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We study theoretically and numerically the downstream flow near the corner of a bluff
body partially submerged at a deadrise depth 1h into a uniform stream of velocity
U, in the presence of gravity, g. When the Froude number, Fr = U/

√
g1h, is large,

a three-dimensional steady plunging wave, which is referred to as a corner wave,
forms near the corner, developing downstream in a similar way to a two-dimensional
plunging wave evolving in time. We have performed an asymptotic analysis of the
flow near this corner to describe the wave’s initial evolution and to clarify the
physical mechanism that leads to its formation. Using the two-dimensions-plus-time
approximation, the problem reduces to one similar to dam-break flow with a wet
bed in front of the dam. The analysis shows that, at leading order, the problem
admits a self-similar formulation when the size of the wave is small compared
with the height difference 1h. The essential feature of the self-similar solution is
the formation of a mushroom-shaped jet from which two smaller lateral jets stem.
However, numerical simulations show that this self-similar solution is questionable
from the physical point of view, as the two lateral jets plunge onto the free surface,
leading to a self-intersecting flow. The physical mechanism leading to the formation
of the mushroom-shaped structure is discussed.

Key words: wave breaking, waves/free-surface flows, wave–structure interactions

1. Introduction

Free-surface flows around the hulls of moving ships exhibit a variety of wave
patterns whose study covers a wide range of topics in the theory of water waves.
Typical examples are the train of waves found in the far field, commonly known
as Kelvin waves, which are well described by the linear theory of gravity waves
(Whitham 1974). Coming to the near field and going from bow to stern, some
distance upstream of the hull a bow wave develops that locally raises the water level,
thus leading to an extra contribution to the total drag.

† Email address for correspondence: javier.rodriguez@uc3m.es
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FIGURE 1. (Colour online) (a) Wake structure downstream from the stern of a dummy
ship model for large Fr numbers (courtesy of Drazen et al. 2010). (b) Corner wave
developing downstream from the corner of a plate in a finite-width recirculating water
channel (see Martínez-Legazpi 2011 for experimental details). Interestingly, even though
immediately downstream from the plate the flow does not correspond to our idealized
model (which, strictly speaking, only applies to an infinitely long prismatic bar), still
at intermediate distances the same wave pattern is observed. (c) Sketch of the flow
configuration.

Large-amplitude breaking waves are also found around the ship. Indeed, at the bow
two divergent waves originate which eventually turn into plunging or spilling breakers
depending on the velocity of the ship and the geometry of the hull. These waves
are not the only example of large-amplitude breakers found in naval hydrodynamics.
In rough sea conditions, waves can break suddenly on hitting the hull, giving birth
to high-speed jets that might damage other ship structures. A recent review on this
problem, commonly known as slamming, was published by Faltinsen, Landrini &
Greco (2004).

In high-speed vessels with transom sterns, the bluff end of the hull leads to a sudden
expansion of the flow towards the centre of the wake. Depending on the shape of
the transom, two plunging waves can form at its lower corners which move faster
than the spilling flow that originates them. These waves, hereafter denoted as corner
waves, are precisely the focus of the present study. The importance of these waves
arises from the fact that, when they collide at the flow’s symmetry plane, a structure
known as a rooster tail appears, which contributes significantly to aeration of the flow
around the hull (see figure 1a). Thus, an understanding of the mechanisms that lead
to corner wave formation and evolution is instrumental to predict the dynamics of this
flow pattern.
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Apart from their interest in naval hydrodynamics, the formation of corner waves is
relevant in some civil engineering problems such as sudden expansions in channels or
spillways. Hager & Mazumder (1992) and Hager & Yasuda (1997) studied the flow
downstream from a sudden expansion in a water channel using the shallow water
approximation. However, although it provides an accurate description of the overall
flow, this approach is unable to capture the formation of the kind of plunging corner
waves considered here.

From a more fundamental point of view, it will be shown that using the
two-dimensions-plus-time approximation the corner wave flow is a natural extension
of the classical dam-break problem. In fact, the present study is closely related to
that of Korobkin & Yilmaz (2009) in which the authors studied, using asymptotic
techniques, the evolution of the free surface near the contact point between the water
mass and the basin, predicting the formation of a wall jet. Another variation of
the dam-break problem much more similar to the topic of the present paper has
been considered by several authors, namely the case when the discharge occurs
over a wet basin. Stansby, Chegini & Barnes (1998) performed an experimental
and numerical investigation of the dam-break flow originated when the vertical
plate separating two liquid masses with different depths is suddenly removed. They
observed a mushroom-shaped planar jet that emerged from the lower corner of the
free surface, which they related to the singularity appearing in the pressure field
near that corner. However, they could not resolve properly the initial stages of its
evolution, which are essential to investigate the possible self-similar structure of the
wave at short times and, more importantly, to explain the mushroom-like shape of
the jet. It is worth mentioning that the present problem is different from that studied
by Stansby et al. (1998), even though the initial configuration of the flow regions
is similar. In the corner wave problem, there is no vertical dam separating liquid
masses of different initial heights. Goater & Hogg (2011) used the shallow water
theory which, as already mentioned, is unable to capture the plunging-jet structure of
the wave. In particular, in their approach the corner wave is seen as a discontinuity,
a bore, that propagates as a front. Nevertheless, it is interesting to notice that this
bore resembles the spilling corner wave observed in some high-Froude-number flow
configurations when a plate is blocking part of the test section of a water channel
(Martínez-Legazpi et al. 2013). More recently, Yilmaz, Korobkin & Iafrati (2013)
studied numerically and theoretically the dam-break problem with a wet basin when
the two fluids that come into contact after removing the dam have different densities.
They considered the nature of the singularity appearing at short times. To that end,
the authors focused on the leading-order small-time solution. This approach, although
key to understanding the nature of the solution, as will be shown below, does not
allow us to describe the development of the jet.

