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Cantilevered elastic sheets and rods immersed in a steady uniform flow are known
to undergo instabilities that give rise to complex dynamics, including limit cycle
behaviour and chaotic motion. Recent work has examined their stability in an inverted
configuration where the flow impinges on the free end of the cantilever with its
clamped edge downstream: this is commonly referred to as an ‘inverted flag’. Theory
has thus far accurately captured the stability of wide inverted flags only, i.e. where
the dimension of the clamped edge exceeds the cantilever length; the latter is aligned
in the flow direction. Here, we theoretically examine the stability of slender inverted
flags and rods under steady uniform flow. In contrast to wide inverted flags, we show
that slender inverted flags are never globally unstable. Instead, they exhibit bifurcation
from a state that is globally stable to multiple equilibria of varying stability, as flow
speed increases. This theory is compared with new and existing measurements on
slender inverted flags and rods, where excellent agreement is observed. The findings
of this study have significant implications to investigations of biological phenomena
such as the motion of leaves and hairs, which can naturally exhibit a slender geometry
with an inverted configuration.

Key words: aerodynamics, flow–structure interactions

1. Introduction

Interaction of an elastic structure with a flowing fluid can generate a broad array
of instabilities and dynamics, such as those captured by Schmitz (1941), Kornecki,
Dowell & O’Brien (1976), Blackburn & Henderson (1996), Zhang et al. (2000),
Williamson & Govardhan (2004), Gabbai & Benaroya (2005), Eloy et al. (2008),
Paidoussis, Price & De Langre (2010), Shelley & Zhang (2011), Luhar & Nepf (2011)
and Tadrist, Saudreau & De Langre (2014). These investigations are of importance not
only from a fundamental perspective but are critical in engineering, where they can
dictate structural integrity. One such problem is the flutter of a thin and flat elastic
sheet (i.e. a plate) in a steady uniform flow (Theodorsen 1935; Kornecki et al. 1976),
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which is relevant to a host of applications including the prediction of airplane wing
stability and understanding the flutter of flags in a steady breeze.

Flags commonly orient themselves in the direction of flow, leading to a configuration
where their free end is downstream (Luhar & Nepf 2011). This conventional
configuration can lead to rich dynamics, whose complexity is yet to be fully
understood despite its ubiquity in nature (Shelley & Zhang 2011). Most recently,
some emphasis has been placed on examining the effects of flag orientation on the
resulting dynamics and stability. In particular, the inverted configuration, where the
flow is reversed and impinges on the free end of the flag, has been explored in
several studies. These include slender cantilevered rods (Rinaldi & Paidoussis 2012)
and thin cantilevered elastic sheets or flags (Kim et al. 2013); ‘flag’ and ‘sheet’
shall be used interchangeably in this article. Note that these structures always exhibit
finite bending rigidity which is critical to their stability (Shelley & Zhang 2011).
The distinction used here between a ‘sheet’ and a ‘rod’ is that the cross-section of
a sheet contains one geometric dimension that is small relative to the other, e.g. its
thickness relative to its width (denoted ‘height’ in this article, see figure 1). Strikingly
different dynamics are observed relative to the conventional flag configuration. Perhaps
most intriguingly, the inverted flag exhibits flapping over a finite band of flow
speeds with an amplitude comparable with the sheet length (Kim et al. 2013). This
behaviour has been computationally simulated in several recent reports (Gilmanov,
Le & Sotiropoulos 2015; Gurugubelli & Jaiman 2015; Ryu et al. 2015; Tang, Liu
& Lu 2015). The physical mechanisms leading to this behaviour were explored in
a very recent study (Sader et al. 2016), showing that large-amplitude flapping is a
vortex-induced vibration, a high-Reynolds-number phenomenon, which is described
in the next paragraph. Indeed, computational simulations demonstrate that flapping
vanishes for Reynolds numbers below ≈50 (Ryu et al. 2015).

Large-amplitude flapping of an inverted flag occurs at finite flow speed, and starts
abruptly as the flow speed increases from zero; similarly, flapping subsequently ceases
at a higher critical flow speed. We now summarise the known mechanisms underlying
this behaviour. Flapping is initiated by a divergence instability of the zero-deflection
equilibrium, i.e. the flag becomes linearly unstable due to hydrodynamic lift
forces balancing the elastic restoring force of the sheet. Divergence instability was
originally suggested by Kim et al. (2013) on experimental grounds, demonstrated
computationally by Gurugubelli & Jaiman (2015) and proved mathematically by
Sader et al. (2016). Sader et al. (2016) showed that reducing the sheet’s aspect
ratio (height/length, with length in the flow direction, see figure 1) decreases the
hydrodynamic lift force, causing the divergence instability to occur at higher flow
speed. The divergence instability causes the sheet to deflect and present a sharp
leading edge to the impinging flow at finite angle of attack. The flow thus separates,
generating unsteady vortex shedding that synchronises with the sheet oscillation to
produce the flapping motion, i.e. it gives rise to a vortex-induced vibration of the
structure. A scaling analysis shows that this can only occur for heavy fluid loading,
which is the case considered by Kim et al. (2013). This flapping motion ceases at
higher flow speed when the natural vortex shedding frequency significantly exceeds
the resonant frequency of the sheet, leading to desynchronisation (Sader et al. 2016).
Gurugubelli & Jaiman (2015) suggest this cessation of flapping at high flow speed is
due to the sudden emergence of a deflected equilibrium state. However, measurements
show that such an equilibrium always exists within the flapping band; see figure 7
of Sader et al. (2016). Therefore, the suggested mechanism of Gurugubelli & Jaiman
(2015) for flapping cessation at high flow speed does not explain the phenomenon.
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FIGURE 1. (Colour online) Schematic of fluid–structure problem for a slender inverted
cantilever sheet in a steady uniform flow. (a) Perspective showing geometry of cantilevered
sheet and its height, H, length, L, and the flow direction. The sheet thickness, h, is
infinitesimally small relative to H and L. Deflected and undeflected sheets are illustrated
to indicate the bending mode under investigation. The clamp is at the trailing edge. (b)
Side view of perspective in (a) showing direct of uniform flow velocity, Uuniform, the
dimensionless arc length parameter, s ≡ s∗/L (see (2.3)), local deflection angle, θ , and
the local unit normal to the sheet n along the cantilevered sheet (red curve). Gravity is
along the height direction of the inverted flag (sheet) in the experiments performed in this
study, i.e. it points into the page in (b); flag dynamics are observed as in (b) with the
camera positioned above the flag. In the study of Rinaldi & Paidoussis (2012), gravity
points in the opposite direction to the flow vector, Uuniform.

