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We study the velocity fields of unforced, high Reynolds number, subsonic jets,
issuing from round nozzles with turbulent boundary layers. The objective of the
study is to educe wavepackets in such flows and to explore their relationship with
the radiated sound. The velocity field is measured using a hot-wire anemometer
and a stereoscopic, time-resolved PIV system. The field can be decomposed into
frequency and azimuthal Fourier modes. The low-angle sound radiation is measured
synchronously with a microphone ring array. Consistent with previous observations,
the azimuthal wavenumber spectra of the velocity and acoustic pressure fields are
distinct. The velocity spectrum of the initial mixing layer exhibits a peak at azimuthal
wavenumbers m ranging from 4 to 11, and the peak is found to scale with the
local momentum thickness of the mixing layer. The acoustic pressure field is, on
the other hand, predominantly axisymmetric, suggesting an increased relative acoustic
efficiency of the axisymmetric mode of the velocity field, a characteristic that can be
shown theoretically to be caused by the radial compactness of the sound source. This
is confirmed by significant correlations, as high as 10 %, between the axisymmetric
modes of the velocity and acoustic pressure fields, these values being significantly
higher than those reported for two-point flow–acoustic correlations in subsonic jets.
The axisymmetric and first helical modes of the velocity field are then compared with
solutions of linear parabolized stability equations (PSE) to ascertain if these modes
correspond to linear wavepackets. For all but the lowest frequencies close agreement
is obtained for the spatial amplification, up to the end of the potential core. The
radial shapes of the linear PSE solutions also agree with the experimental results over
the same region. The results suggests that, despite the broadband character of the
turbulence, the evolution of Strouhal numbers 0.3 6 St 6 0.9 and azimuthal modes 0
and 1 can be modelled as linear wavepackets, and these are associated with the sound
radiated to low polar angles.
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1. Introduction
Since the first observations of coherent structures in turbulent jets (Crow &

Champagne 1971; Moore 1977), instability waves, or wavepackets, have been
postulated as a possible sound source mechanism (Crow & Champagne 1971;
Michalke 1971; Crow 1972). Associated sound source models have been explored in
subsonic (Mankbadi & Liu 1984) and supersonic (Tam & Burton 1984; Tam & Chen
1994) regimes. Wavepackets comprise hydrodynamic waves with amplitude growth,
saturation and decay. Their spatial extension is much greater than turbulence length
scales, and, as we will show, their fluctuation energy is considerably less than that of
those eddies that dominate the turbulent kinetic energy. Because of their large spatial
extension, wavepackets constitute a non-compact sound source, and, on account of
their azimuthal coherence, are more acoustically efficient than the more energetic, but
compact, stochastic eddies thought to dominate sound radiation at the time of Lighthill
(1952). A recent review of wavepackets and turbulent jet noise has been provided by
Jordan & Colonius (2013).

Many early studies seeking to compare wavepackets in turbulent jets with stability
theory involved forced jets (Crighton & Gaster 1976; Cohen & Wygnanski 1987;
Petersen & Samet 1988), whose phase-locked disturbances are more easily measured
experimentally. But the extension of the conclusions of such studies to their unforced
counterparts is not straightforward. In natural jets the signature of azimuthally coherent
wavepackets is clearest in the near pressure field, whose energy is concentrated in a
few low-order azimuthal modes, in contrast to the velocity field (Michalke & Fuchs
1975; Armstrong, Fuchs & Michalke 1977; Fuchs & Michel 1978). Measurements
using line arrays of microphones in the near field reveal a hydrodynamic wave
extending several jet diameters downstream of the nozzle exit (Picard & Delville
2000; Tinney & Jordan 2008).

The recent results of Suzuki & Colonius (2006) and Gudmundsson & Colonius
(2011) show that the pressure field just outside the jet can be modelled quite
accurately as a superposition of linear wavepackets with different frequencies and
azimuthal modes, but it remains to be established if these models accurately predict
the velocity field of these structures within the jet. The hydrodynamic waves have
small amplitudes, no fixed phase reference, and their signature is therefore difficult
to educe from the velocity field of unforced jets (a recent attempt has been made
by Kerhervé et al. 2012 using data from a large eddy simulation). The signature is,
on the other hand, relatively clear in forced jets (Crow & Champagne 1971; Hussain
& Zaman 1981; Cohen & Wygnanski 1987; Petersen & Samet 1988) and transitional
flows, i.e. jets with laminar boundary layers at the nozzle exit (Becker & Massaro
1968; Yule 1978; Laufer & Yen 1983; Violato & Scarano 2011). In both cases the
velocity field, at least for small distances from the nozzle exit, is dominated by
coherent structures, whose amplitude is far greater than those of natural jets with
turbulent boundary layers. Nonlinear saturation and vortex dynamics are also clearly
evident in these strongly forced flows. This is clearly not the case for natural jets with
turbulent boundary layers at the nozzle exit.

Gudmundsson & Colonius (2011) present a comparison between results of linear
parabolized stability equations (hereafter PSE) and the velocity field of unforced jets,
measured using PIV in cross-sections. In that work the PIV measurements were not
time-resolved, and so comparison for individual frequencies was not possible; the
wavepackets had to be superposed prior to comparison with experiment. The results
showed encouraging agreement, which motivated the present experiment whose goal is
frequency-dependent comparisons between wavepacket models and measurements.
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Wavepackets in the velocity field of turbulent jets 561

We present experimental results that probe the velocity fields of unforced, turbulent
jets to determine if the low-order azimuthal modes of the velocity field can be
modelled as linear wavepackets. Linear PSE are used, as in the work of Gudmundsson
& Colonius (2011), as this allows the evolution of wavepackets on a slowly diverging
mean flow to be modelled. Linear PSE are used here as a reference model for
hydrodynamic waves resulting from the Kelvin–Helmholtz instability in the initial
region of the jet. And while the results constitute a partial validation of linear PSE as
an appropriate model, our view is that they provide a more general assessment of the
presence of such linear waves in unforced turbulent jets, and of the possibility of using
a linear model for turbulent velocity fluctuations if the experimental mean velocity
profile is used as the base flow for linearization.

A further motivation for this study is the observation, by Cavalieri et al. (2012), that
the sound field radiated by the jets we study are consistent with sound radiation
by non-compact wavepackets with low azimuthal wavenumber. Most notably, the
sound field at low polar angles is predominantly axisymmetric, and superdirective,
as one would expect from an axially non-compact, wavepacket, sound source. This
suggests that an axisymmetric wavepacket within the turbulent field drives the low-
angle radiation, and we confirm this by studying the correlation between the azimuthal
Fourier modes of the velocity and acoustic fields.

The paper is organized as follows. The experimental setup is described in § 2.
In § 3.1 we evaluate the dominant azimuthal wavenumbers in both the velocity and
the acoustic fields, and the relationship between the azimuthal modes of turbulence
and sound is investigated by means of correlations in § 3.2. A brief description
of the computational approach for linear PSE is presented in § 4.1. We perform
comprehensive comparisons of this model with the experimental results. We first take
advantage of the symmetry properties of circular jets, assessing the axisymmetric
mode on the jet centreline, using hot-wire measurements, in § 4.2. To obtain results
for the helical modes, and at radial positions other than the centreline, stereoscopic
time-resolved PIV measurements are made in cross-stream planes at several axial
stations. The comparison of the experimental results with linear PSE are presented in
§ 4.3, accompanied by a general discussion regarding wavepackets in turbulent jets.

