∂xi∂xj

(uiuj − 〈uiuj 〉), (2.5)

and the harmonic pressure p(h) (sometimes referred to as the Stokes pressure) satisfies
Laplace’s equation ∇2p(h) = 0. The rapid pressure is so called because it responds
immediately to a change in the mean velocity gradient and it dominates the slow
part in the rapid-distortion limit. The harmonic (or Stokes) part can be shown to
be negligible outside the immediate vicinity of the wall and is usually neglected. The
second term in equation (2.2) can also be written as (∂ui/∂xj )(∂uj/∂xi) which has
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Pressure statistics and their scaling at high Reynolds numbers 5

a strong form-similarity with the instantaneous dissipation-rate term. Accordingly,
there is a close correspondence between strong low-pressure regions and intense thin
vortical structures with high values of the dissipation rate (see e.g. Cadot et al. 1995).

2.2. Spectral scaling of the pressure

Kolmogorov presented hypotheses for small-scale statistics based on the idea of local
isotropy (Monin & Yaglom 1971; Sreenivasan & Antonia 1997). For the form of the
one-dimensional pressure spectrum Epp at high wavenumbers this implies,

Epp(k1) = ρ2〈ε〉3/4ν7/4φp(k1η), (2.6)

where φp is a non-dimensional function of the streamwise wavenumber (k1) normalized
by the Kolmogorov length scale η defined as η = (ν3/〈ε〉)1/4, where 〈ε〉 is the energy
dissipation rate per unit mass on average. Here, ρ and ν denote the fluid density and
the kinematic viscosity, respectively.

According to Kolmogorov’s idea the spectrum exhibits an inertial subrange (for
k1η � 1), when the Reynolds number becomes large, with a simpler form independent
of ν:

Epp(k1) = Kpρ2〈ε〉4/3k
−7/3
1 , (2.7)

where Kp is a universal constant.
The −7/3 power-law scaling was supported theoretically with various assumptions

in the 1950s by Batchelor (1951), Inoue (1951), and Obukhov & Yaglom (1951).
Recently, Tsuji & Ishihara (2003) have examined the pressure spectrum in fully
developed nearly isotropic turbulence in the centre of a plane jet for the Reynolds
number range of 200 � Rλ � 1200. A power-law exponent of the pressure spectrum
was systematically obtained by fitting the relation

Epp(k1) = K ′
pρ2〈ε〉3/4ν7/4(k1η)γp (2.8)

to the measured spectrum, where K ′
p is a non-dimensional quantity. The value of

γp that gave the broadest flat region for the normalized spectrum Epp/(k1η)γp was
determined for each case. They concluded that if the scaling exponent γp is plotted as
a function of Rλ, it indeed departs from −7/3 at low Reynolds numbers, but that the
exponent approaches −7/3 as the Reynolds number is increased. The −7/3 power-law
scaling was confirmed for Rλ � 600. This is a significantly higher Reynolds number
than needed for inertial-range scaling of velocity statistics. The pressure spectrum has
a noticeably narrower scaling region than the velocity, which is consistent with the
result that a higher Reynolds number is needed to realize a clear −7/3 power-law
scaling.

Not only the Reynolds number but also the shear effect is indispensable in
considering the power-law exponent. In this paper we examine the Kolmogorov
scaling of pressure in the turbulent boundary layer, and evaluate the effects of both
shear and Reynolds number in making γp deviate from −7/3. The spectral slope, for
γp determination, is carefully computed in § 4.2.3 and the procedure is outlined in
Appendix B.

2.3. Other models for spectral scaling

A scaling law for the velocity spectra was suggested by Townsend (1976) and was
further developed by Perry, Henbest & Chong (1986). The argument is based on
Townsend’s attached eddy hypothesis, which assumed that a turbulent boundary layer
may be modelled as a forest of hairpin or 
-shaped vortices. All eddies are not only
geometrically similar but have the same dependence on the distance from the wall.
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6 Y. Tsuji, J. H. M. Fransson, P. H. Alfredsson and A. V. Johansson

Using this idea in conjunction with dimensional analysis, scaling laws for the energy
spectra were derived.

Bradshaw (1967a) discussed the wall pressure spectra using this concept of attached
eddies. He divided the region y/δ < 0.2 (y being the wall-normal coordinate and δ

the boundary layer thickness) into two essentially independent parts: a high-intensity
vorticity-dominated inner layer and a region with large-scale inactive motion in the
outer layer. Assuming that the former part is universal with the friction velocity scale
uτ (= (τw/ρ)1/2, where τw is the wall shear stress) and the length scale y, a spec-
tral form, Epp ∼ k−1

1 , was suggested. Further theoretical discussions are in Panton &
Linebarger (1974).

The concept of the attached eddy hypothesis might be useful not only for the wall
pressure but also for the static pressure in the boundary layer. Here, the pressure
spectra are studied from the viewpoint of Perry’s scaling. Pressure is a non-local
quantity and it may be difficult to connect its origin to the 
-shaped vortices, but
we have found some positive correlation between streamwise velocity and pressure
fluctuation, which will be mentioned in the result section, and thus a similar
dimensional analysis may be convenient to use for investigation of the spectral
features of pressure.

For the large-scale eddies, viscosity has negligible influence and the spectrum in
the low-wavenumber region should only depend on uτ , k1, y, and δ. For our analysis
of experimental data the streamwise wavenumber is defined as k1 ≡ 2πf/U , where
f is the frequency and U the local mean velocity. A dimensional analysis gives the
spectrum of p at low wavenumbers as

Epp(k1)

ρ2u4
τ δ

= g1(k1δ). (2.9)

This is an ‘outer-flow’ scaling and it mainly describes the effects of large-scale eddies.
On the other hand, eddies of scale y will contribute to the intermediate-wavenumber
range (where viscosity still is of negligible influence) of the spectrum. Thus the
spectrum in this range should follow the scaling form

Epp(k1)

ρ2u4
τ y

= g2(k1y). (2.10)

It is expected that equations (2.9) and (2.10) will have a region of overlap (overlap
region I). From the dimensional requirement, in overlap region I, the spectra should
have the form g2(k1y)/g1(k1δ) = δ/y. Then one possible functional form is given by
Perry et al. (1986) as

g1(k1δ) =
A1

k1δ
, g2(k1y) =

A1

k1y
, (2.11)

where A1 is thought to be a universal constant. Thus the −1 power-law region can
be expected to be observed in the low-wavenumber range.

The small-scale motions, which contribute to the high-wavenumber range of the
spectrum, may be expected to follow the Kolmogorov scaling. Kolmogorov assumed
that these small-scale motions are locally isotropic, and that their energy content will
depend only on the local rate of turbulence energy dissipation and the kinematic
viscosity. Dimensional analysis leads to the spectral form

Epp(k1)

ρ2υ4η
= g3(k1η), (2.12)
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Pressure statistics and their scaling at high Reynolds numbers 7

Case U0 [m s−1] uτ [m s−1] ∆ [m] δ [mm] δ∗ [mm] θ [mm] Rθ

1 8.3 0.33 0.36 62.9 13.2 10.3 5870
2 11.5 0.43 0.34 59.8 12.6 9.4 7420
3 14.6 0.53 0.33 57.8 12.2 8.9 8920
4 17.9 0.63 0.33 56.5 11.8 8.6 10500
5 21.2 0.74 0.32 55.4 11.5 8.3 12100
6 24.4 0.84 0.32 55.3 11.2 8.2 13600
7 27.7 0.94 0.32 54.1 11.0 8.0 15200
8 30.8 1.04 0.31 53.6 10.7 7.9 16700
9 34.0 1.14 0.31 53.2 10.5 7.8 18300

Table 1. Characteristics of the boundary layer. The experiments are performed several times
for each condition. U0 is the free-stream velocity and uτ is the friction velocity. δ is the boundary
layer thickness taken at U (δ) = 0.95U0, θ is the momentum thickness, and δ∗ is the displacement
thickness. ∆ is the Rotta–Clauser boundary layer thickness defined as ∆ ≡

∫ ∞
0 (U0−U (y))/uτdy.

where υ is the Kolmogorov velocity scale defined as υ = (ν〈ε〉)1/4. It is expected that
equations (2.10) and (2.12) will have a region of overlap (overlap region II). In overlap
region II, referred to as the inertial subrange, the spectrum follows the Kolmogorov
scaling,

g3(k1η) =
Kp

(k1η)7/3
, (2.13)

where Kp is expected to be a universal constant (cf. equation (2.7)). In the spectral
overlap region II, (2.10) matches (2.13), where the form of the spectrum is given by

Epp(k1)

ρ2u4
τ y

=
B1

(k1y)7/3
. (2.14)

This spectral form is derived from the assumption that the distance from the wall
represents a position in the log-region (the physical overlap region), where the energy
dissipation rate can be evaluated by the relation 〈ε〉 = − 〈uv〉dU/dy, and −〈uv〉 = u2

τ .
In the log-region dU+/dy+ = A/y+. The constant B1 is hence equal to KpA4/3.

3. Experimental conditions
The experiments were performed in the MTL (Minimum Turbulence Level) wind

tunnel at KTH. This is a high-quality flow tunnel with a streamwise turbulence
intensity of less than 0.025 % and a total pressure variation less than ±0.06 %
across the test section at a free-stream velocity of 25 m s−1 (see Lindgren 2002, for
further details about the MTL wind tunnel). The present experimental conditions
are matched with those of Österlund (1999) which cover the Reynolds number range
2600 � Rθ � 26 700. In the present work we have utilized nine different Reynolds
numbers in the range 5870 � Rθ � 18 300 where the measurement station is 5.5 m
from the leading edge, and the boundary layer characteristics for the various cases
are summarized in table 1. Details of the experimental setup are not repeated here,
but given in Österlund (1999).

