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Generalized eigenfunction method
for floating bodies
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We consider the time domain problem of a floating body in two dimensions,
constrained to move in heave and pitch only, subject to the linear equations of water
waves. We show that using the acceleration potential, we can write the equations of
motion as an abstract wave equation. From this we derive a generalized eigenfunction
solution in which the time domain problem is solved using the frequency-domain
solutions. We present numerical results for two simple cases and compare our results
with an alternative time domain method.

Key words: surface gravity waves, wave scattering, wave–structure interactions

1. Introduction
We present here a solution in the time domain using the generalized eigenfunction

method for floating bodies which allows the solution for a given body and free-surface
initial displacement (and initial velocity) to be computed from the frequency-domain
solutions driven by an incident wave. The numerical accuracy of the method is
determined only by the accuracy of the solutions in the frequency domain and is
independent of time. As well as giving a numerical method to solve problems in the
time domain which is independent of time, the generalized eigenfunction expansion
gives a simple method to derive incident wave forcings which give a specified wave
profile and body motion at a prescribed time and it also allows approximate solutions
to be derived and the long-time asymptotic behaviour to be studied.

The generalized eigenfunction method was derived first for the Schrödinger equation
(Povzner 1953; Ikebe 1960) and then extended to various wave problems, e.g. to
the wave equation by Wilcox (1975). It has been applied to linear water waves by
Friedman & Shinbrot (1967) and Beale (1977) and more recently by Hazard & Lenoir
(2002) and Hazard & Loret (2007) for floating bodies, Meylan (2002), Hazard &
Meylan (2007) and Peter & Meylan (2010) for elastic bodies and Meylan & Eatock
Taylor (2009) and Meylan (2009) for fixed bodies. However, much of the emphasis
in these papers has been on the theory and only the last five included any numerical
computations.

Several other methods have been proposed to solve the linear water-wave problem
for a floating body in the time domain. The classical method uses an integro-
differential equation and the Cummins’ decomposition (which involves a convolution
of the impulse response function) (see Cummins 1962) to obtain the motion of the
body. We refer to this method as the memory effect method. The equation for the
impulse response function can be found by a Fourier transform of the frequency-
domain solution (Mei 1989, chap. 7, (11.23)) but the equation of motion for the body
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Generalized eigenfunction method for floating bodies 545

involves a convolution integral in time (Mei 1989, chap. 7, (11.32)). For the case
of a floating elastic plate, Meylan & Sturova (2009) provide a detailed comparison
of the memory effect method with the generalized eigenfunction method. The time-
dependent Green function method can also be used (Wehausen & Laitone 1960), and
time-stepping method based on the boundary element method with damping zones
has been used by McIver, McIver & Zhang (2003). All of these methods require a
time-stepping procedure, so that the solutions become less accurate with time. Each
method has its own particular disadvantages (and advantages). For example, in the
time-dependent Green function method, finding a form of the free-surface Green
function which is suitable for computation can be a problem in itself (although some
innovative methods have been devised, Clément 1998), while the boundary element
approach requires the introduction of damping zones to reduce reflections from the
artificial bounding surfaces. Numerous numerical methods and computer codes have
been developed to solve the frequency-domain problem, so time-domain solution
methods incorporating the frequency-domain solution are considered preferable. The
memory effect method is one such method; however, we argue that it is more logical
to directly calculate the solution using the generalized eigenfunction method without
using time-stepping. Furthermore, our method calculates the fluid motion and the
body motion. Knowledge of the fluid motion may be important, especially if it is
large compared with the body motion.

