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On the dynamical relevance of coherent vortical
structures in turbulent boundary layers

SERGIO PIROZZOLI†, MATTEO BERNARDINI
AND FRANCESCO GRASSO

Dipartimento di Meccanica e Aeronautica, Università di Roma ‘La Sapienza’,
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The dynamical relevance of vortex tubes and vortex sheets in a wall-bounded
supersonic turbulent flow at Mach number M = 2 and Reynolds number Reθ ≈ 1350
is quantitatively analysed. The flow in the viscous sublayer and in the buffer region
is characterized by intense, elongated vorticity tongues forming a shallow angle with
respect to the wall, whose characteristic length is O(200) wall units and whose size
in the cross-stream direction is O(50) wall units. The formation of vortex tubes takes
place starting from y+ ≈ 10, and it is mainly associated with the roll-up and the
interaction of vortex sheets. The analysis of the non-local dynamical effect of tubes
and sheets suggests that the latter have a more important collective effect, being
closely associated with low-speed streaks, and being responsible for a substantial
contribution to the mean momentum balance and to the production of turbulence
kinetic energy and enstrophy.

1. Introduction
Coherent eddy structures play a major role in the dynamics of turbulent flows, in the

case of both free-shear and wall-bounded flows. It is well known that zones of intense
vorticity in isotropic turbulence have either tube- or sheet-like shape (She, Jackson &
Orszag 1990; Douady, Couder & Brachet 1991; Ruetsch & Maxey 1992). Vortex
tubes (the so-called worms) drew most of the attention in early numerical simulations
and experiments (Vincent & Meneguzzi 1991; Cadot, Douady & Couder 1995), being
the most prominent observed features. A deeper analysis showed that vortex sheets,
consisting of zones of locally nearly two-dimensional shearing motion, provide a
dominant contribution to the enstrophy production through vortex stretching and to
energy dissipation (Tsinober 1998), and therefore are at least as important as vortex
tubes. Despite this evidence, vortex sheets are often disregarded, since they exhibit
a strong tendency to roll-up according to Kelvin–Helmholtz instability mechanisms
forming vortex tubes, and their lifetimes are relatively short (Passot et al. 1995).

In wall-bounded flows, coherent structures are regarded to be responsible for the
transport of low-momentum fluid and the Reynolds stress production, and they are
found to be associated with intense events, such as ejections and sweeps (Wark &
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Nagib 1991; Ganapathisubramani, Longmire & Marusic 2003). Since the pioneering
work of Theodorsen (1952), it is believed that the typical coherent structures in
turbulent boundary layers are tubular vortices with hairpin-like shapes, produced by
distortion of vortex lines in the very near-wall layer. A wide body of experimental
and numerical works has confirmed that boundary layers are indeed populated
by hairpin vortices inclined at a positive angle with respect to the wall (Head &
Bandyopadhyay 1981; Chong et al. 1998; Wu & Moin 2009), either alone or
arranged in packets (Adrian, Meinhart & Tomkins 2000; Adrian 2007). Such
arrangement would explain the dominance of Q2 and Q4 events (i.e. Reynolds
shear stress production) and the occurrence of streamwise-elongated regions of low
momentum, the so-called streaks (Kline et al. 1967). The reasonable prediction of
several turbulence statistics (such as the Reynolds stress distributions and the energy
spectra) provided by suitably tuned structural models based on the hairpin vortex
paradigm (Perry & Chong 1982; Marusic 2001) has often been taken as a further
argument in favour of the importance of tubular vortex structures in wall turbulence
dynamics.

The geometrical properties of vortex tubes in wall turbulence have been analysed
in a number of recent papers (Tanahashi et al. 2004; del Álamo et al. 2006; Das,
Tanahashi & Shoji 2006; Ganapathisubramani, Longmire & Marusic 2006; Pirozzoli,
Bernardini & Grasso 2008; Stanislas, Perret & Foucaut 2008). The general conclusion
is that vortex tubes are inclined at a positive angle with respect to the wall and have
a size that scales with the local Kolmogorov length scale (η). Typical core radii in
boundary layers are found to be of the order of 5–6 η, very similar to the values
reported for vortex tubes in isotropic turbulence (Jiménez & Wray 1998).

