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SUMMARY

By providing both spatial and temporal information remote sensing may function as an important
source of data for site-specific crop management. This technology has been used for nitrogen
application strategies to obtain optimum yield and grain quality. Here, the objective was to use early
repeated remotely sensed multi-spectral data to predict grain yield and quality for winter wheat
(Triticum aestivum L.) and spring barley (Hordeum vulgare L.). The crops were sown with two
different seeding rates and a wide range of nitrogen strategies were applied. Multi-way partial least
squares regression (N-PLS) was used to predict grain yield and protein content. The results were
compared with unfold-PLS1 and PLS1 using reflectance data from the last measurement day. Both
single reflectance wavelengths and selected vegetation indices were used simultaneously. The results
reveal that all models can make a good prediction of yield in both crops with unfold-PLS1 and N-
PLS as the best. However, estimation of grain protein content at harvest was very poorly determined
in barley, as no relation between the reflectance measurements and barley protein content was
obtained. The relation between reflectance measurements and protein content was slightly better in
wheat, where especially N-PLS improved the prediction of grain protein content. The overall
conclusion of the present experiments is that data from repeated measurements of reflectance used in
multi-way partial least squares regression before heading improved the prediction of grain yield and
protein content in wheat and barley.

INTRODUCTION

For more than a decade scientists have tried to
describe and quantify the relation between in-season
canopy reflectance and crop plant physiological status
(Shull 1929; Mestre 1935). A number of spectral
vegetation indices have been proposed, which include
individual reflectance factors, linear combination of
bands, two-band vegetation indices including
normalised difference vegetation indices, soil-adjusted
vegetation indices, non-linear indices, perpendicular
vegetation indices and derivative indices (Dusek et al.
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1985; Wiegand et al. 1991; Penuelas et al. 1994; Chen
1996; Datt 1999; Adams et al. 1999; Daughtry et al.
2000). These indices have been related to vegetation
density or green leaf cover (Dusek et al. 1985;
Daughtry et al. 2000), light use efficiency (Penuelas et
al. 1994), green leaf area index (Best & Harlan 1985;
Dusek et al. 1985), photosynthesis rate (Penuelas et
al. 1994), amount of photosynthetically active tissue
(Wiegand et al. 1991), chlorophyll and other pigments
(Penuelas et al. 1994; Datt 1999; Daughtry et al.
2000), canopy water balance (Penuelas et al. 1994)
and chlorosis (Adams et al. 1999). Some of these
vegetation indices have been very useful for early
prediction of grain yield, allowing in-season nutrient
adjustments. An ideal vegetation index should be
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highly sensitive to a single vegetation parameter e.g.
leaf cover or chlorophyll concentration, but insensitive
to soil background, irradiance strength and direction,
and phenological stage. None of the spectral veg-
etation indices can fully meet all these criteria, but
they can reduce the noise threshold from the above-
mentioned parameters significantly compared with
reflectance wavelengths (Jackson et al. 1983;
Wessman 1990). Canopy physiological properties,
and consequently the reflectance spectrum, change
according to growth conditions and time of measure-
ment (Filella et al. 1995). Consequently, changes of
reflectance and vegetation indices observed individu-
ally and�or in combination through time give valuable
information when trying to model crops grown under
variable conditions, because final yield is the function
of all conditions or growth factors influencing plant
growth over the whole growth period. The result of
using several indices, each related to different crop
physiological properties, should be a more precise
prediction of both grain yield and quality (Hansen et
al. submitted).

In recent years cereal production in high-input
systems has been a major concern in many regions of
Europe due to nitrogen leaching to ground and
surface water (EC-Council Directive 1991; van
Alphen & Stoorvogel 2000). There is a demand for
environmentally friendly or more efficient manage-
ment systems. These systems should have a high net N
uptake in order to limit residual soil N after harvest.
They should also use N more efficiently in order to
maximize yield and ensure that the targeted grain
quality is obtained. In wheat there is an economic
incentive to produce high protein bread wheat, and in
barley there is an economic motivation to produce
malting barley with restricted protein content per unit
grain dry matter.

