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Abstract

The presence of aerodynamics loadings makes the design of some classes of elastic structures, as, for instance, marine struc-
tures and risers, very challenging. Moreover, capturing the complex physical interaction between the structure and the fluid
is challenging for both theoretical and numerical models. One of the most important phenomena that appear in these sit-
uations is vortex-induced vibrations. The picture is even more complicated when multiple elastic elements are close enough
to interact by modifying the fluid flow pattern. In the present work, we show how the common design practice for these
structures, which is entirely based on deterministic simulations, needs to be complemented by the uncertainty quantification
analysis. The model problem is a structure constituted by two elastically mounted cylinders exposed to a two-dimensional
uniform flow at Reynolds number 200. The presence of a manufacturing tolerance in the relative position of the two cylin-
ders, which we consider to be a source of uncertainty, is addressed. The overall numerical procedure is based on a Navier–
Stokes immersed boundary solver that uses a flexible moving least squares approach to compute the aerodynamics loadings
on the structure, whereas the uncertainty quantification propagation is obtained by means of a nonintrusive polynomial
chaos technique. A range of reduced velocities is considered, and the quantification, in a probabilistic sense, of the differ-
ence in the performances of this structure with respect to the case of an isolated cylinder is provided. The numerical inves-
tigation is also complemented by a global sensitivity analysis based on the analysis of variance.
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1. INTRODUCTION

The design of elastic structures in presence of aerodynamic
loadings is a complex engineering task of great interest.
The highly nonlinear coupling between the structural defor-
mation and the fluid flow makes the dynamical analysis of
the system difficult to treat using either theory or computa-
tional tools. A key phenomenon relevant to the interaction
of elastic structures and fluid flow is called vortex-induced
vibrations (VIV). Vortex shedding and vortex-excited oscilla-
tions may occur in marine structures such as risers and
conductor tubes employed in oil drilling and production,
deep-water pipelines, or civil engineering structures such as
bridges and chimney stacks. VIV has received considerable
attention, and the fluid flow over a single elastically mounted
cylinder is considered as the prototype for this kind of config-
urations and still subject of intense research (Williamson &
Govarghan, 2004). In a realistic situation, multiple elastic

structures are arranged in proximity that can further alter
and enhance the interaction between the more complex fluid
pattern and the structural elements. It is common to analyze
two elastic structures under the hypothesis of two-dimen-
sional flow and assume a circular shape for both the structural
elements. Examples of experimental and numerical studies of
this problem exist (see, e.g., Griffin & Ramberg, 1982; Bor-
azjani & Sotiropoulos, 2009). However, a very limited num-
ber of studies consider the design and the analysis of these
structures under uncertain conditions (Xiu et al., 2002; Lucor
& Triantafyllou, 2008). Uncertainty quantification (UQ) is
crucial when the effect of geometrical tolerances on the dy-
namics of the structural elements needs to be taken into ac-
count for safety and fatigue considerations. It is well known
that a single elastically mounted cylinder, placed in a free
stream, undergoes large amplitude oscillations when the
shedding frequency synchronizes with the natural oscillation
frequency (Williamson & Roshko, 1988). Unlike the forced
vibration behavior of a linear oscillator, here the vortex shed-
ding synchronization occurs over a range of frequencies,
called the lock-in region. The flow regime is more complex
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than the von Karman vortex street, which appears for fixed
bluff bodies, and even more complexity arises when a sec-
ond cylinder is placed in the wake. Depending on the ar-
rangement, which can be in tandem, staggered, or side by
side (see Fig. 1), fixing the relative position of the cylinders
it is possible to identify regimes characterized by distinct
mechanisms of interaction between the structure and the
flow field.

In particular, in this work we are interested in the case of a
pair of cylinders, with the same diameter D, placed in tandem
(see Fig. 2). For this configuration, in the following, we pre-
sent the main regimes that have been identified in the litera-
ture (e.g., see Zdravkovich & Pridden, 1977). A critical re-
gime corresponds to the ratio Lx/D . 4. In this situation,
only the rear cylinder is affected by the presence of the front
wake, whereas if Lx/D , 4, the front wake itself is sensible to
the presence of the rear cylinder. This latter configuration is
the so-called proximity-wake interference region. In the pre-
sent work, we are interested in this regime, and in particular,
our goal is to study the nominal configuration with Lx/D ¼
1.5. Borazjani and Sotiropoulos (2009) carried out an exten-
sive numerical analysis for Lx/D¼ 1.5 at Reynolds number¼
200, which the authors identified as the upper bound for
which the flow remains essentially two dimensional. The au-
thors identify larger amplitudes of motion and a lock-in re-
gion for the configuration in tandem with respect to the iso-
lated cylinder and also the existence of a threshold in the
reduced velocity that delimits the behavior of the system.
More precisely, for reduced velocities below the threshold,
the amplitude of the front cylinder’s oscillations exceeds
that of the rear cylinder’s oscillations, whereas above the
threshold, the rear cylinder exhibits larger amplitudes of os-
cillation compared to the front one. Numerical studies, such
as the one performed in Borazjani and Sotiropoulos (2009),

are limited by the assumption that the relative position of
the two cylinder is known exactly. In practice, during the de-
signing stage, when a particular configuration for the struc-
ture is defined and tolerances must be assigned, it is important
to quantify the effect of any uncertainty in the configuration
and operative conditions. For instance, even when a particular
configuration is chosen to perform safely according to the
nominal design requirements, the manufacturing process
can introduce uncertainty in the relative positioning of the
structural elements. In this work, our goal is to demonstrate
how UQ analysis is able to provide useful information to
the designer in such a situation. The uncertainty in this
kind of problems comes usually from different sources. We
selected the case studied in Borazjani and Sotiropoulos, and
we consider two sources of uncertainty describing the relative
position of the two cylinder (Lx and Ly as reported in Fig. 2).
The work presented in the following is an extended and re-
vised version of Geraci et al. (2015) and is organized as fol-
lows: in Section 2 the physical problem and the relevant gov-
erning equations are introduced. The numerical setting is
described in Section 3, where we discuss both the determinis-
tic solver (Section 3.1) and the stochastic approach (Section
3.2). Numerical results follow in Section 4, and conclusions
and perspectives close the paper in Section 5.