3.1. Boundary layer pressure measurements

The measurement of pressure fluctuations in the flow field is accomplished with
standard static pressure tube probes of different dimensions and with two different
sensors. See figure 1 for a sketch of the probe. In this experiment five different probe
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8 Y. Tsuji, J. H. M. Fransson, P. H. Alfredsson and A. V. Johansson

L2

L3

φ1

φ2h

L1 Lc

d

Figure 1. Schematic view of the static pressure probe.

Symbols in
figures 24–26 φ1 φ2 L1 L2 L3

probe 1 � 0.20 1.0 22.5 47.5 30.0
probe 2 © 0.15 0.5 15.5 27.5 16.0
probe 3 
 0.20 0.7 15.5 27.5 18.5
probe 4 � 0.40 1.0 22.5 47.5 30.0
probe 5 � 0.30 1.0 22.5 47.5 30.0

Table 2. Static pressure probe dimensions used in the present experiments (see figure 1 for a
sketch of the probe).

configurations are used, which are listed in table 2. This type of pressure probe has
previously been used by Kobashi (1957) and Toyoda et al. (1993); however, in the pre-
sent study the probe is much smaller than in the previous measurements (cf. Tsuji &
Ishihara 2003).

The probe body consists of two stainless steel tubes joined by threaded and screwed
junctions, with the windward tube cone-shaped and equipped with four static pinholes
spaced 90◦ in the circumferential direction and located a distance L1 from the tip.
This tube has pinhole diameters of φ1 mm, inner diameters of φ2 mm, and a material
tube thickness of h =0.05 mm.

The leeward tube has at its end one of the two sensors, which are a small
piezoresistive transducer and a standard quarter-inch condenser microphone with
diameters dT =1.6 mm and dM =7.0 mm, respectively. The transducer has a frequency
response from DC up to 150 kHz with a dynamic range of 0 ∼ 3.5 × 103 Pa, and
the maximum errors in linearity and hysteresis are 0.25 % of the measured value.
The microphone can measure in the frequency range 10 ∼ 70 × 103 Hz, where the
lower frequency limit is determined by its mechanical system. The dynamical range is
2 × 10−4 ∼ 3.2 × 103 Pa, implying that relatively small amplitudes can be measured.

A schematic view of the experimental set-up is shown in figure 2. Here, a specially
designed wall-normal traversing system is used, which protrudes from the plate and
allows traversing in the range 0 � y � 120 mm. Simultaneously with the static pressure
measurements the streamwise velocity component is acquired by means of a single hot
wire anemometer operated in constant-temperature mode. The hot wire is positioned
vertically and about 1.0 mm adjacent to the static pressure probe pinholes. In the
present context, static pressure fluctuation is sometimes referred to simply as pressure
fluctuation, and it is denoted ps .
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Pressure statistics and their scaling at high Reynolds numbers 9

Single hotwire

Static pressure probe

120 mm
4°

Microphone
(wall pressure)

5.5 m

Flow

Figure 2. Schematic view of the experimental set-up.

3.2. Wall pressure measurements

The pressure at the wall can be measured by various configurations and most involve
a pinhole in the boundary surface with a piezoelectric transducer or a microphone
mounted below. Bull (1996) classified different measurement configurations as follows:

(1) A condenser microphone mounted in a cavity behind the surface pinhole.
(2) A piezo-electric transducer mounted behind the pinhole.
(3) A piezo-electric transducer mounted behind the pinhole without a cavity.
(4) A piezo-electric transducer mounted behind the pinhole without a cavity, but

with the pinhole filled with silicone grease to restore a continuous boundary
surface.

(5) A piezo-electric transducer mounted flush with the boundary surface with no
surface discontinuity.

For mean pressure measurements at the wall, previous experiments have shown
that the pressure recorded through a pinhole is normally somewhat higher than the
‘true’ value. The pressure error, �pw ≡ (measured value)−(true value), depends on
the pinhole diameter d , the hole depth �, the diameter of the connection to the sensor
dc, the wall shear stress τw (= ρu2

τ ), the kinematic viscosity ν, and the characteristic
length scale of the facility D. Thus, the non-dimensional pressure error for a finite
hole size can be written as (Shaw 1960)

�pw

τw

= f

(
duτ

ν
,

d

D
,
�

d
,
dc

d

)
. (3.1)

Shaw noted that the non-dimensional pressure error is always positive but approaches
zero with decreasing d , increases with increasing d+ = duτ/ν but reaches an asymptotic
limit, and increases with �/d but asymptotes to a constant value when �/d approaches
1.5 ∼ 2.

The influence of pinholes, in flat-plate boundary layers, in measuring wall pressure
fluctuations has been reported by several investigators and with varied enthusiasm.
Bull (1996) concluded that pinholes are responsible for local flow disturbances leading
to errors in the measured data, while Farabee & Casarella (1986, 1991) and Gedney
& Leehey (1991) concluded that pinhole sensors are indeed effective for wall-pressure
measurements.

That the effect of the sensor’s spatial resolution is of primary importance was
pointed out by Keith, Hurdis & Abraham (1992). This was later supported
by Gravante et al. (1998) who reported that the allowable non-dimensional sensing
diameter to avoid spectral attenuation for frequencies up to f + = f ν/u2

τ = 1 is in the
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1/4 in.

100 mm

d = 0.3 mm

1 mm

Microphone

Figure 3. Schematic view of pinhole arrangement for wall pressure measurements.

range of 12 � d+ � 18. They compared the wall-pressure spectrum with that by Schewe
(1983) and the agreement was excellent. Since Schewe did not use a pinhole but instead
used the Sell type transducer technique, the coincidence of their spectra proves that
the pinhole is effective for wall-pressure measurements if reasonably small pinhole
sizes are used. Lueptow (1995) evaluated the pinhole size to be less than 20 viscous
wall units for an insignificant spectral attenuation.

On the use of pinholes for wall pressure measurements, in summary the following
criteria are required. (i) pinhole size should be small enough compared with the length
scale in the flow, that is d+ < 20; (ii) the aspect ratio �/d should satisfy the condition
�/d � 2; (iii) the effect of Helmholtz resonance should be removed or the resonance
frequency peak set in the high-frequency range; (iv) background noise correction
is necessary especially for low Reynolds number flow. In the present experiment,
wall-pressure fluctuations are measured by methods (1), (2), and (3) listed above. As
shown in figure 3 the 1/4 inch microphone is mounted in the cavity volume behind
the surface, which is arranged to be as small as possible. The pinhole diameter is
d =0.3 mm and its depth is � =1.0 mm. Hence the normalized pinhole diameter is
in the range 4.6 � d+ � 20.7 depending on Reynolds number, and the aspect ratio
is �/d = 3.33. Thus the error is estimated to be minimal. In this context, the wall
pressure fluctuation is denoted pw .

3.3. Calibration of static pressure probe

In this subsection we briefly summarize the main results from the static pressure
probe calibration. A detailed description of the calibration is given in Appendix A.

In order to achieve accurate measurements, both the mean and fluctuations of the
measured pressure signal are corrected according to the appropriate calibration. For
the mean pressure, the effect of pinhole size and tube thickness is corrected. The
amplitude ratio and phase delay in instantaneous pressure caused by the Helmholtz-
resonator is removed numerically from the measured signal. The present probe has
the following performance. Yaw angle effect is shown to be negligible in the range of
−5◦ � θ � 5◦. The standing wave generated inside the tube restricts the time frequency
response to below 10 kHz. The spatial resolution is around the Kolmogorov length
scale. Finally, the correction of background noise in the statistical sense can be
assumed to be negligible in the inner region. In the course of this experiment we used
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(×10–3)
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(a)
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(P0– P)/(ρu
τ
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(P0– P)/(ρU0
2)

Figure 4. (a) Mean pressure profile in the boundary layer in absolute terms. P0 is the wall
pressure. Distance from the wall y is normalized by the Rotta–Clauser thickness. (b) Same
data but normalized with twice the dynamic pressure. Symbols indicate the different Reynolds
numbers. �, Rθ = 5870; �, Rθ = 7420; �, Rθ = 8920; �, Rθ = 10 500; �, Rθ = 12 100; ×,
Rθ =13 600; �, Rθ = 15 200; �, Rθ = 16 700; �, Rθ = 18 300.

probe2 and probe3 (see table 2). For the wall pressure measurement, if there is a
cavity behind the surface pinhole, Helmholtz resonance is generated. Then the same
numerical correction is applied.

4. Results and discussion
4.1. Mean pressure profile

Mean pressure distributions are plotted in figure 4 for the nine different Reynolds
numbers listed in table 1. The distance from the wall, y, is normalized by the Rotta–
Clauser boundary layer thickness ∆ (see the caption of table 1), and the pressure
throughout the boundary layer P (y) is subtracted from a reference pressure P0. This
reference pressure was chosen to be the wall pressure since its position is well defined,
the access is continuous, and it gave the most consistent results. Under ideal condi-
tions the free-stream pressure should match the wall pressure, but as indicated
in figure 4 the wall pressure is slightly lower than the free-stream pressure. It
should be noted that the pressure differences are small, but when normalizing the
different Reynolds number data with their respective free-stream dynamic pressure the
distributions all collapse fairly well on top of each other, strengthening our confidence
in the measurements. Note that the mean pressure is affected by the wall up to y � 0.3∆

and that the peak of �PM =P0 − P is located around y � 0.05∆ (although there is a
tendency for the peak to move slightly away from the wall with increasing Reynolds
number). The boundary layer thickness, δ, can roughly be estimated as ∆/6.