The mechanisms governing the initial evolution of the corner wave, and similarly
the initial jet in the dam-breaking problem, are not fully understood. This is precisely
the focus of our present study. However, once the amplitude of the corner wave
becomes of the order of the water height difference that originates the flow, say 1h,
the behaviour of these waves should not differ from other plunging waves generated
in two-dimensions-plus-time flows which are known to follow a ballistic trajectory
(Shakeri et al. 2009a; Shakeri, Tavakolinejad & Duncan 2009b; Martínez-Legazpi
et al. 2013, see figure 1b).

With these ideas in mind, the paper is organized as follows. In § 2, the problem
is formulated and the two-dimensions-plus-time approach is introduced. Section 3
is devoted to the analysis of the leading-order solution at short times, which will
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be shown to admit a self-similar formulation. In § 4, the numerical method used to
solve the problem posed in § 3 is presented, while the physical mechanism behind the
formation of the wave is discussed in § 5. Finally, § 6 summarizes the most important
results of the study.

2. Problem formulation
Let us consider the steady motion of an inviscid liquid flowing downstream from the

stern of a bluff body partially submerged in the flow. The velocity field far upstream
of the stern is uniform with speed U. The rear end of the body is semi-infinite in both
the horizontal and vertical directions, with a horizontal edge at a depth 1h underneath
the free-surface level far upstream and a vertical edge that forms a square corner
with the former. Let the corner be the origin of coordinates, with the x̃ axis pointing
downstream, the z̃ axis pointing vertically upward and the ỹ axis forming a right-
handed trihedron, as shown in figure 1(c). Thus, considering the body as a semi-
infinite prismatic bar, it occupies the region x̃< 0, ỹ> 0, z̃> 0. Under these conditions,
in the presence of gravity, g, the Froude number of the flow, Fr, arises naturally as

Fr= U√
g1h

. (2.1)

In the present context, the Froude number can be interpreted as the ratio between the
free stream velocity, U, and the characteristic velocity induced by the spilling of a
water column of height 1h, namely

√
g1h. In what follows, the problem will be made

dimensionless using 1h as the length scale and
√

g1h as the velocity scale. Thus, the
dimensionless free stream velocity is U/

√
g1h, namely the Froude number Fr.

The flow is described by a velocity potential, Φ(x, y, z) (made dimensionless using
Φ= Φ̃/(g1/21h3/2)), which satisfies Laplace’s equation, ∇2Φ= 0, and by the equation
of the free surface, F(x, y, z)= 0. At this surface, the following boundary conditions
apply: a kinematic condition imposing that the free surface is a material surface,

∇Φ · ∇F= 0, (2.2)

and a dynamic boundary condition which follows from the Bernoulli equation and the
assumption that the atmospheric pressure is zero,

1
2 |∇Φ|2 + z=C. (2.3)

The constant C is obtained by evaluating (2.3) at the free surface far away upstream,
x→−∞, where the free surface is horizontal, z= 1, and the stream is uniform with
∇Φ = Fr i (where i is the downstream unit vector), yielding

1
2 |∇Φ|2 + z= 1

2 Fr2 + 1. (2.4)

Finally, an impermeable bottom will be placed at the plane z=−H, thus yielding

∂zΦ|z=−H = 0. (2.5)

Although not necessary to describe the evolution of the wave, the presence of the
bottom is incorporated here to extend our results to flows of interest in hydraulics,
where shallow depths are usually considered.
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2.1. Two-dimensions-plus-time approach
We now simplify the problem for large Froude numbers, Fr� 1. As will be shown
below, the key feature of the flow in this limit is the formation of a three-dimensional
steady wave, anchored at the rear lower corner of the body, and whose profile grows
downstream in a similar fashion to the profile of an unsteady plunging wave (see
figure 1b). Before introducing any simplification, it is convenient to express the
velocity potential as

Φ = xFr+ φ(x, y, z, Fr). (2.6)

The first term in (2.6) represents the uniform free stream, whereas the second
corresponds to gravity-induced perturbations to this uniform velocity field. Taking the
gradient, and assuming that φ→ 0 as x→−∞,

∇Φ = Fr i +∇φ. (2.7)

Introducing expression (2.7) into the dynamic boundary condition (2.4), we may write

Fr∂xφ + 1
2((∂yφ)

2 + (∂zφ)
2)= 1− z− 1

2(∂xφ)
2, (2.8)

and, proceeding likewise in the kinematic boundary condition (2.2),

Fr∂xF+ ∂xφ∂xF+ ∂yφ∂yF+ ∂zφ∂zF= 0. (2.9)

From (2.8) we can deduce that, to see velocities of order unity in the y–z plane, one
has to move along x a distance of the order of x∼O(Fr). In the next two subsections,
we consider the structure of the solution at both small (x∼O(1)) and large (x∼O(Fr))
distances from the body.