2. Experimental setup

The experiments were performed in the ‘Bruit et Vent’ anechoic facility at the
Centre d’Etudes Aérodynamiques et Thermiques (CEAT), Institut PPrime, Poitiers,
France. The anechoic chamber has dimensions of 9.6 m× 6 m× 3.4 m, and is covered
with absorbing foam of depth equal to 0.4 m. The cut-off frequency of the chamber
is 212 Hz. Since frequencies below this value in the acoustic field are contaminated
by reflected acoustic waves, all acoustic signals were high-pass filtered using a finite
impulse response filter. The flow in the facility follows a closed loop, and is driven by
fans located outside the facility. Downstream of the fans, the flow passes through lined
ducts designed to absorb the ventilator noise. More details can be found in Kœnig
(2011).

We carried out velocity measurements of subsonic jets with acoustic Mach numbers
equal to 0.4, 0.5 and 0.6. The nozzle diameter, D, was 0.05 m. With these conditions,
the Reynolds number, ρUD/µ, varies from 4.2 × 105 to 5.7 × 105, where ρ, U
and µ are, respectively, the density, axial velocity and the viscosity at the nozzle
exit.
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FIGURE 1. Boundary layer profiles at the nozzle exit for the Mach 0.5 jet: (a) mean velocity,
(b) mean velocity in wall units, and (c) r.m.s. value. The power law in (a) is given by
ūx/U = (y/δ)1/7, and the straight line in (b) has slope of 1/κ , with von Kármán constant κ
equal to 0.384.

The velocity field is described in cylindrical coordinates (x, r, φ), which are
respectively the axial, radial and azimuthal coordinates. Spherical coordinates
(R, θ,Φ), respectively radius, polar and azimuthal angle, are used to describe the
sound field. The polar angle is measured from the downstream jet axis. Both
coordinate systems have their origin at the nozzle exit.

A convergent section was located upstream of the jet exit, with an area contraction
of 31. This was followed by a straight circular section of length 150 mm; a boundary
layer trip was used to force transition 135 mm upstream (2.7D) of the nozzle exit.
To establish whether the boundary layers at the nozzle exit are turbulent, hot-wire
results for the boundary layer are shown in figure 1. The velocity profile of turbulent
boundary layers presents an overlap region that can be fitted using either a power law
or a log law, as discussed by Österlund et al. (2000). The use of a power law in
y/δ, where δ is the boundary layer thickness, is straightforward, and leads to a close
approximation of the velocity profile with (y/δ)1/7 (Schlichting 1979), as shown in
figure 1(a).

On the other hand, application of the log law requires that distances and velocities
be made non-dimensional with wall quantites given by y+ = ρyuτ/µ and uτ = √τ/ρ,
where τ is the shear stress on the wall. We do not have measurements of the shear
stress, and the thin boundary layers in our experiment do not allow an accurate
determination of the shear stress using the velocity gradient. Hence, we have used the
fit of the skin-friction coefficient given by Österlund et al. (2000) to estimate uτ in our
experiment. Taking the von Kármán constant κ equal to 0.384, as in Österlund et al.
(2000), leads to further confirmation that the present boundary layers are turbulent, as
shown by the comparison of the measurements with the expected slope of 1/κ in the
overlap region (figure 1b).

The thickness δ of the boundary layer, as well as the momentum thickness δ2, are
shown in table 1 for the three Mach numbers. The present jet setup was previously
used for acoustic measurements with an azimuthal microphone ring (Cavalieri et al.
2012).

Velocity measurements were obtained using a traversing single hot-wire and with
stereoscopic, time-resolved particle image velocimetry (TR-PIV). The hot-wire was
calibrated in situ using the procedure described by Tutkun et al. (2009), with a
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FIGURE 2. (Colour online) Scheme of the experimental setup for time-resolved PIV and
acoustic measurements.

M δ (mm) δ/D δ2 (mm) δ2/D Re Reδ Reδ2

0.4 4.5 9.0× 10−2 0.477 9.5× 10−3 4.2× 105 3.8×104 4.0× 103

0.5 4.25 8.5× 10−2 0.401 8.0× 10−3 5.0×105 4.3× 104 4.0× 103

0.6 4.25 8.5× 10−2 0.396 7.9× 10−3 5.7×105 4.9× 104 4.5× 103

TABLE 1. Boundary layer thickness δ, momentum thickness δ2 at the nozzle exit, and
Reynolds numbers of each jet flow.

traversing Pitot tube giving the mean axial velocity. Wires with diameter of 2.5 µm
and length of 0.7 mm, which is about 0.15δ, were used with a Dantec 55M01
anemometer; the corner frequency of this setup was 30 kHz, corresponding to Strouhal
numbers between 7 and 11, depending on the jet velocity. This Strouhal number
is sufficiently high to avoid significant aliasing effects in the low-frequency energy-
containing part of the hot-wire spectra. Calculation of power spectra was performed by
averaging 400 blocks of data without overlap, with frequency resolution corresponding
to 1St = 0.022 for the M = 0.4 jet.

The stereoscopic TR-PIV experiments were performed with a setup shown
schematically in figure 2. The measurements are performed in cross-stream planes,
as in Tinney, Glauser & Ukeiley (2008) and Kœnig et al. (2011b). Two cameras
were placed at an angle of 45◦ to the laser plane, one placed upstream and the
other downstream of the plane, positioned so as to sense forward light scattering by
the particles. The flow was seeded with glycerin-based smoke. Particle sizes ranged
from 0.5 to 1 µm. For the frequencies considered in this study (Nyquist frequency of
2.5 kHz), the analysis in Tinney et al. (2008) shows that the particle tracing errors
are negligible for a particle size of 1 µm or lower. A schematic drawing of the
experimental setup is shown in figure 2, and the mean axial velocities for the M = 0.4
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FIGURE 3. Mean axial velocity for the M = 0.4 jet. Contours are equally spaced from 0.1U
to 0.99U.

jet are shown in figure 3; the differences in the mean flows for M = 0.5 and M = 0.6
are slight. For all jets the end of the potential core is between 5 and 5.5D.

The sampling frequency was 5 kHz, which corresponds to St = 1.82, 1.46 and 1.21
for the M = 0.4, 0.5 and 0.6 jets, respectively. A total of 19 414 image pairs were
recorded. Image-processing consisted of a five-pass correlation routine with 64 × 64
pixel correlation for the first pass, 16 × 16 pixel for the final pass and with a 50 %
correlation overlap at each pass, done with LaVision software DaVis 8; this leads to
velocity fields with 114× 102 velocity vectors. This grid was subsequently interpolated
to cylindrical coordinates to allow the expansion of the velocity field in azimuthal
Fourier modes. Frequency spectra were calculated using averages of blocks with
50 % overlap. The number of samples in each block was chosen so as to provide
a resolution in Strouhal number of 1St = 0.025. All power spectral densities presented
in this work are single-sided.

We simultaneously measured the acoustic pressure with an azimuthal ring of nine
microphones at a polar angle θ = 20◦, with a distance R to the nozzle exit equal
to 42.3D, as illustrated in figure 2. These measurements allowed calculation of
flow–acoustic correlations in two ways: the first was between a single point in the
velocity field and a single microphone, as often done in the literature (Lee & Ribner
1972; Schaffar 1979; Juvé, Sunyach & Comte-Bellot 1980; Panda, Seasholtz & Elam
2005; Bogey & Bailly 2007); the second was between a given azimuthal mode in both
the velocity and the acoustic field. The latter approach has a theoretical motivation,
detailed in § 3.2, and allows the determination of correlations between wavepackets in
the flow and the radiated sound field.