2. PROBLEM DESCRIPTION

We consider the system constituted by two cylinders in tan-
dem exposed to a uniform flow, as depicted in Figure 2.
The two-dimensional incompressible flow of a viscous New-
tonian fluid is considered; two identical rigid cylinders are
mounted elastically in the domain such that they are free to
vibrate perpendicularly to the flow direction (1 DOF). The
flow is governed by the Navier–Stokes equations

r � u ¼ 0,

@u
@t
þ (u � r)u ¼ � 1

r
rpþ 1

Re
r2u, (1)

where u¼ (u, v)T is the velocity field, p is the pressure, r is the
fluid density, and t is the time. The Reynolds number (Re) is
defined as

Re ¼ rUD

m
, (2)

where D is the cylinder diameter, U is the undisturbed up-
stream velocity, and m is the dynamic viscosity of the fluid.
The no-slip condition is imposed on the cylinders’ surfaces
Gi as

u(x, t) ¼ d Xcg
i

dt
, for x [ Gi(t), (3)

where x ¼ (x, y)T denotes the spatial coordinate, and Xcg
i is

the location of the center of gravity of the ith cylinder. The
motion of the generic ith cylinder is described by Newton’s

Fig. 1. Tandem, side-by-side, and staggered cylinder configurations.

Fig. 2. Schematic representation of the cylinders tandem arrangement and
notation used.
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second law

m
d2Xcg

i

dt2
þ k(Xcg

i � X0
i ) ¼ Fi(t), (4)

where m is the mass, which is equal for both cylinders, X0
i is

the spring neutral position, k is the spring stiffness (identical
for the two cylinders), and Fi is the force exerted by the fluid.
This contribution comes from the integration of the viscous
and pressure distributions over Gi, as a function of time. A
more realistic model should also include the structural damp-
ing, but because we are interested in the most critical condi-
tion, that is, the one that exhibits the most intense vibrations,
neglecting the damping is considered to be a reasonable idea-
lization. By introducing the natural frequency f as

f ¼ 1
2p

ffiffiffiffiffi
k

m

r
, (5)

we are able to define a nondimensional parameter, namely,
the reduced velocity:

Ured ¼
U

fD
: (6)

In this work we consider the two cylinders to be identical, that
is, same constitutive material and same diameter D. There-
fore, one single reduced velocity Ured is enough to represent
the operating conditions of the system. The goal of the present
study is to analyze the response of the system for a set of re-
duced velocities ranging from 4 to 8 (this range is the same as
the one used in Borazjani and Sotiropoulos, 2009). For the
entire envelope of reduced velocities, we are interested in
quantifying the effect of a nonexact knowledge of the relative
locations of the two neutral positions. More precisely, we
consider as a nominal condition the one studied in Borazjani
and Sotiropoulos (2009), in which the horizontal distance Lx

between the centers of the cylinder is Lx/D ¼ 1.5, and we
model it as a uniformly distributed random variable. We
use a variation of+4% around the nominal value, which leads
to Lx/D � U(1.44, 1.56). The vertical distance between the
two resting cylinders’ centers is also modeled as a uniform
random variable, and it is set to Ly/D � U(20.05053,
þ0.05053), where Ly/D¼ 0 corresponds to the configuration
with perfect alignment between the cylinders. These uncer-
tainties are representative of geometrical tolerances in the as-
sessment of riser interference (Det Norske Veritas, 2009).

3. NUMERICAL SETTING

The overall numerical procedure consists of a set of determi-
nistic computational fluid dynamics (CFD) simulations fol-
lowed by a UQ step that enables the determination of the
variability due to the geometrical tolerances considered.

3.1. Deterministic CFD simulations

The governing equations are discretized in space using sec-
ond-order-accurate central differences on a Cartesian stag-
gered grid. The time discretization uses an explicit Adams–
Bashforth scheme for the nonlinear terms and an implicit
Crank–Nicolson scheme for the viscous ones,

u� un

Dt
¼ �arpn þ gHn

þ rHn�1 þ a

2 Re
r2(uþ un), (7)

where un denotes the velocity at the old time n; ū is the inter-
mediate solution; Dt is the time step; H contains the nonlinear
terms; and a, g, and r are the constants of the Adams–Bash-
forth/Crank–Nicolson scheme (Verzicco & Orlandi, 1996).
The resulting system is solved using a fractional-step method
to obtain the intermediate nonsolenoidal velocity field ū. To
get a divergence-free velocity field, a scalar quantity w is
introduced such that

unþ1 ¼ u� a Dt rw: (8)

By applying the discrete divergence operator to the equation
above, an elliptic equation for w is obtained and the large-
banded matrix, associated with the elliptic equation, is re-
duced to a pentadiagonal matrix using trigonometric expan-
sions in the spanwise direction. The resulting Helmholtz
equations are inverted using the FISHPACK package
(Swartzrauber, 1974). Finally, the pressure field is computed as

pnþ1 ¼ pn þ w� a Dt

2Re
r2w: (9)

To account for the presence of the moving bodies inside the
domain, a direct forcing immersed boundary (IB) technique
(Mittal & Iaccarino, 2005) is employed, based on a versatile
moving least squares (MLS) reconstruction (Vanella & Ba-
laras, 2009). On the basis of the alternative direct-forcing
scheme suggested by Uhlmann (2005), the forcing is com-
puted on the Lagrangian markers laying on the immersed sur-
face, in order to satisfy the boundary condition, and then
transferred to the Eulerian grid points. The MLS approxima-
tion is the key ingredient for building a transfer function be-
tween the Eulerian and Lagrangian grids that can also provide
a smooth solution in the presence of arbitrarily moving/de-
forming bodies. The procedure consists of the following steps
(see also Fig. 3):