2.1.1. Near-field region, x∼O(1)
Immediately downstream from the stern, the boundary conditions change abruptly,

since part of the liquid is suddenly exposed to the ambient pressure. The flow in
this region is three-dimensional with ∂xφ, ∂yφ and ∂zφ being of the same order of
magnitude.

Without gravity effects, Fr=∞, the upper boundary of the flow is described by

F∞(y, z):
(z− 1), y< 0,

y, 0 6 z 6 1,
z, y> 0,

(2.10)

and is independent of the presence of the free surface in x> 0. Accounting for gravity,
F(x, y, z, Fr)→ F∞(y, z), for any value of Fr, as x→−∞.

In the limit Fr→∞, the dynamic boundary condition (2.8) becomes non-trivial only
if Fr∂xφ balances 1− z, which provides the scaling

φ = 1
Fr
φ(0)(x, y, z) (2.11)

for the velocity potential in the near-field region. Similarly, under the scaling (2.11),
the kinematic boundary condition (2.9) is non-trivial, in the limit Fr→∞, only if

F(x, y, z, Fr)= F∞(y, z)+ 1
Fr2

F(0)(x, y, z), (2.12)
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where the function F∞(y, z) is given by (2.10). Notice that both φ(0)(x, y, z) and
F(0)(x, y, z) are of order ∼O(1) as Fr→∞. Thus, if we substitute (2.11)–(2.12) in
the original Laplace equation and boundary conditions (2.8)–(2.9) and take the limit
Fr→∞, we arrive at a linear boundary-value problem for the potential φ(0)(x, y, z)
and the shape function F(0)(x, y, z). In this latter case, (2.12) enforces the application
of the boundary conditions of the linear problem on the known surface F∞(y, z)= 0
for both x< 0 and x> 0. Hence, to the leading order, the dynamic boundary condition
(2.8), for both Fr→∞ and x> 0, yields

∂xφ
(0) = 1− z (on F∞(y, z)= 0). (2.13)

Likewise, the kinematic boundary condition (2.9) reads

∂xF(0) + ∂yφ
(0)∂yF∞ + ∂zφ

(0)∂zF∞ = 0 (also on F∞(y, z)= 0). (2.14)

Additionally, the no-penetration condition at the bottom (2.5) becomes ∂zφ
(0) = 0.

The formulated problem for the near-field region is complex because of its
three-dimensionality and mixed boundary conditions. However, the problem is linear
and can be readily solved by using the domain decomposition method, for example.
The normal derivative of the potential, ∂nφ

(0), is zero on the rigid parts of the liquid
boundary and the streamwise velocity component, ∂xφ

(0), is prescribed on the free
surface both upstream and downstream from the stern. The potential φ(0) decays as
x → −∞ while it grows linearly, φ(0) ∼ f (y, z)x, as x → ∞, which follows from
(2.13). The function f (y, z) was determined by Martínez-Legazpi (2011), appendix C,
by using the conformal mapping technique. In particular, the condition (2.13) provides
that f (y, z) = 1 − z on the vertical branch of the free surface. This implies that the
z-velocity component on this branch increases linearly in x, ∂zφ

(0)(x, 0, z) ∼ −x, as
x→∞. This result provides that the gradient ∇φ(0) ∼ O(x), as x→∞, and then
F(0) ∼O(x2), which follows from (2.14).

Therefore, the near-field linear solution is not valid in the far field, x→∞, where
x∼O(Fr), as the shape function, F(0)(x, y, z), in (2.12) is of order O(x2) whereas its
correction term, Fr−2F(0)(x, y, z) in (2.12), is of order O(1). However, in the far field,
the potential, φ(0)(x, y, z), is of order O(x) whereas φ is of order O(1) (from (2.11)).
This means that, at the leading order, as Fr→∞, the flow in the near-field region
is a uniform stream with the non-dimensional speed Fr (see figure 1a). This provides
the matching condition between the near-field region, of x ∼ O(1), and the far-field
region, where x∼O(Fr).

2.1.2. Far-field region, x∼O(Fr)
To describe the flow in the far-field region downstream from the stern, it is

convenient to rescale the downstream coordinate as t = x/Fr, such that velocities in
the y–z plane of order unity occur at t ∼ O(1). In terms of the new variable, the
Laplace equation transforms into

∂2
yyφ + ∂2

zzφ =−Fr−2∂2
ttφ, (2.15)

whereas (2.8) becomes

∂tφ + 1
2((∂yφ)

2 + (∂zφ)
2)= 1− z− Fr−2 1

2(∂tφ)
2. (2.16)

In the same way, the kinematic boundary condition (2.9) becomes

∂tF+ ∂yφ ∂yF+ ∂zφ ∂zF=−Fr−2∂tφ ∂tF. (2.17)
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It should be noted that (2.15)–(2.17) are exact equations valid for any Fr and written
in the non-dimensional stretched variables, t, y, z. The two-dimensions-plus-time
assumption enters in the formulation when we take the limit Fr→∞, which yields