Shear layers in wall-bounded turbulent flows have received comparatively much
less attention, with some notable exceptions. Jiménez et al. (1988) observed that
the viscous wall layer is dominated by intense three-dimensional shear layers whose
prevalent vorticity component is spanwise. Those authors suggested similarity with
the behaviour of nonlinear Tollmien–Schlichting waves in a two-dimensional channel,
whereby vorticity is spontaneously ejected from the wall and then stretched by
the mean flow into long thin shear layers, undergoing viscous decay in the core
of the channel. Johansson, Alfredsson & Kim (1991) studied the evolution and
dynamics of shear layers by means of direct numerical simulations (DNSs) of low-
Reynolds-number channel flow. They found that shear layers are responsible for
intense events in the near-wall region, and they may provide an important contribution
to turbulence production. Liu et al. (1991) performed particle image velocimetry
(PIV) measurements of velocity and vorticity in a low-speed channel and observed
the presence of shear layers that protrude into the downstream flow at an angle of
less than 45◦, and spatially associated with regions of large Reynolds stress. The shear
layers were found to terminate at the tip in regions of rolled-up spanwise vorticity,
which were interpreted to be the heads of hairpin vortices. Klewicki (1997) observed
that, because of geometric constraints imposed by solenoidality of the vorticity field,
the flow region immediately adjacent to the wall must consist of a distributed sheet-
like vorticity field dominated by the spanwise component, whereas more compact
vorticity distributions (such as vortex rings or hairpins) may become important away
from the wall. In this sense, the sheet-like sublayer vorticity distribution may be
regarded as a reservoir from which the more compact vortical motions are formed.
Klewicki & Hirschi (2004) performed a conditional analysis of boundary layer flow
in the proximity of shear layers and observed strong spatial correlation of the shear
layer motions with clusters of spanwise vortices, identifying two types of patters,
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whereby: (i) a clockwise vortex forms upon roll-up of a shear layer, inducing clock-
wise vorticity at the wall; and (ii) an outer layer, counterclockwise vortex causes the
ejection of a shear layer. According to the most commonly accepted mechanisms for
turbulence self-sustainment in the near-wall region, it is believed that shear layers are
generated from instability of streaks (Schoppa & Hussain 2002) and/or collision of
neighbouring streaks (Brandt & de Lange 2008).

The objective of this paper is to shed some light on the role played by sheet-like
and tube-like vortical structures in a wall-bounded turbulent flow. For this purpose
we analyse a database of turbulent supersonic flat plate boundary layer (described in
§ 2) and apply state-of-the-art eduction criteria to extract vortex sheets and tubes (as
explained in § 3). A conditional statistical analysis is carried out in § 4 to quantitatively
assess the contribution of the different types of structures to the overall boundary-layer
dynamics. The geometrical properties of the near-wall shear layers are investigated in
§ 5, and a discussion of the results is presented in § 6, with some concluding remarks.

2. The DNS database
To elucidate the role and the relative importance of the different types of coherent

structures, we use the DNS database of supersonic turbulent boundary layer in zero
pressure gradient at Mach number M = 2 and momentum thickness Reynolds number
Reθ = u∞θ/ν∞ ≈ 1350, analysed by Pirozzoli et al. (2008). Those authors showed that
under the selected conditions the turbulent Mach number never exceeds 0.3, and
demonstrated close similarities with the behaviour of incompressible wall-bounded
turbulent flows, in terms of both statistics and coherent structures. As a consequence,
we expect that the analysis that follows also applies to low-speed boundary layers.