This work is an extension of Meylan (2009), where the problem of fixed bodies
was considered, to the case of a floating body. The theory behind this calculation
was developed by Hazard & Loret (2007) but in a very abstract and general setting
(without any numerical examples) and only for infinite depth. In this work, we
consider a body which can move in heave and pitch only (so in general it must be
constrained in some way). The inclusion of surge is possible but only as it arises as
a consequence of the motion in heave and pitch and this is discussed by Hazard &
Loret (2007). The reason for this difficulty in including surge motion is that there
is no restoring force. In § 2, we present the equations of motion for a floating body.
In § 3, we rewrite these equations, using the acceleration potential, as an abstract
wave equation (an equation in which the second time derivative acting on some
variable plus a positive operator acting on the same variable is equal to zero). In
§ 4, we show that we can then expand the solutions in eigenfunctions using the
self-adjointness property of the abstract wave equation (we show symmetry for this
operator formally in the Appendix). In § 5, we present some results for simple body
geometries and further results are included as supplementary movies available at
journals.cambridge.org/flm. Section 6 provides a summary.

2. Initial-value problem for a freely floating structure
Consider a surface-piercing structure, constrained to move in heave and pitch,

floating in an inviscid and incompressible fluid of constant finite depth h. The
motion of the fluid is assumed to be irrotational and, along with the amplitude
of the structure motion, sufficiently small so as to permit its description within
the framework of the linearized water-wave theory. Attention is restricted to two
dimensions, and Cartesian coordinates x = (x, z) are chosen with z directed vertically
upwards and with the origin in the mean free surface. The floating-body problem
involves a dynamic coupling of the motion of the body and surrounding fluid. A
full solution of the problem requires the simultaneous solution of the fluid motion,
described by the velocity potential Φ(x, t), and the body motion, described by the
displacement ξ (t) = (ξ3, ξ5). Only heave and pitch body motions are considered here
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546 C. J. Fitzgerald and M. H. Meylan

so that the displacement is two-component vector and the indexing is standard in the
study of the motion of ships and floating bodies.

The motion of the fluid is governed by Laplace’s equation subject to various
boundary conditions on each enclosing surface. Therefore, the velocity potential Φ

satisfies Laplace’s equation

�Φ = 0, x ∈ Ω, (2.1a)

where Ω is the fluid domain and the bed condition

∂nΦ = 0, z = −h, (2.1b)

where ∂n is the outward normal derivative. The free-surface elevation ζ (x, t) is related
to Φ through the linearized free-surface conditions

∂tΦ = −gζ, x ∈ ∂ΩF , (2.1c)

where g is the acceleration due to gravity and ∂ΩF is the free surface, and

∂tζ = ∂nΦ, x ∈ ∂ΩF . (2.1d )

The motion of the fluid is coupled to the motion of the structure by the boundary
condition on the structure surface

∂nΦ = n · ∂tξ = ∂tξ3 n3 + ∂tξ5 n5, x ∈ ∂ΩB, (2.1e)

where ∂ΩB is the body surface and n = (n3, n5) are the heave and pitch components
of the generalized normal vector on the body, respectively. The motions in heave and
pitch are determined by(

M −Mxc

−Mxc IM

)
∂2

t ξ = −ρ

∫
∂ΩB

∂tΦn dS − ρg

(
W IA

1

IA
1 IW

)
ξ , (2.1f )

where M is the mass of the body, IM is the moment of inertia of the rigid body
about the axis through the centre of rotation of the body (perpendicular to the
x–z axis), xc is the x-coordinate of the centre of mass, W is the waterplane area, IW

is the pitch restoring coefficient defined as the sum IA
11 + IV

3 . The moment quantities
IA
1 , IA

11 and IW are the first and second moments of the waterplane and the moment
of the static submerged volume about the z-plane through the centre of rotation,
respectively – the formula for these moment quantities can be found in Mei (1989).
The only assumption regarding the geometry of the body is that the z-coordinate of
the centre of mass and centre of rotation coincides. However, cross-coupling of the
modes of motion (where motion in pitch influences motion in heave and vice versa) is
possible. If the body is symmetric about the z-axis and the centre of mass and centre
of rotation lie on the same central axis (it is assumed that the centre of rotation lies
at the origin on the free-surface), then IA

1 = 0 and xc = 0 so that the equations for
heave and pitch decouple and become

M∂2
t ξ = −ρ

∫
∂ΩB

∂tΦn dS + ρgWξ , (2.2)

where

M =

(
M 0

0 IM

)
and W =

(
W 0

0 IW

)
. (2.3)