∂2
yyφ + ∂2

zzφ = 0 (2.18)

and turns the dynamic boundary condition (2.16) into

∂tφ + 1
2((∂yφ)

2 + (∂zφ)
2)= 1− z. (2.19)

Proceeding likewise, the kinematic boundary condition (2.17) becomes

∂tF+ ∂yφ ∂yF+ ∂zφ∂zF= 0. (2.20)

The new variable t is treated in this approximation as a time-like variable. The
initial conditions for this system follow from matching the far-field solution of (2.18)–
(2.20) in the limit t→ 0 with the near-field linear solution of (2.13)–(2.14) in the limit
x→∞. It should be noted that the near-field region shrinks to the section t = 0 in
the approximation described here. The matching conditions, and the results of § 2.1.1
in terms of the behaviour of the near-field solution as x→∞, provide not only the
initial conditions for (2.18)–(2.20),

φ = 0, F(t, y, z)= F∞(y, z) at t= 0, (2.21a,b)

but also the orders of the unknown functions as t→ 0, namely

φ ∼O(t), F(t, y, z)∼ F∞(y, z)+O(t2), as t→ 0. (2.22a,b)

In summary, the problem is transformed approximately from the original three-
dimensional steady problem to the unsteady two-dimensional problem (2.18)–(2.21a,b).
The latter problem is more amenable to being treated using numerical as well
as analytical methods. The approach followed here, commonly known as the
two-dimensions-plus-time approximation, is widely used in a variety of problems
of interest in naval hydrodynamics (Shakeri et al. 2009a,b) and hydraulics (Hager &
Mazumder 1992; Hager & Yasuda 1997).

The initial conditions (2.21a,b) imply that the far-field solution at the scale x ∼
O(Fr) can be obtained without knowing the near-field solution. The near-field solution
here serves to match the three-dimensional flow just downstream from the stern with
the quasi-two-dimensional flow in the far-field region. Notice that the far-field solution
cannot be used in close proximity to the stern, where capillary effects and the viscous
boundary layer, which develops as the fluid flows along the surface of the solid body,
are important. An order-of-magnitude analysis of these effects is given at the end of
the discussion, § 5.

3. Self-similar structure of the flow near the corner at short times
Near the corner of the stern of the body, where x/Fr� 1 but x� 1, or equivalently

at the initial stages of development of the flow, t� 1, the asymptotically small size of
the wave compared with the height of the spilling water mass suggests the existence
of a self-similar solution due to the absence of characteristic lengths. To investigate
the structure of the flow close to the corner point, it is convenient to work in polar
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FIGURE 2. Sketch of the boundary conditions used to solve the leading order of the outer
potential, φ(1) ((3.9) and (3.10)).

coordinates (r, θ), where r�1 (see figure 2 for their definition). Thus, the free surface
can be expressed locally as F(r, θ, t) ≡ rS(θ, t) − r = 0. With this formulation, the
similarity solution is sought in the form

Φ(r, θ, t)= t+ φ(r, θ, t)= t+ tα ϕ(ρ, θ) (3.1)

and
rS(θ, t)= tβ ρS(θ), (3.2)

where ρ = r/tβ is the similarity variable and the positive constants α and β are to
be determined. After introducing these expressions into (2.18)–(2.20), the problem
reduces to the Laplace equation for the potential ϕ together with the following
boundary conditions at the free surface:

αϕ − βρS∂ρϕ + 1
2

(
(∂ρϕ)

2 + 1
ρ2

S
(∂θϕ)

2

)
+ tβ−α+1ρS sin θ = 0, (3.3)

βρS + ρ
′
S

ρ2
S
∂θϕ − ∂ρϕ = 0, (3.4)

with ρ ′S= dρS/dθ . It should be pointed out that, for the unsteady and convective terms
to be of the same order in the boundary conditions (3.3) and (3.4), the exponents α
and β have been assumed to satisfy

2β − α − 1= 0. (3.5)

The second condition needed to determine these exponents, and thus the structure of
the similarity solution, is found by imposing that, in the limit ρ→∞, the rescaled
potential ϕ matches the double limit r→ 0 and t→ 0 of the original potential φ.

To express this condition mathematically, the potential and the free surface at short
times, t� 1 (or x� Fr), are expanded in power series of t following the results of
§ 2.1.1. The asymptotic formulae (2.22a,b) yield that at the early stage, t � 1, the
velocity potential φ(t, r, θ) and the free surface function F(t, r, θ), which describes
the shape of the free surface, have the form

φ(t, r, θ)= t φ(1)(r, θ)+O(t3), (3.6)
F(t, r, θ)= F∞(y, z)+ t2 F(2)(r, θ)+O(t3). (3.7)
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Introducing this ansatz into the original two-dimensions-plus-time problem (2.18)–
(2.20), and retaining only the leading-order terms as t→ 0, the following boundary-
value problem for φ(1) is obtained:

∇2φ(1) = 0, (3.8)
φ(1) = 1− z (3.9)

at the undisturbed free surface, F∞(y, z)= 0, from (2.10), and

∂zφ
(1)|z=−H = 0 (3.10)

at the bottom. A sketch of the boundary conditions (3.9)–(3.10) is depicted in figure 2.
This problem was solved analytically using conformal mapping (see Martínez-

Legazpi 2011 for the details). In the limit r→ 0, it was found that

Φ = t− Jtr2/3 sin
(

2θ
3

)
+ tr sin θ +O(tr4/3), (3.11)

where J = J(H) is a positive constant that is obtained by solving the full problem
(3.8)–(3.10). Interestingly, its value is nearly constant, J≈ 1.125, for H & 2 (Martínez-
Legazpi 2011).