1. Compute the intermediate velocity ū from Eq. (7) in all
the ne Eulerian grid points surrounding a marker in its
support domain. Here, the support domain is centered
on the marker and extends over+1.6Dxi, where Dxi is
the local grid size in the ith direction. In this way,
nine points are considered in two dimensions.
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2. Compute the velocity at each marker point, l, correspond-
ing to the nonsolenoidal velocity field according to

Ul(x) ¼
Xne

k¼1
cl

k(x)uk , (10)

where c is the transfer operator containing the shape
functions and obtained minimizing with respect to a(x)
the weighted L2-norm defined as

J ¼
Xne

k¼1
W(x� xk)½ pT (xk)a(x)� uk �2: (11)

In the above equation, pT (x) ¼ [1, x, y, z] is the basis
function vector, a(x) is a vector of coefficients, x is the
marker position, and W(x 2 xk) is a given weight func-
tion. In this work, the exponential function (Liu &
Gu, 2005) is used, written as W(x 2 xk) ¼ e2ðrk=aÞ2 for
rk � 1, or 0 for rk . 1. Here a ¼ 0.3 and rk is given by

rk ¼
j x� xk j

rw
, (12)

with rw the size of the support domain previously de-
fined.

3. Calculate the volume force F at all markers, in order to
get the desired velocity Ub

l at the boundary as

Fl ¼
Ub

l � Ul

Dt
: (13)

4. Transfer back Fl to the k Eulerian grid points associ-
ated with each marker, using the same shape functions

used in the interpolation procedure, properly scaled
by a factor cl, which is determined by imposing that
the total force acting on the fluid is not changed by
the transfer

f k ¼
Xnl

l¼1
clc

l
kFl, (14)

where nl indicates the number of markers associated
with the Eulerian point k. One can also verify that the
above scheme guarantees the equivalence of total
torque between the Eulerian and Lagrangian computa-
tional grids (Vanella & Balaras, 2009).

5. Correct the intermediate velocity by means of the forc-
ing, so as to satisfy the boundary conditions at the im-
mersed body

u� ¼ uþ Dtf : (15)

This velocity field is not divergence free and is pro-
jected into a divergence-free space by applying the pres-
sure correction that satisfies the Poisson equation.

The hydrodynamic forces and moments acting on the im-
mersed body are calculated in time by integrating the pressure
and viscous stresses over the immersed body surface. In two
dimensions, given the surface discretization by nl linear
elements, one has

F(t) ¼
Xnl

l¼1
(tl � nl � plnl)Sl (16)

Fig. 3. Sketch of the Lagrangian markers identification for the moving least squares technique.
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and

M(t) ¼
Xnl

l¼1
[rl � (tl � nl � plnl)]Sl, (17)

where nl is the number of markers; tl and pl are viscous stress
tensor and pressure, evaluated at the centroid of each element
(location of the Lagrangian marker, l ); rl is the distance of the
marker from the centroid of the body; and nl and Sl are the
normal unit vector and length of each element.

To evaluate the pressure pl and the velocity derivatives
needed for the viscous stress tensor, for each marker a probe
is created along its normal direction, at a distance hl, equal to
the averaged local grid size. Using the same MLS formulation
described above, the pressure and velocity are evaluated on
the probe location. Then, the pressure on the markers is cal-
culated as

pl ¼ p�l þ
Dul

Dt
� nl, (18)

where p�l is the pressure on the probe and the second term of
the right hand side, involving the acceleration of the
marker, Dul/Dt ¼ dUl/dt, comes from the evaluation of
the pressure gradient in the normal direction by the momen-
tum equation (Yang & Balaras, 2006). Concerning the ve-
locity derivative on the body surface, these are considered
equal to the velocity derivatives evaluated at the probes,
that is, equivalent to assume a linear variation of the veloc-
ity near the body. This is consistent with the second-order
accuracy of the space discretization scheme and turns out to
be a good approximation provided that the grid is suffi-
ciently refined near the body.

Because the prediction of the flow field and of the
hydrodynamic loads requires the knowledge of the motion
of the bodies and vice versa, a fluid–structure interaction
(FSI) approach is employed. The evaluation of the flow
and particle motion is carried out by a strongly coupled
FSI scheme, in order to avoid instabilities related to strong
accelerations of the bodies. An iterative fourth order
predictor–corrector method is adopted, based on Ham-
ming’s (1959) method with mop-up correction, as reported
in (deTullio et al., 2009): for each time step, the conver-
gence of the iterative procedure is verified by the condition
jUj

p � U j�1
p j , 1, where Uj

p indicates the body velocity
at iteration j. In all our computations, a tolerance of 1 ,

1026 was used, and the number of iterations required for
convergence at each time step varied from 1 to 6, depending
on the flow configuration. To avoid numerical instabilities
in the FSI algorithm induced by the added mass effect, an
underrelaxation of the forces (and moments) is employed,
according to F ¼ gFj þ (1 2 g)Fj21 with g ¼ 0.9.

The computational domain considered is [28D, 24D] �
[28D, 8D], and the flow comes in the horizontal direction
from left to right. The tandem arrangement considered
has Lx/D ¼ 1.5, so that the front cylinder’s center is placed

in (0, 0) and the rear one in (1.5, 0). A nonuniform grid of
379� 454 nodes is used, with a uniform grid spacing of
0.02D in the vicinity of the cylinder. The Lagrangian mark-
ers are distributed uniformly on the surface of the cylinder,
with a spacing of 0.014D, that is equal to 0.7 for the local
Eulerian grid size in that area. A constant time step used
is Dt ¼ 0.002D/U, with CFL ¼ 0.4. Inlet and outlet bound-
ary conditions are imposed on the vertical boundaries,
whereas free-shear wall conditions are imposed for the hor-
izontal boundaries. An extensive verification of the IBM
code is reported in de Tullio et al. (2012) and de Tullio
and Pascazio (2016).

