
Continuing Medical Education

Cardiol Young 2006; 16: 117–124
© Cambridge University Press

ISSN 1047-9511
doi: 10.1017/S1047951106000023

STEM CELL RESEARCH HAS BECOME A MAJOR TOPIC,
widely discussed not only in the scientific soci-
ety but also in politics. Regarding the heart,

scientific research is usually motivated by the goal to
treat ischaemic cardiac failure with cardiac progeni-
tor or stem cells.1,2 This raises the question whether
paediatric cardiologists should also become more
interested in this field of research.

Definitions

By definition, stem cells are undifferentiated cells
characterised by the ability, at the level of the single
cell, both to self-renew and to differentiate into mature
progeny, including both non-renewing progenitors
and terminally differentiated cells (Fig. 1). As a rule,
gain of differentiated function is accompanied by
loss of plasticity. The fertilized oocyte, and the cells
of the preimplantation embryonic stage from 8 to 16
cells, are totipotent, since they are able to become a
functional embryo, including all embryonic and extra-
embryonic cell types. During further development,
the formation of a blastula gives rise to the inner cell

mass, made up again of pluripotent cells which are
able to differentiate into all cell types of the embryo,
but not its morphology. Pluripotency is also typical
of the embryonic stem cells that are cultured from
the inner cell mass. These cells, however, can no
longer give rise to trophoectodermal cells that subse-
quently would give rise predominantly to the pla-
centa.3 Multipotent stem cells still differentiate to a
larger subset of oligopotent stem cells which have a
more restricted subset of cell lineages. Unipotent
stem cells, in contrast, are able to contribute only to
one mature cell type. Whereas both ends of the spec-
trum, made up of totipotent and differentiated cells,
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Figure 1.
Cells able to give rise to cardiomyocytes. The fertilized egg and the
morula are totipotent and can give rise to every cell line. The inner
cell mass of the blastocyst, from which embryonic stem cells are iso-
lated can give rise to all cell lines of the embryo proper, ectoderm, endo-
derm and mesoderm. Cardiac progenitor cells or cardioblasts can
only develop into fully differentiated cardiomyocytes.
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can readily be defined, the potency of cells that have
been considered pluri-, multi-, oligo-, or unipotent
had to be revised in the past.

Mechanisms of action

There is evidence that all structures of the heart can be
addressed by stem cell therapy (Fig. 2). Pacemaker-
like cardiomyocytes have been generated from
embryonic stem cells, and cardiomyocytes derived
from stem cells have been used and investigated
experimentally as a biological pacemaker.4–6 Similar
approaches might improve the prospects for valvar
heart disease, by replacing current bioprostheses,
with their limited durability, and need for lifelong
anticoagulation, by tissue engineered, living, com-
pletely autologous biological structures, for example
scaffolds populated by mesenchymal stem cells
obtained from the bone marrow of the patient.7,8 In
addition, stem cells might be a source for populating
bioartificial vessels (Fig. 2).9,10

Cell types

During the recent years, an increasing diversity of
stem cells or progenitor cells have been identified
and were suggested for cardiac cell therapy (Table 1),
and the number of potentially useful cell types is
still increasing.11,12 Nowadays, even for experts in
the field, it is hardly possible to judge the clinical
potential of these numerous and newly identified
cell types. At the moment, therefore, it is more help-
ful to define important criterions for judging the
relevance of a cell type for cardiac stem cell therapy,
and to identify potential risks associated with such

treatment in order to allow a more systematic
approach (Table 2). Even if some therapeutic strate-
gies aim to create cells that are even superior to nor-
mal cardiac cells, for example with respect to their
tolerance to ischaemia, such as myoblasts, a more
intuitive and realistic goal of replacement strategies
is to generate physiological cardiac tissue. Criterions
for the assessment of a cell type, therefore, are the
quality of electromechanical integration, as well as
the degree of cardiac differentiation, since these are
probably major determinants of the contractile force
that can be achieved. Electrophysiological character-
istics of these cells before and after implantation
determine the arrhythmogenic potential. For clinical
purposes, it is mandatory to show that a sufficient
number of cells is available within a relevant time.
Possible side effects, for example immunological
rejection or formation of tumours, and ethical con-
cerns, must also be taken into account.

