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Lactoferrin and lysozyme are antimicrobial and immunomodulatory proteins produced in high
quantities in human milk that aid in gastrointestinal (GI) health and have beneficial effects when
supplemented separately and in conjunction in human and animal diets. Ruminants produce low
levels of lactoferrin and lysozyme; however, there are genetically engineered cattle and goats that
respectively secrete recombinant human lactoferrin (rhLF-milk), and human lysozyme (hLZ-milk) in
their milk. Effects of consumption of rhLF-milk, hLZ-milk and a combination of rhLF-and hLZ-milk
were tested on young pigs as an animal model for the GI tract of children. Compared with control
milk-fed pigs, pigs fed a combination of rhLF and hLZ (rhLF+hLZ) milk had a significantly deeper
intestinal crypts and a thinner lamina propria layer. Pigs fed hLZ-milk, rhLF-milk and rhLF+hLZ had
significantly reduced mean corpuscular volume (MCV) and red blood cells (RBCs) were significantly
increased in pigs fed hLZ-milk and rhLF-milk and tended to be increased in rhLF+hLZ-fed pigs,
indicating more mature RBCs. These results support previous research demonstrating that pigs fed
milk containing rhLF or hLZ had decreased intestinal inflammation, and suggest that in some
parameters the combination of lactoferrin and lysozyme have additive effects, in contrast to the
synergistic effects reported when utilising in-vitro models.
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Lactoferrin and lysozyme are two antimicrobial proteins
that are found in high quantities in human breast milk, but
little is found in themilk of ruminants such as goats and cows
(Hettinga et al. 2011). There are many health benefits that
breastfed infants experience as breastfeeding is known to
promote the development of the intestinal mucosa and im-
mune system. Evidence shows that lactoferrin and lyso-
zyme in breast milk help to confer these positive effects
(Mountzouris et al. 2002; Newburg & Walker, 2007).

Lysozyme is a N-acetylmuramidase that is able to
cleave 1,4-beta-linkages between N-acetylmuramic acid
and N-acetyl-D-glucosamine residues found in the peptido-
glycan layer of bacterial cells. Lysozyme is also found in
other body secretions besides milk, including tears, saliva
and intestinal mucus. It possesses the ability to modulate
the inflammatory response through several mechanisms
(Goldman et al. 1986). Along with cleaving peptidoglycan

lysozyme binds to lipopolysaccharides (LPS) and lipotei-
choic acid (LTA), preventing them from interacting with
receptors on intestinal epithelial cells (IECs) and intestinal
macrophages (Ohno & Morrison, 1989a; Ginsburg, 2002).
Sequestration of LPS by lysozyme suppresses pro-
inflammatory effects, including production of TNF-α
(Ohno & Morrison, 1989b; Takada et al. 1994a, b;
Kurasawa et al. 1996).
Human lactoferrin (hLF) can act as a bactericidal,

bacteriostatic and immunomodulatory agent. Lactoferrin is
resistant to enzymic proteolysis in the stomach (Liao et al.
2007), and partial degradation of lactoferrin by stomach
pepsin frees the lactoferricin domain, which may be an even
more potent antimicrobial (Yen et al. 2009). Lactoferrin is
able to bind and sequester iron, as well as prevent patho-
genic bacteria from adhering to intestinal epithelial cells and
invading the intestinal tissue (Actor et al. 2009). There is a
105-kDa lactoferrin receptor (also known as intelectin) that
specialises in mediating uptake of lactoferrin into enter-
ocytes and crypt cells, and porcine and human lactoferrin
receptors share 82% homology (Liao et al. 2007, 2012).*For correspondence; e-mail: Jdmurray@ucdavis.edu
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Once lactoferrin is taken up by enterocytes at the brush
border, is internalised into compartments in the apical cyto-
plasm, where it can have effects on cellular proliferation and
directing immune responses including reducing oxidative
stress and reducing production of pro-inflammatory cyto-
kines (Kruzel et al. 2007; Actor et al. 2009; Nielsen et al.
2010).