Generally, it is important to be able to make an
estimation of crop yield. The normalized difference
vegetation index (NDVI), calculated on the basis of
reflected light from the red and NIR bands, has long
been used as an indirect measure of crop yield, but it
uses measurements made late in the growth season
from late stem elongation (Tucker & Holben 1980;
Pinter et al. 1981). Recently, NDVIs have been
combined with cumulative growing degree days
(GDD) and early-season plant N uptake creating
yield prediction models in winter wheat (Raun et al.
2001; Lukina et al. 2001). Repeated spectral measure-
ments accumulating NDVI were useful in predicting
grain yield in wheat (Pinter et al. 1981; Raun et al.
2001) and millet (Rasmussen 1992) compared with a
single spectral measurement. However, the extensive
use of NDVI for yield prediction does not mean that
it is the best index to use. NDVI is used because a lot
of reflectance data are available from various satellite
systems, vehicle-based systems and handheld systems,
all providing red and NIR reflectance measurements.

This was confirmed recently, where simple ratios of
red and NIR (SR) correlated better to durum wheat
yield (Aparicio et al. 2000) compared with NDVI and
the same was the case for ‘‘green’’ normalized
difference index (GNDVI) estimating corn grain yield
(Shanahan et al. 2001).

Yield and protein content are two important key
factors for bread wheat production and marketing
(Jenner et al. 1991) as well as for barley production
for malt and feed (Bertholdsson 1999). Protein
concentration is known to influence the bread-making
quality of wheat (Finney & Barmore 1948; Johansson
et al. 2001). The protein concentration is determined
in wheat by the genetic background, but also, to a
large extent, by environmental factors such as
nitrogen, water access and temperature conditions
(MacDonald 1992; Johansson & Svensson 1998;
Johansson et al. 2001). In barley used for malt, the
grain protein content should be lower than 11�5%
(Bertholdsson 1999). This may be difficult as the
protein content is influenced by cultivation practices
and by environmental factors such as availability of
nitrogen and stress situations caused by drought
(Bertholdsson & Stoy 1995; Eagles et al. 1995; Birch
et al. 1997).

Prediction of grain protein for the prospective
wheat and barley harvest would, therefore, be of
value to farmers when deciding if the field should be
divided into different management zones in order to
harvest and deliver the targeted qualities. Grain yield
and quality can however be influenced by late season
fertilizer and fungicide application (Gooding et al.
1991; Birch et al. 1997; Gooding et al. 1976b ;
Bertholdsson 1999), but the net profit for the farmer
depends on application costs, yield response and crop
value. There is therefore a need to predict grain
quality during the growing season to improve
decision-making concerning management practice.

Our approach here is to use all available data in the
prediction model and not, as previously done, to
reduce the information level by calculating a single
index or summarize index values when repeated
measurements have been done over time. Therefore,
this work uses all available reflectance wavelengths,
and also calculates indices presented earlier in the
literature and assembles them into one data structure
of variables (X). The indices were included because it
has been concluded previously that non-linear trans-
formations can provide additional information. How-
ever, this implies that the methods used for prediction
analysis can handle multi-variate data structures with
high covariance and redundancy. Partial least square
regression models are ideal for that purpose (Martens
& Næs 1989).

When including time as an additional dimension,
the dataset becomes three-way, which cannot be
handled in the prediction models normally used. One
may be tempted to analyse three-way data after
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aggregating over one of the three ways (sample,
variable or measuring time), or by analysing all two-
way datasets contained in the three-way data set
separately. However, it should be noted that such
approaches do not offer an explicit description of the
three-way interaction in the data. Hence, they may
lead to conclusions that are at best incomplete.

Techniques for handling three-way data sets have
been developed in the last few decades. N-PLS is a
potential prediction model, which uses latent
structures for making predictions of dependent
variables within empirical three-way data sets. The
strength of N-PLS is that it summarizes all latent
information from a large N-way dataset of object
variables (X) and relates it to a dependent variable (y)
using a relatively low number of parameters, which
makes the prediction more robust.

This paper uses N-PLS for prediction of grain yield
and protein content using repeated measures of
canopy reflectance during vegetative growth in winter
wheat and spring barley. The results are compared
with a bilinear PLS1 analysis using the reflectance
data from the last date of measurement (single-PLS1)
and a bilinear PLS1 using the unfolded three-way
data cube (unfold-PLS1). Both reflectance of various
wavelengths and indices previously presented in the
literature are used in the analysis to improve the
prediction ability. Further, an assessment is made of
whether there is the potential to predict grain yield
and quality early enough for the farmers to alter crop
management.