Stem cells can be divided into two broad cate-
gories (Table 1): embryonic stem cells and adult stem
cells. Embryonic stem cells have the potential to dif-
ferentiate into cell types of all germ layers, including
all types observed in cardiac tissue. In contrast, the
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Figure 2.
Cardiac structures amendable to therapeutic strategies involving
stem cells.

Table 1. Cell types suggested for cardiomyoplasty.

� Embryonic stem cells
� Adult or somatic stem or progenitor cells

– Non-cardiac origin
Bone-marrow derived
Haematopoietic stem cells (HSC)
Side population (SP)
Endothelial progenitor cell (EPC)/angioblast
Mesenchymal stem cells (MSC)
Multipotent adult progenitor cells (MAPC)
Skeletal muscle
Myoblast
Cord blood
Unrestricted somatic stem cells (USSCs)

– Cardiac origin
Cardioblast

Table 2. Criterions to judge the clinical relevance of stem cells or
progenitor cells.

� Morphology
(properties of the desired cell type (e.g. sarcomeres))

� Function
(properties of the desired cell type (e.g. force development))

� Potential of prolonged self-renewal
� Potential to integrate electromechanically
� Sufficient cell number
� Availability
� Cost-effectiveness
� Arrhythmogenesis
� Immunogenesis
� Tumourgenesis
� Normal karyotype
� Ethical, social or religious constraints
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majority of adult stem cells, primarily isolated from
bone marrow, never gives rise to cardiomyocytes,
with the exception of a cardiac precursor cell, a car-
dioblast.13–16

Below, we offer a more detailed analysis of some
selected cell types that have already been charac-
terised extensively, experimentally as well as clini-
cally. Myoblasts serve as an example that most likely
can demonstrate an important arrhythmogenic mech-
anism. Cells derived from the bone marrow have to
be discussed, because they are the most easily acces-
sible and most frequently used types. The majority
of experimental and clinical data has been collected
with these cells. Cardioblasts will be mentioned
because of their unique biological properties.16

Embryonic stem cells have to be discussed because of
their unique potential.

Myoblasts
Skeletal myoblasts were the first cells to be tested
clinically for therapy (for review see Menasché).17

Satellite cells normally lie in a quiescent state under
the basal membrane of skeletal muscle fibres, and
proliferate following skeletal muscular injury. At
this stage they are referred to as myoblasts. Satellite
cells, or myoblasts, are precursors rather than stem
cells of the skeletal muscle, since they have already
reached an advanced stage of differentiation, with
myogenic-restricted lineage commitment. Myoblasts
are highly resistant to ischaemia, a quality that should
make these cells ideal to survive in poorly vascular-
ized tissue. For clinical studies, satellite cells are iso-
lated from a muscle biopsy of the patient’s own
skeletal muscle, propagated several weeks in cell cul-
tures, and injected directly into the myocardium.
Implanted myoblasts differentiate into multinuclear
myotubes. Electrophysiologically, these myotubes
are characterised by short action potential durations,
and they lack electrophysiological coupling to the
neighbouring host cardiomyocytes via gap junctions.
Clinical studies with myoblasts were associated with
an extraordinary high rate of ventricular arrhythmias
and sudden cardiac deaths, an observation that might
be explained by re-entry circuits resulting from the
heterogeneity of electrical membrane properties
between donor and recipient cells.18,19

Stem cells derived from bone marrow
Sex-mismatched cardiac transplants in humans have
shown that female hearts in a male host had a signifi-
cant number of y positive myocytes, coronary ves-
sels, smooth, and endothelial vascular cells.20 These
observations support the idea that blood-borne cells
might integrate into the myocardium. The bone
marrow hosts various stem cell types, primarily

haematopoietic stem cells, mesenchymal stem cells,
endothelial progenitor cells or angioblasts as well as
a yet undefined stem cell population termed ‘multi-
potent adult progenitor cells’.21 For a thorough
description of the diverse adult stem cell types of 
non-cardiac origin, we refer to recently published
reviews by Pittenger and Martin and Yoon et al.22,23

Under normal conditions some of these bone mar-
row-derived stem cell lines are suggested to give rise
to heart-specific cell types, including endothelial
cells and fibroblasts; none of these cells, however,
differentiated into cardiomyocytes. Stem cells that 
can be isolated from adult murine hearts that are 
characterised by surface markers such as c-kit (c-kit�)
or sca-1 (sca-1�) but no markers of haematopoietic
differentiation, such as blood lineage negative 
(lin�) attracted special interest because they 
were reported to transdifferentiate to fully differen-
tiated cardiomyocytes under pathological or culture
conditions.24–29