Previous work has yielded a herd of transgenic goats that
produce human lysozyme (hLZ) at 270mg/l which is 68%
the concentration that is found in human milk (Maga et al.
2006a). Human lysozyme was chosen because it is a more
active antimicrobial than other forms of lysozyme such as
hen egg white lysozyme (HEWL) (Yang et al. 2011). Multiple
studies have characterised the hLZ in the milk and its
effects on bacteria in vitro (Maga et al. 2006a, b; Scharfen
et al. 2007). In addition studies in vivo have shown that
feeding human lysozyme-containing transgenic goats’ milk
at 270mg/l positively impacts GI morphology, serum
metabolites, lymphocyte populations, and increases anti-
inflammatory cytokine expression in a porcine model
(Brundige et al. 2008, 2010; Cooper et al. 2011). Consump-
tion of the 270mg/l hLZ-milk also has the ability to modulate
the gut microbiota of healthy pigs, significantly increasing
levels of Bifidobacteriaceae and Lactobacillaceae (Maga
et al. 2012) and lowering levels of Escherichia coli in studies
both in vitro and in vivo (Maga et al. 2006b, c).

Pharming Group BV, a Dutch-based biotechnology
company, has used genetic engineering to produce a herd
of transgenic cows that express approximately 1·5–2·0 g/l
recombinant human lactoferrin (rhLF) in theirmilk, a concen-
tration within the range normally secreted in human milk
(van Berkel et al. 2002). Natural hLF from human milk and
rhLF-milk have identical iron-binding and -release proper-
ties; however natural hLF and rhLF-milk undergo differential
N-linked glycosylation (van Berkel et al. 2002). Natural hLF
contains complex-type glycans and rhLF-milk contains
oligomannose- and hybrid-type N-linked glycans, but the
overall structures are identical (Thomassen et al. 2005).

Zhang et al. (2001) showed in an experiment with
neonatal mice that feeding rhLF-containing milk from a
transgenic mouse strain improved intestinal growth. Studies
on feeding the rhLF-milk (1·2 g/l) to young pigs demonstrated
beneficial changes in circulating leucocyte populations with
a significant decrease in neutrophils and increase in lympho-
cytes, an indicator of decreased systemic inflammation, as
well as changes in intestinal villi architecture including sig-
nificantly taller villi, deeper crypts and a thinner lamina
propria compared with control milk-fed pigs (Cooper et al.
2013).

When lactoferrin and lysozyme are together they
have synergistic antimicrobial properties. Lactoferrin has a
cationic domain that allows it to increase lysozyme’s ability
to kill bacteria. Lactoferrin binds to lipopolysaccharides on
the outer membrane which aids in disrupting the membrane
and allows lysozyme better access to the peptidoglycan
layer underneath in Gram-negative bacteria (Leitch &
Wilcox, 1999), and the proteoglycanmatrix of Gram-positive

bacteria (Ellison & Giehl, 1991). In conjunction, lactoferrin
and lysozyme demonstrate a synergistic inhibition of growth
of both Gram-positive and Gram-negative bacteria (van der
Linden et al. 2009). Given the synergistic relationship
between lactoferrin and lysozyme, milk from transgenic
livestock containing both antimicrobials has the potential to
have an even more pronounced positive effect on health. In
addition, there are studies in vitro with both lactoferrin (Liao
et al. 2012) and lysozyme (Maga et al. 2006b) that indicated
that changing the concentration of these proteins modifies
the responses seen; however previous feeding studies in vivo
have not investigated the effect of altering the concentrations
of rhLF or hLZ in milk. The present feeding study was
designed to investigate both the effects of combining rhLF
and hLZ-milk and to determine the effects of diluting rhLF-
milk and hLZ-milk with non-transgenic control milk,
creating milk with half the concentration rhLF and hLZ
used in previous feeding studies.

Materials and methods

Milk collection and pasteurisation

Transgenic cow’s milk containing rhLF was provided by
Pharming GroupNV from a second parity Holstein from their
herd in Wisconsin. Milk was collected, pooled, frozen and
then sent to the University of California, Davis. A non-
transgenic Holstein matched for parity and stage of lactation
(mid-lactation) from the UC Davis dairy herd was selected
and control milk was collected and frozen. Both control and
rhLF-containing cows’ milk were pasteurised at 73·8 °C for
10 s and immediately chilled and then stored at 4 °C for no
more than a week until consumption by the pigs. Pre and
post-pasteurisation samples were collected and tested for
lactoferrin activity through a bacterial lysis assay. The rhLF-
milk contained 1·2 g/l of rhLF and retained 85% of its activity
after pasteurisation.
Transgenic goat milk containing hLZ and control goatmilk