MATERIALS AND METHODS

Two separate experiments, one in winter wheat
(Triticum aestivum L. cv. Ritmo) and one in spring
barley (Hordeum vulgare L. cv. Alexis) were carried
out in 1999�2000 at the Danish Institute of Agri-
cultural Science, Foulum (56� 29� N, 9� 34� E). The
experiments were placed on two different fields
approximately 500 m apart. The soil type was the
same sandy loam for both experiments, containing
l0% clay and 2% total carbon. The distribution of
the plots was in both cases designed as a two-factor
split-plot design with three randomized blocks. The
sowing date was 20 September 1999 in wheat and 10
April 2000 in barley. The row distance was 12�5 cm,
and the direction of the rows was east–west. Sufficient
PKS-fertilizer was supplied in early April at the start
of growth to avoid deficiency and efficient weed and
fungus management was achieved using approved
pesticides. Irrigation was performed immediately after
nitrogen application treatments, applying 10 mm of
ground water to ensure immediate effect. The weather
conditions did not reach the extremes of the long-
term average and severe drought was observed.

The factors included in the wheat experiment
comprised two plant densities providing 150 (LD)

and 450 (HD) plants�m� and 11 strategies of nitrogen
application (Table 1). The N applications were
performed using two dressings at 5 April (N1) and 2
May (N2).

The factors included in the barley experiment
comprised two plant densities providing 150 (LD)
and 450 (HD) plants�m� and 11 strategies of nitrogen
application (Table 1). The N applications were
performed using two dressings at 4 May (N1) and 31
May (N2).

Reflectance measurements

Canopy reflectance was measured with a hand-held
spectroradiometer fitted with 20�8� field-of-view optics
(CropScan MSR87, CropScan Inc., USA). Eight
medium broad bands (� 10 nm) were used, with
centre wavelengths equal to 560, 650, 690, 740, 760,
810, 900 and 970 nm. Both solar irradiation and
ground�crop reflectance were detected.

Reflectance measurements were performed in the
wheat canopy three times: on 15 May (T1), 22 May
(T2) and 30 May (T3), which were growth stages
(BBCH) 32, 41 and 51 respectively.

Reflectance measurements were performed in the
barley canopy four times: on 22 May (T1), 30 May
(T2), 6 June (T3) and 15 June (T4), which were
growth stages 28, 30, 33 and 48 respectively.

All data were collected with solar zenith angles less
than 40� from 11:00 h to 13:00 h local time
(GMT�1). The plants were dry at all times, but the
illuminationwas changing both between measurement
days and within each day due to clouds. Four separate
measurements were made in each plot representing
replicates. The data used in the analysis were the
relative reflectances corrected for irradiation, referred
to as reflectance data, and selected indices calculated
on the basis of the reflectance data.

Harvest procedures and statistical analysis

The plots were harvested with a plot harvester on 23
August 2000 and grain yield (kg�ha) was recorded.
Grain subsamples from each plot were analysed for
protein content (%) in the laboratory using a near-
infrared spectroscopy analyser (Foss Tecator, Infratec
1241). The near-infrared spectroscopy analyser was
calibrated and linked to the Danish NIT network
(Buchmann et al. 2001).

The program ‘Proc Mixed’ in the software package
‘SAS’ (SAS Institute, USA) was used for initial
statistical analysis of y (response) variables, grain
yield and protein content. The initial statistical model
included plant density, nitrogen application and their
interaction as fixed effects. The blocks were regarded
as randomly selected, which implies that whole-plots
(plant density) and split-plots were set as random
factors. The model was reduced by using �2 REML
log likelihood estimates and χ� test of significance
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Table 1. Nitrogen strategies for winter wheat and spring barley experiments

Crop
treatment

kg N�ha

1 2 3 4 5 6 7 8 9 10 11

Winter wheat
N1, 5 April 0 40 60 80 120 160 200 0 0 40 40
N2, 2 May 0 0 0 0 0 0 0 120 160 80 120
N1�N2 0 40 60 80 120 160 200 120 160 120 160

Spring barley
N1, 4 May 0 30 45 60 90 120 150 0 0 30 30
N2, 31 May 0 0 0 0 0 0 0 90 120 60 90
N1�N2 0 30 45 60 90 120 150 90 120 90 120

(0�05% confidence interval). Estimation of the linear
combinations of the fixed effects was performed using
the reduced final model. Pair-wise tests of difference
between the fixed effects were performed using t-tests.