The absence of coupling between modes results in a significantly simplified problem
and we will focus on this case. The general case is discussed by Hazard & Loret (2007).
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3. Spectral formulation
The introduction of the acceleration potential Ψ = ∂tΦ allows, after some further

manipulations, the floating-body problem to be written in the form of an abstract
wave equation. It is possible, for the case of a fixed body, to write an abstract wave
equation using the velocity potential (Meylan 2009), but for the floating body we
require the acceleration potential. In the case of a floating body with a vertical axis
of symmetry moving in both heave and pitch, the boundary-value problem in non-
dimensionalized form (where we remove gravity and the density but allow the length
scale to be arbitrary) is

�Ψ = 0, x ∈ Ω, (3.1a)

∂nΨ = 0, z = −h, (3.1b)

Ψ = −ζ, x ∈ ∂ΩF , (3.1c)

∂nΨ = −n ·
[
M−1

{∫
∂ΩB

Ψ n dS + Wξ

}]
, x ∈ ∂ΩB, (3.1d )

∂2
t ζ = ∂nΨ, x ∈ ∂ΩF , (3.1e)

and

∂2
t ξ = P∂nΨ, x ∈ ∂ΩB, (3.1f )

respectively, where P is a projection operator which gives the n3 and n5 components
of the normal velocity on the body from the normal of the velocity potential on the
body surface (which must be a sum of the two rigid-body modes of motion).

For the spectral formulation, we write the evolution equations (3.1) as

∂2
t

(
ζ

ξ

)
+ A

(
ζ

ξ

)
= 0, (3.2)

where A consists of four components, i.e.

A =

(A11 A12

A21 A22

)
, (3.3)

with the Dirichlet-to-Neumann operators A11, A12, A21 and A22 being defined as
follows. The operators A11 and A21 map in the following way:

A11 : ζ → −∂nΨ (x), x ∈ ∂ΩF ,

A21 : ζ → −P∂nΨ (x), x ∈ ∂ΩB,

}
(3.4)

where Ψ is the solution of (3.1a), (3.1b) and the condition of zero-body displacement,
i.e.

Ψ = −ζ, x ∈ ∂ΩF ,

∂nΨ = −n ·
[
M−1

{∫
∂ΩB

Ψ n dS

}]
x ∈ ∂ΩB.

⎫⎬
⎭ (3.5)

Similarly, the operators A12 and A22 map in the following way:

A12 : ξ → −∂nΨ (x), x ∈ ∂ΩF ,

A22 : ξ → −P∂nΨ (x), x ∈ ∂ΩB,

}
(3.6)
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548 C. J. Fitzgerald and M. H. Meylan

where in this case Ψ corresponds to a solution of (3.1a), (3.1b) and a zero free-surface
elevation boundary condition, i.e.

Ψ = 0, x ∈ ∂ΩF ,

∂nΨ = −n ·
[
M−1

{∫
∂ΩB

Ψ n dS + Wξ

}]
x ∈ ∂ΩB.

⎫⎬
⎭ (3.7)

The operator A is self-adjoint with respect to the inner product〈(
ζ

ξ

)
,

(
ζ ′

ξ ′

)〉
A

= 〈ζ, ζ ′〉∂ΩF
+ ξ · (Wξ ′)∗, (3.8)

where the star denotes conjugation and

〈ζ, ζ ′〉∂ΩF
=

∫
∂ΩF

ζ ζ ′	 dx. (3.9)

In the Appendix, we show that the evolution operator A in (3.2) is symmetric and
we assume this implies self-adjointness.