was acquired from the UC-Davis Goat Facility. The hLZ-milk
was collected and pooled from 8 lactating does from the
Artemis line of transgenic goats (Toggenburg and Alpine in
origin) in their first to sixth parity, inclusive. Control goatmilk
was collected and pooled from non-transgenic control does
of the UC Davis herd, mainly of Toggenburg, Alpine,
LaMancha and Saanen in origin in various parities ranging
from first to sixth. Milk was pasteurised at 73·8 °C then
immediately cooled and stored at 4 °C for no more than a
week before being fed to the pigs. Previous studies show that
hLZ maintains 50% of its activity and that the concentration
remains stable through pasteurisation (Scharfen et al. 2007).
Western blots were performed to confirm the presence of the
lysozyme in pre and post-pasteurised milk.

Animals, blood sampling, necropsy, and sample collection

Male and female Hampshire-Yorkshire crossbred pigs were
obtained from the UC Davis Swine Facility, which is a
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specific pathogen-free facility. Pigs from 4 litters were
weaned at 3 weeks of age and raised in co-housed pens
before being moved to a containment facility at 6 weeks of
age and housed singly. Pigs were weighed upon arrival
and kept in a temperature-controlled room between 25 and
27 °C with ad-libitum access to food (standard grower diet
as previously described in Brundige et al. 2008) and water
for the duration of the trial. The pigs were monitored twice
daily for physical and general well-being. The pigs were
randomly assigned to 1 of 4 milk feeding groups that were
balanced for litter and sex. To control for differences in
bovine and caprine milk all groups received a 50/50 mixture
of cow milk and goat milk. The pigs received either 50%
pasteurised rhLF-milk and 50% pasteurised control goat milk
with a final concentration of 0·6 g/l of rhLF (rhLF+CG)
(n=8), 50% pasteurised hLZ-milk and 50% control cowmilk
with a final concentration of 135 mg/l hLZ (hLZ+CC) (n=8),
50% pasteurised hLZ-milk and 50% rhLF-milk with a final
concentration of 6 g/l of rhLF and 135mg/l hLZ (rhLF+hLZ)
(n=8), or 50% pasteurised control cow milk and 50%
control goat milk containing no rhLF or hLZ (CC+CG)
(n=8). Each pig was fed 250ml of milk twice a day for the
first week, then the amount of milk was increased to 350ml
twice daily for the second week. Milk was delivered using a
feeding pan to ensure that all animals were receiving the
same amount of milk. At the end of the second week blood
samples were collected via vena cava puncture into tubes
containing EDTA for complete blood count (CBC) analysis
using an ADVIA 120 Hemaetology System. The pigs were
then weighed and euthanised using pentobarbital sodium
(Fatal-Plus®, Vortech Pharmaceuticals, Ltd.) and tissue
samples were collected. Duodenum samples were taken
20 cm below the pyloric sphincter and ileum samples were
taken 20 cm above the ileocaecal junction. Intestinal
contents from the duodenum and ileum were collected for
enumeration of coliforms and Esch. coli. Tissue samples to
be used for qRT-PCR analysis were snap frozen in liquid
nitrogen before being stored at�70 °C until RNA extraction,
and samples for histology were washed in PBS then placed
in formalin. The use and care of all animals in this study
was approved by the UC Davis Institutional Animal Care
and Use Committee, under Association for Assessment
and Accreditation of Laboratory Animal Care International
(AAALAC) approved conditions.

Histology

Sections from the duodenum and ileum were placed in
formalin for 48 h and then progressively dehydrated in
ethanol. Sections were embedded in paraffin and then cut
andmounted on slides. Slides from the duodenum and ileum
were stained with haematoxylin and eosin and were photo-
graphed. Analysis was done by measuring the villi height,
width, lamina propria thickness, and crypt depth at 10×
magnification, using Spot Advanced Software (v3.4,
Diagnostic Instruments, Sterling Heights MI, USA). In ad-
dition, the number of intra-epithelial lymphocytes and

goblet cells per villus were counted at 40× magnification
and analysed as cells per unit villous height. At least five villi
were measured per intestinal section for each pig.