Stem cells derived from bone marrow –
transdifferentiation versus fusion
Transdifferentiation describes the conversion of a cell
of one tissue lineage into a cell of a completely dis-
tinct lineage, accompanied by a replacement of
markers and function of the original cell type with
those of the transdifferentiated cell type. Reports on
transdifferentiation of cells derived from the bone
marrow, especially haematopoietic stem cells,29,30 are
highly questioned by recent experimental data.13–15

Instead, cell-to-cell fusion is suggested as an alterna-
tive explanation for the observed results,31 and has
been described under various biological condi-
tions.32 Currently, the mechanism of fusion of stem
cells is under further investigation. Interestingly, it
seems to be associated with a modification of the
gene profile of the stem cell.33–35 Whether fusion of
such stem cells could contribute to the regeneration
of an injured heart is not yet clear.

Clinical studies with adult bone marrow
Although recent data questioned the premise that
cells derived from the bone marrow are capable of
developing into cardiac cells, several clinical studies
suggested that injection of adult bone marrow imme-
diately after a heart attack result in a mild improve-
ment of cardiac function.36 Probably this is explained
by improvement of capillarization, or matrix structure.

Intrinsic regenerative capacity of the adult heart
Old dogmas claiming that, a few months after birth,
cardiomyocytes cannot divide any more. Concepts
that growth and adaptation are solely accomplished
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by changes of cell growth, or hypertrophy, however,
have been defeated. Though the number of cells
reaches adult values a few months after birth, new
cells, such as capillaries, coronary arteries, and prob-
ably also cardiomyocytes, constantly form. A con-
stant turnover has been detected in the normal heart
at all ages,37,38 and has been shown to be increased
under pathological conditions such as myocardial
infarction.24

In other organs, specialised structures called niches
have been identified that provide a microenviron-
ment designed to preserve the survival and replica-
tion of stem cells.39 Though up to now niches have
not been identified in cardiac tissue, most recently, a
cardiac progenitor cell, an immature cell type that,
as opposed to stem cells, is solely capable of develop-
ing into myocytes, was found in the right atrium of
human neonates.16 It is characterised by the expres-
sion of the homeobox gene islet-1, and is thought to
arise from the secondary heart field that originates
near the cardiac crest.40 It is reported that these cells
can be amplified in vitro, and develop more effi-
ciently into cardiac muscle cells in the presence of
other heart cells16 (see Parmacek41 for comment).

Embryonic stem cells
Embryonic stem cells are isolated from the inner 
cell mass of the preimplantation blastocyst by selec-
tive removal of the outer trophoectodermal layer
(Figs 2 and 3). Since embryonic stem cells cannot
give rise to trophocystic cells, they are by definition
not totipotent but pluripotent. They can differenti-
ate into derivatives of all three germ layers, namely
the ectoderm, endoderm, and mesoderm. In general,

embryonic stem cells have a higher proliferative
capacity when compared to adult stem cells.

Human embryonic stem cells
Isolation of embryonic stem cells from human blas-
tocysts was described in 1998.42 Since then, numer-
ous lines have been generated, most of them being
propagated on non-human feeder layers, which is
important in eliminating the risk of zoonosis. A better
understanding of the mechanisms regulating prolif-
eration and differentiation of human embryonic
stem cells has resulted already in an improvement of
propagation without feeder cells.43 In cell cultures,
embryonic stem cells form three-dimensional aggre-
gates, termed embryoid bodies, that contain tissue
derivatives of all three germ layers.44

Human embryonic stem cells can propagate per-
haps indefinitely in culture while maintaining
pluripotency, including the ability to differentiate
into cardiomyocytes and a stable karyotype. Such
human embryonic cardiomyocytes, therefore, may
provide an unlimited source for cell-based therapies.
Electrically active, donor cardiomyocytes derived from
human embryonic stem cells were shown to func-
tionally integrate with otherwise-quiescent, recipi-
ent, ventricular cardiomyocytes to induce rhythmic
electrical and contractile activities in vitro. Moreover,
a functional human embryonic stem cell-derived
pacemaker could be implanted in the left ventricle 
in vivo.5 Cardiac myocytes derived from human
embryonic stem cells resemble fetal or embryonic
cardiac myocytes with poorly organised sarcomeric
structure. Embryonic stem cell-derived cardiac
myocytes have spontaneous action potentials, con-
tract spontaneously, respond to hormones and neuro-
transmitters,45 and will engraft and electrically and
mechanically couple to host cardiac myocytes when
transplanted into the heart.46 Embryonic stem cells
might thus be a suitable source of donor cardiomy-
ocytes for cell transplantation therapies aimed at
restoring lost myocardial mass in diseased hearts.