Initial pre-treatment and evaluation of reflectance
data

Initial outlier control and detection of data with
divergent behaviour was performed before averaging
the four replicate measurements in each plot. The
procedure started with an initial mean centring across
reflectance wavelengths by subtracting the average of
each variable from each sample, respectively. Principal
component analysis (PCA) was carried out on
reflectance data from each measurement day. The
analysis was carried out in Matlab 6.0 release 12
(Mathworks, USA) using the PLS toolbox 2.0
(Eigenvector Research Inc., USA).

The median of the scores in principal component 1
(PC1) and principal component 2 (PC2) from each of
the four measurement replicates within each plot was
calculated. If the difference between one of the four
scores in PC1 was more than three times the median
of the scores in PC1 or the difference between one of
the four scores in PC2 was more than three times the
median of the scores in PC2, the measurement was
regarded as an outlier. By this method 157 out of a
total of 792 (20%) measurements in wheat and 273
out of 1056 (26%) in barley were regarded as outliers
and left out of further calculation. This outlier
detection was done to ensure that one or two outliers
did not influence the average of the rest of the
measurements. No clear trend or explanation was
found to explain the outliers. It could be due to
varying growth conditions within the plot. The means
of the remaining data, two to four measurements in
each plot, were calculated and represent the reflectance
data used for analysis.

The partial least square regression models can
operate with a high degree of redundancy, and for
strengthening the predictive power of the X (in-

dependent) variables, ten indices used in the literature
were calculated on the basis of the initial pre-treated
reflectance data. These indices were by nature closely
related to the eight wavelengths, but it was believed
that additional information would be provided for the
analysis, because it has been observed that non-linear
transformations can provide new information. The
equations used for calculating the indices are shown
in Table 2.

Auto-scaling before partial least squares regression

It is necessary to pre-treat both the reflectance data
and the dependent variable before actual PLS data
analysis and modelling (Harshman & Lundy 1984). In
this case, the data were auto-scaled, which means that
data were mean centred and scaled. Mean centring
across all samples was performed for each measure-
ment date separately by subtracting the average of
each variable from each sample, respectively. Mean
centring will remove possible differences in offsets
between the different variables and at different
occasions thereby focusing on the variation between
the samples. To avoid differences in magnitude
between the variables from dominating, scaling within
all variables was performed. The scaling factor was
the inverse of the standard deviation (1�Sdev) of each
variable.

Partial least squares regression

Partial least squares regression (PLS1) was used for
creating models between the auto-scaled spectral
variables X and a dependent variable (y). All first-
order data can be used in the algorithm, and it is ideal
to use on data where several or multiple dependent
variables have been determined for each sample�plot
even if the variables show colinearity. The data set
was arranged in a matrix containing the spectral
variables X and a vector containing the dependent
variable (y). Therefore, the dimension of X in single-
PLS1 for both wheat and barley using the data from
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Table 2. The 18 variables used throughout the modelling of grain yield and grain protein content. The variables
consist of eight separate measured wavelengths and ten indices calculated on the basis of these wavelengths

Name Wavelengths�Index equation Reference

Separate
wavelengths

R560*, R650, R690, R740, R760, R810,
R900 and R970

DVI R810�R690 Jordan (1969)

NDVI
(R810�R690)

(R810�R690)
Rouse et al. (1974)

GNDVI
(R810�R560)

(R810�R560)
Gitelson & Merzlyak (1996)

GRVI
(R690�R560)

(R690�R560)
Tucker (1979)

SAVI
(R810�R690)�(1�L)

(R810�R690�L)
Huete (1988)

MSAV12 �

�
[2(R810�1)��(2R810�1)��8(R810�R690)] Qi et al. (1994) ]

RDVI �NDVI�DVI Roujean & Breon (2001)

TVI 0�5(130(R810�R560)�210(R690�R560)) Broge & Leblanc (2001)

REIP 700�40�
(DVI�2)�R740

(R760�R740)
Guyot et al. (1988)

D-chl-ab
(R760�R740)�2

R560
Gitelson & Merzlyak (1996)

* R560 indicates that it is the reflectance ratio for the band with centre wavelength at 560 nm. Similar symbols are used for
the other separate wavelengths.

the last measurement day is 66�18. The numbers
indicate the 66 samples and the 18 selected variables
constructed from reflectance of various wavelengths
and calculated indices (Table 2). The PLS1 algorithm
is based on the ‘non-linear iterative projections by
altering least-squares ’ (NIPALS) algorithm. The basis
of the PLS1 algorithm will not be explained in this
paper, but further information can be found in
Hoskuldson (1988) and Kvalheim (1987).