Strikingly, such a vortex-induced vibration is not observed for small aspect ratios
with the sheet deflecting suddenly from its stable zero-deflection equilibrium to a
stable deflected equilibrium with increasing flow speed.

Mathematical calculation of a divergence instability was performed for thin
sheets of large aspect ratio (greater than unity) and assessed by comparison with
measurements (Sader et al. 2016). Good agreement was observed within measurement
uncertainty for aspect ratios larger than one, with no adjustable parameters. Applying
the same large-aspect-ratio theory (2.12) to measurements of small-aspect-ratio sheets
revealed strong differences; see data comparison in figure 6 of Sader et al. (2016)
that is reproduced here in figure 5.

In a related study, Rinaldi & Paidoussis (2012) explored the stability of slender,
i.e. small-aspect-ratio, inverted rods of circular cross-section in a steady uniform
flow. The rods were oriented vertically in a gravitational field. Their theoretical
analysis suggested that the rods also exhibit a divergence instability. But again,
strong differences were reported in comparison with measurement, though the reason
for these discrepancies was not identified. The theoretically predicted flow speeds for
instability are two times greater than those measured.
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As such, both Rinaldi & Paidoussis (2012) and Sader et al. (2016) observed that
the critical flow speeds at which slender inverted flags and rods become unstable are
overestimated by the above-mentioned theories that predict a divergence instability.
That is, for a given flow speed, the true destabilising hydrodynamic lift force must be
larger than that predicted theoretically. This led Sader et al. (2016) to speculate on
the existence of a vortex-lift mechanism, which is known to increase lift on slender
structures (Anderson 1991).

Here, we explore this possibility by conducting a detailed theoretical analysis
that rigorously accounts for the hydrodynamic load generated by a slender structure.
For this purpose, we draw on the work of Bollay (1939) and Taylor (1952) who
calculated the steady hydrodynamic forces on rigid slender rectangular blades and
circular cylinders, respectively. The long axes of the structures are aligned in the flow
direction. These previous studies show that, in the asymptotic limit of zero aspect
ratio and infinite Reynolds number, the structures do not experience a linear lift
force. Incidence at non-zero angle of attack always leads to vortex shedding at finite
angle to the structure’s side edge. This is in contrast to a large-aspect-ratio sheet
that is well modelled using Prandtl’s lifting line theory (Jones 1990; Drela 2014).
Consequently, the hydrodynamic load experienced by these slender structures, in the
limit of extreme slenderness, depends quadratically on the angle of attack, precluding
the existence of a linear divergence instability. As we shall show, this flow physics
ensures that the zero-deflection equilibrium is never linearly unstable, but gives rise
to a saddle-node bifurcation as flow speed increases. This leads to the emergence
of multiple stable states that can cause the elastic structure to exhibit intermittent
dynamics, depending on the time-dependent nature of the flow and the structure’s
initial configuration.

The predictions of this theoretical analysis are compared with new measurements
on slender inverted flags that verify the existence of these previously unobserved
equilibria. This is performed as a function of aspect ratio to examine the interplay of
linear and nonlinear lift: a small linear lift component is always present at small and
finite (non-zero) aspect ratio (Bollay 1939). The measurements reported by Rinaldi
& Paidoussis (2012) for slender inverted rods are also reanalysed using this new
theoretical framework, where we now find excellent agreement between theory and
measurement.

The present theory for stability of the zero-deflection equilibrium of a slender
inverted flag is also connected to the large-aspect-ratio formula (2.12) that was
reported by Sader et al. (2016). This generates a universal formula (2.15) that is
valid for all aspect ratios. This new formula is compared with the measured data of
Sader et al. (2016), for aspect ratios ranging from small to large, where excellent
agreement is observed. As such, this clarifies and eliminates the discrepancy observed
by Sader et al. (2016) for small aspect ratios (see figure 5).

We begin by reviewing the theoretical model of Bollay (1939) for the hydrodynamic
flow and force generated by a straight, slender and thin rigid blade. This is used to
develop a rigorous theoretical model for the stability of a slender inverted flag, in the
asymptotic limit of zero aspect ratio. The properties of this model, and thus of the flag,
are then explored using a simplified rigid sheet model that provides significant insight
into the stability landscape. Stability of the zero-deflection equilibrium of a slender
inverted flag, calculated using the rigorous model, is then connected with the large-
aspect-ratio theory of Sader et al. (2016) and a general formula (2.15) is derived for
arbitrary aspect ratio. Predictions of the theoretical models are assessed in § 3, where
a comparison with detailed measurements on inverted flags is provided. Finally, using
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Stability of slender inverted flags and rods in uniform steady flow 877

the present framework we theoretically analyse the inverted rod studied by Rinaldi &
Paidoussis (2012), which is vertically aligned in a gravitational field, and present a
comparison with their reported measurements.

2. Theoretical model for slender inverted flag
Bollay (1939) calculated the hydrodynamic load experienced by a rigid, straight and

thin rectangular blade of small aspect ratio. In the limit of zero aspect ratio, Bollay
showed that the normal force coefficient per unit length is

CN = 2 sin2 θ, (2.1)

where the force per length is N = (1/2)ρU2HCN , ρ is the fluid density and U is
the speed of the flow that impinges on the blade. Here, θ is the angle of attack
of the blade to the impinging flow and H is the blade height (perpendicular to
the flow direction). The term ‘height’, rather than ‘span’ or ‘width’, is used here for
consistency with Sader et al. (2016); see figure 1. The aspect ratio of the blade is the
ratio of its height to its length, i.e. H/L, and the blade’s thickness is infinitesimally
small relative to its height. Bollay (1939) compared this formula with available
measurements for 0 6 θ 6 50◦, where good agreement was observed. Importantly,
equation (2.1) also holds for blades at normal incidence, i.e. where the blade length
is perpendicular to the flow, θ = 90◦ (Goldstein 1965; Batchelor 1974). As such,
equation (2.1) is expected to be valid for all angles of attack. It is used here to
analyse the behaviour of an inverted flag in the small-aspect-ratio limit. Note that the
force per unit length, N, can be expressed equivalently as

N = ρU2
nH, (2.2)

where Un is the magnitude of the impinging velocity component normal to the blade.
Equations (2.1) and (2.2) are used in the next section to investigate the stability of

the inverted flag; a schematic of this fluid–structure problem is given in figure 1.