RNA preparation, cDNA synthesis, and qPCR

Samples from the duodenum and ileum were used for
cytokine expression analysis. The isolation and preparation
of total RNA, cDNA synthesis and qPCR conditions have
been previously described (Cooper et al. 2011). The
transcription levels of pro-inflammatory cytokines TNF-α
and IL-6, anti-inflammatory cytokine TGF-β1, as well as the
intestinal receptor TRL-4, and iron transporter hepcidin were
determined using the Pfaffl method with REST-MCS software
(Pfaffl et al. 2002). Briefly, the efficiency of each porcine-
specific and validated primer pair was calculated from
standard curve data. Each target gene was normalised to the
housekeeping gene β-actin to determine pair-wise fold
differences in expression.

Coliform and Esch. coli analysis

Intestinal contents from the duodenum and ileum were used
for enumeration of colonies of total coliforms and Esch. coli.
Samples were serially diluted 1 :100 three times in
Butterfields buffer and then plated on Petrifilm coliform
count plates (3M, St. Paul MN, USA) with 2 technical
replicates per sample. Petrifilms were incubated at 37 °C for
24 h and the resulting colonies were counted.

Statistical analysis

Statistical analysis of haematological, histological and
bacterial data was performed using SAS statistical software
(SAS, Cary NC, USA). Tukey’s test was used to compare all
4 groups to one another and determine P values and stan-
dard errors for these comparisons. Statistical analysis for fold
expression differences from the qPCR assay was performed
using REST-MCS software. For all analyses a P value of
40·05 was considered statistically significant.

Results

Haematology

Nineteen haematological parameters were investigated
(Table 1). Of these, two were significantly different between
feeding groups. Pigs fed hLZ+CC and rhLF+hLZ had
significantly lower mean corpuscular volume (MCV) than
pigs fed CC+CG (P=0·017 and P=0·0404, respectively)
and pigs fed rhLF+CG tended to have a lower MCV
compared with CC+CG fed pigs (P=0·051)(Fig. 1a). Both
rhLF+CG and hLZ+CC fed pigs had significantly more red
blood cells (RBCs) than CC+CG fed pigs (P=0·007 and
P=0·011, respectively), and pigs fed rhLF+hLZ tended to
have more RBCs than CC+CG fed pigs (P=0·090) (Fig. 1b).
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Histology

In the duodenum there were no significant differences ob-
served between any of the milk feeding groups (Table 2). In
the ileum, pigs fed rhLF+hLZ milk had significantly deeper
crypts than CC+CG fed pigs (P=0·05) and pigs fed
rhLF+CG tended to have deeper crypts (P=0·065) than
CC+CG fed pigs (Fig. 2a). The lamina propria was also sig-
nificantly thinner in pigs fed rhLF+hLZ (P=0·025) than pigs
fed CC+CG, and pigs fed rhLF+CG tended to have a thinner
lamina propria than CC+CG fed pigs (P=0·074) (Fig. 2b).

Gene expression

No differences in the expression of TNF-α, IL-6, TGF-β,
TLR-4 or hepcidin were seen in the small intestines of pigs

fed rhLF+CG, hLZ+CC, or rhLF+hLZ when compared with
pigs fed CC+CG milk (Table 3).

Esch. coli

No significant differences were seen in the number of
Esch. coli and coliform in the ileum or colon of pigs fed
any of the milk treatments (data not shown).

Discussion

Feeding young, healthy pigs milk containing either rhLF,
hLZ, or rhLF+hLZ had local effects within the intestine as
well as systemic effects on haematology when compared
with pigs fed control milk. Overall, the combination of the

Table 1. Haematological parameters in the pigs fed the various treatments†

Parameter‡ Unit CC+CG† (n=8) hLZ+CC† (n=8) rhLF+CG† (n=8) rhLF+hLZ† (n=8)