Thus, on imposing the aforementioned matching condition between the leading-
order term of φ (first term on the right-hand side of (3.11)) and ϕ, and substituting
r= tβρ, we obtain

Φ ≈ t− Jt1+2β/3ρ2/3 sin
(

2
3θ
)∼ t+ tαϕ (3.12)

for ρ→∞, which gives the following relation between the exponents α and β: −3α+
2β + 3 = 0. Together with condition (3.5), this leads to α = 2 and β = 3/2. Notice
that, if the potential and the similarity variable are rescaled in the following way:
ϕ̃ = J−3/2ϕ and ρ̃ = J−3/4ρ, the boundary conditions (3.3) and (3.4) remain invariant,
while the constant J disappears from the matching condition (3.12). The fact that J
disappears from the formulation of the inner problem suggests that the structure of
this inner solution is unaffected by the depth, H, which would only modulate the wave
velocity. Thus, hereafter, for the sake of simplicity and without loss of generality, we
let J = 1 and drop the tilde from the formulation.

It is interesting to notice that the last term of (3.3), the hydrostatic term in the
Bernoulli equation near the corner, turns out to be negligible for t� 1, since it scales
with the time raised to the exponent β − α + 1 = 1/2. Order of magnitude analysis
shows that gravity affects the flow near the corner only through the matching condition
(3.12) as ρ→∞. In fact, the velocity potential in the outer limit of the flow near the
corner (3.11) is induced by a hydrostatic pressure gradient of order unity (ρg1h in
dimensional variables), whereas the hydrostatic term in the Bernoulli equation (3.3)
represents the hydrostatic pressure difference across distances of the order of the size
of the wave, which is asymptotically small for t� 1. Therefore, at short times, the
latter contribution is negligible compared with the former.

To summarize, the self-similar solution valid near the corner at short times can be
obtained by solving Laplace’s equation for the rescaled self-similar potential, ∇2ϕ= 0,
subjected to the following boundary conditions on the free surface:

2ϕ − 3
2
ρS∂ρϕ + 1

2

(
(∂ρϕ)

2 + 1
ρ2

S
(∂θϕ)

2

)
= 0, (3.13)

3
2
ρS + ρ

′
S

ρ2
S
∂θϕ − ∂ρϕ = 0, (3.14)
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and the far-field condition
ϕ ∼−ρ2/3 sin

(
2
3θ
)

(3.15)

for ρ → ∞, which follows from the matching condition (3.12). Correspondingly,
the free surface should match with ρS(θ)(−sin θ)3/4 ∼ 3−3/4 as θ → 0− and
ρS(θ)(cos θ)3/4 ∼ 3−3/4 as θ → −(π/2)+. We remark again that, although gravity
is not explicitly present in the self-similar boundary conditions at the free surface
(3.13)–(3.14), its contribution enters into the problem through the far-field condition
(3.15), which comes from solving the gravity-driven flow described by (3.8)–(3.10).

4. Numerical method

In order to treat the problem ∇2ϕ = 0 with the boundary and far-field conditions
(3.13)–(3.15) numerically, it is convenient to work with the original non-self-similar
coordinates (y, z) or (r, θ ) and potential φ(r, θ, t) = t2ϕ(r/t3/2, θ), so that a
time-marching method can be used. The numerical procedure is as follows. Laplace’s
equation is solved in a closed fluid domain bounded by the free surface, SFS(t),
and a circle arc, the far-field boundary SFF, centred at the origin with a radius Rmax
which, in the present problem, was chosen to be Rmax = 1000. At this boundary,
both the potential, φ, and its normal derivative, ∂rφ, are evaluated using the far-field
asymptotic expression φ = −tr2/3 sin(2θ/3) (second term of (3.11) with J = 1). At
the beginning of each time step, the potential at the free surface is known, so that
the normal velocity at this surface, ∂nφ, can be calculated by using a boundary
element method adapted from the open library BEMLIB (Pozrikidis 2002). Once the
normal velocity is known, it is used to evolve the free surface, whereas the dynamic
boundary condition, simplified by neglecting the hydrostatic term, ∂tφ+ 1|∇φ|2/2= 0,
is used to evolve the free-surface potential. After each time step, the free surface is
remeshed to prevent numerical instabilities by ensuring a minimum panel size, and to
guarantee that more nodes are concentrated near the region where the wave forms. At
the middle plane of the wave, θ =−π/4, the minimum panel size 1smin = 0.01 was
used, with panel lengths increasing successively by 1 % as they were placed farther
away from the central region. Finally, to perform the time marching, the third-order
Runge–Kutta scheme proposed by A. Wray (Spalart, Moser & Rogers 1991) was
employed. The time step was adapted to ensure a minimum Courant–Friedrichs–Lewy
condition of 0.25.