2.1. Equilibrium states
The nonlinear dependence of (2.1) on the angle of attack, θ , arises from vortex
shedding at finite angle to the blade’s surface, which always occurs for blades
of small aspect ratio. This is an unsteady process and the hydrodynamic force
is therefore strictly time-dependent. Equation (2.1) thus specifies a time-averaged
force experienced by the blade. Since this equation provides the foundation for our
analysis of the inverted flag’s deformation, we focus on evaluation of its (steady)
equilibrium states. Unsteadiness in the flow will drive the inverted flag away from
these equilibrium states and may affect their stability; this is discussed in the next
section.

We therefore utilise the equilibrium theory for a slender cantilevered elastic sheet
to investigate the deformation of a slender inverted flag in a steady uniform flow; the
same elastic deformation theory holds for slender rods and sheets. Arbitrarily large
deflections are allowed in this formulation, provided the elastic strains are small. The
inverted flag or rod is assumed to have a uniform and symmetric cross-section along
its length, L, e.g. a rectangular cross-section (of infinitesimal thickness) considered
here or a circular cross-section studied in § 4. It will undergo pure bending when an
external force is applied with identical symmetry. This occurs when the slender sheet
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deflects under a uniform steady flow. In such a case, the local rotation angle of the
sheet, θ(s) (see figure 1), satisfies the dimensional equilibrium equation (Landau &
Lifshitz 1970),

EI
d2θ

ds2∗
=−n(s∗) ·

∫ L

s∗
F(l∗) dl∗, (2.3)

where s∗ (and the equivalent integration variable l∗) is the dimensional arc-length
along the sheet (s∗ = 0 at the clamped end), E is the Young’s modulus of the sheet,
I is its areal moment of inertia, F is the local applied force per unit length and n
is the local unit normal to the sheet’s axis at position l∗. Equation (2.3) satisfies the
required zero force condition at the free end of a cantilever, i.e. at s∗ = L.

The steady hydrodynamic load per unit length experienced by the inverted flag is
given by (2.2). As such, force equilibrium of the elastic sheet requires

d2θ

ds2
=−κ ′

∫ 1

s
|sin θ(l)| sin θ(l) cos(θ(s)− θ(l)) dl, (2.4)

where the dimensionless arc-length, s≡ s∗/L (and l≡ l∗/L), is now used. The left-hand
side of (2.4) is the local normalised restoring force of the elastic sheet at position, s,
which is balanced by the hydrodynamic load on the right-hand side. The term under
the absolute value sign in (2.4) accounts for the inherent symmetry in the sheet’s
deflection (it can deflect to up or down in figure 1b) and the dimensionless constant,

κ ′ ≡ ρU2L3

D′
, (2.5)

is the ratio of hydrodynamic to elastic restoring forces, which we shall refer to as
the normalised flow speed: it is proportional to the speed squared (Sader et al. 2016).
Here, D′ ≡ Eh3/12 is the flexural rigidity of the sheet, h is its thickness, and the
boundary conditions for (2.4) are

θ(0)= dθ
ds

∣∣∣∣
s=1

= 0, (2.6)

corresponding to the usual clamp (s= 0) and free end zero moment (s= 1) boundary
conditions. The dash notation, i.e. κ ′, is used to distinguish this slender inverted flag
problem from the previously studied large-aspect-ratio case (Sader et al. 2016); this
difference is discussed in § 2.3. An equation similar to (2.4) was used previously to
study the related problem of reconfiguration of a slender cantilevered rod of circular
cross-section that is oriented perpendicular to the flow direction (Luhar & Nepf 2011);
in the present case, the flow is parallel to the rod/blade.

Solution to (2.4) and (2.6) is obtained using a shooting method, where the angle
at the cantilever free end, θend ≡ θ(1), is adjusted to match the required clamp
condition, θclamp ≡ θ(0) = 0; see (2.6). This is identical to the numerical procedure
employed by Luhar & Nepf (2011), and utilises a finite difference discretisation of
the integro-differential equation, (2.4) and (2.6). The numerics are implemented here
in Mathematica and the discretisation is refined to achieve convergence better than
99.99 %; requiring N > 200 grid points on the interval, 0 6 s 6 1.

Figure 2(a) gives results for θclamp as a function of θend, for various normalised
flow speeds, κ ′; equilibrium solutions correspond to the zeroes of θclamp, i.e. solutions
that intersect the horizontal axis. These results are generated by varying θend and
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FIGURE 2. (Colour online) (a) Plot of θclamp versus θend for various normalised flow
speeds: κ ′ = 8.4 (red); κ ′ = 9.205 (black); κ ′ = 10.0 (green). (b) Equilibrium deflection
functions: zero-deflection equilibrium (red); deflected equilibrium at the critical flow
speed κ ′critical = 9.205 (black); two distinct deflected equilibria for κ ′ = 2κ ′critical (green).
Upper deflection (solid green) increases in amplitude with increasing κ ′, while the lower
deflection (dashed green) approaches the zero-deflection equilibrium (red horizontal line);
see figure 3. Only positive angles are shown with negative angles having the same
behaviour, by symmetry.

calculating θclamp using the above-specified numerical procedure. Only positive angles
are presented in figure 2 for simplicity; negative angles have the same behaviour, by
symmetry. The results in figure 2(a) show that only one equilibrium solution exists
for small κ ′: θend = θclamp = 0, i.e. the zero-deflection equilibrium. This deflection
function is illustrated in figure 2(b) (red horizontal line).

However, at the critical flow speed,

κ ′critical = 9.205, (2.7)

a saddle-node bifurcation occurs and a new deflected equilibrium state is born with
θend= 1.163= 66.7◦; see the middle black curve in figure 2(a). To facilitate discussion,
we henceforth refer to each symmetric pair of deflected states, for positive and
negative θ , as a single deflected state. This new equilibrium is plotted in figure 2(b)
(black curve). For κ ′ > 9.205, this equilibrium deflection splits into two distinct
equilibria, one with θend > 66.7◦ (upper) and the other θend < 66.7◦ (lower) (as evident
in the bottom green curve in figure 2a). These equilibrium deflection functions are
plotted in figure 2(b) for κ ′ = 2κ ′critical (green curves).

Figure 3 gives the bifurcation diagram for these equilibrium states, with the
deflection angle θend plotted as a function of the normalised flow speed κ ′. Note that
other solutions exist for θend >π, but the hydrodynamic model is not realistic in those
cases because the sheet blocks the incoming flow: those solutions are regarded as
unphysical.