As an evaluation of the errors in the present experiment, the TR-PIV results for
the axial velocity at x/D = 2 for the M = 0.4 jet are compared in figure 4 to the
measurements taken with the traversing Pitot tube and hot-wire. Close agreement is
found for both the mean and r.m.s. values of the velocity.

The sampling frequency of 5 kHz was the maximum possible value with the
available equipment. To evaluate the effect of aliasing in spectra obtained from
the TR-PIV measurements, these are compared in figure 5 to hot-wire spectra. For
positions close to the jet lipline, such as shown in figure 5(b,c), the difference
between TR-PIV and hot-wire spectra is slight. Some discrepancies remain, and can
be attributed to experimental uncertainty. However, on the jet axis (figure 5a) the
difference becomes significant, particularly for frequencies far from the peak. We
have evaluated the aliasing effect by downsampling the hot-wire signal to 5 kHz and
then computing spectra. The result is shown in figure 5(a), and shows that part of
the difference between TR-PIV and hot-wire spectra can be attributed to aliasing.
However, in addition to the aliasing errors, inside the potential core the amplitudes
of velocity fluctuations are much lower than in the regions of turbulent flow, leading
to a reduction of the signal-to-noise ratio if one considers that the noise in PIV
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FIGURE 4. Comparison of (a) mean and (b) r.m.s. value of the axial velocity at x/D= 2 for
the M = 0.4 jet using the different experimental techniques of the present work.

10–2

10–3

10–4

10–5

10–6

10–7

10–1 100

TR-PIV
Hot-wire

Hot-wire, downsampled

10–1

10–8

(a)

10–2

10–3

10–4

10–5

10–6

10–7

10–1 100

St

10–1

10–8

(c)

10–2

10–3

10–4

10–5

10–6

10–7

10–1 100

10–1

10–8

(b)

10–2

10–3

10–4

10–5

10–6

10–7

10–1 100

St

10–1

10–8

(d)

St
St

FIGURE 5. Comparison of hot-wire and PIV spectra for the M = 0.4 jet at (a) x/D= 2,
r/D= 0, (b) x/D= 2, r/D= 0.48, (c) x/D= 2, r/D= 0.57 and (d) x/D= 4, r/D= 0.

measurements is uniformly distributed in space. In agreement with this, the errors
in the determination of spectra from TR-PIV results are reduced for downstream
positions on the jet centreline, as seen in figure 5(d).
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FIGURE 6. Sample instantaneous experimental axial velocity fluctuations u′x/U at x/D= 2
for the Mach 0.4 jet.

To avoid significant errors due to aliasing in the TR-PIV results, we focus
the analysis of the M = 0.4 jet measurements on the Strouhal number range of
0.3 6 St 6 0.7. For higher Mach numbers, aliasing becomes significant even for
this Strouhal number range; however, its effect is apparently uniform for all radial
positions, as shown in the Appendix, where we see also that a correction of the PIV
results based on hot-wire measurements leads to close agreement between velocity
results for M = 0.6 and linear PSE solutions.

3. Azimuthal content of the velocity and acoustic fields
3.1. Dominant azimuthal wavenumbers for velocity and far-field pressure

Figure 6 shows snapshots of the instantaneous axial velocity fluctuations in a cross-
section of the Mach 0.4 jet. Azimuthally coherent structures, such as those modelled
by linear instability models, are hardly visible in this visualization, which is dominated
by smaller-scale eddies whose characteristic length scale is small compared to the jet
diameter. The jets are clearly not dominated by vortex rings such as are observed
in forced (Crow & Champagne 1971; Hussain & Zaman 1981) or transitional jets
(Becker & Massaro 1968; Violato & Scarano 2011), and at first sight it is not obvious
that there exist wavepackets with low azimuthal wavenumber such as m= 0 or 1.

On the other hand, application of an azimuthal Fourier series to the turbulent field
reveals that some energy is contained in the lower azimuthal modes, including the
axisymmetric mode. Figure 7 shows the energy of the axial velocity fluctuations on
the jet lipline, resolved as a function of the azimuthal wavenumber m. To obtain this,
we decomposed the instantaneous time-resolved PIV results in an azimuthal Fourier
series; the time series for each azimuthal mode of velocity, u(x, r,m, t), can then be
used to compute the energies in figure 7. We note in figure 7(a) that the most energetic
azimuthal mode is around 11 for the near-nozzle region (x/D = 1). As we move
towards the end of the potential core (x/D ≈ 5.5), lower azimuthal modes of velocity
become more important, and the peak shifts to m= 4 for x/D= 3.

Rescaling of the azimuthal wavenumber with the local momentum thickness, δ2, for
each axial station, as in figure 7(b), shows that the peak azimuthal wavenumber scales
with δ2. The peak for mδ2/r = 0.7 is close to the results of Bogey, Marsden & Bailly
(2011), who did large eddy simulations of M = 0.9 jets and found energy peaks at
the nozzle exit for mδ2/r ≈ 0.8. The scaling with the local momentum thickness is
similar to what is observed in turbulent boundary layers; the results of Tomkins &
Adrian (2005) show a peak for spanwise wavenumber of kzδ2 ≈ 1. Similar collapse of
the energy distribution for the different azimuthal wavenumbers was shown by Tinney
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FIGURE 7. (Colour online) Energy of axial velocity fluctuations on the jet lipline as a
function of azimuthal wavenumber scaled with (a) radius r and (b) local momentum thickness
δ2. The dashed line in (b) refers to mδ2/r = 0.7.

et al. (2008) for POD modes taken from cross-sections of a Mach 0.85 jet, but in that
case the wavenumbers were scaled as mx/D. The similarities are probably due to the
linear development of the mixing layer thickness with x/D; if δ2/r is proportional to
x/D the two representations are equivalent.

Presented in this way, the velocity field can be seen to comprise a number of scales
of motion. The large-scale energy-containing structures have azimuthal coherence
related to the local momentum thickness; but the energy for the lower azimuthal
modes (e.g. m = 0 or 1) is not zero, despite their not being readily visible in an
instantaneous visualization of the jet.

In contrast to the azimuthal structure of the velocity field, a number of experimental
results (Maestrello 1976; Fuchs & Michel 1978; Juvé, Sunyach & Comte-Bellot 1979;
Cavalieri et al. 2012) show that the radiated sound field at low polar angles is
dominated by low azimuthal modes, especially for low frequencies. Figure 8 shows the
far-field spectrum, at θ = 20◦, resolved into azimuthal modes for the present M = 0.4
jet; the acoustic field of this jet, and of the other jets studied in the present work, is
documented in detail by Cavalieri et al. (2012). We see in figure 8(a) that for low
angles the sound field is predominantly axisymmetric; this dominance of mode 0 is
particularly significant for low Strouhal numbers, as exemplified by the sound pressure
level for St = 0.2 shown in figure 8(b).

Theoretically, the different azimuthal organizations of the velocity and acoustic
fields can be understood by noting that for low frequencies a condition of radial
compactness is satisfied by the jet: the diameter is significantly lower than the acoustic
wavelength. In such a situation, higher azimuthal modes will have low acoustic
efficiency due to destructive azimuthal interference in the exp(imφ) factor of the
acoustic source.