5. Results and discussion
A very remarkable result is that, before the numerical computation has fully

converged everywhere to a final self-similar state, the jet adopts a mushroom shape
with two lateral thin jets, hereafter denoted as jetlets, that overturn onto the free
surface near the base of the main jet, as can be seen in the yellow curve (lighter
curve in print) of figure 3(a). A key consequence of this is that, although the
self-similar problem can be formulated mathematically, its solution is unphysical as
it predicts the self-intersection of the free surface.

Nonetheless, outside the region where the jetlets overturn, the free surface converges
to a self-similar profile when rescaled by the factor t3/2. In figure 3(a), it can be
observed how the branches ξ & 0.8 and η& 0.8 neatly collapse onto a single curve for
all the time steps shown. In fact, although only the last time steps of the simulation
are plotted for the sake of clarity, this convergence is achieved after a few simulation
steps. On the other hand, although more slowly, the radial location of the tip of the
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FIGURE 3. (Colour online) (a) Rescaled free surface near the corner at the time steps
corresponding to the symbols in figure 4(a) (black curves). The yellow (online)/lighter
(in print) curve denotes the last time step of the simulation before the lateral jets impact
onto the free surface. In this figure, (ξ , η)= (y, z)/t3/2 are rescaled Cartesian coordinates.
(b) Snapshots of the jet at different time steps (with 1t≈ 0.03 between them), with the
uppermost one corresponding to the yellow/lighter curve in (a). Notice that the tips of the
jetlets always move forward in a fixed reference frame, but backwards with respect to the
base of the jet, which causes the overturning.

main jet, rtip = rS(θ = −π/4), eventually tends to the law rtip ∼ Art3/2, as can be
observed in figure 4(a). This figure also shows how the potential at that location
follows the self-similar scaling φtip ∼ Apt2. The solid lines in the figure represent
the asymptotic values for both rescaled magnitudes computed using the self-similar
boundary conditions (3.13) and (3.14). The values of Ar and Ap are obtained as part
of the numerical solution. However, it is possible to find a relation between these two
coefficients by using only the aforementioned boundary conditions at the tip of the jet.
It should be noted that the form of the jet and the flow are symmetric with respect
to the centreline (θ =−π/4). Thus, at the jet tip, ∂θϕ= 0, ρS =Ar and ϕ=Ap, which
turns the system (3.13)–(3.14) into

2Ap − 3
2 ArD+ 1

2 D2 = 0, (5.1)
3
2 Ar −D= 0, (5.2)

where D= ∂ρϕ at the jet tip. The system (5.2) provides the relationship between Ap
and Ar,

Ap = 9
16 A2

r . (5.3)

The numerical solution of the problem returns Ar ' 1.115 and Ap ' 0.697. Then,
using (5.3),

16Ap

9A2
r

= 0.9977. (5.4)

Theoretically, the right-hand side of (5.4) should be 1. It is seen that the numerical
results are rather accurate in predicting the motion of the jet.

The good agreement between the numerical results and the predictions of these
equations ensures the convergence of the solution close to the tip of the jet, where
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FIGURE 4. (Colour online) (a) Time-marching numerical evolution of the rescaled radial
coordinate of the free surface, rtip/t3/2 (black circles), and the rescaled potential, φtip/t2

(red squares), at the tip of the jet (θ = −π/4). The solid lines correspond to the
asymptotic values of these magnitudes computed using (3.14) (black) and (3.13) (yellow
(online)/lighter (in print)) respectively. (b) Far-field behaviour of the numerical solution
(yellow (online)/lighter (in print)) compared with the asymptotic solution of the self-similar
problem (black dashed line), η= (1/3)ξ−1/3. The yellow/lighter curve corresponds to the
last time step of the simulation, shown also in red in figure 3(a). (c) Normal derivative
of the modified velocity potential, S, at the free surface as a function of the arc-length
parameter, s. The self-similar condition ∂nS= 0 is fulfilled fairly well, except in the region
dominated by the jetlet, corresponding to the range between s≈ 1 and s≈ 5.

these boundary conditions are fulfilled with a relative error smaller than 4× 10−3. As
a further proof of the convergence of the solution, at least outside the region of the
jetlets, it is illustrative to examine the evolution of the normal derivative of a modified
velocity potential, S, defined as

S= ϕ − 3
4ρ

2, (5.5)

similar to the modified potential used, for instance, by Iafrati & Korobkin (2004).
Indeed, introducing the definition (5.5) into the kinematic boundary condition (3.14),
and relating the derivatives with respect to the coordinates ρ and θ , ∂ρS and ∂θS, to
the derivatives along the directions normal and tangential to the free surface, ∂nS and
∂sS respectively, the kinematic boundary condition yields ∂nS= 0. Figure 4(c) shows
the evolution of ∂nS along the free surface as a function of the arc-length parameter, s.
Notice that, except in the region dominated by the jetlet, corresponding to the range
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between s≈ 1 and s≈ 5 in figure 4(c), the normal derivative of the modified potential
has nearly converged to ∂nS = 0. This means that the shape of the free surface is
already the self-similar one outside that range. This includes not only the free surface
outside the wave but also its leading edge.