The turbulent boundary layer momentum equation normal to the plate shows that
the mean static pressure P (y) varies with the distance from the wall as

P (y)/ρ ≈ P ∗
0 /ρ − 〈v2〉, (4.1)

if the streamwise Reynolds stress gradient is neglected compared to the cross-stream
gradient terms. Upon integration with respect to the wall-normal direction to obtain
(4.1) it can easily be shown that the Reynolds stress term is a few orders of magnitude
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0.5

0

Figure 5. (a) Root-mean-square vertical velocity fluctuation calculated by equation (4.1).
Same symbols as in figure 4 and solid lines are DNS by Skote (2001). (b) The peak position
in terms of wall variables of v+

r.m.s. as a function of Reynolds number, and dashed line is the
emperical relation y+

p = 0.071Rθ by Fernholz & Finley (1996). (c) Peak position normalized
with the Rotta–Clauser thickness.

below accessible measurement values. Here, P ∗
0 is the mean pressure in the free stream

and v is the velocity fluctuation component normal to the plate. The root mean
square (r.m.s.) distributions of the normal velocity are calculated from the above
relation, using P0 instead of P ∗

0 , and plotted in figure 5(a). The normalized fluctuation

level,
√

〈v2〉/uτ , is slightly larger than expected from direct v-measurements. This
discrepancy can, however, be explained by the uncertainty of �PM � O(10−1) Pa. Also,
the calibration curve only reflects the relative errors. There is still an uncertainty in
how accurately the mean static pressure is obtained with the Prandtl tube, as well
as in the effect of the connecting plastic tube (see Appendix A.2). The profiles are
similar to other direct measurements of vr.m.s. (cf. e.g. Österlund 1999). It seems that
the maximum level is fairly independent of the Reynolds number when scaled by
inner variables, which is shown in figure 6 where the X-wire probe data by Österlund
are plotted for comparison. In figure 5(b) the peak position of

√
〈v2〉/uτ , denoted y+

p ,
is plotted and its Reynolds number dependence illustrated. The dashed line is from
Fernholz & Finley (1996), and represents y+

p = 0.071Rθ . If, however, this position
is instead scaled with the Rotta–Clauser thickness it becomes fairly constant, only
slightly increasing with Reynolds number (see figure 5c). Since the logarithmic region
ends around y/∆ =0.03 it seems that the maximum of vr.m.s. is actually just outside
the logarithmic region.
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Figure 6. Maximum value of v+
r.m.s. as function of Reynolds number. ◦, Data from

figure 5(a); •, data from Österlund (1999).
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102 103 104101

p+
r.m.s.

101

(b)

R
θ

103 104

Figure 7. (a) Root-mean-square static pressure, normalized using inner variables: �, Rθ =
7420; �, Rθ = 8920; �, Rθ =10 500; �, Rθ = 12 100; ×, Rθ = 15 200. (b) Root-mean-square
averaged in the log region plotted with � versus the Reynolds number. Solid symbols indicate
the peak of p+

r.m.s. obtained by DNS: �, Skote (2001); �, Moser et al. (1999); �, Spalart (1988);
	, Eggels et al. (1994); 
, Abe et al. (2005). Solid and dashed lines are best fits for experiments
and DNS, respectively. For both p+

r.m.s. ∝ R0.24
θ . Dash-dotted line corresponds to the relation

p+
r.m.s.,max = 0.5ρu+2

r.m.s..

4.2. Statistical feature of pressure fluctuation

In this section, we analyse the static pressure fluctuations (ps). Root-mean-square
values and spectra are normalized by inner and outer variables, in order to investigate
the Reynolds number scaling.

4.2.1. Root-mean-square values

In figure 7(a) the r.m.s. of the pressure fluctuation is plotted versus the distance
from the wall in the Reynolds number range 7420 � Rθ � 15200. These data have
been corrected by removing the background noise according to equation (A 6). When
normalized using inner variables, p+

r.m.s. ≡ pr.m.s./(ρu2
τ ), there is a clear Rθ -dependence

throughout the boundary layer. The inner r.m.s. peak p+
r.m.s.,max is, according to DNS

results (Spalart 1988; Skote 2001), located around y+ � 30, and cannot be resolved in
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Figure 8. (a) Root-mean-square static pressure, normalized by twice the free-stream dynamic
presssure. Symbols as in figure 7. (b) Similar distributions obtained with DNS. Solid lines are
by Skote (2001) at Rθ = 450, 612, 716, and dashed lines are by Spalart (1988) at Rθ = 300,
670, 1410. Also plotted (�) are the experimental data for Rθ = 7420.

these experiments due to physical probe interaction with the wall. With the type of
probe used here one cannot get closer to the wall than y+ ≈ 40 and 90 for Rθ = 7420
and 15200, respectively.

Direct numerical simulations show that the maximum value p+
r.m.s.,max increases

as the Reynolds number increases. This Reynolds number dependence is shown in
figure 7(b), where the channel flow data by Moser, Kim & Mansour (1999), Abe et al.
(2005), the pipe flow data by Eggels et al. (1994) as well as the boundary layer data
by Spalart (1988), Skote (2001), are included for comparison. The channel flow data
show slightly lower p+

r.m.s.,max values than for the boundary layer. It is, however, not
clear whether this small difference has a physical meaning or not. If these distributions
are approximated by a power law, one finds p+

r.m.s.,max ∝ R0.24
θ .

The experimental data, plotted with circles in figure 7(b), have been obtained
by averaging the p+

r.m.s. data in the log-region. Following the investigation by
Österlund et al. (2000), the log-law region was evaluated to be 200 � y+ � 0.15δ+.
A similar Reynolds number dependence as for the DNS peak value, p+

r.m.s. ∝ R0.24
θ ,

is experimentally confirmed here. It is also emphasized that this Reynolds number
dependence is much stronger than that of streamwise intensity u+

r.m.s. or that of vertical
velocity component v+

r.m.s. (see e.g. Österlund 1999).
On the other hand, when the pressure r.m.s. is normalized by outer variables,

ρU 2
0 , and the distance from the wall with ∆, the profiles more or less collapse

on each other as shown in figure 8(a) for the same set of data as in figure 7(a).
Figure 8(b) shows the DNS results by Skote (2001) (Rθ = 450, 612, 716) and Spalart
(1988) (Rθ =360, 670, 1410) in comparison with experiment. We can see a Reynolds
number dependence when Rθ is small. The peak pr.m.s.,max/ρU 2

0 increases, and moves
closer to the wall in terms of y/∆ as the Reynolds number increases. The results
suggest that the Reynolds number dependence vanishes for Rθ > 7000 and that pr.m.s.

is scaled well by outer variables for high enough Rθ .
The logarithmic friction law for zero-pressure-gradient turbulent boundary layers

can be approximated (locally in Rθ ) by u2
τ /U 2

0 ∼ R−n
θ , where a suitable choice for n

is around 0.2 in the range 500<Rθ < 15 000. This implies that the Rθ dependence
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Figure 9. Static pressure spectra are plotted by inner-flow scaling: (a) Rθ = 5870 and
(b) Rθ = 12 100. The three rows correspond to the inner, the log, and the outer region which
are defined as y+ < 180, 200 � y+ � 0.15δ+

99, and 0.15δ99 � y � 0.8δ99, respectively. Here, δ99 is
the boundary layer thickness taken as U (δ99) = 0.99U0. The region of k1y where the solid
power-law line has the slope −1 corresponds to overlap region I. The region of k1y where the
dashed power-law line has the slope γp corresponds to overlap region II.

on the pressure r.m.s. maxima using outer scaling should be expected to be weak,
pr.m.s.,max/ρU 2

0 ∼ R0.04
θ .

4.2.2. Results on pressure spectra

Figure 9 shows the pressure spectra in the inner scaling. They are classified into
(1) an inner region, y+ < 180; (2) a log region, 200 � y+ � 0.15δ+

99; and (3) an
outer region, 0.15δ+

99 � y+ � 0.8δ+
99, for convenience. Here, δ99 is the boundary layer

thickness taken as U (δ99) = 0.99U0. We will study the Reynolds number dependence
in the different regions. In the wall region for Rθ = 5870, a power law with exponent
approximately −0.8 is confirmed for k1y � 1 and a steeper slope continues into the
high-wavenumber region. As the Reynolds number increases to Rθ = 12 100, we find
a −1 power law for k1y � 1. This may be the overlap region I predicted by equation
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(2.11). In the log region, the overlap region I becomes narrower than that of wall
region, and it is difficult to find the −1 scaling in the outer region.

For sufficiently large Reynolds numbers we find a variation close to the −1 power
law appearing in the static pressure spectrum. It is restricted to the low-wavenumber
range k1y < 1 and becomes larger in the inner region. Notably, a similar −1 scaling
region is seen in the wall pressure and this inverse power law becomes even clearer
near the wall.

Panton & Linebarger (1974) solved numerically the rapid pressure term in equation
(2.4) with some empirical results, and derived the −1 power law in the wall pressure
spectrum. The rapid pressure term is dominant very close to the wall, say in the
viscous sublayer, but it is not zero in the outer region. This is consistent with the
observation that the −1 law region exists even in the outer region although its scaling
range is very narrow.

In the overlap region II, following the Kolmogorov scaling, the spectrum has
the −7/3 power law; however, the scaling regions next to I in the wall region
exhibit a substantially lower value of the slope, −1.2 and −1.5 for Rθ = 5870 and
Rθ = 12 100, respectively. This power-law region becomes larger as the Reynolds
number increases. It is also noted that the spectra approximately collapse over a large
part of the wavenumber range. The spectra exhibit a rapid decrease for k1y > 10,
which is thought to be close to the dissipation range. In the outer region, the other
scaling regions with slope −1.4 for Rθ = 5870 and slope −1.6 for Rθ = 12 100 are
seen for k1y � 3. The spectra do not collapse for the low wavenumbers. Following
these observations, we may conclude that the Kolmogorov scaling in overlap region
II is not an appropriate description for the pressure fluctuation spectra. The failure
of Kolmogorov scaling may be caused by the mean shear effect; this point will be
discussed in more detail in the following subsection.