4. Solution as expansion in the frequency-domain solutions
The frequency-domain problem is a solution to the time-dependent equations,

assuming that all quantities are proportional to exp(−iωt) and the solution is driven
by an incident wave. The frequency-domain equations are

−ω2

(
ζ

ξ

)
+ A

(
ζ

ξ

)
= 0, (4.1)

and the boundary conditions at infinity. If we write these equations in terms
of the frequency-domain potential Φ = Re {φe−iωt}, we obtain the familiar non-
dimensionalized frequency-domain equations for a floating body:

�φ = 0, x ∈ Ω, (4.2a)

∂nφ = 0, z = −h, (4.2b)

−iωφ = −ζ, x ∈ ∂ΩF , (4.2c)

−iωζ = ∂nφ, x ∈ ∂ΩF , (4.2d )

−ω2Mξ = iω

∫
∂ΩB

φn dS + Wξ . (4.2e)

The frequency-domain solutions are driven by an incident wave of the form ζ =
exp(i(κkx − ωt), where κ = 1 for wave incident from x → −∞ and κ = −1 for wave
incident from x → ∞ (note that we have normalized so the wave has unit amplitude
in displacement). The wavenumber k is a function of frequency ω and vice versa
through the non-dimensional dispersion relation ω2 = kh tanh(kh). We denote the
frequency-domain solutions by (

ζκ (x, k)

ξ κ (k)

)
. (4.3)

Note that we are specifically excluding here the possibility of a trapped mode, and
the theory which follows would have to be amended to include this possibility.
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The normalized frequency-domain solutions satisfy the following orthogonality
condition: 〈(

ζκ1
(x, k)

ξ κ1
(k)

)
,

(
ζκ2

(x, k′)

ξ κ2
(k′)

)〉
A

= 2πδκ1κ2
δ(k − k′). (4.4)

The proof of this is given for infinite depth by Hazard & Loret (2007). This result is
very general and it is common to all generalized eigenfunction expansions that the
normalization with and without the scatter is the same. The normalization without
the scatterer (the floating body in our case) is trivial and follows from the Fourier
transform.

The time-dependent equations are expanded in terms of the frequency-domain
solutions as follows:(

ζ (x, t)

ξ (t)

)
=

∫
�+

∑
κ∈{−1,1}

{
fκ (ω) cos(ωt) + gκ (ω)

sin(ωt)

ω

} (
ζκ (x, k)

ξ κ (k)

)
dω, (4.5)

where fκ and gκ are determined by the initial conditions. The initial free-surface
elevation, free-surface velocity, body displacement and body velocity are specified as
follows: (

ζ (x, 0)

ξ (0)

)
=

(
ζ0(x)

ξ 0

)
,

(
∂tζ (x, 0)

∂tξ (0)

)
=

(
∂tζ0(x)

v0

)
. (4.6)

Taking the inner product of the initial elevation/displacement equations with respect
to a generalized eigenfunction (frequency-domain solution) gives〈(

ζ0(x)
ξ 0

)
,

(
ζκ (x, k)

ξ κ (k)

)〉
A

= 2πfκ (ω)
dω

dk
, (4.7)

and similarly for the velocity condition〈(
∂tζ0(x)

v0

)
,

(
ζκ (x, k)

ξ κ (k)

)〉
A

= 2πgκ (ω)
dω

dk
. (4.8)

5. Results
We consider two bodies, a half-immersed circle of radius 0.5 centred at the origin

and a rigid plate of negligible submergence which occupies −0.5 � x � 0.5. We
assume that we have non-dimensionalized so that ρ = g = 1 and the water depth
is h = 2. The mass M of both the circle and the plate is taken to be π/8, which
is the correct weight for the circle using Archimedes, principle (but not for the
plate which has negligible submergence). The moments of inertia for the circle are
zero (it moves in heave only), while for the plate IM = π/96 and IW = 1/12. The
wetted area is W = 1 for both cases. We solve the frequency-domain problem by
a simple boundary element solution method which we do not describe here (details
can be found at www.wikiwaves.org). For our calculations, we use 500 frequency
points evenly spaced between 0 and 20π. We discretize the surfaces into panels of
size 0.005. We begin with a comparison of the time-domain solution calculated by
a time-stepping method as described by McIver et al. (2003) for the half-submerged
circle with an initial displacement of ξ3 = 0.5, and all other initial quantities zero.
We show in the comparison only the heave component in figure 1. The solution for
the circle with the initial displacement of ξ3 = 0.5 (there is no pitch motion for a
circle) and zero initial surface displacement is shown in figure 2. Note that this is the
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0 5 10 15 20 25
−0.4

−0.2

0

0.2

0.4

0.6

t

ξ3

Figure 1. The displacement ξ of a circle of radius 0.5 which is released from an initial
displacement of 0.5. The solid line is calculated using the generalized eigenfunction method
and the circles denote the solution based on McIver et al. (2003).