2.2. Stability of equilibrium states
For κ ′ > 9.205, multiple equilibrium states exist for which their stability is now
examined. We refrain from conducting a theoretical stability analysis because
time-dependent hydrodynamic forces have not been calculated. Specifically, use
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FIGURE 3. Bifurcation diagram of the cantilevered sheet’s free end angle θend versus
normalised flow speed κ ′. Solid curves correspond to stable equilibria, dashed curves
correspond to unstable equilibria. Only positive angles are shown: negative angles have
the same behaviour, by symmetry.

of a time-averaged force (2.1) to model the inverted flag’s behaviour implicitly
assumes a steady flow. This is clearly not the case for the separated flow generated
by the deflected equilibria, and (2.1) can only be used to calculate the existence and
deflected shape of these equilibrium states. Stability of these states is determined here
from general observations based on (i) the bifurcation diagram in figure 3, and (ii) a
rigid sheet model system that mimics the behaviour of the inverted flag (in § 2.2.2).

2.2.1. Observations from bifurcation diagram in figure 3
The zero-deflection equilibrium of an inverted flag will be linearly stable in the limit

of zero aspect ratio. This is because the hydrodynamic force (2.1) does not contain a
linear dependence on the deflection angle for small angles.

From the bifurcation diagram in figure 3, the deflected equilibrium state of lower
amplitude is expected to be unstable because it resides next to the linearly stable
undeflected equilibrium. This lower deflected equilibrium defines the boundary of
the basin of attraction for the undeflected equilibrium. For a similar reason, the
higher-amplitude deflected equilibrium will be locally stable: the amplitude of this
equilibrium increases with increasing flow speed, as may be expected intuitively; see
figures 2(b) and 3. In contrast, the lower deflected equilibrium decreases in amplitude.
These predictions are assessed experimentally in § 3.

2.2.2. Rigid sheet model
The stability and dynamics of the inverted flag can be modelled using the simplified

configuration of a rigid slender sheet that is hinged at one end by a torsional spring
of stiffness, k. This model is used to simplify analysis while capturing the dominant
features of the inverted flag; it is of course also applicable to an inverted rod. The
primary advantage is that the rigid sheet’s angle of attack, θ(s) = θ̄ , is independent

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

69
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.691


Stability of slender inverted flags and rods in uniform steady flow 881

of position, s, eliminating the need to explore the complete function space of θ(s) to
determine the inverted flag’s energy landscape; see below.

The normalised hydrodynamic force (torque) for this rigid sheet model is

f (θ̄)= κ̄|sin θ̄ | sin θ̄ , (2.8)

where κ̄≡ρU2L2H/(2k) and is analogous to the normalised flow speed, κ ′, in (2.5) for
the inverted (flexible) flag, which relates the hydrodynamic load to the elastic restoring
force; equation (2.8) follows directly from (2.1). A formal relationship between κ̄ and
κ ′ does not exist due to the geometric difference between the two problems: this is
irrelevant to our aim of investigating the stability/dynamics of the inverted flag by
using this rigid sheet model. The overall dynamical system is

d2θ̄

dt2
+ 1

Q
dθ̄
dt
+ θ̄ − κ̄|sin θ̄ | sin θ̄ = F(θ̄ , t), (2.9)

where Q is the quality factor and gives the inverse scaled energy dissipation; t is
scaled time and F(θ̄ , t) is an unspecified external applied force of zero mean in
time, e.g. due to the unsteady hydrodynamic force arising from vortex shedding and
any turbulence in the impinging flow. The first term in (2.9) corresponds to the
sheet system’s inertia and the third term its elastic restoring force. While damping is
included in the second term of (2.9) for completeness, the quality factor, Q, is not
used in the following analysis. Instead, we calculate the potential energy landscape
of the sheet system to investigate its stability and discuss its dynamics.

In the absence of any flow, i.e. κ̄ = 0, equation (2.9) gives a standard linear damped
harmonic resonator. The time-averaged hydrodynamic force in (2.8), f (θ̄), modifies the
rigid sheet’s dynamics by changing the system’s local stiffness. This can clearly affect
the equilibrium states of the system because f (θ̄) depends nonlinearly on the deflection
angle, θ̄ .

To determine these equilibrium states, and gain insight into their stability, we
calculate the potential energy function for the dynamical system (2.9):

V(θ̄)= 1
2
θ̄ 2 − κ̄

2

∣∣∣∣θ̄ − 1
2

sin 2θ̄
∣∣∣∣ , (2.10)

which is plotted in figure 4. This shows that for κ̄ values above bifurcation (κ̄ > 1.38),
multiple equilibrium states exist; given by minima and maxima of V(θ̄). The zero-
and large-amplitude equilibria are locally stable (minima of V(θ̄)), while the lower-
amplitude deflected equilibrium is unstable (maxima): this agrees with the discussion
based on the bifurcation diagram in figure 3.

Dynamics on the energy landscape in figure 4 are governed by damping in the
system and the time-dependent nature of the forcing term, F(θ̄ , t). Since these
cannot be easily modelled, the specific dynamics cannot be determined completely.
Nonetheless, figure 4 shows that the energy minimum of the large-amplitude
equilibrium depresses below that of the zero equilibrium as κ̄ increases. For κ̄ >π/2,
the large-amplitude equilibrium exhibits a global potential energy minimum and is
therefore energetically favourable; this value for κ̄ is only slightly larger than the value
at bifurcation, i.e. κ̄ = 1.38. The θ̄ value of this equilibrium rises in magnitude with
increasing κ̄ , while that for the lower unstable deflected equilibrium approaches zero;
the energy barrier for the undeflected equilibrium (local maximum in the potential
energy) decreases in magnitude. As such, residence at the large-amplitude equilibrium
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FIGURE 4. Potential energy function, V(θ̄), of the rigid sheet model system (2.9) for κ̄ =
0, 1.2, 1.38, 1.48,π/2, 1.7, 1.8 (increasing from centre outwards); saddle-node bifurcation
occurs at κ̄ = 1.38. Equilibrium states corresponding to stationary points of the potential
energy function. In contrast to figures 2 and 3, both positive and negative angles are given.

is favoured over the zero-deflection equilibrium as κ̄ increases. For values of κ̄
immediately above bifurcation, intermittent dynamics may be expected as the state of
the system moves between the locally stable minima (they exhibit similar potential
energies). This behaviour should be strongly dependent on the initial conditions and
its existence is assessed experimentally in § 3.2.3.