HGB g/dl 11·3±1·2 11·7±2·0 12·0±1·2 11·6±1·3
HTC % 36·1±3·5 38·6±6·9 39·8±4·3 37·3±4·1
MCH pg 17·5±0·5 16·1±0·6 16·2±1·1 16·7±0·9
MCHC g/dl 31·3±1·1 30·4±0·5 30·1±1·2 31·2±0·8
RDW % 19·8±4·5 20·7±3·7 20·0±2·4 19·6±3·2
WBC /μl 13016±4448 12970±4009 13656±3151 10814±2995
Neutrophil % 35·51±14·43 30·42±7·18 31·73±7·57 30·84±9·00
Neutrophils /μl 4623±3219 3884±1242 4281±1251 3266±1063
Lymphocyte % 56·93±13·57 62·22±7·54 61·00±7·57 61·39±8·64
Lymphocytes /μl 7424±3585 8110±2705 8372±2461 6691±2189
Monocyte % 5·24±0·90 4·92±1·36 5·00±1·24 5·29±1·36
Monocytes /μl 687±273 650±281 691±261 594±303
Eosinophil % 1·66±0·72 2·07±0·86 1·86±0·65 1·66±0·64
Eosinophils /μl 194±70 278±141 258±113 178±74
Basophil % 0·44±0·26 0·37±0·08 0·40±0·11 0·38±0·16
Basophils /μl 61±52 47±17 55±20 44±33
Platelets /μl 478750±176163 424000±159477 421750±119048 429625±91728

†See text for details of treatments
‡HGB, haemoglobin; HTC, haematocrit; MCHC, mean corpuscular haemoglobin concentration; RDW, erythrocyte distribution width;WBC, white blood cells

Fig. 1. Means for mean corpuscular volume (MCV) (a) and red blood cell (RBC) (b) for the four different groups. P values represent values
when comparing the treatment groups (hLZ+CC, rhLF+CG, rhLF+hLZ) against the control group (CC+CG). See text for details of treatments.
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two milks was only able to elicit an enhanced response over
a single antimicrobial in milk in ileal morphology and none
of the other parameters studied. Studies in vitro using mouse
cell lines show that lactoferrin can increase proliferation of
crypt cells (Liao et al. 2012). In the ileum of the small
intestine, feeding rhLF+hLZ milk significantly increased
crypt depth, and rhLF+CG milk tended to increase crypt
depth compared with control milk-fed animals. Both groups
receiving rhLF milk showed this response to a very similar
extent, thus we attribute this effect to the rhLF present in the
milk. This is consistent with results from previous studies
showing that feeding milk with twice the concentration of
rhLF to pigs significantly increased crypt depth (Cooper et al.
2013), as well as studies feeding milk with twice the con-
centration of hLZ, which do not show this increase in crypt
depth (Cooper et al. 2011).

The lamina propria was significantly thinner in pigs fed
rhLF+hLZ and tended to be thinner in pigs fed rhLF+CG

compared with those fed CC+CG. Pigs fed milk with twice
the concentration of hLZ (Cooper et al. 2011), and rhLF
(Cooper et al. 2013), as well as chickens fed transgenic rice
containing a combination of recombinant human lactoferrin
and lysozyme (Humphrey et al. 2002), also had thinner
lamina propria than animals on control diets. When fed in
combination (rhLF+hLZ) we see this same result, and to a
lesser extent in the group fed rhLF+CG.We propose that this
is due to the general anti-inflammatory and antibacterial
properties of both lactoferrin and lysozyme (Actor et al. 2009;
Lee et al. 2009; van der Linden et al. 2009) which is why this
effect was seen to be strongest in the combination of rhLF+
hLZ. The decreased concentration of hLZ in the hLZ+CC
milk was not enough to induce this effect, implying that the
thinning of the lamina propria is a dose-dependent effect.
Feeding hLZ+CC milk and rhLF+CG milk significantly

increased the number of RBCs, and the combination of
rhLF+hLZ milk tended to increase the number of RBCs. The

Table 2. Histological measurements from the ileum and duodenum of pigs fed the various teatments†

Duodenum

CC+CG†(n=8) hLZ+CC†(n=8) rhLF+CG†(n=8) rhLF+hLZ†(n=8)

Villi height, μm 700·40±193·43 772·66±145·32 802·86±103·85 735·62±206·45
Villi width, μm 184·49±14·99 186·18±28·36 194·70±32·16 194·97±27·79

Crypt depth, μm 130·51±54·63 169·41±78·47 193·47±54·41 167·16±59·02
Lamina propria, μm 369·58±107·82 288·32±73·65 236·20±67·33 336·76±139·87