Furthermore, to prove that the free surface converges to the self-similar solution in
the far field, where an asymptotic expression can be obtained, figure 4(b) compares
the last time step of the numerical simulation (yellow/lighter curve) with the far-field
asymptotic solution (black dashed line). In the limit y � 1, where y ≈ r, the free
surface, zS(y), evolves as

dzS

dt
≈−1

r
∂φ

∂θ

∣∣∣∣
θ=0

≈ 2
3

ty−1/3, thus zS ≈ 1
3

t2y−1/3 and ηS ≈ 1
3
ξ−1/3, (5.6)

with (ξ , η) = (y, z)/t3/2. Notice that use has been made of (3.11) to evaluate the
derivative of the potential. It can be observed that the numerical and asymptotic
solutions agree fairly well for ξ & 10. It should be pointed out that this comparison
serves also to validate that the far-field boundary of the numerical domain, r = Rmax,
was sufficiently far away for the simulation to smoothly converge to the far-field
solution. Indeed, the numerical free surface exhibits the asymptotic behaviour for more
than a decade in the rescaled variables. It is worth pointing out that the numerical
scheme proposed in § 4 to obtain the self-similar structure can also be applied to
solve the full flow configuration. In the Appendix, the full unsteady two-dimensional
problem described by the system (2.18)–(2.20) plus the impermeability condition at
the bottom, ∂zφ|z=−H = 0, is solved, showing good agreement with the self-similar
scaling (see figure 6). Interestingly, the solution of the full problem departs from this
scaling when the size of the wave becomes of order unity, as the third term on the
right-hand side of (3.11) becomes important.

The formation of the jetlets can be attributed to the local acceleration of the free
surface near the corner. Indeed, the location of the tip of the main jet moves with a
monotonically increasing velocity that grows as t1/2, as predicted by the self-similar
analysis. Thus, for a non-inertial observer moving with the jet’s tip, there exists
an apparent gravity, i.e. an inertial force, pushing the jet back towards the origin.
This purely kinematic mechanism is the same as that by which a liquid jet directed
vertically upwards in the presence of gravity opens up radially and overspills after
reaching its maximum height. Conversely, from the point of view of an inertial
observer, the jetlets are formed by the increasing speed of the fluid velocity at the
base of the main jet, which makes the head of the jet open up into the lateral
structures. Once these jetlets are sent away from the main structure, their tips keep a
constant velocity, thus the free surface eventually catches up with them. This process
is illustrated in figure 3(b), where the free surface has been plotted in the original
variables (y, z) for several time instants before the impact. Notice that the tips of the
lateral jets always move forward, but more slowly than the main free surface, which
causes the apparent overturn and thus the formation of a closed air cavity.

A similar overturning of the free surface in a self-preserving flow has recently
been described by Semenov, Wu & Olivier (2013) in the head-on collision of two
liquid wedges. These authors point out that, since the length scale of the flow, and
thus the size of the entrapped air cavity, grows in time, the pressure inside the
cavity must decrease, leading to the appearance of an inward pressure gradient that
would eventually distort the splash jet. Similar jets, known as re-entrant jets, are also
observed in the flow behind a fully submerged plate when a cavity forms downstream.
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A

B
Flow

Plate

FIGURE 5. Top view of the flow downstream from a partially submerged plate, an
experimental approximation to the studied problem. Two surface waves, A and B, remain
attached to the corner of the plate (Martínez-Legazpi 2011).

Although these jets can be observed experimentally, they are unstable and appear
intermittently (Bifkhoff & Zarantonello 1957). Such complex flow configurations
cannot be described within the framework of the planar potential flow used here.

Nevertheless, in experiments, the jetlets would not form immediately, due to
capillary effects. To explain this, let us define a local Bond number, Bo` = σ/ρg`2,
with σ the surface tension, ρ the liquid density and `/1h∼ t3/2 the length scale of
the corner wave. It is clear that, at short times, Bo`∼ Bo1ht−3, and hence the flow is
due to surface tension which would preclude the formation of the jetlets. In summary,
the self-similar formulation developed in this paper is only valid for Bo1/3

1h � t� 1,
with Bo1h = σ/ρg1h2. Interestingly, this could explain why in the experiments of
Stansby et al. (1998), the mushroom-shaped jet is only observed after some time. In
a problem similar to the three-dimensional one considered in this paper, namely the
flow downstream from a partially submerged plate, Martínez-Legazpi (2011) did not
observe the jetlets in his experiments, where the Bond number was of the order of
Bo1h ∼ 10−4. However, two divergent waves were observed which remained attached
to the corner of the plate, as can be seen in figure 5: a strong wave, A, and a weak
one, B. It is reasonable to attribute the formation of the divergent wave B to the
upper jetlet of the corner wave, whose development into a separated jet would be
hindered by gravity.