−2.5 −1.5 −0.5 0.5 1.5 2.5 −2.5 −1.5 −0.5 0.5 1.5 2.5 −2.5 −1.5 −0.5 0.5 1.5 2.5

−2.5 −1.5 −0.5 0.5 1.5 2.5 −2.5 −1.5 −0.5 0.5 1.5 2.5 −2.5 −1.5 −0.5 0.5 1.5 2.5

−2.5 −1.5 −0.5 0.5 1.5 2.5 −2.5 −1.5 −0.5 0.5 1.5 2.5 −2.5 −1.5 −0.5 0.5 1.5 2.5

−1.0

−0.5

0

0.5

1.0

t = 0 t = 1.0 t = 2.0

−1.0

−0.5

0

0.5

1.0

t = 3.0 t = 4.0 t = 5.0

−1.0

−0.5

0

0.5

1.0

−1.0

−0.5

0

0.5

1.0

−1.0

−0.5

0

0.5

1.0

−1.0

−0.5

0

0.5

1.0

−1.0

−0.5

0

0.5

1.0

−1.0

−0.5

0

0.5

1.0

−1.0

−0.5

0

0.5

1.0

t = 6.0

x

t = 7.0

x

t = 8.0

x

ζ

ζ

ζ

Figure 2. The displacement ξ of a circle of radius 0.5 which is released from an initial
displacement of 0.5 at t = 0 for the times shown. This is also shown in supplementarymovie 1.

exact problem solved by Ursell (1964) and Maskell & Ursell (1970), who found the
solution by a Laplace transform for this simple geometry. One test of the accuracy is
how well the initial solution when calculated from the Fourier-type integral matches
the initial condition. For the circle, the initial surface displacement calculated from
(4.5) with t = 0 is 0.499908. Note, however, the calculation of the free surface may
not necessarily be as accurate.

The solution for the dock with initial conditions ξ3 = 0.5 and ξ5 = π/16 with zero
initial surface displacement is shown in figure 3. These solutions are also shown in
supplementary movies 1 and 2. Movies 3 and 4 are the equivalent problem except
the surface has an initial displacement of ζ = exp(−4(x + 3)2) as well. The movies
also show the negative time solution and illustrate that the generalized eigenfunction
expansion could be used in a wave tank to generate a prescribed motion of the body
(and fluid surface) at a given time.
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Figure 3. The displacement ξ of a dock of length 2 which is released from a displacement of
0.5 and a pitch of π/16 at t = 0 for the times shown. This is also shown in supplementary
movie 1.

6. Summary
We have shown how the generalized eigenfunction method can be used to calculate

the response of a floating body and have presented some example calculations. We
hope that the development of this method will be useful both theoretically and
practically. For example, we may be able to derive general formula for the asymptotic
behaviour of a floating body (which were given for a semi-submerged cylinder by
Ursell 1964 and Maskell & Ursell 1970). It would also be useful to make a clear
connection between this method and the standard solution in the time domain by the
memory effect (or impulse response function) method Mei (1989), as was given for a
floating elastic plate by Meylan & Sturova (2009).

This research was supported by Marsden grant UOO308 from the New Zealand
government. The authors would also like to thank Dr Garry Tee for his careful reading
of the manuscript and Professor Phil McIver for his advice and his permission to use
the time-domain BEM code from McIver et al. (2003) to generate results for figure 1.

Supplementary movies are available at journals.cambridge.org/flm.