The present data set can also be set up to have three
dimensions. By regarding the data set as three-
dimensional the analysis can be extended and possibly
better prediction models can be developed. There are
several possible three-dimensional or three-way cali-
bration methods. Among the most common are
unfolding of the three-way data cube into a normal
two-way data matrix (unfold-PLS1) using standard
bilinear methods (PCR, PLS1), multi-linear PLS,
trilinear PARAFAC (parallel factor analysis) or
modifications of the so-called Tucker models.

It was decided to use the relatively new method N-
PLS (Bro 1996) and compare the results of this model
to bilinear single-PLS1 (see above) and unfold-PLS1.
The unfold-PLS1 was chosen because it resembles the
N-PLS to some extent. However, the data are analysed

as if they were two-dimensional, which makes them
difficult to interpret and not ideal for these kinds of
data, unlike N-PLS.

The variables have been determined at three
different dates in wheat and four different dates in
barley. Therefore, the unfolded matrices X used in the
unfold-PLS have the dimensions 66�54 for wheat
and similarly for barley, where the matrix dimension
was 66�72. The data in N-PLS have to be arranged
in a cube. The three dimensions of the cube for wheat
were 66�18�3 and for barley were 66�18�4 in the
1st, 2nd and 3rd direction, respectively. Here again,
the experimental plots are listed in the first direction
or mode. There are 1–66 plots in total and each of the
66 observations in direction�mode one is represented
by 18 variables (reflectance wavelengths and indices),
which is mode two. The variables have been measured
three and four times forwheat and barley, respectively.
The data from each measurement day were stacked to
give the third mode. The algorithm is superior to
unfolding methods, primarily owing to a stabilization
of the decomposition. This stabilization potentially
gives increased interpretability and better predictions.
The algorithm is fast compared with, for example,
PARAFAC, because it consists of solving eigenvalue
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problems. Further information about the algorithm
and use of N-PLS can be found in Bro (1996), Bro &
Heimdal (1996) and Andersson & Bro (2000).

In principle, all three methods use component
projection successively to find latent structures. The
first principal component (PC) includes the maximum
possible variation in X relevant to describe the
variation y. The second PC was found in the same
way by including the second highest variation. Visual
inspection of score-plots and residual validation
variance plots was used to find the optimal number of
PCs avoiding over fitting. In most cases this procedure
can reduce the number of correlated variables to a few
independent variables here as principal components.
The final model predicting y�

i
had the following form

(Eqn 1) :

y�
i
� b

�
�b

�
t
�i
�b

�
t
�i
� � �b

n
t
ni

(1)

where t
�i

to t
ni

are the scores fromprincipal component
(PC) 1 to n for variable i. The scores were calculated
from auto-scaled X data. By linear regression of t
versus y in the calibration iteration process the
regression coefficient b

n
was calculated. The centred

mean b
�

has to be added to get y�
i

in the right
proportion due to the initial centring of y.

Model validation

The models used in this experiment were cross-
validated. As for the statistical analysis, the blocks in
each experiment were regarded as a random selection
from a larger population and therefore treated as new
independent samples. Data from one block were
successively left out one at a time (test set) and a
model was built by using the remaining two blocks
(calibration set). The model created was used to
predict the dependent variables in the test set.
Therefore, the results were not a simple fit of data, but
a true prediction. In all prediction models .. was the
size of the test set� 22. Root mean square error of
prediction was calculated (Eqn 2) :

RMSEP�A�
n

i=�

(y�
i
�y

i
)�

n (2)

RMSEP expresses the average error to be expected
associated with the future predictions, where y

i

expresses the measured value and y�
i

expresses the
predicted value in n samples. Three RMSEP values
were calculated for each test model and root mean
square error of cross-validation (RMSECV) were
calculated (Eqn 3) :

RMSECV�A�
N

n=�

RMSEP�
n

N
(3)

where N is the number of RMSEP, which in this
experiment is three. RMSECV is calculated to give

the greatest RMSEP the highest weight, compared
with an average of the RMSEPs from the cross-
validation. In this paper 2�RMSECV is given as the
percentile of the range between the minimum and
maximum value of the dependent variable.

The analysis was carried out in Matlab 6.0 release
12 (Mathworks, USA) using the PLS toolbox 2.0
(Eigenvector Research Inc., USA) for single-PLS and
unfold-PLS. The N-way toolbox 1.04 was used in the
N-PLS analysis (Andersson & Bro 2000).