3.2. Uncertainty propagation strategy

The UQ phase is performed by means of a nonintrusive
polynomial chaos (PC) propagation (see, e.g., Creastaux
et al., 2009). We present here the treatment of a generic
quantity of interest (QoI) f ¼ f ( j) [ R, where j indicates
the vector of random parameter. In the present case, two un-
certainties are considered, and therefore j [ J , R2. For a
physical QoI, the variance is expected to be finite; hence,
we assume f [ L2(J), which enables us to write a truncated
series of polynomial following the seminal work of Wiener
(1938):

f (j) 	
XP
k¼0

bkck(j): (19)

Stochastic spectral expansion as Eq. (19) can be seen as a
particular form of response surface methods where the
mapping f ( j) is sought in terms of a basis of orthogonal
random functionals fCk( j)g. Following the approach de-
scribed in Xiu and Karniadakis (2002), a generalized PC
expansion is obtained selecting an orthogonal basis with re-
spect to the probability measure p( j) defined as the joint
probability density function of the (independent) random
parameters ji [ j

p(j) ¼
Y2

i¼1

p(ji): (20)

In this work, without any loss of generality, we assume
p( ji) to be the uniform distribution such that the multi-
dimensional generalized (orthogonal) polynomial basis is
obtained by tensorization of one-dimensional Legendre
polynomials. The model approximation f ( j), as described
in Eq. (19), requires the P þ 1 coefficients fbkg. The
number of terms P in Eq. (19) is a function of the polyno-
mial degree n chosen for the approximation and the dimen-
sion of the stochastic space J, which in the present applica-
tion is

Pþ 1 ¼ (nþ 2)!
2n!

¼ (nþ 2)(nþ 1)
2

: (21)
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It is possible, by means of a Galerkin projection, to exploit
the orthogonality of the basis in the computation of the
coefficients

bk ¼
Ð
J

f (j) ck jð Þ p jð Þ djÐ
J
c2

k jð Þp jð Þ dj

¼ kf jð Þ; ck jð Þl
kck jð Þ; ck jð Þl , (22)

where the operator k.l denotes the inner product for the Hilbert
space L2(J). The problem of the determination of the P þ 1
coefficients bk, in the form of Eq. (22), requires to evaluate nu-
merically integrals of the kind

Ð
J

f (j) ck(j) p(j) dj, whereas
the internal product between the basis’ elements is known ana-
lytically. When dealing with polynomial functions, the use of
Gauss quadrature rules, thanks to their high order of accuracy,
is the preferable choice. For instance, a Gauss Legendre quad-
rature with Nquad points of quadrature is exact for polynomial
order n , 2Nquad. In our case, there is no guarantee that the
QoI sought are polynomial, and therefore, we decided to em-
ploy a Clenashaw–Curtis (CC) quadrature rule, which despite
its lower exactness (n , Nquad) when compared to Gauss type
of quadrature, has the very interesting feature to be nested;
that is, the set of quadrature points can be augmented reusing
all the previous functional evaluations. Because, in our UQ
step, each quadrature point corresponds to a single realization
of the FSI, we are able to increment the accuracy of our polyno-
mial expansion always reusing the previous realizations. We
performed a convergence study, although not entirely reported
here for brevity. After the convergence study, we found that 9
CC points (N ¼ 81) in each stochastic direction were enough
to guarantee a satisfactory accuracy, as shown in the next sec-
tion. Because the problem is symmetric with respect to the neu-
tral transversal distance Ly between the two cylinders, we per-
formed only Nsim ¼ (n1D þ 1)� n1D numerical simulations,
where n1D is the number of one-dimensional CC points. All
the integrals are evaluated using the CC rule, such that

kf (j), ck(j)l 	
XNsim

i¼1
f (j(i))ck(j(i))p(j(i))wi, (23)

where wi is the quadrature weights obtained by tensorization of
the one-dimensional CC quadrature weights. We consider in
this study three distinct QoIs, namely, the maximum displace-
ment of the front ( yFr/D)max and rear ( yRear/D)max cylinder
and the maximum vertical separation (D/D)max that occurs dur-
ing the entire time history between the two cylinders. One of the
goals of the UQ analysis is to compute relevant statistics for the
QoI. In common practice, the expected value E[ f(j)] or the
variance Var( f(j)) of the QoI contain enough information to
characterize a QoI from a probabilistic point of view. Either
E[ f(j)] and Var( f(j)) can be easily evaluated once the coeffi-

cients bk are available

E f jð Þ½ � ¼
ð
J

f jð Þp jð Þ dj 	 b0,

Var f jð Þð Þ ¼
ð
J

ð f jð Þ � E f jð Þ½ �Þ2p jð Þ dj,

	
XP
k¼1

b2
kkc2

k jð Þl: (24)

One of the goals of this study is the comparison of the nominal
condition with the stochastic solution obtained when one source
of uncertainty is in the cylinders’ position. The quantification of
the exceedance probability, that is, evaluating the probability
that a certain QoI may assume a value higher than a prescribed
threshold, requires the knowledge of the probability density
function (PDF). Building the PDF is in general a much more
complicated task than evaluating the moments because it can-
not be expressed in closed form. We use the PC expansion as
a surrogate model to compute the PDF. First, we generate a lat-
tice, constituted by equally distributed points in the two stochas-
tic directions, over the spaceJ; we found 1500 points per direc-
tion to be a reasonably high number of model evaluations.
Second, as all the functional evaluations are obtained through
the PC expansion, the PDF is built by dividing the range of
the PC expansion f(j) in a number of equally spaced intervals
and by counting their occurrence.