Indications

Ischaemic heart disease
The vast majority of research regarding cardiac stem
cell therapy is focused on either acute or chronic
ischaemic heart disease. The reason for focusing on
ischaemic heart disease is the importance of this aeti-
ology for adult cardiology. Moreover, the high num-
ber of adults that can be considered for clinical studies,
the severity of the disease, the still unsatisfactory
results achieved by conventional therapies, and prac-
tical advantages such as frequent catheterizations
that allow application of cells, as well as follow-up,
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Figure 3.
Generation of cardiomyocytes derived from embryonic stem cells.
Undifferentiated embryonic stem cells are isolated from the inner cell
mass of the blastocyst by immunological techniques. Under certain
culture conditions these cells are able to proliferate without differen-
tiation. If the desired cell number has been reached, culture condi-
tions are changed to promote differentiation. So-called “embryoid”
bodies are small cell clusters that contain cells of all three germ lay-
ers. In this image the bright areas express myosin heavy-chain indi-
cating areas of cardiac differentiation.
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make an application in this field likely. But even if
some cell types might be more tolerant to hypoxia,
or even metabolic restrictions, minimal nutritional
requirements will be a prerequisite for the survival
of transplanted cells. The dependence on a successful
reperfusion and intact vascular structures to deliver
therapeutic cells, therefore, makes heart attacks a
challenging but not ideal pathophysiology for car-
diac transplantation therapy. Ischaemic heart disease
might not be the only cardiac disorder that can be
expected to benefit from cell therapy, and ischaemic
aetiologies are not very frequent in the setting of
paediatric cardiac disease.

Other cardiac disorders
Theoretically, the benefit of cardiac transplantation
should be better, and judgement of improvement
easier, in chronic disorders where reperfusion ther-
apy is not a prerequisite. A more frequent problem
in paediatric cardiology results from remodelling,
due to apoptosis induced by cardiac hypertrophy that,
in the end, might result in heart failure. In these
hearts, a compensatory increase in the diameter of
the myocytes not matched by an adequate increase of
the number of capillaries is thought to be causal.
Similar to the ischaemic heart, pure cardiomyocytic
transplantation might be insufficient, since a combi-
nation with vasculogenesis would be needed. With
the exception of single papers on doxorubicin-
induced cardiomyopathy,47 and viral myocarditis,48

no experimental data regarding other indications are
available, and research in this area is necessary.

Safety

Formation of tumours and unwanted
transdifferentiation
Undifferentiated stem cells are by definition tumouro-
genic. Human embryonic stem cells injected in
immunodeficient mice produce teratomas that con-
sist of cells of all three germ layers.42 Similarly,
pluripotent stem cells can still be expected to differ-
entiate into the various cell types that even under
normal conditions would be derived from this cell
line. For example, mesenchymal stem cells are pre-
cursor cells to muscle, bone, and other connective
tissues. Cells derived from the bone marrow contain
a fraction of mesenchymal stem cells that has the
potential to differentiate into other mesenchymal
cell types. It seems reasonable, therefore, and has
already been reported under experimental condi-
tions, that unselected bone marrow cells that have
been injected into acutely infarcted myocardium can
result in significant intramyocardial calcifications.49

Theoretically, the likelihood of formation of tumours,

or unwanted differentiation, should be reduced by
increasing the differentiation of stem cells, and
purification of the desired cell type. Since the risk of
formation of tumours increases with time, children
are more likely to realize this side effect than older
patients.