Use of cylindrical coordinates and azimuthal Fourier modes in the integral solution
of Lighthill’s equation allows the quantification of this effect. For low acoustic
angles, consideration of azimuthal mode m and frequency ω of the Txx component
of Lighthill’s stress tensor leads to

p(R, θ,m, ω)=− imk2
acos2θe−ikaR

2R

∫
eikax cos θ dx

∫
Txx(x, r,m, ω)Jm(kar sin θ)r dr, (3.1)
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FIGURE 8. (Colour online) Directivity for the M = 0.4 jet: (a) overall sound and (b) SPL for
St = 0.2. Taken from Cavalieri et al. (2012).
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FIGURE 9. (Colour online) Acoustic efficiency for sound radiation at θ = 30◦ by the
azimuthal mode m relative to the axisymmetric mode, for a ring source at r = D/2 in an
M = 0.6 jet.

where ka is the acoustic wavenumber ω/c. The Bessel function of the first kind, Jm,
results from azimuthal integration, and leads to a lower efficiency of high azimuthal
modes, as explored previously in the literature (Michalke 1970; Michalke & Fuchs
1975; Mankbadi & Liu 1984; Cavalieri et al. 2011).

This effect is illustrated in figure 9. Noting that kar = 2π St Mr/D, we see that
the ordinate in the figure is the ratio of Jm(kar sin θ) to J0(kar sin θ) in decibels,
and indicates the efficiency of mode m relative to the axisymmetric mode for
sound radiation at θ = 30◦. We note that for low Strouhal numbers this acoustic
efficiency decays rapidly with increasing azimuthal wavenumber m, suggesting that
low azimuthal modes in the turbulent field, despite their low energy, account for most
of the sound generation at these low frequencies and polar angles.
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It is well known that high-frequency sound tends to be refracted away from the jet
axis, creating what is called a ‘cone of silence’, as demonstrated experimentally by
Atvars, Schubert & Ribner (1965). These refraction effects are not explicitly modelled
in Lighthill’s analogy, and one may question its validity for sound radiation at shallow
angles. However, low-frequency sound has lower refraction effects. In the experiment
of Atvars et al. (1965), the lowest frequency studied in an M = 0.3 jet corresponds to
St ≈ 0.2, which is close to the spectral peak of jet noise at low angles. This frequency
was found to lead to negligible refraction.

Accordingly, experiments with the present jets do not show a cone of silence for the
low Strouhal numbers corresponding to the spectral peak, either for the overall sound
or for the axisymmetric mode (see for instance the results in figure 8); and models
of wavepacket radiation using (3.1) were successful in explaining the experimental
directivity trends for azimuthal modes 0, 1 and 2 (Cavalieri et al. 2012). We consider
thus that refraction effects are negligible for the low-frequency sound radiated at low
axial angles, and use of (3.1) is appropriate in these conditions.

3.2. Correlations between axisymmetric modes of velocity and far-field sound
Motivated by the observed contrast between the azimuthal organization of the velocity
and far-field pressure fields, and on the theoretical higher acoustic efficiency of lower
azimuthal modes, we investigate the relationship between azimuthal modes in the jet
and in the acoustic field by computing correlations between velocity and far-field
pressure at θ = 20◦. We first present two-point correlations, defined as

Cux,p(x, r,R, θ, τ )= 1
tf

∫ tf

0
ux(x, r, φ, t)p(R, θ, φ, t + τ) dt. (3.2)

These correlations ignore the difference in the azimuthal content of the velocity and
pressure fields, and amount to an attempt to correlate a high azimuthal wavenumber in
the velocity field to a low one in the acoustic field.

If we assume, instead, a relationship between azimuthal modes in the velocity
and the acoustic fields, such as in (3.1), it makes sense to correlate, rather, the
axisymmetric modes of velocity and far-field pressure, as

C0
ux,p
(x, r,R, θ, τ )= 1

tf

∫ tf

0
ux(x, r,m= 0, t)p(R, θ,m= 0, t + τ) dt, (3.3)

which isolates the axisymmetric mode of the axial velocity before correlation with the
axisymmetric part of the far-field sound.

Results of the two-point correlations, as in (3.2), are presented in figures 10 and 11,
for the M = 0.4 and M = 0.6 jets, respectively. Correlations were taken for x/D = 4
(upstream of the end of the potential core, as seen in figure 3), 5 (close to the end of
the potential core) and 6 (downstream). For the correlations, the velocity was taken at
r = D/4, and not on the jet lipline; as will be shown later, in figure 14, correlations
tend to be higher for positions around this radial position. The correlation results
have a typical noise level around 0.02. This is due to the reduced number of TR-PIV
samples (19 414). We see that the two-point correlations in figures 10 and 11 are low,
without an apparent peak above the noise level.

Computation of correlations between axisymmetric modes, as in (3.3), leads to the
results shown in figures 12 and 13. The correlations are now well above the noise
level, and are of order of 10 % for the M = 0.6 jet, which is significantly higher than
values obtained by two-point correlations in previous studies of subsonic turbulent jets
(see e.g. Schaffar 1979; Panda et al. 2005).
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FIGURE 10. (Colour online) Two-point correlations for the M = 0.4 jet, taken with a velocity
measurement at r = D/4 and far-field pressure at θ = 20◦: (a) x/D = 4, (b) x/D = 5,
(c) x/D= 6. The dashed line indicates propagation time without flow–acoustic effects.
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FIGURE 11. (Colour online) Two-point correlations for the M = 0.6 jet, taken with a velocity
measurement at r = D/4 and far-field pressure at θ = 20◦: (a) x/D = 4, (b) x/D = 5,
(c) x/D= 6. The dashed line indicates propagation time without flow–acoustic effects.
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FIGURE 12. (Colour online) Correlations between mode-0 axial velocity at r = D/4 and
mode-0 far-field pressure at θ = 20◦ for the M = 0.4 jet: (a) x/D = 4, (b) x/D = 5,
(c) x/D = 6. The dashed line indicates average propagation time without flow–acoustic
effects.

In addition, previous studies showed a strong decay of two-point correlations when
the reference position is moved away from the jet centreline. In Panda et al.’s study,
all correlations of subsonic jets taken at r/D = 0.45 were below the experimental
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FIGURE 13. (Colour online) Correlations between mode-0 axial velocity at r = D/4 and
mode-0 far-field pressure at θ = 20◦ for the M = 0.6 jet: (a) x/D = 4, (b) x/D = 5,
(c) x/D = 6. The dashed line indicates average propagation time without flow–acoustic
effects.
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FIGURE 14. (Colour online) Maxima and minima of correlations between axial velocity
far-field pressure for different radial positions. Results taken at the axial station x/D = 6 of
the M = 0.6 jet.

noise level. When the axisymmetric velocity mode is considered we see significant
correlations for several radial positions, as illustrated in figure 14, showing maxima
and minima of correlations for both C and C0. These correlations tend to the same
value as the radius goes to zero, since the axial velocity on the centreline is constituted
solely of mode 0 (further discussion will be presented in § 4.2). However, for higher r
the two-point correlation C decays, and the maxima and minima are close to the noise
level around 0.02 seen in figure 11. The correlation between axisymmetric modes C0,
on the other hand, does not decay, and is significantly greater than 0.02 for positions
extending from the centreline to r/D= 0.4 or 0.5.

These results support the idea that the azimuthally coherent part of the velocity field
has higher acoustic efficiency, and, despite being less energetic than the dominant
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azimuthal wavenumbers, is the dominant source of low-angle sound radiation.
However, care should be taken in the interpretation of these correlation results, since
we see that correlations are significant over a region which is extended in both x and
r; even when C0 is used to account for individual azimuthal modes, the correlation
is performed between a ring in the flow and a second ring in the acoustic field, and
thus no information is obtained about the extended axial structure of the noise source.
As will be shown in the next section, the axisymmetric mode of the velocity field
compares favourably with a wavepacket model. In a wavepacket, sound radiation is
the product of significant cancellation between axially distributed positive and negative
parts. The radiated sound does not depend on a single, axially localized, ring in the
flow; sound generation results from a delicate interference within the wavepacket (see
discussion in Cavalieri et al. 2012). Hence, one should not expect correlations close
to unity, even when these are performed between the respective azimuthal modes of
velocity and pressure.