2.3. Critical normalised flow speed for arbitrary aspect ratios
The calculation in § 2.1, and discussion in the previous section, show that an inverted
flag of vanishingly small aspect ratio, H/L→ 0, exhibits a saddle-node bifurcation at

κ ′ = κ ′small = 9.205, (2.11)

and can thus deflect to a new equilibrium.
In the opposite limit of large aspect ratio, H/L� 1, Sader et al. (2016) showed that

a divergence instability occurs when

κ ≈ κlarge

(
1+ 2L

H

)
, (2.12)

where κ ≡ κ ′(1− ν2), ν is Poisson’s ratio of the sheet and

κlarge = 1.85. (2.13)

Note that definition of the normalised flow speed, κ , used for the large-aspect-ratio
case by Sader et al. (2016), differs from κ ′ and we maintain this previous definition
in the present calculation. As such, equation (2.11) becomes

κsmall = 9.205(1− ν2). (2.14)
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A Padé approximant is then constructed for the reciprocal of κ , connecting solutions
for small and large aspect ratio, H/L. This yields the required result that is valid for
all aspect ratios,

κ ≈ κlarge

κsmall + (κsmall − κlarge)
H
2L

κlarge + (κsmall − κlarge)
H
2L

, (2.15)

where κlarge and κsmall are given in (2.13) and (2.14), respectively.
The zero-deflection equilibrium is always linearly stable in the limit of zero aspect

ratio, but its basin of attraction progressively shrinks as the flow speed increases
above the bifurcation point. This is evident in figure 3 which shows that the free
end angle, θend, for the unstable deflected equilibrium (dashed curve) approaches the
zero-deflection equilibrium, θend = 0, with increasing flow speed. As such, fluctuations
in the flow due to vortex shedding or turbulence in the free stream can cause the
flag to deflect and move away from the zero-deflection equilibrium, as discussed in
§ 2.2.2. Equation (2.14), and hence (2.15), must therefore be considered to be lower
bounds. Precise experimental resolution of the flow speed where bifurcation occurs
requires placing the inverted flag at a number of different initial positions, which we
explore in § 3.2.

3. Measurements of inverted flags
The theoretical models in § 2 are now compared with (i) experimental data reported

by Sader et al. (2016) for the critical flow speed at which bifurcation occurs, over
a wide range of sheet aspect ratios, and (ii) new measurements on slender inverted
flags. The latter measurements are designed to rigorously test the above theoretical
predictions of stability and intermittent dynamics of slender flags.

3.1. Comparison with measurements of Sader et al. (2016)
Good agreement between measurements and (2.12) was reported in figure 6 of Sader
et al. (2016) for sheets of large aspect ratio (H/L> 1). Equation (2.12) describes the
critical flow speed where the destabilising linear hydrodynamic lift force balances
the elastic restoring force of the sheet, i.e. where a divergence instability occurs.
However, a strong discrepancy between (2.12) and measurements was reported for
aspect ratios less than unity. It was suggested that a nonlinear vortex lift mechanism
may be responsible for the observed discrepancy, because this mechanism is known to
dominate at small aspect ratios and can enhance lift (Anderson 1991). The formulas
developed in § 2.3 rigorously account for such nonlinear lift; equation (2.14) is due
to drag from a separated flow and, as such, the hydrodynamic force has a nonlinear
dependence on the sheet’s deflection.

This prediction of nonlinear lift is assessed in figure 5 by comparing the theoretical
predictions of (2.12)–(2.15) with the data reported by Sader et al. (2016). In the
asymptotic limits of large and small aspect ratio, equations (2.12) and (2.14) agree
well with the experimental observations, respectively. Strikingly, equation (2.15) gives
excellent agreement with measurements over the entire range of aspect ratios studied,
the case for which it is derived. No fit parameters are used in this comparison.

This observed agreement provides strong evidence that the nature of the zero-
deflection equilibrium’s stability changes as the aspect ratio is reduced. The previously
described divergence instability at large aspect ratio gives way to a saddle-node
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FIGURE 5. (Colour online) Comparison of measurements and theoretical predictions for
the critical normalised flow speed at bifurcation, as a function of aspect ratio, H/L.
Equation (2.12) (upper curve, large-aspect-ratio solution), equation (2.14) (horizontal line,
small-aspect-ratio solution) and (2.15) (lower curve, globally valid Padé approximant).

bifurcation at low aspect ratio. The latter implies that the zero-deflection equilibrium
of an inverted flag of zero aspect ratio is never locally unstable, though its basin of
attraction decreases to a set of measure zero in the limit of large flow speed. As such,
intermittent dynamics are expected across multiple locally stable equilibria (including
the zero-deflection equilibrium) above the bifurcation point. These theoretically
predicted features are yet to be observed experimentally. Their exploration and an
assessment of the derived theory for slender inverted flags are the focus of the next
section.

3.2. New measurements of slender inverted flags
While stability measurements of slender inverted flags were reported by Sader et al.
(2016), the possible existence of multiple equilibria as predicted in § 2.1 was not
explored. We therefore present a series of new measurements that aim to test for the
presence of these equilibria, as well as give insight into the behaviour of flags of
intermediate aspect ratios.

3.2.1. Apparatus and measurement details
The measurements are performed in an open-loop wind tunnel identical to that used

by Kim et al. (2013) and Sader et al. (2016). A 10× 10 square array of small fans
generates uniform flow speeds ranging from 2.2 m s−1 to 8.5 m s−1 over a 1.2 m×
1.2 m test section. An aluminium honeycomb is used as a flow straightener to reduce
transverse and axial fluctuations generated by the fans. The streamwise width of the
honeycomb is 3.8 cm and the diameter of each cell in the honeycomb is 0.6 cm. The
turbulence intensity, measured using a hotwire system, is <8.2 % for the flow speeds
studied. The maximum blockage ratio (for deflected sheets) in the data reported here is
<2.6 % for H/L6 1; it is <4.4 % for H/L6 1.7. The flags are made of polycarbonate
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(E = 2.41 GPa, ν = 0.38, ρs = 1200 kg m−3) and have thicknesses of h = 0.51 and
0.76 mm with lengths of L= 195 and 300 mm, respectively. The aspect ratio of each
flag is set by adjusting its height, H. The sheet’s length is aligned horizontally whereas
its height (i.e. span) is oriented vertically. The flag is clamped vertically at its trailing
edge by an aluminium bar of square cross-section (width 12 mm) and its motion is
filmed from above using a high-speed camera (Nanosense MKIII, Dantec Dynamics).

For flow speeds above the critical bifurcation speed, the deflected stable equilibrium
position is taken as the average of a 30 s time series filmed at 100 f.p.s. Large-
amplitude flapping occurs for aspect ratios H/L & 0.1 (Sader et al. 2016). In these
cases, the flag is damped to observe a deflected equilibrium; this is achieved by lightly
touching the flag with a thin rigid pole (Sader et al. 2016). The flag position at each
frame is detected using a Matlab script. The angle of the cantilevered sheet’s free
end at each equilibrium, θend, is measured from the slope at the end position. This is
determined using a third-order polynomial fit to the deflected flag shape over the last
20 % of the flag length.