Other possible normalizations are represented by wall (inner) and outer variable
scaling. Figure 10 shows the spectra at y+ � 200 normalized by inner and outer varia-
bles. Inner scaling appears appropriate for the high-frequency region (f ν/u2

τ � 0.1)
and outer scaling for f ∆/U0 � 10. The power law with slope −1.2 is observed
for 3 × 10−3 � f ν/u2

τ � 8 × 10−2. It is extended to lower frequencies as the Reynolds
number increases. The insets show the spectra multiplied by the frequency in log-linear
coordinates. In the inner scaling, for instance, the vertical axis of (f ν/u2

τ )Epp/[ρ2u2
τ ν] is

plotted in a linear coordinate against the frequency f ν/u2
τ in a logarithmic coordinate.

The area below the curve corresponds to (pr.m.s./ρu2
τ )

2. Similarly, the area is equal to
(pr.m.s./ρU 2

0 )2 for outer scaling.
In the inner scaling, the most significant contribution to the r.m.s. is from the

range 10−4 � f + � 2 × 10−1, but the low-frequency content increases as Rθ increases.
Hence, p+

r.m.s. should increase with increasing Reynolds number. The pre-multiplied
spectra collapse well when outer scaling is used. This means that pr.m.s./ρU 2

0 is almost
independent of Reynolds number for y+ = 200.

At y/∆ =0.065 (figure 11, y/δ approximately 0.4) similar trends are confirmed. The
power-law region in the pressure spectrum becomes wide and a clear power law with
slope −1.6 is observed. We found that the static pressure fluctuation intensity inside
the boundary layer scales with outer variables. Close to the wall on the other hand,
say in the viscous sublayer, the outer scaling may not be appropriate. This point is
discussed in relation to the scaling of wall pressure.

4.2.3. Reynolds number and anisotropic effect for pressure spectra

Recent theoretical studies, numerical simulations, and experiments have revea-
led that the large-scale anisotropy caused by mean shear significantly affects the
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Figure 10. Static pressure spectra measured at y+ = 200 for Rθ = 5870, 7420, 8920, 10 500,
12 100, 15 200. The spectra are normalized by inner (a) and outer (b) variables. Insets in
(a) and (b) show the multiplied spectra, Epp/[ρ2u2

τ ν] × f ν/u2
τ and Epp/[ρ2∆U 3

0 ] × f ∆/U0,
respectively.

inertial-range statistics (Arad et al. 1998; Kurien et al. 2000; Shen & Warhaft 2000).
In the case of two-dimensional boundary layers, the essential parameter characterizing
the shear effect is the anisotropy or shear parameter (S∗) defined as

S∗ = (ν/〈ε〉)1/2S, (4.2)

where S is the mean velocity gradient, S ≡ dU/dy. S∗ is the ratio of the mean-shear
time scale to the smallest eddy time scale τη ≡ (ν/〈ε〉)1/2. Although S varies like � y−1

in the overlap region, S∗ behaves in a different way. Since 〈ε〉 behaves approximately
as y−1 in the log layer S∗ will decrease more slowly than S. We should, hence, expect
S∗ to vary approximately as y−1/2 with increasing distance from the wall (in the log
layer).

If S∗ is small, the level of anisotropy created by the mean shear might also
be expected to be small. There is some degree of uncertainty associated with the
evaluation of S∗, because it is difficult to accurately determine the energy dissipation
rate in laboratory experiments. Thus, the available data are restricted to the log
region. The simplest method is to adopt the isotropic condition, 〈ε〉i ≡ 15ν〈(∂u/∂x)2〉,
although this usually underestimates the true dissipation rate. Using the energy
balance, the dissipation rate equals the difference between the production and
diffusion terms. In a zero-pressure-gradient boundary layer, the dissipation term
is approximately equal to the production term, i.e. 〈ε〉p ≡ −〈uv〉(∂U/∂y). This relation
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Figure 11. Static pressure spectra measured at y/∆ = 0.065 for Rθ = 5870, 7420, 8920, 10 500,
12 100, 15 200. The spectra are normalized by inner (a) and outer (b) variables. Insets in (a) and
(b) show the multiplied spectra, Epp/[ρ2u2

τ ν]×f ν/u2
τ and Epp/[ρ2∆U 3

0 ]×f ∆/U0, respectively.

is usually adopted for convenience. However, the diffusion term is not negligible in
the overlap region, thus 〈ε〉p overestimates the true dissipation. In this analysis,
the dissipation rate is evaluated by plotting the normalized energy spectrum
Euu(k1)/[〈ε〉1/4ν5/4] against k1η, and it is matched with the spectrum from a direct
numerical simulation. In this way, the evaluated dissipation rate 〈ε〉e satisfies the
condition 〈ε〉i < 〈ε〉e < 〈ε〉p , and the normalized value 〈ε〉eL/u3

r.m.s. is O(1) in the
overlap region, where L is the integral length scale.

In the log region, both S∗ and Rλ are plotted in figure 12, where the different
symbols indicate the different Rθ . Away from the wall, S∗ decreases but Rλ increases;
in other words, S∗ is a decreasing function of Rλ for each Rθ . The solid line (a)
indicates the relation between S∗ and Rλ at the lower end the of log region (y+ � 180)
and the solid line (b) is the relation at the outer end of the log region (y/δ � 0.15). As
the Reynolds number Rθ increases, Rλ becomes larger and S∗ increases accordingly.
Therefore, as plotted by the solid lines in the figure, large Rλ is equivalent to large
S∗, and S∗ cannot be small for large Rλ. This trend is contrary to the case of rough-
wall boundary layers, Tsuji (2003), as plotted by the dashed line, in which S∗ is a
decreasing function of Rλ, and the relation S∗ ∝ R−1

λ is satisfied in the overlap region
for 4930 � Rθ � 13 100.

In the log region, we may expect the Kolmogorov scaling with a −7/3 power-law be-
haviour. However, the measured spectra for several Rθ in the range of 150 < Rλ < 400
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Figure 12. Relation between the shear parameter and the Reynolds number in the log region.
Symbols indicate different Reynolds numbers. �, Rθ = 5870; �, Rθ =7420; �, Rθ = 8920; �,
Rθ =10 500; �, Rθ = 12 100; �, Rθ = 13 600; ×, Rθ = 15 200; �◦ , Rθ = 16 700. The solid line
(a) indicates the relation between S∗ and Rλ at the lower end of the log region (y+ � 180)
and solid line (b) at the outer end of the log region (y/δ � 0.15). Dashed line is the case of
a rough-wall boundary layer (Tsuji 2003), in which the relation S∗ ∝ R−1

λ is satisfied in the
overlap region for 4930 � Rθ � 13 100.

did not follow the Kolmogorov scaling (not shown here). There is no evidence that
the power-law exponent approaches −7/3, nor that the spectra collapse, so the
Kolmogorov scaling is not satisfied. Compared with the result for the centreline of
a turbulent jet (Tsuji & Ishihara 2003), which is close to the homogeneous isotropic
condition, the pressure spectra in the shear flow widely differ from equation (2.7).
This is likely to be due to the shear effect, which is present in the boundary layer
case.

The exponent γp evaluated by equation (2.8) is plotted against Rλ and S∗ in figure 13.
The second overlap region II, as discussed in figure 9, starts in 0.1 <k1y and might
end before the dissipation range, k1η < 0.1. The slope γp is obtained by computing the
local slope of the spectrum. In the logarithmic coordinates the part where the local
slope is constant corresponds to the power-law region. We compute the exponent
γp by averaging the local slope. The error associated with this evaluation and other
details are discussed in Appendix B. The symbols correspond to the different Rθ .
The dashed line is the result for S∗ = 0 measured on the centreline of a turbulent jet.
γp is a decreasing function of Rλ for a fixed value of Rθ . For the present boundary
layer case, however, γp deviates substantially from the isotropic value of −7/3 even
at high values of Rλ, and it also differs from the value obtained for the turbulent jet.
This trend is better understood with the help of figure 13(b), where γp is plotted as a
function of S∗. γp is less dependent on Rθ and is an increasing function of S∗. The
solid line is the least-square fit,

γp = 0.8 log10 S∗ − 0.7. (4.3)

Velocity spectra, on the other hand, have the scaling exponent γu defined by

Euu(k1) = Ku
′〈ε〉1/4ν5/4(k1η)γu , (4.4)
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Figure 13. (a) The power-law exponent of the pressure spectrum in the log region against
the Reynolds number. The dashed line is S∗ = 0 measured in the centreline of a turbulent
jet. (b) The power-law exponent of the pressure spectrum in the log region against the shear
parameter. Solid line is equation (4.3) obtained by a least-square fit to the data. (c) The
power-law exponent of the velocity spectrum in the log region against the shear parameter.
Solid line is equation (4.5) obtained by a least-square fit to the data. Symbols indicate the
different Reynolds numbers. �, Rθ = 5870; �, Rθ = 7420; �, Rθ =8920; �, Rθ = 10 500; �,
Rθ = 12 100; �, Rθ =13 600; ×, Rθ = 15 200.

and in the log-law region the variation of γu as a function of S∗ is given by

γu = 0.45 log10 S∗ − 0.95. (4.5)

Thus, the exponents do indeed depart from the isotropic values γp = −7/3 and
γu = −5/3 for large S∗. The data indicate that the shear effect is more significant for
the pressure, that is, the pressure exponent changes more rapidly than that of the
velocity. Extending these solid lines, local isotropy is expected to become realized for
S∗ � O(10−2). Hence, we conclude that local isotropy is not restored in the inertial
range even if Rθ is O(104). This is the reason why we cannot observe the Kolmogorov
scaling in the overlap region II. In the present experiment we believe that the observed
γp > −7/3 is mainly due to the fact that Reynolds number is too small for a given S∗,
which causes the anisotropic contribution to dominate the pressure fluctuation. For
a smooth wall it is not possible to increase Rλ while keeping S∗ small in the overlap
region. Therefore, local isotropic conditions may not be achieved in this region. One
possibility to achieve local isotropy is to use a rough wall, thereby increasing the
turbulence intensity near the wall.