The observations in the present section motivate the research for an appropriate
model for the lower-order azimuthal modes in a jet, which we develop in the next
section as linear wavepackets.

4. Detection of wavepackets in the velocity field
Previous experimental observations of the present jets (Cavalieri et al. 2012) have

shown that the measured acoustic radiation is compatible with a wave-like, non-
compact source with low azimuthal wavenumber, and the results of the preceding
section show further evidence linking the axisymmetric part of the velocity field and
the radiated sound.

In the present section we investigate the lower azimuthal modes of the velocity field
to ascertain if they can be modelled as wavepackets. For this we use as a reference
solution a computation based on linear PSE (Herbert 1997) using the experimental
mean field as a base flow. This is based on arguments given by Crighton & Gaster
(1976) and Mankbadi & Liu (1981), who state that the large-scale perturbations of
interest here only contain a small fraction of the total fluctuation energy and can
thus be modelled as linear perturbations of the mean flow. The latter is established as
the result of the nonlinear interactions between a wide range of temporal and spatial
turbulent scales. Therefore, use of the mean field as a base flow implicitly accounts for
most of the nonlinearity.

Most of the results of the present section refer to the M = 0.4 jet, since, due to
the aliasing in the experiment, this is the most favourable case for comparison with
TR-PIV results. Further comparisons with the M = 0.5 and M = 0.6 jets are shown in
the Appendix.

4.1. Linear parabolized stability equations (PSEs)
Wavepackets in the jets were modelled using linear PSE, following the approach
described by Gudmundsson & Colonius (2011). We describe the PSE approach briefly
in the present section; more details can be found in the cited paper.

Parabolized stability equations represent a generalization of the parallel-flow linear
stability theory for flows with a mild variation in the streamwise direction. For a
free jet, the total flow field q is decomposed into a mean (time-averaged) and
axisymmetric component q̄ and its fluctuations as q(x, t) = q̄(x) + q′(x, t), where
q = [ux, ur, uφ, ρ,T]T is the vector of fluid variables and x = (x, r, φ) are the
coordinates on a cylindrical system. Based on the homogeneity of the mean flow
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on the azimuthal direction and time, the fluctuating part can then be written as a sum
of Fourier modes in the azimuthal direction and in frequency

q′(x, t)=
∑
ω

M∑
m=−M

q̆m,ω(x, r)eimφe−iωt, (4.1)

where q̆m,ω is the modal function corresponding to the mode (m, ω).
The mean flow is a function of the axial and radial directions (x, r), but a slow

variation of its properties along the axial direction is assumed. This assumption
permits the decomposition of q̆m,ω into a slowly varying shape function (that evolves in
the same scale as the mean flow) and a rapidly varying wave-like part:

q̆m,ω(x, r)= Amω(x)q̃m,ω(x, r)= exp
(

i
∫

x
αm,ω(ξ) dξ

)
q̃m,ω(x, r). (4.2)

Here αm,ω(x) is a complex axial wavenumber, for which a mild variation is also
assumed. It is important to stress that the separation in scales between the mean flow
and the modal shape functions on one hand, and the modal wavelengths associated
with αm,ω on the other, is a necessary hypothesis in the derivation of the PSE.
However, for low frequencies the wavelength can be comparable to the extent of
the potential core.

We introduce the previous decomposition into the compressible Navier–Stokes,
continuity and energy equations. After subtraction of the terms corresponding to the
mean flow, and neglecting quadratic terms on the fluctuations, we arrive at the system
of equations

(A( ¯q, α, ω)+ B(q̄)) q̃m,ω + C(q̄)
∂ q̃m,ω

∂x
+ D(q̄)

∂ q̃m,ω

∂r
= 1

Re
Eq̃m,ω. (4.3)

The linear operators A–E can be found in Gudmundsson & Colonius (2011). For
brevity, the subscripts have been dropped from the shape function and wavenumber in
the previous expression. The left-hand side in (4.3) is a linear spatial operator for the
mode (m, ω), and each frequency-azimuthal mode component evolves independently of
the others. Following from the slow axial variation assumed for q̃m,ω, the second axial
derivatives on the viscous terms are neglected, so that the system of equations can
be integrated along the x-direction. The decomposition of (4.2) is ambiguous in that
the spatial growth of q̆m,ω can be absorbed into either the shape function q̃m,ω or the
complex amplitude Am,ω corresponding to the wave-like behaviour. Following Herbert
(1997), the normalization condition∫ ∞

0
q̃∗m,ω

∂ q̃m,ω

∂x
r dr = 0, (4.4)

where the superscript ∗ denotes complex conjugation, is imposed individually on every
mode, removing the exponential dependence on the shape function q̃m,ω.

The characteristic boundary conditions of Thompson (1987) are used for the outer
boundary, while centreline conditions are derived following Mohseni & Colonius
(2000). The same approach of Gudmundsson & Colonius (2011) was applied to obtain
numerical solutions of the system of equations (4.3). The reader is referred to that
paper for further details on the computational method.

Adequate boundary conditions are required at the inlet, specifically for q̃m,ω and
αm,ω, for each mode. The complex amplitudes Am,ω can be rescaled after the
computations in order to fit experimental measurements, as linear PSE results are
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FIGURE 15. Comparison between linear PSE (lines) for m = 0 and experimental velocity
fluctuations on the centreline (symbols) for the M = 0.4 jet. Subfigures (a–i) refer respectively
to Strouhal numbers from 0.1 to 0.9 with increments of 0.1.

independent of the modal amplitudes and phases. A local spatial linear instability
eigenvalue problem can be derived from the equation (4.3); from its solution, the
dominant inflectional instability eigenmode is taken as initial condition for q̃m,ω

and αm,ω.

4.2. Comparison with experimental velocity fluctuations on the jet centreline
The linear modes have a free amplitude, and this has been adjusted using the
velocity spectra on the jet centreline. There the kinematic boundary conditions are
zero transverse velocity and finite axial velocity for azimuthal mode 0, zero axial
velocity and finite transverse velocity for mode 1, and zero velocities for all higher
modes (Batchelor & Gill 1962). As the velocity measurements were performed with a
single hot-wire, we expect that in the potential core the measurements will be of the
axial velocity, thus allowing the comparison between the mode 0 from linear PSE and
the hot-wire spectra.

Figure 15 shows the comparison, between linear PSE and experiment, of the
amplitude for the streamwise velocity component for the Mach 0.4 jet. The free
constant multiplying linear PSE amplitudes was chosen by matching amplitudes at
x/D = 2. Between the nozzle exit and the end of the potential core (x/D ≈ 5–5.5)
there is an amplification of four orders of magnitude of the fluctuation energy in
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the experiment. In this region there is close agreement between linear PSE and
experimental values for Strouhal numbers of 0.3–0.9.

We note in figure 15 differences between the modelled wavepackets and the
experimental results for points downstream of the end of the potential core. Similar
behaviour was also observed in previous work by Suzuki & Colonius (2006) and
Gudmundsson & Colonius (2011). In these papers the discrepancies were attributed to
fluctuations that were uncorrelated with the wavepackets at upstream positions. Proper
orthogonal decomposition (POD) was applied to obtain modes correlated axially, and
use of the first POD modes allowed uncorrelated oscillations to be filtered out,
improving significantly the agreement at downstream positions. However, since the
present hot-wire measurements are single-point we could not apply POD to these
results to verify if this also applies to the current experiments.