The existence of an unstable deflected equilibrium which is described in § 2 is
assessed as follows. The initial position of the flag is adjusted by quasi-statically
pushing it from the stable deflected equilibrium position towards the zero-deflection
position using a thin and rigid pole of diameter d = 3.175 mm. Presence of an
unstable deflected equilibrium must then lead to rapid and unassisted movement of
the flag from the deflected initial condition towards the zero-deflection equilibrium.
To measure this point at which the flag loses contact with the rigid pole, signalling
entry into the basin of attraction of the zero-deflection equilibrium, the flag is coated
with conductive paint and the pole is electrified. This forms an electric circuit with
the flag–pole system acting as the switch. The deflected shape of the sheet at the
time of loss of contact with the pole is taken to be the unstable deflected equilibrium.

The resonant frequency of the zero-deflection equilibrium is measured by fitting
a two term Gaussian to the fast Fourier transform of a 270 s time series taken at
30 f.p.s. The second Gaussian is necessary to account for the presence, in certain
cases, of another resonance peak of relatively small amplitude. This secondary peak
is presumably due to weak nonlinear (viscoelastic) effects in the polycarbonate sheet.
No time dependence is observed in the deflected stable equilibrium shapes, confirming
that any viscoelastic properties exert a weak effect.

3.2.2. Multiple equilibrium states of the flag
The new measurements indeed verify the existence of multiple equilibrium states, as

predicted theoretically in § 2.1. Figure 6 shows the measured angle of the cantilevered
sheet’s free end at the stable and unstable deflected equilibria. Measurements from
several flags of varying small aspect ratios are presented, together with the theoretical
predictions of § 2.1. As the aspect ratio is reduced (left-to-right and top-to-bottom in
figure 6), both the measured critical bifurcation flow speed κ ′small and the free end
angle θend increase, shifting towards the theoretical (H/L→ 0) curve of § 2.1. While
there are some differences, even at the smaller aspect ratios, the measurements clearly
approach the theoretical asymptotic solution as H/L is reduced.

Interestingly, the measurements reported in figure 6 systematically underestimate the
H/L→ 0 asymptotic theory. This may be due, in part, to twisting of the flag which is
observed to always occur when the flag deflects from its zero-deflection equilibrium.
This twisting deformation is shown in figure 7 and exhibits a commensurate downward
displacement of the flag. Large deformation of elastic beams inevitably results in
coupling between bending and torsion, if the load or beam is not perfectly symmetric
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FIGURE 6. Measured free end angle, θend, at the stable (u) and unstable (E) deflected
equilibria for aspect ratios of (a) H/L = 0.13, (b) H/L = 0.10, (c) H/L = 0.067, (d)
H/L = 0.033. Theoretical prediction using the H/L→ 0 asymptotic theory of § 2.1 is
given for stable (upper solid curve) and unstable (dashed curve) equilibria. Zero-deflection
equilibrium position is shown for reference (horizontal solid line).

about the beam’s major axis (Landau & Lifshitz 1970). Strikingly, every inverted
flag studied here deforms in precisely the same manner, with the free end deflecting
vertically downward in the gravity direction, demonstrating that gravity is a major
factor in providing a symmetry break. When the flags are deflected sideways by
applying a horizontal force with a stiff thin pole and the bank of fans are turned
off, i.e. no flow, the large-amplitude twisting shown in figure 7 is not observed,
suggesting that the initial break in symmetry is small. The resulting small twist,
however, appears sufficient to modify the aerodynamics of the flag such that an
additional torsional aerodynamic force is generated, resulting in a large twisting
deformation. This coupled bending/twisting deformation is expected to reduce the
drag experienced by the inverted flag because the flag now presents an angled face
to the incoming flow. Such drag reduction reduces the maximum deflection angle of
the inverted flag for a given flow speed, consistent with the observations reported in
figure 6. While nonlinear coupling between bending and twisting under a gravitational
load can be calculated, this complexity detracts from the principal aim of this study
which is to describe the dominant stability mechanisms of slender inverted flags. The
experimental angles reported in figure 6 are measured by observing the flag from
above, and as such, they correspond to the projection of the deflection angle on the
horizontal plane.

Bollay’s 1939 calculations indicate that the normal force experienced by a rigid
and flat blade of small but finite aspect ratio contains a term proportional to sin2 θ
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FIGURE 7. (Colour online) Photograph of slender inverted flag showing the combined
flexural bending and twisting at large flow speeds, under the influence of gravitational
and hydrodynamic loading; H/L= 0.033, κ ′= 16.6. The bank of computer fans is visible
with the flow direction out of the page. The flag is deflected strongly to the right relative
to the flow direction, exhibiting a twist about its major axis together with commensurate
bending in both the horizontal and vertical directions. The supporting aluminium bar is
oriented in the vertical direction.

and one proportional to sin 2θ . These terms correspond to a Newtonian type (drag)
law for zero aspect ratio and a linear lifting force for a blade of finite aspect ratio,
respectively. As such, a small but measurable linear lift component is expected,
which may contribute to the observed differences between measurement and theory
in figure 6. This mechanism acts in addition to the reduction in drag due to twisting,
and its presence and strength are explored using independent measurements in § 3.2.4.

Measurements by Sader et al. (2016) found no evidence for the existence of the
multiple equilibria reported in figure 6. However, their study focused primarily on
flags of large aspect ratio, H/L. It is therefore important to determine the aspect
ratio at which the multiple equilibria emerge. A systematic experimental investigation
using the present setup reveals that these multiple equilibria occur only for H/L <
1.7. Figure 8 gives the measured bifurcation diagram, i.e. the stable and unstable
equilibrium end angles, θend, as a function of the normalised flow speed, κ ′, for several
aspect ratios, H/L, in this range.

The linear component of the hydrodynamic force described above, i.e. the sin 2θ
term, is expected to increase in strength with increasing aspect ratio. Unlike the
limiting case of H/L→ 0 where the zero-deflection equilibrium is always linearly
stable, this additional linear component will cause the zero-deflection equilibrium
of finite aspect ratio flags to become linearly unstable at finite flow speed. This
behaviour is evident in figure 8, where the unstable deflected equilibrium branch
(dashed curves) crosses the zero axis, causing the zero-deflection equilibrium to
become linearly unstable. The critical κ ′ value at which this crossing occurs decreases
as H/L is increased, as would be expected for an increasing linear component of
the normal force. Indeed, this observed decrease in the unstable equilibrium’s free
end angle θend at bifurcation, with increasing H/L (see figure 8), is consistent with
the large-aspect-ratio theory of Sader et al. (2016): for large H/L, the deflected
unstable equilibrium does not exist and a divergence instability of the zero-deflection
equilibrium occurs.
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FIGURE 8. (Colour online) Measured free end angle, θend, of inverted flags at their stable
(u) and unstable (E) deflected equilibria as a function of the normalised flow speed, κ ′.
Measurements shown for flags of aspect ratios of H/L= 0.033 (blue circle), H/L= 0.50
(red square) and H/L= 1.0 (green triangle). To guide the eye, fit curves to these measured
data points are provided for each aspect ratio. Theoretical prediction is given for the
limiting case of H/L → 0 (solid black curves: stable equilibria; dashed black curve:
unstable equilibrium). Undeflected shape (zero angle) is the horizontal black line.