Another goal of this work is to show how UQ can provide
guidance to a practitioner while designing an elastic structure
subject to fluid forcing where multiple parameters are random
variables. Insights can be obtained analyzing the influence of
each specific random parameter over the QoI. These families
of techniques are commonly referred to as global sensitivity
analysis techniques. One prominent class among them is
analysis of variance (ANOVA; Sobol, 2001). Obtaining the
ANOVA decomposition is possible, raising to the second
power the PC expansion, Eq. (19), and identifying all the con-
tributions belonging to a specific set of variables. For the case
considered in the present work, three different contributions
are possible, namely, the conditional variance with respect
to the first random parameter j1, the second one j2, and the
mixed contribution

f (j) ¼ f1(j1)þ f2(j2)þ f12(j1, j2): (25)

The evaluation of these terms is possible once the PC expan-
sion, that is, the set of coefficients fbkg, is obtained

f1(j1) ¼
XP
k¼1

b2
kc

2
k (j) dk(j1),

f2(j2) ¼
XP
k¼1

b2
kc

2
k (j) dk(j2),

f12(j1, j2) ¼
XP
k¼1

b2
kc

2
k (j) dk(j1, j2), (26)
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where the selection function dk takes the value 1 only if its ar-
gument corresponds to the set of stochastic directions used for
the tensorization of Ck. Please refer to Geraci et al. (2016) for
a more exhaustive and general treatment of the statistics de-
composition and its computation from PC expansions.

4. NUMERICAL RESULTS

The main goal of the present analysis is to characterize, in a
probabilistic sense, the QoI defined above. For instance, the
analysis can provide the probability of exceeding a prescribed
threshold or the definition of confidence intervals. All these
tasks involve the evaluation of PDFs, which in turn requires
an assessment of the PC expansion accuracy [see Eq. (19)].
The PC expansion serves as a cheap surrogate of the original
models, and we refer to this continuous approximation as a
metamodel of the QoI. For each QoI, the optimal polynomial
order n is identified by means of a convergence study. We
considered total polynomial orders n ranging from 4 to 8,
and we evaluated the L1, L2, and L1 norms according to
the following definitions

errL1 ¼
PN

i¼1j f (j(i))� ftrue(j(i)) j p(j(i)) wiPN
i¼1j ftrue(j(i)) j p(j(i)) wi

,

errL2 ¼
PN

i¼1( f (j(i))� ftrue(j(i)))2p(j(i))wiPN
i¼1 f 2

true(j(i))p(j(i))wi

 !1=2

,

errL1 ¼ maxi
( f (j(i))� ftrue(j(i)))

ftrue(j(i))

����
���� , (27)

where ftrue denotes the values obtained directly from the nu-
merical simulations, whereas f is obtained from Eq. (19).
Making use of the CC quadrature rule, with 9 points per direc-
tion in our case, enables us to integrate exactly polynomial
functions of order 8. Therefore, in principle, the maximum
spectral content we can integrate is 4, that is, fourth order

for each term in the inner product k f, Ckl. In practice, because
the model function f is not polynomial, the optimal order of
the expansion is not known a priori. Moreover, if n is too
high, it can lead to undesired under- or overshootings due
to the poor accuracy on the evaluation of the high-order spec-
tral terms. Both the under- and overshootings, as numerical
artifacts, can significantly deteriorate the quality of the PC ex-
pansion, hence the PDF for the QoI. If these numerical oscil-
lations correspond to a local minimum/maximum, they intro-
duce fictitious peaks in the PDF, whereas if they are a global
minimum/maximum, their presence results in a shift of the
bounds of the range of the function f. This latter case might
have a strong effect on the analysis because it introduces out-
comes of the function that are not allowed by the system. The
quantification of the margin of probability would result
biased by these fictitious outcomes. For instance, in Figure 4
an example of the modification of the PDF in the presence of
local/global minima is reported for the function Y ¼ exp(X )
with X � U(0, 1). The PDF is known analytically as fY ¼
1/Y over the support Y [ [1, e]. The global and local minima
are introduced by subtracting a Gaussian function defined as
0.1 exp(21000(X 2 X)2), where X takes the value 0.05 or 0.2
for the global or local minimum, respectively, to the original
function Y ¼ exp(X ). We consider this point to be very
important for the design methodology we propose in this
work, and therefore, the information conveyed by the L1

and L2 norms are compared with the ones obtained through
the evaluation of the L1 norm. More precisely, even if the
L1 and L2 norms are monotonically decreasing with n, we
choose the maximum total order for which a decreasing L1

error is still obtained. This choice guarantees the smoothest
response of the PC expansion. The results of this convergence
study are not entirely reported here for brevity, but in Figure 5,
a representative situation, for the front cylinder oscillation as
QoI and a reduced velocity equal to 4, is represented. In
Figure 5a both, the L1 and L2 norms are monotonically de-
creasing with n, whereas the L1, reported in Figure 5b, shows

Fig. 4. Example of the probability density function modifications in the presence of a global or local extrema. (a) The exact function, Y¼
exp(X ), where X�U(0, 1), and the ones containing the minima and (b) the exact probability density function, fY ¼ 1/Y with Y [ [1, e], and
its modified counterparts.
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a less regular behavior. In this case, the optimal polynomial
order we selected is n¼ 5. We point out here that this conver-
gence study does not require us to modify the set of simula-
tions to run. In all the cases with n varying, the number of de-
terministic simulations is Nsim ¼ 81, and the optimal
polynomial order is obtained a posteriori. Moreover, the
number of terms involved in the PC expansion [Eq. (19)],
can be related to the total polynomial order (the stochastic di-
mension is fixed in this analysis). From Eq. (21), it is possible
to determine the number of terms to add while increasing the
total polynomial order. If we consider the number of terms P a
function of the total order n, so that P ¼ P(n) ¼ Pn, it is pos-
sible to write

DPn ¼ Pnþ1 � Pn ¼
(nþ 2)!