RESULTS

Treatment effects on grain yield and protein content

Nitrogen status was the major factor affecting yields
and protein content in wheat and barley (Table 3).
The temporal distribution of nitrogen also influenced,
in particular, protein content in winter wheat. The
results indicate that the conditions of this study were
favourable for evaluating the potential of canopy
reflectance data for determining the N status of winter
wheat and spring barley.

There were significant increases in wheat grain yield
with increasing N fertilization (Table 3), ranging from
approximately 4 tonnes�ha in the 0–0 N strategy to
10 tonnes�ha in the 200–0 N strategy (P	 0�001),
whereas no significant differences were observed
between same levels of nitrogen applied at different
strategies.

Late application of nitrogen (N2) had a significant
positive influence on protein content. No significant
(P
 0�05) difference in yield was observed between
the two seeding rates. However, both nitrogen
application and plant density influenced grain protein
content significantly. On average, protein contents
were 10�2% in LD plots and 9�7% in HD plots. There
was no significant interaction between nitrogen
strategy and plant density.

Barley grain yield and protein content are sum-
marized in Table 3. The grain yield in spring barley
was strongly dependent on the different nitrogen rates
as well as different nitrogen application strategies.
The lowest yield (3 tonnes�ha) was obtained with
the 0–0 N application strategy and highest yield
(6 tonnes�ha) was achieved with the 150–0 strategy.
Thus, application of only late nitrogen (0–90 and
0–120) gave significantly lower yields than early
applications. As in wheat no significant differences in
yield were observed due to different plant densities.
Grain protein content was weakly influenced by N-
application strategies as well as plant density. On
average protein contents were 11�0% in LD plots and
10�6% inHDplots. No significant interaction between
nitrogen strategy andplant density (NS)was observed.

Estimated v. measured grain yield

The three different multi-variate calibration methods
were able to predict yield in both wheat and barley,
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Table 3. Mean grain yield and protein content in response to N-strategies and plant density for winter wheat (a)
and spring barley (b)

(a) Winter wheat
Yield

tonnes�ha

Protein
dry matter

(%) (b) Spring barley
Yield

tonnes�ha

Protein
dry matter

(%)

N-strategy (NS) N-strategy (NS)
0–0 4�51 a 10�0 c 0–0 3�12 a 10�0 a

40–0 6�22 b 9�0 a 30–0 4�55 b 9�9 a
60–0 7�21 c 9�0 a 45–0 4�87 c 10�0 a
80–0 7�65 c 8�9 a 60–0 5�08 c 10�0 a

120–0 8�88 d 9�1 a 90–0 5�64 d 9�9 a
160–0 9�70 e 10�4 c 120–0 5�82 de 9�9 a
200–0 9�94 e 11�1 d 150–0 6�05 e 11�1 b

0–120 8�63 d 10�1 c 0–90 4�70 bc 10�5 a
0–160 9�37 e 11�5 e 0–120 4�90 c 11�1 b

40–80 8�85 d 9�6 b 30–60 5�38 cd 9�9 a
40–120 9�58 e 10�5 c 30–90 5�71 d 10�8 a

Plant density (PD) Plant density (PD)
150 (LD) 8�18 a 10�2 a 150 (LD) 5�59 a 11�0 a
450 (HD) 8�29 a 9�7 b 450 (HD) 5�83 a 10�6 b

Model information Model information
.. .. .. .. .. . .. ..

NS 0�16 9�21 0�17 7�91 NS 0�16 10�9 0�34 46�9
PD 0�15 5�07 0�13 3�40 PD 0�20 6�0 0�17 6�34
NS�PD 0�21 20�5 0�20 15�2 Na�PD 0�23 10�9 0�47 62�7

* Test of significance between treatments using t-test. The limit of significance was set to P
 0�01 and identical letters
indicate no significance while divergent letters indicate significant difference.
† Standard error (..) and degrees of freedom (..) for the full model with NS, PD and NS�PD as fixed effects and blocks
as random effects using least square means in proc mixed in SAS.