4.3. Statistical features of wall pressure

In this section, we analyse the wall pressure fluctuations, and investigate Reynolds
number scaling behaviour of root-mean-square values and spectra.
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Figure 14. Root-mean-square wall pressure normalized by (a) inner scaling, (b) mixed scaling,
(c) outer scaling, as a function of Reynolds number. �, Present results (transducer); �,
Present results (microphone); �, Skote (2001) (DNS, boundary layer); �, Spalart (1988) (DNS,
boundary layer); �, Moser et al. (1999) (DNS, channel flow); 	, Abe et al. (2005) (DNS,
channel flow); �, Schewe (1983) (boundary layer, d+ = 19); ×, Nepomuceno & Lueptow
(1997) (pipe flow, d+ = 21); �, Gravante et al. (1998) (boundary layer, 2< d+ < 27); − − −−,
(p+

r.m.s.)
2 = 6.5 + 1.86 ln(Rτ/333) (Farabee & Casarella 1991).

4.3.1. Root-mean-square values

The wall pressure was measured by methods (1)–(3) mentioned in § 3. The amplitude
difference and phase delay were corrected by the method mentioned in Appendix A.3.
The r.m.s. of the measured wall pressure, where the background noise evaluated by
equation (A 6) is removed, is plotted in figure 14. Previous results are plotted for
comparison, but only data for which the pinhole has a sensitive diameter less than 30
viscous wall units (d+ < 30) are shown. Here, the pressure fluctuations are normalized
with inner, outer and mixed scaling. For the inner scaling, wall pressure r.m.s., p+

r.m.s.,
increases slowly with increasing Reynolds number. The relation given by Farabee &
Casarella (1991), (p+

r.m.s.)
2 = 6.5 + 1.86 ln(Rτ/333), is also indicated as a dashed curve

where the Rτ -dependence term was evaluated by integrating the spectra in the inverse
power-law region 100/Rτ � ων/u2

τ � 0.3. The functional form (p+
r.m.s.)

2 ∝ ln(Rτ ) was
first proposed by Bradshaw (1967a) but from comparison with the experimental data
it appears to underestimate the Reynolds number dependence. The behaviour of
pr.m.s. normalized by outer variables is shown in figure 14(c) and is seen to decrease
as the Reynolds number increases but appears to reach an asymptotic value for
high Rθ . The decreasing trend at moderate Rθ was also observed by Gravante et al.
(1998). However, it is seen that by normalizing the pressure with the mixed scaling
(figure 14b) we obtain an overall small variation of the normalized r.m.s. level, but
for high Rθ , it tends to increase slightly.
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Figure 15. Wall pressure spectra normalized by (a) inner, (b) mixed and (c) outer variables
in the range of 5870 � Rθ � 16 700. The result of Gravante et al. (1998) at Rθ = 7076 is plotted
with a dashed line in (a) for comparison. Insets in (a), (b) and (c) show the multiplied spectra,

Epp/[ρ2u2
τ ν] × f ν/u2

τ , E
(M)
pp × f (M) and Epp/[ρ2∆U 3

0 ] × f ∆/U0, respectively.

4.3.2. Spectral scaling of wall pressure

Figure 15 shows the wall pressure spectra normalized by inner, mixed, and
outer variables. As is evident from equation (2.1), wall pressure is coupled to the
velocity fluctuations throughout the boundary layer. It is generally believed that the
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spectral contributions at high frequencies result from the velocity fluctuations in the
wall region and the contributions at low frequencies are the result of large-scale
velocity fluctuations that extend across the boundary layer. Separate non-dimensional
parameters are therefore required for scaling the low- and high-frequency portions
of the spectra. The scaling regions are usually classified as: (1) low-frequency range,
spectra typically show the f 2 behaviour; (2) mid-frequency range; (3) universal
range, with an f −1 relation; and (4) high-frequency range. The wall pressure spectra
normalized by inner variables are shown in figure 15(a). The high-frequency region of
the spectra scale with inner variables, indicating that the wall region of the boundary
layer is the dominant source of the high-frequency pressure fluctuations.

Bradshaw (1967b) predicted a region where spectra collapse on both inner and
outer variables. This region exhibits an f −1 behaviour, which can be associated
with pressure sources in the logarithmic part of the boundary layer. Panton &
Linebarger (1974) estimated the −1 power-law region to exist for Reynolds numbers,
Rτ > 1000. In the time–frequency spectrum, Farabee & Casarella (1986) presented the
estimation of the overlap region as 100/(2πRτ ) � f + � 0.3/2π, which is realized for
Rτ � 333.

The current results show that a significant portion of the spectra exhibits a
power-law behaviour, but with an exponent close to −0.7. This is observed over
0.002 � f + � 0.03, for the highest Rθ . It becomes narrower as the Reynolds number
decreases. The spectrum measured by Gravante et al. (1998) for Rθ = 7076 is shown
by the dashed line. No extended f −1 scaling region is explicitly evident in their data,
either. We are led to assume that an overlap region with the −1 power of the spectrum
slope is beyond the reach of laboratory measurements. Klewicki et al. (2005), on the
other hand, demonstrated wall pressure measurements in a boundary layer developed
over the salt playa of the Utah desert. A clear −1 power law behaviour was observed
at Rτ � O(106).

The spectra normalized by outer variables are shown in figure 15(c). The low-
frequency range for 0.2 � f ∆/U0 � 10 is scaled well in the sense that there is no
Reynolds number dependence. The asymptotic behaviour of normalized pressure
variance, pr.m.s./ρU 2

0 , is coupled to the scaling of this low-frequency range, since the
most energetic contributions to pr.m.s. are associated with f ∆/U0 � 20.

The insets show the spectra multiplied by the frequency as in figure 10. Outer
scaling only collapses the high-Rθ spectra in the low-frequency region. Mixed scaling
gives the least dependence on the Reynolds number if one considers the overall
collapse, but inner scaling gives the best collapse in the high-frequency regime. Wall
pressure spectra illustrate well the influence on the near-wall region, not only from the
small-scale, near-wall motions, but also from the large-scale motions that extend over
a substantial part of the boundary layer. The scaling behaviour with an approximate
overall collapse with mixed scaling reflects this interaction process between the outer
flow and the flow in the near-wall region. In this context, note that Alfredsson &
Johansson (1984) found that the governing time scale for the frequency of occurrence
of shear layer structures in the near-wall region to be a mixture (the geometric mean)
of inner and outer time scales.

In comparison with the static pressure spectra (figure 9), the overlap region II
where the spectra show a slope of −1.2 matches partly the −0.7 power law region
in wall pressure. When the Reynolds number becomes large enough, the former
region is expected to exhibit a −7/3 power law and the latter a −1 slope. Several
researches (e.g. Schewe 1983; Farabee & Casarella 1991; Gravante et al. 1998) have
predicted the existence of a −7/3 power law of the wall pressure spectrum, but there
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Figure 16. Probability density function of wall pressure fluctuation. Symbols indicate different
Reynolds numbers. Dotted line is Gaussian. �, Rθ = 5870; �, Rθ = 7420; �, Rθ = 10 500; �,
Rθ = 13 600; �◦ , Rθ = 16 700.

is no indication of such behaviour in the present data or in the data of an atmospheric
boundary layer (Klewicki, Perkins & Metzge 2005). These experimental facts may
indicate that a −7/3 power law might not be realized in the wall pressure spectra
even for high-Reynolds-number flows.

4.4. Probability density function of ps and pw

The probability density function (PDF) of the wall pressure fluctuations pw is shown
in figure 16. The pressure is normalized by its standard deviation σ . Around the
centre p/σ � 0, the probability is larger than the Gaussian distribution. In the range
5870 � Rθ � 16 700, PDFs show little Reynolds number dependence. In the tail parts,
the PDF shape deviates significantly from Gaussian and it is closer to an exponential
form. The negative tail part shows a weak Reynolds number trend that is somewhat
more distinct than for the positive side. The skewness is about −0.05 for Rθ = 5870 but
gradually increases up to 0.09 for Rθ = 16700. Flatness is monotonically decreasing
from 5.2 to 4.5. The probability distribution of wall pressure by Schewe (1983) for
the smallest transducer (d+ = 19) shows an asymmetry such that the events with
large negative amplitude occur more frequently, hence are associated with a negative
skewness. This asymmetry is discussed further in a later section. The relatively high
value of the flatness signifies the existence of rare high-amplitude wall pressure peaks
associated with the tails of the PDF.

Figure 17 shows the static pressure PDFs at several locations across the boundary
layer (0.0074 � y/∆ � 0.163) at Rθ =10 500. Around the centre, the maximum
probability occurs for a slightly positive p-value. The maximum is larger than the
Gaussian value, and the dependence on the location y/∆ seems to be weak. In the tail
parts, the negative side deviates significantly from Gaussian, which is similar to the
PDF of pw . It is, however, noted that the positive side increases as y/∆ decreases.
That is, the positive tail deviates from the Gaussian value as the wall is approached.
The wall pressure PDF at the same Reynolds number is indicated by the solid
line. The negative tail of the wall pressure coincides with the negative tails of the
static pressure PDFs. The positive tails of static pressure tend to asymptote towards
the positive tail of the wall pressure as y/∆ goes to zero.