Arrhythmia
Cardiac rhythm can be influenced by cell therapy.
Very different electrophysiological characteristics
have been observed in stem cell-derived cardiomy-
ocytes. Murine embryonic stem cell-derived car-
diomyocytes show different electrophysiological
characteristics reflecting different developmental
stages and different cell types observed in the human
heart, such as pacemaker-like cells or atrial and ven-
tricular myocytes.50 Spontaneous activity, typical of
embryonic cardiomyocytes, is frequently observed in
cardiomyocytes derived from embryonic stem cells.
Therefore, such cardiomyocytes have already trig-
gered experiments suggesting them as a biological
pacemaker.4,46,51 In contrast, severe arrhythmias that
necessitated cardioverter implantation were observed
after transplantation of skeletal muscle progenitor
cells in humans,17 and are probably caused by a poor
electrophysiological communication.52 Lack of con-
nexin 43, the major ventricular gap junction pro-
tein, is highly arrhythmogenic, and remodelling of
the gap junctions may play a key mechanistic role in
arrhythmogenesis.53,54

Immunology
Human embryonic stem cells are currently derived
from embryos surplus to in vitro fertilisation. Though
some data suggest that human embryonic stem cells
might possess unique immune-privileged character-
istics,55 allogeneic rejection must be feared.56 Similar
immunological problems would arise from xeno-
geneic transplantation, for example of murine embry-
onic stem cell-derived cardiomyocytes.57 Interesting
approaches other than immunosuppressive therapies
have been suggested.56,58 Immunomodulatory func-
tions of human mesenchymal stem cells,59 or genetic
manipulations modifying immunogenic major his-
tocompatibility complex genes, might be used.60

Another strategy might be ‘therapeutic cloning’,
also referred to as nuclear transfer or nuclear cloning.61

It denotes the introduction of a nucleus from an
adult donor cell into an enucleated oocyte to gener-
ate a cloned embryo (Fig. 4).62,63 The cytoplasma of
this oocyte has the potential to reprogram the differ-
entiated nucleus, and re-establish an embryonic pat-
tern of gene expression in the chromatin of the
somatic cell nucleus. If this cloned embryo is trans-
ferred to the uterus of a female recipient, this would
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be termed “reproductive cloning”, when explanted
in culture, embryonic stem cells can be generated,
called ‘therapeutic cloning’. Biologically, whole major
histocompatibility complex regions in the derived
embryonic stem cells and other immune molecules
might be identical to that of the patient. The influ-
ence of the oocyte-derived mitochondrial proteins on
the immunological response needs further studies.

Ethical considerations

The fear that application of human embryonic stem
cells will have to involve therapeutic cloning to
overcome problems of tissue rejection is one of the
major ethical concerns. At the moment, the genera-
tion of human cells for stem cell research and therapy
is based on cell lines generated from embryos surplus
to the needs of in vitro fertilisation. This creation
and manipulation of human embryos, that includes
the destruction of a human blastocyst, for the pur-
pose of generating therapeutic tissue, is questioned.
The theological and ethical dimension of stem cell
research is closely related to the definition of the
beginning of human life. In addition, many people

fear that the distinction between “therapeutic” and
“reproductive” cloning is so slight that embryonic
stem cells and therapeutic cloning might ultimately
lead to reproductive cloning and genetically engi-
neered human beings.64–67 Since our knowledge on
stem cells is steadily increasing, and new biological
techniques are evolving, this debate will have to con-
tinue. Repeated reassessment will be necessary.

Conclusion

Cardiac cell therapy holds the promise to regenerate
heart muscle, not only after heart attacks in adults,
but also in a variety of paediatric cardiac diseases.
Theoretically, stem cells might be useful to generate
bioprostheses, or to regenerate lost myocardial tis-
sue, for example after myocarditis. Up to now, exper-
imental data focus on the treatment of ischaemic
injury. Clinical data in adults demonstrated a mod-
erate beneficial effect using stem cells derived from
bone marrow. The mechanism of improvement, how-
ever, is still a matter of debate. Thus, though it can
be speculated that cardiac disorders of infancy and
childhood might profit from stem cell therapy,
direct experimental evidence is sparse. Probably the
clinical use of either embryonic or adult stem cell
technology in paediatric cardiology is still many
years in the future. Nevertheless, in our opinion, the
enormous potential of stem cells justifies an intense
basic research on the physiology substantiating this
therapeutic approach. The development of this
option for treatment will need to be accompanied by
an ethical discussion, and because of concerns for
safety, it should proceed with the same scrupulous-
ness, accuracy and criticism that has become stan-
dard today for every other medical innovation. Before
this approach is ready to be tested clinically, there-
fore, far more preclinial experimental data is neces-
sary, and though the proof of principle is done, the
practical application still needs to be worked out.
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