Table 4. Summary of the cross-validation of single-PLS1, unfold-PLS1 and N-PLS1. Three segments represented
by the experimental blocks were successively used as test set data

Method PCs
Correlation
(..� 22) RMSECV Range % of range

Winter wheat
Yield Single-PLS1 3 0�953 0�034 6�42 1�1

Unfold-PLS1 3 0�966 0�027 0�9
N-PLS1 3 0�967 0�108 3�4

Protein Single-PLS1 3 0�672 0�792 3�9 40�6
Unfold-PLS1 2 0�697 0�739 37�9
N-PLS1 3 0�754 0�405 20�8

Spring barley
Yield Single-PLS1 3 0�930 0�043 4�25 2�0

Unfold-PLS1 4 0�972 0�037 1�7
N-PLS1 3 0�968 0�068 3�2

Protein Single-PLS1 2 0�242 1�078 3�6 59�9
Unfold-PLS1 1 0�447 1�072 59�6
N-PLS1 1 0�457 0�812 45�1

irrespective of the different nitrogen application
strategies. The two three-way methods, unfold-PLS1
and N-PLS, performed slightly better compared with
single-PLS1 (Table 4).

The correlation between measured and predicted
yields were 
 0�96 using the two methods. This

indicates that the growth history measured spectrally
had a positive effect on the predictability of yield. The
root mean squared error of cross-validation
(RMSECV) was greater using N-PLS (wheat, 0�108
and barley, 0�068) compared with unfold-PLS1
(wheat, 0�027 and barley, 0�037) for predicting yield.
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Fig. 1. Relation between predicted and reference values using N-PLS for wheat yield (a), wheat protein content (b), barley
yield (c) and barley protein content (d ). The line of equality is indicated. The total number (n) of samples in each plot is 66.
No y samples were detected as outliers.

Estimated v. measured grain protein content

Using a single spectral measurement just before
heading in wheat and barley was not adequate for
predicting grain protein content. Single-PLS cannot
predict protein content at the time measured in barley
(r� 0�24, ..� 22). It is slightly better in wheat (r�
0�67, ..� 22).

Using three-way methods did improve the pre-
diction, especially in wheat (r� 0�75), between
measured and predicted. However, the RMSECV is
still quite high when it was compared with the range
between the lowest and highest measured values. The
RMSECV was still 21% of the total range, but it is a
clear improvement compared with single-PLS (41%
of total range).

N-PLS models

An overall indication of the N-PLS model ability to
predict yield and protein is shown in Fig. 1. Clearly,
grain yield in both crops was estimated well, while
protein content was estimated less successfully. The
overall parameters used for prediction of y are
presented in Table 5. The parameters in Eqn 1 can be
used to predict new samples.

Table 5. Parameters used to construct the final models
of N-PLS according to Eqn 1 for predicting grain yield
and protein content in winter wheat and spring barley

Crop
variable (y)

N-PLS model parameters

b
�

b
�

b
�

b
�

Wheat
Grain yield (kg�ha) 8�23 1�29 11�5 51�5
Protein content (%) 9�94 �0�05 �0�19 0�09

Barley
Grain yield (kg�ha) 5�07 �0�23 0�81 2�99
Protein content (%) 10�33 0�14

DISCUSSION

In this work PLS1, unfold-PLS1 and N-PLS were
compared as tools to predict grain yield and protein
content. Multi-variate calibration models have been
used before in other research areas to predict a
number of different variables using a multivariate
data structure. The methods have not been used
within remote sensing in agriculture, but it is apparent
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from our work that these models can contribute to the
development of robust prediction models of, for
example, yield and grain protein content.

The repeated in-season spectral measurements, in
the time range from early stem elongation until
heading, have been used in the prediction of grain
yield and protein content. Treatments applied to the
crop were intended to create a wide range of biomass,
growth rates and chlorophyll concentrations in the
wheat and barley crops. The in-season variation
measured spectrally approximately 2–3 months before
harvest was expected to provide adequate information
to predict grain yield and protein content.

The spectral data contained enough extractable
information for the models to predict yield over a
very broad range, regardless of plant density and
nitrogen strategy, even when nitrogen was applied
inside the time span of measurement. The positive
yield response to nitrogen under sufficient water
supply is evident and well known (Olesen et al. 2000).
The differences in plant density had no significant
effect on yield either in wheat or barley. This is due to
the ability to compensate by increasing the number of
fertile tillers and produce larger kernels (Darwinkel
1978).

Plant breeding has reduced the grain protein
concentration of barley and wheat progressively
within the last century, especially with the newer
cultivars. Reduction in grain protein concentration is
not associated with lower protein amount per grain
basis, but rather with an increase in amount of non-
structural carbohydrate per grain (Bulman & Smith
1993).