Appendix. Symmetry of the evolution operator A
The symmetry of the operator A was shown by Hazard & Loret (2007) but we

present here a derivation of this result for the symmetric body case to make the steps
in this as clear as possible. The method here is similar to that used by Peter & Meylan
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(2010). We need to show that〈(
ζ

ξ

)
, A

(
ζ ′

ξ ′

)〉
A

=

〈
A

(
ζ

ξ

)
,

(
ζ ′

ξ ′

)〉
A

. (A 1)

We expand the inner product on the left using the matrix structure of A as〈(
ζ

ξ

)
, A

(
ζ ′

ξ ′

)〉
A

= 〈ζ, A11ζ
′〉∂ΩF

+ 〈ζ, A12ξ
′〉∂ΩF

+ ξ ·(WA21ζ
′)∗ + ξ ·(WA22ξ )′∗

(A 2)
and consider each term on the right-hand side individually.

Using Green’s second identity, we have

〈ζ, A11ζ
′〉∂ΩF

= 〈−Ψ, −∂nΨ
′〉∂ΩF

= 〈−∂nΨ, −Ψ ′〉∂ΩF
+ 〈Ψ, ∂nΨ

′〉∂ΩB
− 〈∂nΨ, Ψ ′〉∂ΩB

,

(A 3)

where we have introduced the notation

〈Ψ, ∂nΨ
′〉∂ΩB

=

∫
∂ΩB

Ψ Ψ ′∗ dS. (A 4)

It follows that

〈Ψ, ∂nΨ
′〉∂ΩB

− 〈∂nΨ, Ψ ′〉∂ΩB
= 0, (A 5)

by substitution of the boundary condition

∂nΨ = −n ·
(

M−1

∫
∂ΩB

Ψ n dS

)
= −n · (M−1〈Ψ, n〉∂ΩB

), x ∈ ∂ΩB, (A 6)

(which applies to both Ψ and Ψ ′ in this case) and by changing the order of integration.
Therefore,

〈ζ, A11ζ
′〉∂ΩF

= 〈A11ζ, ζ ′〉∂ΩF
. (A 7)

The second and third terms involving the operators A12 and A21 require similar
manipulations which result in the interchange of the roles of the operators. In the
case of the second term 〈ζ, A12ξ

′〉, the free-surface elevation ζ corresponds to an
acceleration potential satisfying (3.5) whereas ζ ′ corresponds to Ψ satisfying (3.7). To
begin with, we show that

〈ζ, A12ξ
′〉∂ΩF

= 〈−Ψ, −∂nΨ
′〉∂ΩF

= 〈∂nΨ, Ψ ′〉∂ΩF
− 〈Ψ, ∂nΨ

′〉∂ΩB
+ 〈∂nΨ, Ψ ′〉∂ΩB

= −〈Ψ, ∂nΨ
′〉∂ΩB

+ 〈∂nΨ, Ψ ′〉∂ΩB
, (A 8)

by the application of the definition of the operator A12, the use of Green’s second
identity and finally the simplification of the resultant term using the free-surface
condition Ψ ′ = 0. The inner product 〈∂nΨ, Ψ ′〉∂ΩB

is rearranged by substituting for
∂nΨ using (A 6) and swapping the order of integration to give

〈∂nΨ, Ψ ′〉∂ΩB
= −

∫
∂ΩB

n(x) ·
(

M−1

∫
∂ΩB (x̂)

Ψ (x̂)n(x̂) dS(x̂)

)
Ψ ′∗(x) dS(x)

=

∫
∂ΩB (x̂)

Ψ (x̂)

(
−n(x̂) · M−1

∫
∂ΩB

Ψ ′∗(x)n(x) dS(x)

)
dS(x̂). (A 9)
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An application of the body boundary condition in (3.7) to the term in parentheses
gives

〈∂nΨ, Ψ ′〉∂ΩB
= 〈Ψ, ∂nΨ

′ + n.M−1Wξ ′〉∂ΩB

= 〈Ψ, ∂nΨ
′〉∂ΩB

+ 〈Ψ, n〉∂ΩB
.M−1Wξ ′∗

, (A 10)

where 〈Ψ, n〉∂ΩB
· M−1 corresponds to the fluid velocity components on the body, i.e.