The computational algorithm used by Pirozzoli et al. (2008) relies on a finite-
difference approach that was extensively validated in previous works for both
isotropic decaying compressible turbulence and wall-bounded turbulent supersonic
flows. The advective fluxes are discretized by means of a linear seventh-order central
upstream approximation with local Lax–Friedrichs flux splitting, the viscous fluxes are
approximated using a fourth-order compact difference scheme, and time integration
is performed by means of a classical four-stage, fourth-order explicit Runge–Kutta
algorithm. Inflow conditions are based on the approach proposed by Sandham, Yao &
Lawal (2003), whereby deterministic fluctuations that mimic the coherent motions in
the boundary layer (lifted streaks and large eddies) are superposed to a mean turbulent
boundary layer profile. Additional details on the numerical algorithm are reported in
the original reference.

To fully resolve the vortical structures in the boundary layer, a grid spacing of
�x+ = �z+ =4.10 is used in the streamwise and spanwise directions, respectively,
and the first point off the wall is placed at �y+ = 0.71. The common ‘+’ superscript
notation is used here to denote quantities reported in wall units, i.e. made non-
dimensional with respect to the friction velocity (uτ =

√
τw/ρw), and to the viscous

length scale (δv = νw/uτ ), where ρw , νw and τw are, respectively, the mean density,
kinematic viscosity and shear stress evaluated at the wall.

For the statistical analysis we have collected the data in a small portion of the
boundary layer where Reθ varies between 1340 and 1370. Because of the small
variation of Reθ , the growth of the boundary layer is negligible and all statistical
properties are regarded to be functions of the wall-normal coordinate only. Statistics
have then been obtained by averaging in time (70 samples are considered, with
spacing �t+ =1.50) and in the streamwise and spanwise directions. The analysis of
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the mean flow properties shows that the boundary layer has a thickness (defined in
terms of the 99 % free-stream velocity) δ+ = 330, the viscous sublayer extends up to
y+ ≈ 7, whereas a short region with (approximately) logarithmic behaviour of the
mean velocity is observed between y+ = 40 and y+ = 140, which we conventionally
refer to here as ‘log layer’. The region 7 � y+ � 40 is referred to as ‘buffer layer’.

3. Eduction of coherent structures
For the purpose of identifying vortex tubes and vortex sheets, we introduce two

‘vorticity variables’, which are designed so as to reduce to the local vorticity modulus
in the limit cases of idealized tube-like and sheet-like vorticity distributions.

For vortex tubes, we extend the incompressible swirling strength criterion of Zhou
et al. (1999) to compressible flows (Pirozzoli et al. 2008) and characterize the flow
topology by considering the deviatoric part of the velocity gradient tensor (A∗

ij = ui,j −
1/3 uk,kδij ). Vortex tubes are then identified as connected regions where A∗

ij has one
real eigenvalue (λr ) and two complex conjugate eigenvalues (λ±

c = λcr ± i λci). In these
regions the discriminant of A∗

ij satisfies the condition

� = Q∗3
+

27

4
R∗2

> 0, (3.1)

where Q∗ = −1/2 A∗
ijA

∗
ji and R∗ = −1/3 A∗

ijA
∗
jkA

∗
ki are the second and third invariants

of A∗
ij (the first one being identically zero). The local motion at the points where

�> 0 (corresponding to core centres) is made up of the superposition of a straining
motion of strength λr in the associated eigen-direction (vr ) and a spiralling motion
with angular velocity λci (in the plane defined by the vectors vcr and vci; where
v±

c = vcr ± i vci are the eigen-directions associated with λ±
c ). It is easy to show that,

in the case of two-dimensional solid-body rotation (i.e. purely rotational motion), the
imaginary part of the complex eigenvalue pair is proportional to the vorticity modulus
(λci = ω/2). For eduction purposes we thus introduce the vorticity-like variable

ωt = 2 λci, (3.2)

and define vortex tubes as those regions where ωt exceeds a physically relevant
threshold value (ε).