For the two lower Strouhal numbers, 0.1 and 0.2, shown in figure 15(a,b), linear
PSE underpredict the growth rate of the axisymmetric mode. This was also the
case in other works (Suzuki & Colonius 2006; Gudmundsson & Colonius 2011)
and, as shown in the Appendix, is also verified for the higher Mach numbers. These
discrepancies have been attributed in the cited papers to increased non-parallel effects
for these lower frequencies, since the potential core length becomes comparable to the
wavelength for these Strouhal numbers, which invalidates the hypotheses in the PSE
derivation shown in § 4.1.

The lack of agreement at low Strouhal numbers may also be due to nonlinear
effects; such a possibility has been considered by Suponitsky, Sandham & Morfey
(2010), who show in computations how the nonlinear interaction between waves at
higher Strouhal numbers may affect the development of low-St velocity fluctuations
and change the radiated sound field. The present results do not, however, allow us to
discriminate between these two possibilities to explain the said discrepancies.

Similar agreement is found for the other jets over the same St range; this is shown
in the Appendix. Due to the compressibility effects discussed by Cavalieri et al.
(2012), the normalized amplitudes of the linear PSE modes on the jet centreline
decrease as the Mach number is increased. This is shown in figure 16 for three
Strouhal numbers. We note that the amplitudes near the nozzle exit are quite close,
and lower growth rates due to compressibility lead to decreases in amplitudes for
higher Mach numbers. The linear PSE modes are shown to correctly model these
observed trends in the experimental fluctuations.

4.3. Cross-stream planes
Velocity measurements using time-resolved PIV in cross-stream planes of the jet allow
application of a Fourier transform in time and of a Fourier series in azimuth, leading
to a decomposition of the velocity field in both frequency and azimuthal wavenumber,
such as in (4.1). This allows comparison of experiment with linear PSE results for
each (ω,m) pair at several axial and radial positions.

We first show comparisons for the axisymmetric mode at x/D = 2 in § 4.3.1 to
explain some of the general features of both the experiment and the PSE solution.
The first helical mode is compared to linear PSE at the same axial station in § 4.3.2.
Finally, the axial development of wavepackets is studied in § 4.3.3. All comparisons in
the present section were made for the M = 0.4 jet.

Throughout this section, comparisons are restricted to the Strouhal number range of
0.3–0.7. Comparisons for Strouhal numbers of 0.1 and 0.2, not shown here, did not
show good agreement with linear wavepacket models, similarly to what was verified
for the hot-wire data in § 4.2.
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FIGURE 16. Compressibility effect in the velocity fluctuations and in the linear PSE
amplitudes for (a) St = 0.4, (b) St = 0.6 and (c) St = 0.8.

4.3.1. Axisymmetric mode at x/D= 2.5
The stereoscopic TR-PIV results were compared to the radial shapes of the PSE

solutions for azimuthal modes m = 0, 1. We begin the study of linear wavepackets by
looking at the axisymmetric mode of the M = 0.4 jet in the present section, focusing
first on jet cross-section at x/D = 2.5. In all comparisons of the axisymmetric mode
obtained by TR-PIV results we have used the linear PSE results with amplitudes for
ux matched using the hot-wire spectra at x/D = 2 and r/D = 0; hence, no further
adjustment was performed to match the PIV results. Figure 17 shows a comparison of
the axial velocity fluctuations at this station for m= 0.

As seen in § 3.1, the fluctuation energy of the axisymmetric mode close to the jet
lipline is much lower than the overall fluctuation energy, shown by dash-dotted lines in
figure 17. This is in contrast to the jet centreline, where all axial velocity fluctuations
correspond, as expected, to the axisymmetric mode.

The comparison in figure 17 between PSE and experimental mode 0 shows fairly
good agreement. However, the PSE solution presents nearly zero amplitudes at a
radial position close to the lipline (the precise position depends on the frequency). To
understand the meaning of this zero amplitude, we see in figure 18 a comparison of
the phase between experiment and linear PSE for Strouhal number of 0.7. We note
that in the experiment there is a phase jump close to π between the two sides of the
mixing layer, a behaviour also recovered by the PSE solution.

This phase opposition for the streamwise velocity is found in coherent,
axisymmetric vortical structures obtained by phase averages of forced jets (Hussain
& Zaman 1981; Cohen & Wygnanski 1987; Petersen & Samet 1988), and was also
seen previously in unforced jets by Lau, Fisher & Fuchs (1972). An illustration of
such structures is shown in figure 18(b). At the radial position of the centre of a
vortex, shown with a dashed line, the axial velocity fluctuation is zero; therefore, a
forced jet consisting mostly of periodic vortex rings presents a near-zero amplitude for
the streamwise velocity at the radial position of the vortex centres. We can conjecture
that the jitter of coherent structures in an unforced jet will lead to temporal changes
in the radial position of the centres, so that the experimental amplitude is not zero, as
sketched in figure 18(c).
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FIGURE 17. (Colour online) Comparison between ux from linear PSE and experiment for
m= 0, M = 0.4 and x/D= 2.5: (a) St = 0.4, (b) St = 0.5, (c) St = 0.6, (d) St = 0.7.
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FIGURE 18. (Colour online) (a) Phases of the streamwise velocity for the axisymmetric
mode at St = 0.7 and x/D= 2.5. (b) Sketch representing the phase difference across a mixing
layer with a developing Kelvin–Helmholtz instability. (c) Effect of jitter in the position of
vortex centres.

Based on this conjecture, in an attempt to obtain an average structure of the
streamwise velocity without jitter, we apply spectral POD in the radial direction to
extract the correlated part of the fluctuations, using the same approach described by
Jung, Gamard & George (2004), which amounts to solving the integral equation∫

Ri,j(x, r, r′,m, ω)ξj(x, r′,m, ω)r′ dr′ = λ(x,m, ω)ξi(x, r,m, ω), (4.5)
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where ξ is an eigenfunction (POD mode), λ is the corresponding eigenvalue and Ri,j is
given by

Ri,j(x, r, r′,m, ω)= ui(x, r,m, ω)u∗j (x, r′,m, ω). (4.6)

This kernel Ri,j(x, r, r′,m, ω)r is not Hermitian; an auxiliary Hermitian kernel was
obtained, as in Jung et al. (2004), by multiplying the integral equation (4.5) by√

r and considering Ri,j(x, r, r′,m, ω)
√

r′r as the kernel and ξi(x, r,m, ω)
√

r′ as the
eigenfunction.

POD is calculated numerically using the approach described by Delville (1995),
with a single 3N × 3N matrix formed by computation of Ri,j for the three velocity
components using the N points in the radial direction.

Throughout this section we use the projection of the experimental results onto the
mode with highest energy, obtained by

POD(u)=
√
λ(1)ξ (1), (4.7)

where λ(1) is the highest eigenvalue and ξ (1) the corresponding eigenfunction. This
projection was used to extract the coherent part of the velocity field, and is referred to
as the ‘first POD mode’ throughout the remainder of this paper.

The x component of the first POD mode is plotted in figures 17 and 18, where we
see that this mode indeed presents an amplitude close to zero near the lipline, at the
position of the phase jump. The position of this zero amplitude agrees closely with the
PSE solution, as shown in figure 17.