2n!

nþ 3
nþ 1

� 1

� �
¼ nþ 2: (28)

The term DPn quantifies the number of integrals to compute
in addition to the ones evaluated for n to get a PC expansion
of order n þ 1.

4.1. Front cylinder ( yFr/D)max

The contours for the surrogate model, that is, the PC expan-
sion Eq. (19) corresponding to a total degree n ¼ 5, are re-
ported in Figure 6 for the maximum displacement of the front
cylinder ( yFr/D)max. In Figure 6 the reduced velocities Ured ¼

4, 5, 6, and 8 are considered, and the values obtained directly
from the CFD fluid–structural IB solver are also reported for
comparison by using a colormap. Therefore, the similarity be-
tween the symbols’ color and the background reflects the co-
herence between the simulations and the PC expansion,
which, by construction, is not required to pass through the
CFD values. We use the surrogate function to study the be-
havior of the system in the presence of the uncertainty in
the position of the rear cylinder. The first information avail-
able when analyzing the contour plots in Figure 6 is that

the region very close to the front cylinder, around Lx/D ¼
1.44, is the region where the maximum displacement of the
front cylinder is lower with respect to all the other horizontal
distances. This behavior occurs up to a reduced velocity lower
or equal to 6. For the reduced velocity Ured ¼ 8, the minimum
of the displacement or the front cylinder moves on the ex-
treme horizontal distance Lx/D ¼ 1.56. The behavior de-
scribed above is very informative from a designer’s standpoint.
It reveals that if the flow moves at a low reduced velocity, the
loadings acting on the frontal part of the structure can be mini-
mized, placing the structural elements very close by each
other. Moreover, for the reduced velocities lower than 6,
the vertical separation between the structural elements plays
a secondary role because the contours appear to be almost
one dimensional with respect to the longitudinal separation
Lx/D. Therefore, to minimize the structural loadings on the
front element, it is important for the designer to control
more accurately the longitudinal positioning of the elements,
whereas the system is more tolerant with respect to the uncer-
tainty in the vertical separation Ly/D. This becomes important
when the reduced velocity is equal to Ured ¼ 8. In this case,
the vertical displacement of the front cylinder shows local
minima at the farther locations in the vertical direction and
close to Lx/D 	 1.52, while local maxima occur for Lx/D 	
1.47 and Ly/D 	+0.03. Figure 7a shows the ANOVA for
the front cylinder displacement. The role played by the longi-
tudinal distance between the structural elements is confirmed,
and more important, it can be quantified. The ANOVA re-
veals that the role of the vertical separation between the cylin-
ders starts to dominate as the reduced velocity exceeds Ured ¼

6. For Ured ¼ 6, the relative importance of the vertical sepa-
ration accounts for almost 20%, and the interaction term,
namely, the mixed ANOVA contribution (Lx/D, Ly/D), be-
comes more important, and it attains a value roughly equal
to Ly/D. From a physical point of view, the results obtained
through the ANOVA are in very good agreement with the in-
terpretations of the interaction mechanisms reported in Boraz-

Fig. 5. Maximum displacement for the front cylinder at Ured ¼ 4. (a) The L1 and L2 norms and (b) the L1 norm are computed according to
Eq. (27).
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jani and Sotiropoulos (2009). The authors, for the reduced
velocity Ured ¼ 8, identify in the gap flow (i.e., a flow with
velocities as high as the freestream velocity U ) the main phe-
nomenon driving the entire flow–structure dynamics. There-
fore, it is reasonable to suppose that placing the rear cylinder
in a position with Ly/D = 0 would affect the gap flow having
strong consequences on the generation of the loadings.

4.2. Rear cylinder ( yRear/D)max

The contours obtained from the PC expansion of the maximum
displacement for the rear cylinder ( yRear/D)max are reported in
Figure 8 for all the reduced velocities and reveal a much
more complex behavior with respect to the front cylinder.
For the rear cylinder, the contours are nearly one dimensional
with respect to Lx/D for the intermediate reduced velocities,
Ured ¼ 5 and 6, whereas at the lowest and higher reduced ve-
locities, the vertical separation between the two cylinder be-
comes more relevant. The ANOVA, reported in Figure 7b,
confirms the observations made above and, in addition, re-
veals that the separation Ly/D becomes the predominant
source of uncertainty when considering the highest reduced
velocity. This information is important for the designer
because it identifies the vertical separation of the cylinder

as a significant parameter for the structure if the reduced ve-
locity is low. For Ured ¼ 4, a low loading can be attained for
the front cylinder, when the longitudinal distance between the
cylinders is short, and the system is more tolerant, that is, less
variable, with respect to the uncertainty in the vertical separa-
tion Ly/D. However, in this configuration, the loadings on the
rear cylinder are not independent from the vertical separation
that makes the system more prone to the failure if it is de-
signed with respect to the nominal loadings. On the contrary,
if the longitudinal separation is nearly equal to 1.44, but the
reduced velocity is equal to 6, then the loadings are mini-
mized for both the front and rear cylinder and the system
can be expected to be almost insensible to the uncertainty
on the vertical separation Ly/D. This point of design can be
considered as an optimal choice for robustness.