With regard to vortex sheets, we extend to compressible flows the algorithm
originally proposed by Horiuti & Takagi (2005) and applied by Horiuti &
Fujisawa (2008) to incompressible isotropic turbulence. Considering the tensor
L∗

ij = S∗
ikWkj + S∗

jkWki , where S∗
ij = 1/2 (A∗

ij + A∗
ji), Wij = 1/2 (A∗

ij − A∗
ji), vortex sheets

are identified as the regions where the largest eigenvalue (λL) of L∗
ij (discarding the

one associated with the eigenvector that is most aligned with the vorticity vector)
is positive. If one considers a two-dimensional parallel flow (i.e. pure shear), λL is
proportional to the square of the vorticity modulus (λL =ω2/2). We then introduce
the vorticity-like variable

ωs =
√

2 λL, (3.3)

and define vortex sheets as those regions where ωs exceeds a physically relevant
threshold (ε). A physically relevant value for ε is selected by analysing the conditional
expected value of the vorticity modulus as a function of ωt and ωs , reported in figure 1.
In the figure the statistics are collected across the entire boundary layer, and all
quantities are normalized with respect to the local root-mean-square (r.m.s.) vorticity
ω′(y). The figure shows that, for ωt/ω

′ > 1 and ωs/ω
′ > 1, ωt and ωs are very well
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100 10

Figure 1. Conditional expected value of vorticity modulus (ω) as a function of the
vorticity-like variables ωs (- · - · -) and ωt (– – – –). The dotted line indicates identity.

correlated with the local vorticity modulus, and therefore can be interpreted as the
local strength of vortex tubes and vortex sheets, respectively. Similar representations
(not shown) are obtained in each part of the boundary layer. The figure further
suggests that the threshold level for vortex identification should be proportional to
the local value of the r.m.s. vorticity, and accordingly we set

ε(y) = α ω′(y), (3.4)

where α is a suitable non-dimensional constant (α � 1); a non-uniform threshold
for vortex identification was also used by del Álamo et al. (2006) in the analysis
of log layer vortex clusters. For eduction purposes, the mean shear is subtracted
out (Robinson 1991; Pirozzoli et al. 2008) and the vorticity variables ωs and ωt are
defined in terms of the fluctuating velocity field. As pointed out by Adrian et al.
(2000), the inclusion of the mean shear has the main effect of making the near-wall
shear layers stronger, but the qualitative nature of the results does not change (as we
have verified in a preliminary analysis of the present data).

The educed coherent structures are then classified as: (i) strong vorticity events, if
ω/ω′ � α; (ii) vortex sheets, if ωs/ω

′ � α; (iii) vortex tubes, if ωt/ω
′ � α; and (iv) ‘roll-

up’ events, if ωs/ω
′ � α and ωt/ω

′ � α. The condition (iv) identifies flow regions where
vortex tubes form either upon shear layer roll-up or upon interaction of multiple
vortex sheets (Horiuti & Fujisawa 2008).

4. Results
4.1. Instantaneous properties

To get qualitative insight into the spatial organization of the flow field, in figures 2
and 3 we report, respectively, the iso-surfaces of the fluctuating vorticity modulus
(ω/ω′ = 2) and of the two vorticity-like variables (ωs/ω

′ = 2, ωt/ω
′ = 2). The figures

confirm that the present ‘local’ eduction criterion based on ωs , ωt , is well suited
for characterizing the organization of flow regions with relatively large vorticity
in tube-like and sheet-like structures. The validity of local eduction criteria is also
quantitatively supported by the study of Bermejo-Moreno, Pullin & Horiuti (2009),
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Figure 2. Iso-surfaces of vorticity modulus (ω/ω′ = 2) projected onto the x–y and x–z
planes.

who showed perfect consistency with ‘global’ eduction criteria based on a curvelet
transform of the vorticity field.

Figure 3 shows that in the very near-wall region, the flow is mainly organized
into vortex sheets having small inclination with respect to the wall, whereas vortex
tubes become progressively more numerous moving away from the wall. A visual
analysis of many flow samples shows that vortex tubes generally have a cane-like
shape (Carlier & Stanislas 2005), but hairpin-shaped vortices are also frequently
observed, as shown in a previous study, where the statistical relevance of the visual
observations was discussed (Pirozzoli et al. 2008).