The radial velocity is compared in figure 19. Note that linear PSE solutions have
the same free constant multiplying all flow variables; therefore, no further adjustment
is done for this comparison. The agreement between linear PSE and experiment is
good, especially considering the first POD mode close to the centreline. Since the
radial velocity should be zero on the centreline for m = 0, the present results suggest
that POD acts in this case as a filter, removing some of the uncorrelated noise in the
experimental results and leading to the correct trend for the radial velocity close to the
centreline.

4.3.2. First helical mode at x/D= 2.5
As in the axisymmetric case, linear PSE solutions have a free constant that is

determined using experimental data. However, since the hot-wire measurements of
axial velocity on the centreline cannot give information about helical modes, we have
used the TR-PIV results at x/D = 2.5 to determine this free amplitude for m = 1. We
define an inner product

〈u(x, r, ω,m), ŭ(x, r, ω,m)〉 =
∫ rf

0

[
ux(x, r′, ω,m)ŭ∗x(x, r′, ω,m)

+ ur(x, r′, ω,m)ŭ∗r (x, r′, ω,m)+ uφ(x, r′, ω,m)ŭ∗φ(x, r′, ω,m)
]

r′ dr′ (4.8)

between the experimental results and the linear PSE solutions, where rf is the
maximum radius available from the PIV measurements, and ŭ refers to the velocity
modelled by the PSE solution q̆m,ω. If the velocity field can be expressed as

u(x, r, ω,m)= b(x, ω,m)ŭ(x, r, ω,m), (4.9)

the value of b can be determined as

b(x, ω,m)= 〈u(x, r, ω,m), ŭ(x, r, ω,m)〉
‖ŭ(x, r, ω,m)‖2

. (4.10)
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FIGURE 19. (Colour online) Comparison between ur from linear PSE and experiment for
m= 0, M = 0.4 and x/D= 2.5: (a) St = 0.4, (b) St = 0.5, (c) St = 0.6, (d) St = 0.7.

We use the results at x/D= 2 to determine b (x= 2D, ω,m), and use this value of b
as the free constant multiplying the linear PSE results for all values of x and r.

Figure 20 presents comparisons for the axial velocity at x/D = 2. The radial
velocity in the same axial station is compared in figure 21. We note that, as for
the axisymmetric mode, for all but the St = 0.7 results, the solution of the linear PSE
presents a near-zero amplitude close to the jet lipline, which compares favourably with
the first POD mode calculated from the experimental data. The agreement between
model and experiment is good for both the axial and radial velocity components. A
somewhat worse agreement for St = 0.7 may be related to the lower amplification of
this frequency. Linear PSE are expected to provide good predictions for significantly
amplified modes.

4.3.3. Axial development of wavepackets
We illustrate the development of wavepackets in the jet by comparing the linear PSE

solution for Strouhal number 0.5 to the experimental results for both the axisymmetric
and first helical modes at axial stations ranging from x/D = 1 to x/D = 8. This
comparison is shown for the axisymmetric mode in figure 22 for the axial velocity,
and in figure 23 for the radial velocity fluctuations.

We see in figures 22 and 23 three distinct zones in the jet with regard to the
wavepacket development. In a first region, exemplified by the results at x/D = 1
and x/D = 1.5, the velocity fluctuations present some differences from linear PSE,
suggesting that this near-nozzle region is characterized by a transition from the
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FIGURE 20. (Colour online) Comparison between ux from linear PSE and experiment for
m= 1, M = 0.4 and x/D= 2.5: (a) St = 0.4, (b) St = 0.5, (c) St = 0.6, (d) St = 0.7.

fluctuations internal to the nozzle to the Kelvin–Helmholtz mode observed downstream.
This transition is more clearly seen in the fluctuations close to the jet lipline; on the
centreline, the flow seems to conform earlier to a jet instability, at, say, x/D = 0.5, as
seen in the hot-wire results in § 4.2. Another possibility to explain results for low x
is that in this region wavepackets are indeed present, but do not dominate the velocity
fluctuations, especially close to the lipline.

Between x/D = 2 and the end of the potential core (x/D ≈ 5.5 for the M = 0.4
jet) the velocity fluctuations are closely matched by linear PSE, for both axial and
radial velocity fluctuations, albeit with what seems to be a systematic underestimation
of the velocity amplitudes. This is possibly due to aliasing errors in the TR-PIV
results; note that velocity from the linear PSE was scaled using hot-wire spectra on
the jet centreline, and the TR-PIV spectra in this region, as shown in figure 5, tend
to overestimate the energies due to aliasing. This overestimation is nearly uniform for
all radial positions. This is shown in the Appendix for the M = 0.6 jet, which presents
more aliasing effects than the M = 0.4 case; when differences between hot-wire and
PIV spectra are discounted the agreement is significantly improved.

However, for locations downstream of the end of the potential core, the agreement
between the wavepacket model and the experiment becomes progressively worse, as
exemplified by the results for 6 6 x/D 6 8. This could be due to nonlinear interactions
that become significant due to the amplitude growth of fluctuations with increasing
x/D, invalidating the assumptions of linear PSE; if this is the case, nonlinear PSE
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FIGURE 21. (Colour online) Comparison between ur from linear PSE and experiment for
m= 1, M = 0.4 and x/D= 2.5: (a) St = 0.4, (b) St = 0.5, (c) St = 0.6, (d) St = 0.7.

could improve the agreement with the experiment for higher x/D. However, a second
possibility is that linear wavepackets are still present at downstream stations, but
account only for a small part of the azimuthally coherent overall energy; radial POD
is, in this case, no longer an efficient means by which to extract wavepackets from
the PIV data. We favour this second hypothesis based on the agreement previously
obtained by Suzuki & Colonius (2006) and Gudmundsson & Colonius (2011) between
linear stability and the near pressure field; the axial POD used in those works led
to close agreement at positions significantly downstream of the end of the potential
core. The use of an axial POD is not feasible with the present experimental setup,
since separate measurements were taken for each value of x/D. Moreover, preliminary
comparisons of the measured near-field pressure of the present jets with linear PSE led
to good agreement up to x/D= 8.9, which is well beyond the end of the potential core
(Breakey et al. 2013).

Results representing the development of wavepackets for the helical mode at
St = 0.5 are shown in figures 24 and 25, for the axial and radial velocity components,
respectively. We observe an overall picture similar to the m = 0 results; however, for
m= 1 the discrepancies between linear PSE and experiment start to become significant
for x/D ≈ 4 for the axial velocity (the radial velocity presents fairly good agreement
up to x/D= 5).

To present these results, and also comparisons for other Strouhal numbers, in a
more compact manner, we use the inner product defined in (4.8) to define a metric, β,
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FIGURE 22. (Colour online) Comparison between ux from linear PSE and experiment for
m= 0, M = 0.4 and St = 0.5: x/D= 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8.

of the agreement between linear PSE and experiment, similar to what is done by
Gudmundsson & Colonius (2011). If we define

β(x, ω,m)= 〈u(x, r, ω,m), ŭ(x, r, ω,m)〉
‖u(x, r, ω,m)‖‖ŭ(x, r, ω,m)‖ (4.11)

we have 0 6 |β| 6 1, where |β(x, ω,m)| = 1 means that linear PSE and experiment
have exactly the same radial shapes for the three velocity components for given axial
station, frequency and azimuthal mode. On the other hand, |β(x, ω,m)| = 0 indicates
orthogonality between model and experiment. Since this metric is an inner product
normalized by the amplitudes in both PSE and experiment, a high value of β indicates
only agreement between radial shapes of the three velocity components.
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FIGURE 23. (Colour online) Comparison between ur from linear PSE and experiment for
m= 0, M = 0.4 and St = 0.5: x/D= 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8.