For comparison, we also plot the PDF measured on the centreline of a free jet
by Tsuji & Ishihara (2003), indicated by the dashed line. This PDF bears a striking
resemblance to the PDF of homogeneous isotropic turbulence. Around the centre
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Figure 17. Probability density function of static pressure fluctuation at Rθ = 10 500. Symbols
indicate different positions from the wall. Solid line is the PDF of wall pressure at the same
Reynolds number. Dashed line indicates the PDF measured on the centreline of a jet at
Rλ = 320 (Tsuji & Ishihara 2003). Dotted line is Gaussian. �, y/∆ = 0.0074 (y+ = 104.9);
�, y/∆ = 0.013 (y+ = 188.8); �, y/∆ = 0.024 (y+ = 333.5); �, y/∆ = 0.036 (y+ = 503.7); �,
y/∆ = 0.059 (y+ = 839.5); ×, y/∆ = 0.109 (y+ = 1553.1); �, y/∆ = 0.163 (y+ = 2392.5).

region, the peak is higher than for the Gaussian and the peak is located on the
positive pressure side. It is strikingly similar to the static pressure PDFs in the outer
region of the boundary layer. In the negative tail part, this PDF matches those of
both static pressure ps and wall pressure pw in the boundary layer, but in the positive
tail, the PDF from the jet is closer to the Gaussian distribution. We may conclude
that the shear effect predominantly appears for positive pressure fluctuations, and
causes the positive tail to deviate from the Gaussian distribution.

According to the decomposition of p in equation (2.3), the mean velocity gradient
is included in the source term of the rapid pressure p(r), which means that p(r) is
directly affected by the shear. It may be assumed that the positive large-amplitude
pressure fluctuations observed near the wall are associated with the rapid pressure
term, since we have observed that the positive PDF tail is very close to Gaussian in
the case of ∂U/∂y = 0 (homogeneous isotropic flow). The larger the shear, the more
significant deviation from Gaussian behaviour is observed.

The higher-order moments, skewness and flatness, of the pressure were computed
and were found to be approximately −0.35 and 4.6, respectively, in the log region.
Furthermore, their Reynolds number dependence was found to be small. Thus the
pressure PDF may exhibit a self-similar shape in the log region if the fluctuations are
normalized by their standard deviation. For the streamwise velocity fluctuation, we
have already documented the invariant PDF shapes in the overlap region (Lindgren,
Johansson & Tsuji 2004; Tsuji, Lindgren & Johansson 2005b). It is interesting that
not only velocity but also pressure fluctuations may have a universal PDF shape in
the overlap region.

4.5. Correlation between static and wall pressure

The correlation between wall pressure and static pressure is plotted in figure 18 for
different Reynolds numbers. The background noise evaluated by equation (A 6) is
removed from the measured data. One may conclude first that a positive correlation is
observed across the entire boundary layer. Secondly, there is no significant Reynolds
number dependence for Rθ > 7000 when the distance from the wall is scaled by ∆. The
same correlation along the normal direction was computed by Kim (1989, figure 15a),
in which the positive correlation remains even on the channel centreline. He also
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Figure 18. Correlation coefficient between wall pressure and static pressure throughout the
boundary layer. Symbols indicate the experimental results: �, Rθ =5870; �, Rθ = 7420; �,
Rθ = 8920; �, Rθ =10 500; �, Rθ = 12 100; ×, Rθ = 13 600.
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Figure 19. Contour plot of the correlation coefficient between wall pressure and static
pressure in the x, y-plane. (a) Rθ = 5870, (b) Rθ = 13 600.

noted that the correlation length for the pressure along the normal direction is much
larger than for the velocity quantities. Here, we cannot compare quantitatively with
the result by Kim, because the flow field is different. However we emphasize that the
positive correlation remains even far from the wall.

There are many reports on the correlation of velocity and wall pressure fluctuations.
Panton et al. (1980) made wall pressure as well as velocity measurements inside and
outside a turbulent boundary layer developed on the fuselage of a glider airplane.
They found that the velocity fluctuations maintained a strong correlation with the
wall pressure even where the r.m.s. value of the velocity in the non-turbulent region
was less than or equal to 0.45 %. Kobashi, Komoda & Ichijo (1984) and Kobashi
& Ichijo (1986) repeated the wall pressure–velocity correlation measurements. They
classified at least two kinds of wall pressure fluctuations. One is associated with the
large-scale structures that originate from the outer part of the boundary layer. The
other is the small-scale fluctuations (typically called sweep, ejection, and burst) which
are limited to the wall region. These experimental results indicate that the positive
correlation between ps and pw , which remains outside the boundary layer, may be
attributed to the large-scale structures.

Contours of the two-point correlation between ps and pw as a function of stream-
wise and normal separation are plotted in figure 19. Using the Taylor hypothesis,
the streamwise distance is computed by the relation x = −τU (y), where τ is a time
lag and U (y) is the local mean velocity. It is noted that the maximum correlation is
restricted to the near-wall region, but the positive correlation extends far from the
wall. This shows clearly that two different types of events contribute the wall pressure

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

60
76

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112007006076


Pressure statistics and their scaling at high Reynolds numbers 27

as pointed out by Kobashi et al. (1984) and Kobashi & Ichijo (1986). Kim also noted
that this correlation extends far in the wall-normal direction in channel flow (Kim
1989, figure 13a).

Abe et al. (2005) found large-scale structures which become elongated in the z-
direction with a streamwise spacing of about 2δ. They are located around the channel
centre but have a substantial correlation with the wall pressure.

By conditional averaging of the wall pressure and the streamwise velocity at various
wall distances, Johansson, Alfredsson & Kim (1991) showed that the positive wall
pressure peaks are related to shear layers in the buffer region and are associated with
the rapid source term. The dominant contribution from the rapid term is restricted
to the buffer region. For negative wall pressure peaks, however, no coupling to the
shear layers was found. The relationship between the wall pressure and shear layers
detected by the VITA technique at various wall distance was also investigated by
Tanifuji et al. (1986) in pipe flow, who confirmed that the shear layers in the buffer
region are major contributors to the sharp positive wall pressure peaks. This was
further confirmed by Jeong et al. (1997) from a somewhat different point of view.

A more general definition of such small-scale high-vorticity coherent structures (CS)
was given by Kida & Miura (1998). These structures exist generally in turbulence,
and it is noted that the pressure becomes negative in the centre of the CS (vortex
filaments). The negative pressure tail is likely to be associated with such small-scale
CS, partly since the negative tail form is almost independent of the flow field as
indicated in figure 17.

Although the present measurements cannot reach into the buffer region, we may
compute the contours of ps conditioned by large positive and negative wall pressure
peaks which are larger than four times the r.m.s. values. Referring to figure 15, we
divide the frequency range of ps into three parts: (a) a low-frequency range before
the start of the −0.7 power-low region, f + � 2 × 10−3; (b) a frequency range up to
the end of the −0.7 power law region, f + � 2 × 10−2; (c) a high-frequency range,
f + � 2×10−2. The low-frequency range (a) of ps is independent of large wall pressure
peaks. A weak correlation is observed in the range of (b) across the boundary layer.
Both positive and negative peaks have a similar correlation to ps . On the other hand,
wall pressure spikes have a strong correlation with the frequency range (c). Although
restricted to the region below the log region, the negative peaks indicate a stronger
correlation with ps . Also, the ratios r.m.s.+p /r.m.s. and r.m.s.−p /r.m.s., where r.m.s.+p
indicates the contribution from positive pressure peaks and r.m.s.−p from negative
peaks, are computed. We can say that the large-amplitude wall pressure event has
a strong correlation at least up to the end of the log region. This indicates that the
pressure correlation extends further than the velocity correlation.

Schewe (1983) estimated the location of the effective source terms for the pressure
in terms of the distance from the wall. He found them to be centred at y+ =21
where the mean velocity is equal to the propagation velocity of pressure at the wall.
In the DNS by Kim (1989), it corresponds to y+ � 23 with U = 13uτ . Kim (1989)
also found that this approximately coincides with the location where the mean-square
source term has its maximum. It is interesting to note that Schewe’s estimation
approximately matches the location of the maximum of the mean-square source term.
If we assume that the dominating contributions to this source term are associated
with vortex-like structures (Kim 1989), it would suggest that the most intense wall
pressure fluctuations can be connected to vortex structures present near y+ � 20.
This is consistent with Alfredsson, Johansson & Kim (1988) who reported that a
large pressure peak is typically found underneath the internal shear-layer structure
responsible for much of the turbulence production in the wall region.
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Figure 20. Cross-spectra of wall pressure and static pressure for Rθ = 7420 at
y+ = 57, 100, 171, 285. Grey line indicates the wall pressure spectra for Rθ =7420.

Here, we focus on the source term associated with the −1 power-law region. Panton
& Linebarger (1974) concluded that such a source term is predominantly located in
the log region and outer part of the buffer layer: 33.2 � y+, y/δ � 0.2. In figure 20,
the cross-spectra defined by

〈pwps〉 =

∫ +∞

0

Rpwps
(f ) df. (4.6)

are plotted at different locations from the wall. The Reynolds number is Rθ = 7420
and the upper end of log region is y+ � 300. The wall pressure spectrum at the same
Reynolds number is plotted for comparison. In this experiment the Reynolds number
is not high enough to generate a −1 power law. The slope is approximately −0.7.
Small-scale correlation associated with f + � 2×10−2 rapidly decreases as the distance
from the wall increases. The contribution to the −0.7 power law is seen to originate
from positions up to the end of the log region. Bradshaw (1967a) assumed that if yk

is the distance from the wall at which the mean velocity is equal to the convective
velocity for a given wavenumber k1, then k1yk � 1. This is approximately satisfied in the
present cross-spectra. At the upper end of the log region (y+ ≈ 300), the normalized
wavenumber is k+

1 � 1/y+ = 1/300, and the corresponding frequency becomes
f +

1 =Uc/(2π)k+
1 � Uc/(2π)/y+. Although the convective velocity Uc is not constant but

a function of k1, assuming the relation Uc = 0.7U0 (Kim 1989), we have f +
1 ≈ 3.3×10−3.