To analyse the spatial association between vortex tubes and sheets, in figure 4
we report the contours of ωs/ω

′ and ωt/ω
′ in streamwise wall normal and in cross-

stream planes for a single flow sample (the other flow samples yielding similar
representations). Throughout the boundary layer, large values of ωt/ω

′ (whose trace
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Figure 3. Iso-surfaces of tubes strength (ωt/ω
′ =2, dark grey) and sheets strength

(ωs/ω
′ =2, light grey) projected onto the x–y and x–z planes.

in the sampling planes is represented with a solid line) are often found in the proximity
of vortex sheets (grey shades in the figure), especially when the vortex sheets have
large curvature. A similar pattern was observed in isotropic turbulence by Ruetsch &
Maxey (1992), who proposed that shear layers undergo Kelvin–Helmholtz instability.
According to the interpretation of those authors, nonlinear effects of self-induction
lead to local increase of the curvature of the vortex sheet and vortex tubes form
upon the viscous collapse of the zones of intense vorticity (Baker & Shelley 1990).
In the case of wall-bounded flows, vortex tubes form through the eruption of near-
wall tongues of vorticity, which roll-up and assume the form of hairpin-like vortices
because of the action of the mean shear (Acarlar & Smith 1986, 1987).

The joint probability density function (p.d.f.) of ωs and ωt , reported in figure 5,
further supports spatial association of vortex sheets and tubes, as also observed
by Klewicki & Hirschi (2004) in a low-speed boundary layer. Even though the
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Figure 4. Visualization of vortex sheet and tubes in the x–y plane (a) and z–y plane (b).
Flooded contours represent iso-values of ωs/ω

′ (contour levels from 0 to 3, light to grey). Solid
lines denote the iso-line ωt/ω

′ =2.

distribution is rather spread out, the figure shows the occurrence of a ridge of the
p.d.f. around the line ωs =ωt , indicating that events with large ωt are preferentially
associated with large ωs events. The correlation ratio of the two variables (Kendall
et al. 1999) is 0.25, indicating moderate statistical dependence between ωs and ωt .

In isotropic turbulence (Horiuti & Fujisawa 2008) vortex tubes may form not only
upon (nearly two-dimensional) Kelvin–Helmholtz instability (referred to as mode I
by those authors), but also owing to interaction of multiple vortex sheets that cause
the formation of recirculating flow with a pressure minimum in the centre. With
the lowering of pressure and concentration of vorticity in the stagnation region, the
core of the vortex tube is formed and sheets are stretched and entrained by the core
because of the differential rotation induced by the tube and the sheet itself. The latter
mechanisms are characterized by orthogonality of the tube vorticity with respect to
the vorticity in (all or part of) the surrounding sheets and are referred to as modes
II and III by Horiuti & Fujisawa (2008). To establish the occurrence of the different
formation modes in wall-bounded turbulence, we analyse the distributions of the
orthogonal and in-plane vorticity associated with both vortex tubes and vortex sheets
in the x–y and z–y planes. In particular, for a plane normal to the ith direction, we
define a ‘normal’ tube strength as

ω̃n
t = ωt

|ωi |
ω

, (4.1)
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Figure 5. Joint p.d.f. of tubes and sheets strength. Contours levels corresponding to
10n, n= −5, . . . , 0 are shown. The dashed line indicates identity.

and ‘normal’ and ‘in-plane’ sheets strength components as

ω̃n
s = ωs

|ωi |
ω

, ω̃t
s = ωs

(∑
j 	=i ω

2
j

)1/2

ω
, (4.2)

where i stands for either the streamwise or the spanwise direction. The distributions
of the tube and sheet strengths are shown in figures 6 and 7 for the same flow sample
reported in figure 4. The figure confirms the occurrence (both in x–y and z–y planes)
of vortex tubes with axes nearly normal to the sampling plane (i.e. where ω̃n

t /ω
′ � 1),

surrounded by sheets having the same direction of the vorticity vector (i.e. where
ω̃n

s /ω
′ � 1) and that can be traced back to the occurrence of the Kelvin–Helmholtz

mechanism, but it also highlights the presence of sheets whose vorticity is skewed
with respect to the one in the neighbouring vortex tubes (i.e. where ω̃t

s/ω
′ � 1).