Lymphocytes/unit height 0·111±0·020 0·097±0·021 0·090±0·023 0·112±0·023
Goblet cells/unit height 0·033±0·016 0·028±0·012 0·036±0·007 0·030±0·015

Ileum

CC+CG hLZ+CC rhLF+CG rhLF+hLZ

Villi height, μm 484·46±83·20 493·54±96·65 512·13±54·20 551·27±102·27
Villi width, μm 162·75±20·57 161·71±26·04 169·00±21·87 155·94±16·87
Lymphocytes/unit height 0·101±0·009 0·105±0·024 0·119±0·020 0·108±0·019
Goblet cells/unit height 0·034±0·009 0·042±0·013 0·037±0·013 0·035±0·009

†See text for details of treatments

Fig. 2. Means for ileum crypt depth (a) and ileum lamina propria thickness (b) for the four different groups. P values represent values when
comparing the treatment groups (hLZ+CC, rhLF+CG, rhLF+hLZ) against the control group (CC+CG). See text for details of treatments.
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mean corpuscular volume of hLZ+CC and rhLF+hLZ-fed
pigs was significantly lower and tended to be lower in pigs
fed rhLF+CG compared with pigs fed CC+CG. As RBCs
mature they decrease in size (Evans, 2009; Moore et al.
2010) indicating that these pigs with reduced MCV had a
more mature population of circulating RBCs along with the
overall increase in RBCs. Feeding a variety of antimicrobial
and anti-inflammatory supplements such as pomegranate
(Harikrishnan et al. 2012), propolis (Cetin et al. 2010) and
probiotics (Harikrishnan et al. 2010), have also yielded an
increase in RBC counts in multiple species including carp
(Kuang et al. 2012), chickens (Cetin et al. 2010) and rats
(Ita et al. 2007). Since this response was seen when feeding
lactoferrin and lysozyme, as well as other antimicrobials and
anti-inflammatory agents, it is possible that these agents
share a common mechanism of action.

One limiting factor in RBC production is iron availability.
The bone marrow has a constant need for iron to produce
erythrocytes and leucocytes (Jacobs & Summers, 1981;
Fonseca et al. 2003; Drakesmith & Prentice, 2012). Themain
regulator of iron stores throughout the body is hepcidin and
hepcidin expression is increased in certain tissues, such as
macrophages, during inflammation (Moriguchi et al. 2012;
Wang et al. 2012; Wu et al. 2012). Lactoferrin, lysozyme,
and many other antimicrobials and anti-inflammatory mol-
ecules also work by modulating the gut microbiota, promot-
ing growth of beneficial bacteria like Bifidobacterium and
Lactobacillus (Hu et al. 2012; Maga et al. 2012), which in
turn lower the pH of the gut and discourage the growth of
pathogenic bacteria (Ljungh & Wadström, 2006). While no
differences were seen in the number of coliforms and
Esch. coli in the intestine, other changes in microbiota could
act to decrease inflammatory signals in the gut, thus decreas-
ing hepcidin expression in other tissues such as macro-
phages and the liver, thus increasing iron absorption and
recycling in the body (Drakesmith & Prentice, 2012; Wu
et al. 2012).

Similar studies feeding healthy young pigs the same
volume of either 100% rhLF-milk or 100% hLZ-milk did not
change RBC numbers (Brundige et al. 2008; Cooper et al.

2013). In the current study increased RBCs were observed
when the dose was reduced by half, and other studies have
shown a similar dose-dependent response, with lower con-
centrations eliciting a similar increase in RBCs, which was
not observed at higher doses (Cetin et al. 2010). A feeding
study by Cerven et al. (2008) found that rats fed rice
containing recombinant human lactoferrin at 100 and
500mg/kg had increased RBC counts but at 1000mg/kg
there was no effect on RBC count. Why this increase in RBC
numbers was only seen in half doses of rhLF and hLZ milk is
unknown; however, the 100% doses of both rhLF-milk and
hLZ-milk caused proliferation of subsets of leucocytes
(Brundige et al. 2008; Cooper et al. 2013). Proliferation of
leucocytes in the bone marrow is an iron-dependent process
(Jacobs & Summers, 1981; Fonseca et al. 2003; Drakesmith
& Prentice, 2012) so it is possible that at increased levels
rhLF-milk and hLZ-milk still promote increased iron absor-
ption and recycling; however this excess iron is instead
funnelled to production of leucocytes as opposed to
erythrocytes.
No changes in the expression of cytokines TNF-α, IL-6, or