3.2.3. Intermittent dynamics at moderate flow speeds
The rigid sheet model in (2.9) does not explicitly account for the effects of

nonlinear damping or unsteady hydrodynamic forces, such as those produced by
vortex shedding and turbulence in the flow; these are lumped into the unspecified
forcing term F(θ̄ , t). Therefore, it does not completely model the dynamics of the
rigid sheet (and inverted flag). However, equation (2.9) does prove useful in gaining
a qualitative understanding of the inverted flag’s stability and dynamics. For small
values of κ̄ , the secondary potential well at finite θ̄ (corresponding to the stable
deflected equilibrium) is shallow; see figure 4. This suggests that residence at this
minimum is energetically unfavourable and small fluctuations in the flow will drive
the flag away from the stable deflected equilibrium. This behaviour is now investigated
experimentally, movies for which are provided in supplementary materials available
at https://doi.org/10.1017/jfm.2016.691.

Figure 9(a) shows the variation in time of the non-dimensional displacement of
the flag’s free end, A/L, for κ ′ = 9.2. This flow speed is just above the bifurcation
point where the two deflected equilibria emerge in measurements. Initially, the flag
fluctuates around the zero-deflection equilibrium. Using a thin and rigid pole (as
described in § 3.2.1), the flag is pushed (dashed red curve) to the stable deflected
equilibrium position where it is released. The flag then resides at that position for
finite time (≈25 s) until it abruptly, and of its own accord, falls back into the
zero-deflection position; also see the accompanying movie (supplementary materials).
This observation is consistent with the energetic picture in figure 4 where fluctuations
in the flow are expected to result in intermittent dynamics.

As κ̄ is increased in the model system, its deflected energy minimum depresses
below the zero-deflection energy minimum; see figure 4. Physically, this lets small
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FIGURE 9. (Colour online) Measured dimensionless free end displacement A/L of an
inverted flag as a function of time, for normalised flow speeds of (a) κ ′ = 9.2 and (b)
κ ′ = 14.3. Aspect ratio H/L= 0.067. The flag is shifted to a different equilibrium using
a thin rigid pole (red dashed curve) and then released.

fluctuations drive the flag from the zero-deflection equilibrium towards the (more
energetically favourable) deflected equilibrium. A measurement under this scenario
is shown in figure 9(b), corresponding to a normalised flow speed of κ ′ = 14.3;
a movie is also provided (supplementary materials). The flag, initially oscillating
around the deflected equilibrium, is forced (dashed red curve) with the thin pole
to the zero-deflection position where it is again released. The flag then resides
briefly (≈3 s) at the zero-deflection position before returning suddenly and unaided
to the deflected equilibrium position. We remind the reader that the above-reported
intermittency is expected to depend on fluctuations due to unsteady vortex shedding
and on the level of turbulence in the impinging flow, with increased movement
between multiple equilibrium states as the turbulence level is raised. Exploration of
this effect presents an interesting area for further work.

As mentioned above, the flag exhibits oscillations about both the zero-deflection
(A/L= 0) and deflected (A/L> 0) equilibria in these measurements. Intriguingly, the
deflected equilibrium’s oscillation amplitude is different in figure 9(a,b), with larger
oscillations occurring at the lower flow speed (in figure 9a). This is expected because
the energy minimum at the deflected equilibrium is shallower at the lower flow speed
(as discussed above), allowing time-dependent fluctuations in the flow to more strongly
perturb the sheet from this equilibrium position.

The zero-deflection equilibrium exhibits reversed behaviour, with larger oscillations
being observed at the higher flow speed in figure 9(b). This is again explained by the
energy landscape in figure 4, as the zero-deflection equilibrium’s energy minimum
is shallower at higher flow speeds, behaviour opposite to that of the deflected
equilibrium’s energy minimum.

Therefore, the observed oscillation amplitudes of the zero-deflection and deflected
equilibria are entirely consistent with their intermittent dynamics discussed above.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

69
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.691


890 J. E. Sader, C. Huertas-Cerdeira and M. Gharib

3.2.4. Presence of a linear hydrodynamic lift force at finite aspect ratio
We now examine whether a linear lift force indeed exists for inverted flags of

small but finite aspect ratio, as suggested by the results of § 3.2.2. This is achieved
by performing independent measurements of the natural resonant frequency of the
inverted flags at their zero-deflection equilibrium positions, as a function of aspect
ratio.

When a slender inverted flag is placed at its zero-deflection equilibrium at finite
flow speed, it is observed to resonate with small amplitude; see figure 9. For such
small amplitudes, the quadratic (fourth) term on the left-hand side of the rigid sheet
model system (2.9), which holds formally in the limit H/L→ 0, is small relative to
the linear (third) term, provided κ̄ is not large. The equation of motion for a damped
harmonic resonator is then recovered. This equation depends on κ̄ only through
variations in the normalised damping coefficient, 1/Q, and the external applied
(hydrodynamic) force, F(θ̄ , t). These variations can both generally be considered
negligible for small oscillation amplitudes. The resonant frequency of the flag is
therefore independent of κ̄ in this zero-aspect-ratio limit.

For small but finite aspect ratio (H/L� 1), however, the hydrodynamic force on
the rigid sheet (and flag) includes a linear term, as discussed above (Bollay 1939).
In addition to the nonlinear lift specified by (2.1) for a rigid slender blade, a linear
normal lift force coefficient per unit length of the form CN = 2c sin θ cos θ arises, as
discussed in § 3.2.2. Here, c = 0 in the zero-aspect-ratio limit (H/L→ 0) and is an
increasing function of aspect ratio. Equation (2.9) thus takes the modified form,

d2θ̄

dt2
+ 1

Q
dθ̄
dt
+ θ̄ − cκ̄ sin θ̄ cos θ̄ − κ̄|sin θ̄ | sin θ̄ = F(θ̄ , t). (3.1)

For small oscillations around the zero-deflection equilibrium, this equation can be
linearised to give

d2θ̄

dt2
+ 1

Q
dθ̄
dt
+ (1− cκ̄)θ̄ = F(θ̄ , t). (3.2)

This shows that the resonant frequency of the rigid sheet system (and an inverted
flag) of small but finite aspect ratio, H/L, varies with the square root of 1 − cκ̄ .
Since c increases with increasing aspect ratio, larger-aspect-ratio sheets are expected
to display a more significant reduction in their resonant frequency with increasing κ̄ .