This corresponds well to the lower end of −0.7 power-law region in figure 20.

4.6. Velocity and pressure correlation

Streamwise velocity and pressure fluctuations were measured simultaneously in one
series of measurements. First, we consider the ratio C1 = pr.m.s./(ρu2

r.m.s.). Using a
quasi-normal assumption the ratio C1 can be derived theoretically. It was estimated
by Hinze (1975) to be about 0.7 and by Batchelor (1951) to be C1 ≈ 0.58. Recent DNS
data for homogeneous isotropic turbulence suggest 0.8 � C1 � 1.0 for Rλ < 300 but
a weak dependence on Reynolds number has been observed in isotropic turbulence
(Gotoh & Fukayama 2001; Vedula & Yeung 1999; Cao et al. 1999). This ratio was
measured experimentally by Tsuji & Ishihara (2003) and Tsuji & Ishihara (2006) on
the centreline of a free jet, where C1 is about 0.7 for low Reynolds numbers. In the
boundary layer, plotted in figure 21, C1 is found to be dependent on the distance
from the wall. The ratio is unity in the overlap region, but rapidly increases in the
wake region. In comparison with DNS by Skote (2001), plotted by the solid line, the
C1-values match in the overlap region. The ratio takes the smallest value at y+ � 10,
and it also rapidly increases close to the wall.
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Figure 21. Root-mean-square static pressure normalized by the intensity of streamwise
velocity fluctuation. Solid line is DNS by Skote (2001) at Rθ = 716. Symbols indicate the
experimental results: �, Rθ =5870; �, Rθ = 7420; �, Rθ = 8920; �, Rθ =10 500; �, Rθ = 12 100;
×, Rθ = 13 600.
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Figure 22. Correlation coefficient between streamwise velocity and pressure throughout the
boundary layer. (a) Experimental results: �, Rθ = 5870; �, Rθ = 7420; �, Rθ = 8920; �,
Rθ =10 500; �, Rθ = 12 100; ×, Rθ = 13 600. (b) DNS by Skote (2001). �, Rθ = 383; �, Rθ = 538;
�, Rθ = 612; ×, Rθ = 712.

The maximum p+
r.m.s. is around y+ = 30, and the ratio pr.m.s./ρu2

r.m.s. is about 0.5
at this location as indicated in figure 21. We can estimate pr.m.s.,max using relation
p+

r.m.s.,max = 0.5ρu+2
r.m.s. if the maximum of u+

r.m.s. is evaluated to be u+
r.m.s.,max = 2.65 +

2.5Rθ/105 for 2000 � Rθ � 10 000 (Österlund 1999). p+
r.m.s.,max estimated in this way is

plotted in figure 7 as a dash-dotted line. The values fall close to the extension of the
low-Reynolds-number DNS results.

The correlation between the static pressure and the streamwise velocity fluctuations,
〈pu〉/(pr.m.s.ur.m.s.), is plotted in figure 22. Three significant features can be seen. First,
the correlations show a local minimum value at y/∆ � 0.05. Secondly, the maximum
correlation is located around the boundary layer thickness, y � 0.2∆ (∆ ≈ 6δ, ⇒
y � 1.2δ). Thirdly, the correlation becomes negative in the free-stream region. These
trends are also clearly seen in the joint probability density function of ps and u

(figure 23). In the overlap region (at y/∆ =0.095), the contours form an elliptical
distribution and the highest probability exists in the first quadrant. This tendency
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Figure 23. Joint probability density function for static pressure and streamwise velocity
fluctuation at Rθ = 8920. Axes are normalized by their standard deviations. (a) y/∆ =0.033,
(b) y/∆ = 0.095, (c) y/∆ = 0.20, (d) y/∆ =0.27.

becomes strong at y/∆ =0.20 where the correlation is a maximum. The most probable
events are positive u fluctuations accompanied with positive ps . In the free-stream
region, the contour is distorted because the velocity fluctuations become very small.
This indicates a negative correlation on the whole, which may be understood from
the Bernoulli equation. It is noted that these three features are also observed in the
DNS by Skote (2001).

It may be difficult to explain the reason for the positive correlation between ps and
u within the limits of the present experiment. But we should note the negative tail
of ps as discussed in § 4.4. This is a significant characteristic of the pressure. A large
negative pressure fluctuation is observed not only in homogeneous isotropic flow but
also in shear flows. The tail part may be emphasized by taking the logarithm of PDF
(the graph is not shown here), which reveals that in the overlap region (at y/∆ =0.033)
negative large pressure has a correlation with negative velocity fluctuations, i.e. the
third quadrant is dominating over the first quadrant. This trend becomes clearer at
y/∆ =0.20.

5. Summary and Conclusions
In this experiment, both static pressure and wall pressure fluctuations are measured

in high-Reynolds-number turbulent boundary layers. The main results may be
summarized as follows:
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(i) The root mean square of vertical velocity component
√

〈v2〉 is evaluated using
the mean pressure distribution with (4.1). The profile agrees reasonably well with the
result obtained by direct v-component velocity measurements.

(ii) The distribution of the r.m.s. pressure fluctuations normalized by inner
variables, p+

r.m.s., shows a Reynolds number dependence. If p+
r.m.s. is averaged within the

log region, it is approximated by the power law p+
r.m.s. ∝ R0.24

θ . DNS shows that p+
r.m.s.

has its maximum p+
r.m.s.,max at y+ � 30 and that the Reynolds number dependence is

p+
r.m.s.,max ∝ R0.24

θ . These Reynolds number dependences are much stronger than those
of streamwise or vertical velocity components. On the other hand, if the pressure
r.m.s. is normalized by the outer scale U0 and the distance from the wall by ∆, the
profile is almost independent of Reynolds number for Rθ � 7000.

(iii) Static pressure spectra show a −1 power-law slope in the low-wavenumber
region but the Kolmogorov scaling with a predicted −7/3 power-law is not observed.
This may be because the Reynolds number is not large enough to achieve local
isotropy for a given shear rate S∗. Local isotropy may be expected at S∗ = O(10−2),
but this condition cannot be realized in a smooth-wall boundary layer. In the log
region, not only pressure r.m.s. but also pressure spectra at low wavenumbers collapse
fairly well when they are normalized by U0 and ∆.

(iv) Root-mean-square values of wall pressure normalized by inner variables are
an increasing function of Rθ . Normalization by mixed scaling gives an overall
small variation of the normalized pr.m.s.. When r.m.s. is normalized by outer
scales, it decreases gradually and appears to asymptote towards a constant value
pr.m.s./(ρU 2

0 ) = 0.004 for Rθ > 7000. Therefore, both static and wall pressure r.m.s.
become approximately constant when they are normalized by outer scales for
sufficiently high Reynolds numbers.

(v) Spectra of wall pressure indicate a −0.7 power-law region but a f −1 scaling
region is not evident. Cross-correlation spectra between static and wall pressure show
that the source term associated with this spectral region originates from positions up
to the end of the log region.

(vi) The correlation between static and wall pressure is positive across the entire
boundary layer, and there is no significant Reynolds number dependence for Rθ � 7000
when the distance from the wall is scaled with ∆. Two-point correlations show that
the area of high correlation is restricted to the near-wall region, but a low positive
correlation extends far in the normal wall direction. This indicates that two different
kinds of events contribute to the wall pressure statistics. Joint probability density
functions support this result and show that positive correlation is due to the large-
amplitude positive and negative pressure fluctuations of both wall pressure and static
pressure near the wall.

(vii) The ratio pr.m.s./ρu2
r.m.s. was found to be of the order of one in the inner and

overlap regions. The correlation between the pressure and streamwise velocity shows
local minimum and maximum values at y/∆ � 0.05 and y/∆ � 0.2, respectively. In the
outer region, y/∆ > 0.25, the correlation becomes negative, which can be understood
from potential flow arguments. These trends are also observed in DNS.
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Figure 24. Yaw angle effect for various static pressure probes. For symbols see table 2.

Appendix A. Calibration of static pressure probe
A.1. Yaw angle effect

As described in § 3.1 the pressure sensor is aligned with the probe-body axis, which
during the experiments is aligned with the mean flow direction implying that there
is a small angle with the plate. In a preliminary investigation the yaw angle effect
on the measured pressure between the pressure probe and the mean flow direction
was studied. This was done by rotating the probe −20◦ � θ � + 20◦ in the potential
core of a round jet, which had an initial velocity of UJ = 10 m s−1. For each angle
θ the mean differential pressure between the static Pθ and a reference pressure was
measured with a manometer (dynamic range 50 Pa), and the corresponding pressure
coefficient was calculated according to:

CP = (Pθ − Pθ=0)/
1
2
ρU 2

J . (A 1)

Here, Pθ = 0 is the mean pressure at θ = 0◦ and in figure 24, CP is plotted versus the
yaw angle. In the range of ±5◦, we observe −0.001 <CP < 0 and the variation among
the different probes is small.