TGF-β, bacterial ligand TRL-4, or intestinal hepcidin, were
observed in the small intestines of pigs fed rhLF+CG,
hLZ+CC, or rhLF+hLZ when compared with control pigs
fed CC+CG. While we observed no changes in expression
of intestinal pro-inflammatory cytokines, other parameters
including the thinning of the lamina propria indicate that the
GI tract of animals fed rhLF+CG and rhLF+hLZ were
experiencing a reduction in intestinal inflammation; how-
ever these effects may have gradually accumulated over the
2-week feeding period. A study feeding milk containing hLZ
at twice the concentration (270mg/l) fed in the current study
found that the hLZ-milk increased production of anti-
inflammatory cytokine TGF-β1 (Cooper et al. 2011), indic-
ating that when fed at a decreased concentration (135mg/l)
hLZ-milk is no longer able to illicit this change.
Overall the haematological andGI tract changes observed

in animals fed rhLF+CG, hLZ+CC, and rhLF+hLZ com-
pared with CC+CG indicate that these substances have
anti-inflammatory effects both locally within the GI tract,

Table 3. Expression levels of cytokines in the duodenum and ileum of pigs fed the various treatments†

Gene name Area of the gut

β-actin adjusted CT value

CC+CG† (n=8) hLZ+CC† (n=8) rhLF+CG† (n=8) rhLF+hLZ† (n=8)

IL-6 Duodenum 32·19 33·82 32·46 31·93
Ileum 33·07 34·97 31·69 32·96

TGF-β Duodenum 25·83 26·99 24·58 25·42
Ileum 26·50 24·79 25·68 26·12

TNF-α Duodenum 31·92 34·06 32·26 28·21
Ileum 29·08 31·75 30·84 28·03

TLR-4 Duodenum 26·77 30·71 28·32 27·47
Ileum 28·65 30·37 27·20 29·92

Hepcidin Duodenum 28·30 29·44 28·76 30·35
Ileum 29·30 27·99 29·10 27·93

†See text for details of treatments
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and systemically. Locally, feeding of both milk treatments
containing rhLF caused deepening of the crypts which is
consistent with previous work in mouse cell lines and pigs
showing that lactoferrin induces crypt cell proliferation and
deepens crypts in the small intestine (Liao et al. 2012;
Cooper et al. 2013). Other studies have found that increased
proliferation in the crypts leads to increased intestinal absor-
ptive surface area and increased cellular renewal rate
(Mahmoud & Edens, 2012). Feeding rhLF+CG and
rhLF+hLZ also decreased the thickness of the lamina
propria. This same change has been seen in pigs fed milk
with twice the concentration of hLZ (Cooper et al. 2011) and
twice the concentration of rhLF (Cooper et al. 2013), and is
associated with decreased intestinal inflammation (Liu et al.
2010). The haematological results are in agreement with
results from multiple other species fed other antimicrobial
and anti-inflammatory compounds that show that feeding
antimicrobial/anti-inflammatory compounds increases RBC
production. We speculate that this is through changes in
inflammation which may alter hepcidin regulation, and
increase iron availability in the bone marrow for RBC pro-
duction; however further research is needed to elucidate the
actual mechanism. We detected no adverse effects from
feeding milk containing hLZ, rhLF, or a combination of the
two. Positive effects in both GI tract architecture and hae-
matological parameters were observed, and these changes
indicate that milk containing hLZ, rhLF, and a combination
of the two decreases intestinal inflammation, and that at
decreased concentration rhLF-milk still induces crypt cell
proliferation. Given past research, this study also demon-
strates that different concentrations of both rhLF-milk and
hLZ-milk can induce different physiological changes. Fur-
ther studies are needed to determine the exact mechanisms
that rhLF-milk and hLZ-milk utilise to cause these intestinal
and systemic changes, as well as detailed dose response
studies to elucidate the threshold concentrations of rhLF-
milk and hLZ-milk needed to induce the specific changes
that have been observed in this and previous studies.
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