The models used seem to predict yield well, but the
approach of each model is quite different. Single-PLS
is very dependent on the measurement date. In
general, earlier measurements contained less infor-
mation about yield compared with later measure-
ments, e.g. taken from stem elongation until ripening
(Aparicio et al. 2000). We chose to use our last
measurement, because it should contain the most
information about crop development, and because, in
these investigations, the early measurements did not
contain information resulting from the second ni-
trogen application (Shanahan et al. 2001).

Unfold-PLS uses the same PLS1 calibration model,
but the unfolded data matrix was used with all
measured data in the same data matrix (see Materials
and Methods). It did not increase the prediction
power significantly, but it increased, by definition, the
number of parameters used in the model very
drastically, to produce a complex model with low
interpretability (Bro 1996). N-PLS compared with
unfold-PLS is much simpler. If models describe the
data equally well, one should choose the simplest one
in order to keep the model robust against over-fitting
of parameters and to aid interpretability. The price
for increased simplicity is loss of fit, because of more

severe constraints, and this was observed here when
predicting yield in wheat and barley (Table 5).

The quality of wheat and barley is important,
because the producers have an economic incentive
based on, for example, protein concentration. In
general wheat producers aim at high protein content
in order to harvest bread wheat (Jenner et al. 1991)
otherwise it is regarded as feed wheat for animals. In
contrast, malting provides an economic incentive to
produce spring barley for malt, based on a limited but
not low protein content (Bertholdsson 1999).

It is much more difficult to predict grain protein
content based solely on in-season spectral measure-
ments. Plant density had a negative significant
influence on grain protein in both wheat and barley.
The HD crop invested more nitrogen on leaves and
stems during growth compared with LD crops (data
not shown). The nitrogen left at grain filling was less
and the remobilization from the other organs to the
head did not compensate for the relative lack of
nitrogen in HD crops compared with LD crops.

The highest supply of nitrogen at N1 raised the
protein content significantly compared with other
treatments supplied at N1 only for both wheat and
barley. However, later application of nitrogen at N2
proved less effective than application at N1. This was
true for both yield and protein content in wheat, but
the yield decreased significantly at N2 in barley
compared with N1 application. This is related to the
amount of nitrogen left at grain filling. Late ap-
plication of nitrogen simply provides more nitrogen
to the protein creation at grain filling in wheat
compared with early nitrogen application. This is
supported by work done in winter wheat and barley
(Gooding & Davies 1991; Bulman & Smith 1993;
Gooding et al. 1997a).

All models except the N-PLS model in wheat
predicted protein content very poorly. The in-season
reflectance measurements did not provide enough
information to make a good prediction model. The
process of grain filling relies on plant-available
nitrogen and on translocated nitrogen from other
organs, but takes place later than the actual spectral
measurements. The spectral measurements seem to be
closely related to nitrogen application. This should
provide a good prediction of yield but a poor estimate
of protein content, at least in barley, because yield
responds greatly to nitrogen while protein content is
related to events after measurement. However, the N-
PLS model predicts protein content quite closely (r�
0�75, ..� 22) and reduced the RMSECV by 50%
compared with unfold-PLS. This indicates that N-
PLS could be developed further and used on other
datasets which ideally would include spectral measure-
ments closer to harvest and data from several years as
a fourth dimension.

Variable rate applications of nitrogen, based on
spectral measurements in winter wheat, can be
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performed before heading, in Northern Europe
(Jørgensen & Jørgensen 2001), and no effect on
protein was observed compared to uniform appli-
cation. The present results suggest that the use of
repeated measurements can be incorporated into a
model to support such nitrogen application strategy
in winter wheat. The model would permit grain
protein optimization through a second variable rate
application just before heading.

The relation of crop status at a given stage of
growth with yield at a later stage of growth may be
affected by external factors operating from the time of
crop scanning until the time at which the grain is
harvested. Therefore the indication of final grain yield
and protein content can usually only be established as
a yield and protein range.

In conclusion, this paper shows how grain yield and
protein content in spring barley and winter wheat can
be predicted using canopy reflectance measurement
data. The proposedmethod employs multi-way partial
least square regression and can be applied with
response functions other than those considered in this
paper. Large variation in grain yield and protein
content can be predicted by canopy reflectance
measurement data. Site-specific predictions could be
made known to growers to enable late-season nitrogen
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