4.3. Maximum vertical separation (D/D)max

The previous analyses can be corroborated by considering the
maximum vertical separation attained by the two cylinders
during the full motion. This QoI, namely, (D/D)max, provides
complementary information with respect to the analysis of the
maximum vertical displacements ( yFr/D)max and ( yRear/D)max

separately. The maximum, (D/D)max, is evaluated as a func-

Fig. 6. Front cylinder maximum displacement ( yFr/D)max. Four reduced velocities are reported: (a) Ured ¼ 4, (b) Ured ¼ 5, (c) Ured ¼ 6, and
(d) Ured ¼ 8. The realizations obtained from the numerical simulations are also reported for comparison as symbols filled according to the
color map. All the metamodels are obtained by using a total polynomial order n ¼ 5.
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tion of the entire time history, whereas the maximum dis-
placements for the front and rear cylinder are considered inde-
pendently, that is, they might occur at different instants.
The PC expansion with a total order n ¼ 5 is reported for
(D/D)max in Figure 9. The global behavior of this QoI is
more complex with respect to the previous ones because it
shows stronger dependence on both the uncertain parameters
with respect to both ( yFr/D)max and ( yRear/D)max. In particu-
lar, the only reduced velocity for which the system can be
considered robust with respect to the uncertainty in the verti-
cal separation Ly/D is Ured ¼ 6. This result confirms the find-
ing that a configuration of the structure with a nominal condi-
tion with a short longitudinal separation, Lx/D ¼ 1.44, at a
reduced velocity Ured ¼ 6 allows to minimize the loadings
on the structural elements. Moreover, the system in this con-
figuration is nearly insensible to the uncertain in the vertical
separation Ly/D, which might potentially guarantee a more ro-
bust design. For instance, a possible choice could be to make
the structure more rigid in the longitudinal direction by add-
ing a stiffener between the two structural elements to better
control their longitudinal distance Lx/D over the time. The
ANOVA, reported in Figure 7c, confirms the analysis re-
ported above and quantifies the dependence of (D/D)max,
with respect to the longitudinal distance Lx/D, as higher
than 90% at the reduced velocity Ured ¼ 6. The ANOVA

also reveals that for the highest reduced velocity, the impor-
tance of the two random parameter is inverted, as already
seen for ( yRear/D)max, but in this case both parameters are
very influent, namely, 60% and 40% for Ly/D and Lx/D, re-
spectively. The designer should be aware that if the structure
is designed to work at a reduced velocity close to 8, then the
uncertainty in both Lx/D and Ly/D needs to be accurately con-
trolled and reduced, if it is possible during the manufacturing
process, to avoid any performance reduction.

4.4. Front and rear cylinder envelope

One of the main findings in Borazjani and Sotiropoulos (2009)
is that for low reduced velocities, namely, Ured , 5, the ampli-
tudes of vibration of the front cylinder are larger than the ones
of the rear cylinder; the opposite is true for larger reduced ve-
locities. The PC expansion can be sampled to obtain a PDF for
both the maximum vertical displacement of the front and rear
cylinders. This in turn can be used to compute the probability
levels of 25%, 50%, and 75% and the limits of a confidence
interval, corresponding to 90% of probability, defined between
5% and 95%. We use these levels to define box plots and the
whisker bars for both the maximum displacements ( yFr/D)max

and ( yRear/D)max. The probability levels, obtained using a lat-
tice of 1500 equally spaced points per direction, are repre-

Fig. 7. Analysis of variance decomposition for the maximum displacement of the (a) front ( yFr/D)max, (b) rear cylinder ( yFr/D)max, and
(c) maximum vertical separation (D/D)max as a function of the reduced velocity Ured.
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sented in Figure 10a. For the lowest reduced velocity Ured , 5,
the probability is higher of having larger oscillations for the
front cylinder with respect to those of the rear cylinder, as re-
ported in Borazjani and Sotiropoulos (2009) for the nominal
condition. In addition, the UQ propagation enables us to quan-
tify that a probability higher that 50% exists for the maximum
oscillations of the rear cylinder to fall in the interval 5%–25%
of probability for the QoI ( yFr/D)max. For the reduced velocity
Ured ¼ 5, the confidence intervals are overlapping. In particu-
lar, the tighter one, which corresponds to the oscillations of the
rear cylinder, is almost entirely contained in the one
corresponding to the front cylinder. The situation changes
for the large reduced velocities, Ured ¼ 6 and 8. More precisely,
for Ured ¼ 6 the interval 25%–95% of ( yFr/D)max is almost
entirely contained in the interval 5%–20% of the rear cylinder.
Finally, the two 90% confidence intervals become completely
disjointed for the largest reduced velocity, namely, Ured ¼ 8.
The quantification of these probabilities of occurrence suggests
that the conclusions reported in Borazjani and Sotiropoulos
(2009), which can be used to guide the design of the system
when only deterministic results are available, can be corrobora-
ted by the UQ analysis only for the reduced velocity Ured ¼ 8.
For this latter reduced velocity, the visualization of the 90%
confidence intervals, which are not overlapping, confirms
that the rear cylinder exhibits a higher amplitude of oscilla-

tions with respect to the front cylinder. For all the other re-
duced velocities, the conclusions of Borazjani and Sotiropou-
los (2009), corresponding to the nominal conditions, agree
with the events with the highest probability of occurrence.

4.5. Front and isolated cylinder: Comparison of the
envelopes

The fluid–structure simulations enable the designer to con-
sider the mutual interference between structural elements
without relying on the results related to isolated elements.
In Borazjani and Sotiropoulos (2009), the authors were able
to build an envelope for the maximum vertical displacement
of the front cylinder in comparison with an isolated element.
The key results are that larger amplitudes occur for the tan-
dem arrangement compared to the isolated cylinder and
also that a wider lock-in region is present for the tandem ar-
rangement. However, when the relative position of the two
cylinders is affected by the presence of uncertainty, the anal-
ysis can be complemented by the quantification of the prob-
abilities associated to these events. For instance, the PDF for
( yFr/D)max can be used to quantify the probability of exceed-
ing the value of maximum displacement attained by the iso-
lated cylinder. In Figure 10b, the box plots and the whiskers
bars, as defined in the previous section, are reported for the