A.2. Mean static pressure calibration

Mean static pressure probe calibrations were performed as follows. A standard Prandtl
tube and a static probe were set parallel with each other in the potential core of a
jet. A flexible rubber tube, 2 m in length, connects the outlets of the static pressure
probe and the static tube of the Prandtl probe to a manometer (dynamic range is
50 Pa). The pressure difference �P is then measured for different jet velocities UJ

and probe dimensions. In figures 25(a) and 25(b) �P is plotted as absolute pressure
difference and normalized with ρU 2

J , respectively. For the probe bodies with an inner
diameter of φ2 = 1.0mm the smallest pinhole size (φ1) gives a negative �P , while a
minute positive �P is observed for the largest pinhole size. On the other hand, for
the smallest probe (probe 2), the pressure difference gives a large positive value. It
seems that �P is a function of both φ1 and φ2 in absolute values but fairly constant
in terms of the dynamic pressure. Furthermore, the flexible rubber tube connecting
the static tube with the manometer has some influence. It is clear that the situation
is complex; however, the mean pressure measured by the five different probe sizes
across the boundary layer at Rθ = 10 500 collapse well when a correction is made
according to the calibration (cf. figure 26, where the pressure is the Gauge pressure).

The early analysis of Goldstein (1936) indicated that a static tube reads a pressure
equal to Pm = P + kρ(v2

r.m.s. + w2
r.m.s.), where vr.m.s. and wr.m.s. are the wall-normal and

spanwise root-mean-square (r.m.s.) velocities, respectively, and k is a small coefficient.
The effect of turbulence on the measured value of static tubes seems to be much
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Figure 25. ∆P indicates pressure difference between the present pressure probes and the static
pressure measured by a Prandtl tube in the centre of a jet. On the abscissa the jet-diameter (D)
Reynolds number is shown. (a) Pressure difference in absolute value, (b) pressure difference
normalized with twice the dynamic pressure. For symbols see table 2.
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Figure 26. Static mean pressure distribution through the boundary layer measured
with five different sized probes. For symbols see table 2.

smaller than previously known as long as the static tube and pinholes are made small
enough (Chue 1975).

A.3. Dynamic signal treatment

When measuring static pressure fluctuations there is not only a direct influence from
the probe dimensions chosen, but also an indirect one from physical flow phenomena
that appear inside the probe. Here, this is discussed and the calibration procedure is
presented which accounts for all effects by numerical treatment of the static pressure
signal.

The calibration of the static pressure probe, operated with the transducer or the
microphone as pressure sensor, is done as follows. The probe is set parallel to
an opened reference microphone in front of a loudspeaker. A fluctuating pressure
stream is generated by a random noise generator and the two signals are acquired
simultaneously. The output signal from the pressure probe ps(t) will not be the same
as the signal pr (t) measured by the reference microphone, due to probe influence,
Helmholtz resonance, and standing waves.
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Figure 27. (a) Amplitude ratio and (b) phase delay (normalized with π) due to the HR as
a function of frequency normalized by the HR frequency fr . The symbols are obtained by
calibration and the grey dashed line is obtained from the model given by equations (A 3) and
(A 4).

The frequency response of the system is limited by the Helmholtz resonator
(abbreviated as HR) caused by the tube and sensor cavity (cf. Kobashi 1957; Toyoda
et al. 1993). This HR frequency is calculated as

fr =
Us

2π

√
S

L3V
, (A 2)

where V is the cavity volume, L3 is the tube length, Us is the speed of sound
and S is the cross-sectional area (see also figure 1). For instance, with V = πd2Lc/4
and S = π(φ2)

2/4 the resonant frequency is 2.5 kHz and 11.1 kHz for the microphone
(d = 7.0mm, φ2 = 1.0mm, L3 = 18.5mm) and the transducer (d = 1.6 mm, φ2 = 1.0 mm,
L3 = 18.5 mm), respectively. The amplitude ratio variation and phase delay between
the two signals ps and pr can be computed by applying the simple HR model:

Ar =

[{
1 −

(
f

fr

)2}2

+

(
2ξf

fr

)2]−1/2

, (A 3)

θr = −tan−1

{
2ξ (f/fr )

1 − (f/fr )
2

}
, (A 4)

where ξ is a numerical constant (JSME 1985). This model does not contain the effects
of pinhole size, hole shape, and tube thickness. It should be noted that equations (A 3)
and (A 4) give an approximation to the measured Ar and θr , obtained through fast-
Fourier-transform (FFT) analysis, and are only reproduced here to show the potential
of this HR model to capture the shape as a whole. In figure 27 a comparison between
the model and the measured result is shown. Once the measured Ar and θr have been
calculated they are used to numerically remove the HR in Fourier space from all the
measured ps signals. This calibration procedure is necessary in order to correct the
data from the probe influence and the HR frequency, and in figure 28 an illustration
of the result is shown. Although the original fluctuation ps differs significantly from
pr , once the effect of HR is removed, the signals match excellently.

A standing wave inside the pressure tube may also cause a small disturbance to
the pressure fluctuations. The frequency of the standing wave is given by fs = Us/λs
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Figure 28. (a) The solid line is the reference microphone output and the dashed line is the
measured static pressure signal. When the HR is removed numerically, the static pressure
signal matches the reference probe signal as indicated in (b).

(where λs/4 = L3), which gives a fs of about 7.1 kHz for probe 1. Another possible
limitation may be the spatial resolution of the probe which may be limited by the
pinhole size as well as the circumference of the probe itself. For instance, in the log
region at Rθ = 12 000 the ratio between the pinhole diameter and the Kolmogorov
scale can be estimated as d/η = 1.9 for probe 2.

A.4. Background noise

A common problem in achieving accurate pressure measurements, in turbulent
boundary layers, is the inherent signal contamination resulting from facility-induced
noise. These acoustic disturbances are of low frequency, generally well below 100 Hz,
and for low Reynolds numbers they dominate the pressure signal. On the other hand,
for sufficiently high Reynolds numbers the noise contamination is often neglected
since the turbulent fluctuations overwhelm the low-frequency disturbances.

Here, the static pressure ps(t) measured at y = 120 mm from the wall and the wall
pressure fluctuation pw(t) are analysed in order to evaluate the background noise
level. In this experiment, the boundary layer thickness is 65 mm at most, i.e. the
probe position is about twice this thickness, implying that the two signals are totally
uncorrelated. The pressures may be divided into two parts, the background noise due
to acoustics and vibrations, denoted pb(t), and the true pressure fluctuation, denoted
p′(t), according to

ps(t) = p′
s(t) + pb

s (t), pw(t) = p′
w(t) + pb

w(t). (A 5)

The correlation function between the two signals is calculated as

〈pspw〉 = 〈p′
sp

′
w〉 +

〈
pb

s p
b
w

〉
, (A 6)

because both pb
s and pb

w are independent of the turbulent statistics. Further-
more, 〈p′

sp
′
w〉 � 0 since the static pressure is measured at y � 2δ. This implies that the

root mean square of the background noise is pb
r.m.s. ≡

√
〈pb

s p
b
w〉 �

√
〈pspw〉|y � 2δ . In

this experiment pb
r.m.s. decreases as a function of Reynolds number when normalized

by outer variables (pb
r.m.s./ρU 2

0 ) and asymptotes to a constant value of about 5 × 10−4.
The frequency spectrum of ps is computed and shown in figure 29. It is noted

that for frequencies below 100 Hz the data are contaminated by low-frequency noise.
Furthermore, the sharp peak around 300 Hz is caused by acoustic noise from the
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Figure 29. Static pressure spectrum measured at y = 20 mm (solid line) and in the free stream
y = 120mm (dashed line). Straight solid line represents the power-law relation defined by
equation (2.8) with γp = −1.5.
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Figure 30. Local slope of the spectrum ∂ log Epp/∂ log k1 computed at the position y+ =160
(open circles) and y+ =340 (open squares) in the overlap region at Rθ = 8920. The exponent
γp is obtained by averaging the constant local slope region. γp = −1.40±0.02 for y+ = 160 and
γp = −1.54±0.02 for y+ =340, respectively, where error is evaluated by the standard deviation.

wind tunnel fan. In the high-frequency region, i.e. in the inertial range and in the
dissipation range, acoustic noise effects are small. The correlation function with
time lag τ , 〈ps(t + τ )pw(t)〉, has also been computed and by adopting the Taylor
hypothesis (U (y) · τ ) the spatial correlation in the streamwise direction between
the static and wall pressures is obtained. Here, U (y) is the local mean velocity at
y. The correlation coefficient Cτ ≡ 〈ps(t + τ )pw(t)〉/(σsσw), where σs =

√
〈p2

s 〉 and

σw =
√

〈p2
w〉, decreases with the spatial distance and becomes close to zero for large

separations, τU (y) � 2.0 m. Thus, the low-frequency noise is associated with motions
of a few metres in spatial scale. Background noise cannot be removed instantaneously
from the pressure signal without simultaneously measuring the pressure signal in the
free stream, but may be corrected for in the statistical values, such as root mean
square, skewness, and flatness. In the inner region of the boundary layer, pb

r.m.s. is
much smaller than ps and pw , implying that the correction would be very small;
however it may be of influence in the outer region.

Appendix B. Error analysis of spectral slope
Here, the errors contained in the spectral slope γp are discussed. Figure 30 shows the

local slope of the spectrum ∂ log Epp/∂ log k1 computed at the positions y+ = 160, 340
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in the overlap region at Rθ = 8920. The horizontal axis is the streamwise wavenumber
normalized by the distance from the wall. The graph shows the plateau as indicated
by the dashed line, which corresponds to the power-law region of the spectrum. The
exponent γp is obtained by calculating the average of this local slope. For instance,
γp = −1.40 ± 0.02 for y+ = 160 and γp = −1.54 ± 0.02 for y+ = 340, where error is
evaluated by the standard deviation. Thus, the error is small, which is in the order
of 10−2.

As the distance y increases, the power-law region is shifted towards higher fre-
quencies, and the exponent γp decreases systematically. These trends are observed in
all data sets. Based on these observations, we can say that the power-law region is
restricted to 1 < k1y, but the exponent depends on the distance y and the Reynolds
number Rθ . If error bars were plotted in figure 13, they would be smaller than the
size of the symbols. Hence, we choose not to include error bars.
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