∂2
t ξ

′∗. Therefore, a combination of the results from (A 8) and (A 10) and the definition
of A21 (see (3.4) and (3.5)) gives

〈ζ, A12ξ
′〉∂ΩF

= A21ζ · (Wξ ′)∗. (A 11)

The third term in the inner product (A 2) is obtained using an inversion of the
procedure used for the second term. Therefore, the first step is to use the definition
of the operator A21 to introduce the normal velocity term on the body, i.e.

ξ · (WA21ζ
′)∗ = ξ · (WM−1〈n, Ψ ′〉∂ΩB

). (A 12)

Notice that the role of the terms (and those related) Ψ and Ψ ′ has been interchanged
as they are associated with opposite operators compared with the previous term. By
taking the conjugate of the relation (A 10) and swapping the primed and unprimed
terms, we get

〈Ψ, ∂nΨ
′〉∂ΩB

= 〈∂nΨ, Ψ ′〉∂ΩB
+ ξ · WM−1〈n, Ψ ′〉∂ΩB

. (A 13)

It is then straightforward to show that

ξ · (WA21ζ
′)∗ = 〈∂nΨ, Ψ ′〉∂ΩB

− 〈Ψ, ∂nΨ
′〉∂ΩB

+ 〈Ψ, ∂nΨ
′〉∂ΩF

, (A 14)

because Ψ = 0 for x ∈ ∂ΩF . Therefore, from Green’s identity and the definition of
the operator A12, we get

ξ · (WA21ζ
′)∗ = 〈∂nΨ, Ψ ′〉∂ΩF

= 〈A12ξ , ζ ′〉. (A 15)

In the fourth term ξ · (W(A22ξ
′)∗ of the inner product expansion, the two

displacement vectors (ξ ,ξ ′) correspond to acceleration potentials with Ψ = Ψ ′ = 0 on
the free surface. Therefore, from Green’s theorem

〈Ψ, ∂nΨ
′〉∂ΩB

= 〈∂nΨ, Ψ ′〉∂ΩB
. (A 16)

The substitution of the body boundary condition into both terms gives, after some
cancellation,

〈Ψ, n〉∂ΩB
·M−1Wξ = 〈n, Ψ ′〉∂ΩB

·M−1Wξ ′∗
. (A 17)

Using this relation, we obtain the desired result as follows:

ξ · (W(A22ξ
′)∗ = ξ · W(−∂2

t ξ
′)∗

= ξ · W
[
M′(〈n, Ψ ′〉∂ΩB

+ Wξ ′∗)
]

=
[
M′(〈Ψ, n〉∂ΩB

+ Wξ )
]

· ξ from (A 17)

= A22ξ · (Wξ ′∗). (A 18)
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The combination of all these results gives〈(
ζ

ξ

)
, A

(
ζ ′

ξ ′

)〉
A

=

〈
A

(
ζ

ξ

)
,

(
ζ ′

ξ ′

)〉
A

= 〈ζ, A11ζ
′〉∂ΩF

+ 〈ζ, A12ξ
′〉F + ξ · (W(A21ζ

′))∗ + ξ · (W(A22ξ
′))∗

= 〈A11ζ, ζ ′〉F + A21ζ · (Wξ ′)∗ + 〈A12ξ , ζ ′〉F + A22ξ · (Wξ ′)∗

=

〈
A

(
ζ

ξ

)
,

(
ζ ′

ξ ′

)〉
,

(A 19)

thus proving the symmetry of the operator A under the energy inner product.
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C. Truesdell), Handbuch der Physik , vol. 9, chapter 3, pp. 446–778. Springer.

Wilcox, C. H. 1975 Scattering Theory for the d’Alembert Equation in Exterior Domains . Springer.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

56
53

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010005653