Fig. 8. Rear cylinder maximum displacement ( yRear/D)max. Four reduced velocities are reported: (a) Ured ¼ 4, (b) Ured ¼ 5, (c) Ured ¼ 6,
and (d) Ured ¼ 8. The realizations obtained from the numerical simulations are also reported for comparison as symbols filled according to
the color map. All the metamodels are obtained by using a total polynomial order n ¼ 5.
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front cylinder and compared with the maximum deflection of
the isolated cylinder. It appears evident that, when consider-
ing the median of the PDF, these values are always higher
than the corresponding values associated with the isolated cy-
linder. However, the confidence intervals are negatively

skewed, that is, a long tail of the distribution is oriented to-
ward low values; hence, a nonnegligible probability is asso-
ciated with displacements that are smaller than the isolated
cylinder’s ones. In Table 1, for each reduced velocity, the
probabilities of exceeding the displacements of the isolated

Fig. 10. Box plots (25%, 50%, and 75%) and whisker bars (5% and 95%) for the response of (a) front and rear cylinder and (b) front
cylinder maximum amplitude of oscillation ( yFr/D)max compared to the maximum amplitude reached by an isolated cylinder. Both
curves are reported as a function of the reduced velocity Ured.

Fig. 9. Maximum separation (/D)max between the two cylinders. Four reduced velocities are reported: (a) Ured ¼ 4, (b) Ured ¼ 5, (c) Ured ¼ 6,
and (d) Ured ¼ 8. The realizations obtained from the numerical simulations are also reported for comparison as symbols filled according to the
color map. All the metamodels are obtained by using a total polynomial order n¼ 5.
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cylinder, ( yiso/D)max, are reported. The utility of this kind of
quantification for the designer appears evident if a probability
threshold is assigned to a response of the system. For in-
stance, if the structure is designed to have a 95% probability
to exhibit larger oscillations than a single cylinder, thus the
design reduced velocity should be chosen to be Ured . 6.

5. CONCLUSION

A preliminary assessment for the design tolerances of the
VIV of two oscillating cylinders in the proximity-wake inter-
ference region is presented, and the importance of the UQ
propagation for designing purpose is highlighted. A numeri-
cal analysis is performed on a configuration consisting of two
identical rigid cylinders placed in tandem. The cylinders are
elastically mounted and, therefore, are free to vibrate, trans-
versally to the flow, in response to flow-induced forces. An
imperfect knowledge of the relative resting distance between
the cylinders is considered a source of uncertainty in the sys-
tem. The vibration of this arrangement is studied for flows
corresponding to reduced velocities ranging from 4 to
8. Two uniform random variables are used to prescribe the
uncertain resting relative position of the two cylinders. The
Navier–Stokes equation, describing the incompressible
flow, is solved numerically using a second-order accurate fi-
nite difference scheme on a Cartesian staggered grid. The
nonlinear terms are discretized by an explicit Adams–Bash-
forth scheme and the linear viscous terms by an implicit
Crank–Nicolson scheme, whereas the presence of moving
bodies is taken into account by using an IB technique. The in-
teraction of the vibrating cylinders with the incoming fluid is
taken into account by means of a strongly coupled iterative
FSI scheme. The propagation of the random inputs is per-
formed by using a PC approach, which required 45 numerical
simulations (for each reduced velocity) to obtain a converged
solution in the stochastic space. The PC expansion is chosen
also as a surrogate model to obtain statistics for different
quantities of interest of the system, namely, the maximum
vertical displacements of the front and rear cylinders and
the maximum vertical distance attained by the cylinders dur-
ing the entire motion. The ANOVA analysis is used to under-
stand the relative importance of the longitudinal and vertical
position of the rear cylinder for the different regimes. The
contribution of the horizontal separation is always the most

important one for all the QoI and the reduced velocities con-
sidered in this study, with the exception of the maximum am-
plitude of oscillation of the rear cylinder and the maximum
separation between the cylinders at the reduced velocity
Ured ¼ 8, for which the main contribution to the variance
comes from the vertical separation Ly/D. Moreover, the
ANOVA analysis shows a critical regime, around a reduced velo-
city of approximately 5.5, which is identified by the peak of
the variance contribution associated with the horizontal sep-
aration between the cylinders. Moving away from this critical
condition, the contribution of the vertical separation to the
variance becomes, increasingly, more important. ANOVA
also enables the designer to choose the optimal configuration
of the system, and operating conditions, such that the robust-
ness of the system is maximized under the effect of the uncer-
tainty. For instance, if the cylinders are placed at the shortest
longitudinal distance considered in this study, Lx/D ¼ 1.44,
and at a reduced velocity Ured ¼ 6, the loadings are minimized
and the sensitivity of the QoI, with respect to the uncertainty,
is minimized too. The analysis is complemented by the exten-
sion, and the quantification in the probabilistic sense, of the
main findings reported in Borazjani and Sotiropoulos
(2009) for the nominal conditions: larger amplitude of motion
for the tandem arrangement compared to an isolated cylinder,
larger oscillation for the front cylinder compared to the rear
one for low reduced velocities, and significantly larger vibra-
tions for the rear cylinder compared to the front one when the
reduced velocity is above a certain threshold. This work can
be considered as a first step toward the definition of clearance
acceptance criterion with explicit assessment of the uncer-
tainty extending the approaches presented in Det Norske Ver-
itas (2009). The results illustrate the radical difference between
single riser and interfering risers in the determination of the
maximum oscillation under VIV. For instance, for reduced ve-
locities above Ured ¼ 6, the probability of occurrence of oscil-
lations larger than the single cylinder case is 95%. Current re-
search directions are focused on the analysis of the evolution of
the vorticity and pressure fields to gain a deeper understanding
of the physical mechanisms that are responsible for the transi-
tion between the different regimes revealed by the preliminary
stochastic analysis reported in this study.
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