Another effect that limits the applicability of the two-dimensions-plus-time approach
very close to the body is the possible existence of a developed boundary layer of
thickness δ� 1 at the stern. Thus, the theory derived here is only applicable when
the size of the corner wave is much larger than this initial thickness. This yields
the condition t � δ2/3. Finally, in actual experiments, the exact location where the
free streamline detaches from the body would be determined by its detailed geometry
through the Villat–Brillouin condition (see Wu 1972), whereas in the present study the
detachment is assumed to occur at an infinitely sharp trailing edge.

To conclude this section, it is worth mentioning that the corner wave flow is
connected to the flow set in motion by an accelerated plate inclined at an angle
α = 45◦ with respect to the undisturbed free surface. Needham, Chamberlain &
Billingham (2008) studied the self-similar structure of this flow near the contact point
between the plate and the free surface for different values of the angle, α. Remarkably,
although the formulation of the inner problem is identical to that described here, these
authors found no numerical solution for values of α>αc= 12.6◦. The self-intersection
of the free surface found in the present work could be the reason why their numerical
method did not converge for values of α larger than a critical value αc < 45◦.
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FIGURE 6. (Colour online) (a) Free surface of the full problem computed numerically at a
time when the corner jet has already developed. The inset shows a zoom of the jet region.
(b) Logarithmic plot showing the evolution of the radius of the tip, rtip (black circles), and
the potential at that location, φtip (red squares). The black and red solid lines have slopes
3/2 and 2 respectively.

6. Conclusions
The flow near the lower corner of a partially submerged bluff body has been

studied with the focus on the formation of the jet-like waves that develop there.
This flow is a simplified model for other configurations commonly found in naval
hydrodynamics and civil engineering. When the Froude number defined with the
velocity of the body, U, and the deadrise height, 1h, is large, the flow is slender and
can be described with the so-called two-dimensions-plus-time approximation. This
approximation allows the transformation of a steady three-dimensional problem into
an unsteady two-dimensional one, which is more amenable to being treated using both
analytical and numerical techniques. In particular, the region near the corner of the
three-dimensional problem converts into the limit at short times of the corresponding
two-dimensional one. Interestingly, on applying this transformation the flow becomes
analogous to the dam-break problem with a wet basin.

Using matched asymptotic expansions, the structure of the flow near the corner
has been described at short times. The leading-order solution admits a self-similar
formulation in which the free surface evolves as rS ∼ t3/2. This solution is dominated
by the hydrostatic pressure produced by the water column of height 1h, which
can be considered as uniform at the length scale of the self-similar region. Since
at short times this height is much larger than the size of the self-similar region
itself, hydrostatic pressure variations within this region are negligible compared with
the hydrostatic pressure due to the water column of height 1h. However, for times
of order unity, the amplitude of the wave also becomes of order unity and the
hydrostatic term in the Euler–Bernoulli equation becomes important, thus the free
surface is no longer symmetric with respect to the line bisecting the corner. Instead,
it follows a ballistic trajectory as described by several authors (for instance Shakeri
et al. (2009a,b) for a planar unsteady flow and Martínez-Legazpi et al. (2013) for a
fully three-dimensional flow).

Interestingly, numerical computations show that the self-similar solution exhibits
a mushroom-shaped jet which gives birth to two thin lateral jets which eventually
overturn onto the free surface, leading to a self-intersecting and thus unphysical
solution. A similar structure was reported by Stansby et al. (1998), although in their
experiments surface tension precluded the formation of these jetlets. A kinematic
effect, namely the continuous acceleration of the free surface that pushes the main
jet, is responsible for this mushroom-like structure and for the formation of the
lateral jets.
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Appendix. Numerical solution of the full unsteady two-dimensional problem

We conclude with a discussion about the observability of the self-similar structure
studied in § 3 in a real flow configuration. As an example, we have simulated
numerically the full unsteady two-dimensional problem described by the system
(2.18)–(2.20) plus the impermeability condition at the bottom, ∂zφ|z=−H = 0.

The numerical method coincides with that described in § 4, except for two
differences. First, the computational domain is bounded laterally by two impermeable
walls placed at y = ±3, and second, the corner of the initial condition has been
rounded with an initial curvature radius δ= 1.5× 10−3. Notice that, from the physical
point of view, the effect of this corner is to delay the time one has to wait until the
self-similar scaling is observed, as it introduces a characteristic length, δ, into the
problem. In fact, examination of figure 6(b) reveals that, although the tip’s radius
grows approximately as rtip ∼ t3/2 for a relatively long time span, the potential takes
longer to converge to the asymptotic regime φtip ∼ t2. More importantly, at t ≈ 0.3
the numerical results depart from the predictions of the asymptotic solution. This is a
consequence of the effect of the hydrostatic term neglected in the dynamic boundary
condition (third term on the left-hand side of (3.3)), which becomes progressively
more important as the size of the corner wave becomes of order unity.

Despite these effects, the message that we want to convey in this paper is that the
analysis performed in §§ 2–4 is able to describe approximately the structure of the
flow at short times, when the corner wave is formed. Indeed, a mushroom-shaped
jet can be observed in figure 6(a), corresponding to the last time step shown in
figure 6(b). It is interesting to notice how the jet is no longer symmetric, due to the
effect of the hydrostatic term mentioned above.
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