Figure 10 gives the measured oscillation frequency of the zero-deflection equilibrium
for several flags, as a function of the normalised flow speed κ ′ and aspect ratio H/L.
Although the dependence on κ ′ is not necessarily linear, a linear fit is provided
to facilitate comparison. The measured rates of decrease in frequency are −0.15,
−0.12, −0.10 and −0.075 Hz for aspect ratios of H/L= 0.13, 0.10, 0.067 and 0.033,
respectively. This verifies the above physical picture: a linear lift force exists for
finite aspect ratio and its magnitude increases with increasing aspect ratio.

A significant reduction in frequency as flow speed increases is observed even for the
smallest aspect ratio of H/L = 0.033. This indicates that linear lift affects the flag’s
dynamics at this small aspect ratio. This finding is consistent with figure 8, where a
difference is always observed between the H/L→ 0 theory of § 2.1 and measurements
at finite aspect ratio, even for the smallest aspect ratio of H/L= 0.033. As discussed,
this mechanism acts in addition to twisting of the flag due to the combined effects of
gravity and hydrodynamic loading, which leads to a reduction in deflection.
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FIGURE 10. (Colour online) Natural frequency of oscillation of the zero-deflection
equilibrium for inverted flags with aspect ratios of H/L = 0.033 (E), H/L = 0.067
(A), H/L = 0.10 (@) and H/L = 0.13 (6). Linear fits to each data set are provided
(dashed lines).

4. Application to inverted rod of Rinaldi & Paidoussis (2012)
Rinaldi & Paidoussis (2012) examined the stability of slender inverted rods of

circular cross-section in a steady uniform flow. They theoretically predicted that
the rods exhibit a divergence instability with increasing flow speed, but found poor
agreement between theory and measurement; see § 1. Here, we extend and apply
the theory derived in § 2.1 to their experiment. The present theory indicates that the
inverted rod undergoes a saddle-node bifurcation, not divergence. This is identical to
behaviour of the inverted flag. The measurements reported by Rinaldi & Paidoussis
(2012) are compared with the predictions of this new model.

Unlike the inverted flag in figure 1, the inverted rod is oriented vertically (in the
direction of gravity) with the rod’s free end pointing downwards; the impinging flow is
in the opposite direction. As such, the gravitational body force increases the effective
stiffness of the rod. This effect is handled by including the gravitational body force
in the equilibrium equation (2.3), leading to

d2θ

ds2
=G(1− s) sin θ − κ ′

∫ 1

s
|sin θ(l)| sin θ(l) cos(θ(s)− θ(l)) dl, (4.1)

with the dimensionless gravity parameter given by

G≡ ρsgAsL3

EI
, (4.2)

where ρs is the rod’s density, As=πR2 is its cross-sectional area, R is the rod radius,
EI is its flexural rigidity which is defined in terms of the elastic properties and cross-
section of the rod (Landau & Lifshitz 1970) and g is the gravitational acceleration.
The normalised flow speed for this problem is

κ ′ = ρU2L3R
EI

CD, (4.3)
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and CD = 1.1 is the normalised drag coefficient for a circular cylinder (Taylor 1952).
Equation (4.1) is subject to the same boundary conditions as the inverted flag,

i.e. (2.6), and is therefore solved in an identical manner. The gravitational body
force will clearly increase the flow speed κ ′ at which bifurcation occurs, due to
enhancement of the rod’s effective stiffness. For the cylindrical rod considered by
Rinaldi & Paidoussis (2012), gravity has a strong effect with a dimensionless gravity
parameter of G = 17.6, based on their reported cylinder properties. In this case, the
calculated flow speed where a saddle-node bifurcation occurs is κ ′ = 26.7, which is
much larger than the numerical result for the slender inverted flag in (2.11). Stable
and unstable equilibria are predicted to exist for higher flow speeds (not shown), as
found for the inverted flag studied in §§ 2 and 3. At bifurcation, the angle at the
rod’s free end is also larger than that for the inverted flag and has a predicted value
of θend = 75.5◦.

Rinaldi & Paidoussis (2012) use a dimensionless flow speed, ū, that is related to κ ′
by

ū=
√

πR
CDL

κ ′. (4.4)

Substituting the calculated critical value of κ ′= 26.7 at bifurcation into (4.4) gives the
required and equivalent result

ū= 1.23, (4.5)

which can be compared directly to their measurements. Rinaldi & Paidoussis (2012)
measure a value at bifurcation of ū= 1.1–1.7, and our theoretical prediction in (4.5)
falls precisely in this range. This contrasts to the theoretical value for a divergence
instability of ū= 2.4–2.7 that was reported by Rinaldi & Paidoussis (2012).

Further measurements are required to experimentally verify existence of stable
and unstable equilibria of the inverted rod above this bifurcation point. Intermittent
dynamics and stability are also expected, as observed for the inverted flag.

5. Conclusions
We have shown that the stability of a slender inverted flag in a steady uniform

flow is markedly different to that of its large-aspect-ratio counterpart. While the latter
exhibits a divergence instability as flow speed increases, the undeformed state of an
infinitely slender inverted flag is always locally stable.

Specifically, a saddle-node bifurcation emerges at finite flow speed, giving rise
to a deflected equilibrium state. This state splits into two equilibria at higher flow
speeds, with the more strongly deflected one being stable and the weakly deflected
one unstable. The unstable equilibrium defines the boundary of the basin of attraction
for the undeflected flag, which vanishes in the limit of high flow speed. Inverted
rods behave in an identical manner. The slender inverted flag theory presented here
was combined with that for large aspect ratio (Sader et al. 2016), yielding a single
formula for stability of the zero-deflection equilibrium (2.15) that is valid for all
aspect ratios.

These theoretical predictions and formulas were compared with measurements of
inverted flags and rods, where excellent agreement was observed throughout. Multiple
stable and unstable equilibria for slender inverted flags were confirmed, as was the
presence of intermittent dynamics resulting from the existence of these stationary
states. The transition from a saddle-node bifurcation to divergence as the flag aspect
ratio is increased was also clarified.
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This study provides insight into the physics underlying the stability and motion
of slender cantilevered structures in a uniform flow. It thus has direct application in
understanding an array of biological processes, such as the dynamics of hairs, that are
naturally slender.
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