The β metric was calculated using the full velocity data. Results of the metric |β|
are shown in figure 26(a,b), for azimuthal modes 0 and 1, respectively.

Good agreement is obtained for both the axisymmetric and the first helical mode,
as illustrated by values of |β| equal to 0.9 and higher. The results in figure 26 show
in all cases the three regions discussed above. In an initial region, agreement is not
good; this is followed by a region upstream of the end of the potential core with close
agreement between PSE and experiment, and at downstream positions discrepancies
between model and experiment become significant.

On the other hand, we note that the values of β are frequency-dependent.
Wavepackets with high St tend to match experimental results better for low x, and
the opposite happens at downstream positions, where agreement with low St is better.
This trend is consistent with the growth rates expected for each axial station. For low
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FIGURE 24. (Colour online) Comparison between ux from linear PSE and experiment for
m= 1, M = 0.4 and St = 0.5: x/D= 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8.

values of x/D, the relatively thinner mixing layer will lead to a high frequency for
maximum growth rate, and wavepackets with high St will have a fast spatial growth
near the nozzle exit. They thus tend to dominate the early development of the overall
fluctuations for a given frequency and azimuthal mode, while low-St waves, with lower
growth rate, take longer to have a significant contribution to the measured velocity
fluctuations.

This situation is reversed downstream, since the velocity profile becomes
progressively stable to high Strouhal numbers, whereas waves with low St are
amplified over a longer extent of the jet. The decay of the high-frequency disturbances
suggests that the velocity field is no longer dominated, in the downstream region, by
wavepackets with high Strouhal number. The downstream persistence of low-frequency
waves may explain their better agreement with the experimental results.
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FIGURE 25. (Colour online) Comparison between ur from linear PSE and experiment for
m= 1, M = 0.4 and St = 0.5: x/D= 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8.

5. Conclusion and perspectives
We present a study of velocity fluctuations in turbulent subsonic jets without

externally imposed forcing, time-resolved measurements allowing the simultaneous
extraction of azimuthal modes in the flow and in the acoustic field. The velocity field
is seen to present significant energy for high azimuthal wavenumbers, whereas low-
angle radiation is predominantly axisymmetric. On the other hand, the axisymmetric
mode of the velocity field has non-zero amplitude, and when this is isolated from the
turbulence and correlated to the far-field sound, correlations of the order of 10 % are
obtained, values significantly higher than the two-point correlations obtained for these
jets and other experiments in the literature.
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FIGURE 26. (Colour online) Absolute value of normalized inner product between linear PSE
and experiment for (a) m= 0 and (b) m= 1.

The velocity field is then studied to verify whether this axisymmetric structure,
and also the first helical mode, can be described as a superposition of wavepackets.
Linear PSE are used for this, providing a wavepacket model accounting for the slow
divergence of the experimental mean velocity profiles. There is good agreement for
azimuthal modes 0 and 1 until the end of the potential core, showing that linear
wavepackets are an appropriate model for the development of fluctuations in such
flows, and that these modes present a wavepacket structure, in agreement with source
models identified using far-field information (Kœnig et al. 2011a; Papamoschou 2011;
Cavalieri et al. 2012).

The agreement found between linear PSE and the experimental velocity fluctuations
constitutes further support of the contention that the fluctuations in turbulent jets,
for low Strouhal numbers and azimuthal wavenumbers, can be described as linear
wavepackets with the mean field used as a base flow, at least until the end of
the potential core. Some nonlinearity is nonetheless implicit, since the base flow
in the computations is the experimental mean field. The background turbulence can
be seen to establish this mean field via the Reynolds stresses; this base flow now
supports a linear Kelvin–Helmholtz instability leading to an extended hydrodynamic
wavepacket.

The linearity of the velocity fluctuations contrasts with some numerical studies
for low Reynolds number jets (Mohseni, Colonius & Freund 2002; Suponitsky
et al. 2010), which show that nonlinear effects are necessary to describe the
evolution of near-field disturbances. In these transitional flows, most of the kinetic
energy of fluctuations is related to azimuthally coherent structures formed during
laminar–turbulent transition; the high amplitudes of these structures leads to nonlinear
effects in the wavepacket evolution, even close to the nozzle exit. However, as seen in
§ 3.1, for a high Reynolds number jet with a turbulent boundary layer in the nozzle, as
in the present case, only a small fraction of the turbulent kinetic energy is contained in
the low azimuthal modes, which favours application of a linear approach.

The present results show that a part of the turbulent field of high Reynolds number
jets can be obtained using the Navier–Stokes equations linearized using the mean
velocity field. This is quite different from the general view of turbulence as an
essentially nonlinear phenomenon. We doubt, though, that the dominant turbulent
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FIGURE 27. Comparison between linear PSE (lines) for m = 0 and experimental velocity
fluctuations on the centreline (symbols) for the M = 0.5 jet. Subfigures (a–i) refer respectively
to Strouhal numbers from 0.1 to 0.9 with increments of 0.1.

velocity fluctuations, of high azimuthal wavenumber, could be obtained with similar
linearizations. On the other hand, if we are looking for the significant velocity
fluctuations for sound generation, which have significantly lower energy, a linear
wavepacket model appears to be appropriate to describe the evolution from the nozzle
exit to the end of the potential core, at least in a statistical sense: we note that all
comparisons between linear PSE and experiment were done using averaged spectra
to obtain amplitudes and phases for each frequency and azimuthal mode. Linear
PSE are thus seen to be a good model for a statistical description of large-scale
structures.

Downstream of the end of the potential core, though, the model differs from the
experimental results. We believe the discrepancy is at least in part the result of the
very small contribution of the organized wavepacket to the overall fluctuation energy,
and a failure of the radial POD to extract this low-energy structure. Simultaneous
acquisition of several axial planes of data may be required to educe the wavepacket in
this region.
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Appendix. Linear PSE comparisons for Mach 0.5 and 0.6
We show in figures 27 and 28 the comparison between the axisymmetric mode

obtained with linear PSE and the experimental results for the axial velocity
fluctuations on the jet centreline, respectively, for the M = 0.5 and 0.6 jets.

The observed trends for both jet Mach numbers are quite similar to the results for
the M = 0.4 jet shown in figure 15. For Strouhal numbers between 0.3 and 0.9 there
is close agreement between PSE and the experiment until the end of the potential
core. Discussion of the possible reasons for the discrepancies at lower frequencies is
presented in § 4.2.

For comparison using the TR-PIV results, increasing the jet Mach number leads
to higher aliasing, since the sampling rate was fixed at 5 kHz for all experiments.
As a result, the spectral estimates using TR-PIV are significantly higher than the
corresponding hot-wire results.

As an example of this effect, figure 29 presents comparisons at x/D = 3 for the
axisymmetric mode of the radial velocity for the M = 0.6 jet. The radial shape of
the PSE solution agrees closely with the first POD mode of the experiment. The
measured amplitudes are higher than the PSE solution fitted with hot-wire spectra, but
this amplitude change seems to be constant with radius.

We have performed an ad hoc correction for aliasing by defining a multiplicative
constant for each frequency, which was obtained by dividing the hot-wire spectra on
the jet centreline by the TR-PIV spectral estimate for ux at the same position. This
same constant was applied to all radial positions. Results are shown in figure 30. The
amplitudes are now quite close, indicating that the shifts in figure 29 are indeed related
to aliasing in the experiments for high Mach number.
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