4.2. Conditional velocity fields

The ‘non-local’ relation between the velocity and the vorticity field is embodied in the
Helmholtz decomposition (Aris 1990), whereby an arbitrary vector field can be cast
as the sum of a solenoidal and an irrotational part, i.e.

u = ∇ × A + ∇ϕ, (4.3)

where the vector potential (A, constrained to be solenoidal) satisfies

∇2 A = −ω, (4.4)

and the velocity potential (ϕ) satisfies

∇2ϕ = ∇ · u. (4.5)

Given the vorticity distribution, in the presence of solid walls, the solenoidal part
of the velocity field can be reconstructed by solving (4.4), complemented with the
boundary conditions (Hirasaki & Hellums 1970)

∂Ay

∂y
= 0, Ax = Az = 0, (4.6)
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Figure 6. Visualization of mode I (a) and modes II–III (b) tube formation events in the x–y
plane. Solid lines indicate traces of ‘normal’ vortex tubes (i.e. zones where ω̃n

t /ω
′ = 1) grey

patches in (a) indicate ‘normal’ vortex sheets (i.e. zones where ω̃n
s /ω

′ � 1) and in (b) indicate
‘in-plane’ vortex sheets (i.e. zones where ω̃t

s/ω
′ � 1).

at y = 0. In the present DNS, the r.m.s. dilatational fluctuations are very small
compared with the vorticity fluctuations (always less than 5%), and the contribution
of the irrotational part of the velocity field is expected to be negligible. The
‘reconstructed’ velocity field, determined by solving (4.3)–(4.6) with ϕ =0, is indeed
nearly indistinguishable from the full DNS field, as shown in figure 8(a,b).

To isolate the kinematic contributions of vortex tubes and vortex sheets, we
reconstruct their induced velocity fields by first defining ‘truncated’ vorticity fields

ωv =

{
ω ωv � α ω′,

0 ωv < α ω′,
(4.7)

where the subscript v stands for either s (sheets) or t (tubes). As pointed out by
Jiménez et al. (1993), truncated vorticity fields defined as in (4.7) cannot be used
to consistently reconstruct a velocity field, since they do not satisfy (in general)
the divergence-free condition. As proposed by those authors, we then consider the
solenoidal projection of the truncated vorticity fields

ω̃v = ωv + ∇ψv, (4.8)

where the correction potential satisfies

∇2ψv = −∇ · ωv. (4.9)

As observed by Jiménez et al. (1993), the solenoidal projection yields minimal
enstrophy variations with respect to the truncated fields defined in (4.7). This is
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Figure 7. Visualization of mode I (a) and modes II–III (b) tube formation events in the z–y
plane. Solid lines indicate traces of ‘normal’ vortex tubes (i.e. zones where ω̃n

t /ω
′ = 1) grey

patches in (a) indicate ‘normal’ vortex sheets (i.e. zones where ω̃n
s /ω

′ � 1) and in (b) indicate
‘in-plane’ vortex sheets (i.e. zones where ω̃t

s/ω
′ � 1).

indeed verified in our case, in which the numerically projected vorticity fields are
virtually indistinguishable from the truncated ones inside the vortical structures, and
their total enstrophy differs by no more than 5 %. The velocity fields induced by
sheets and tubes are then reconstructed assuming

uv = ∇ × Av, (4.10)

where the velocity potential satisfies

∇2 Av = −ω̃v, (4.11)

with the boundary conditions (4.6). Figure 8(c) shows that the reconstructed
instantaneous streamwise velocity field associated with the educed vortex sheets
and the DNS exhibits the same spatial organization. In particular, vortex sheets are
closely associated with low-speed streaks (dark shades in the figure), whereas high-
speed streaks (that are less organized than the low-speed ones) are not evident in
figure 8(c).

The reconstructed velocity field associated with vortex tubes (shown in figure 8d ) is
not very organized, and it has very small amplitude in the buffer layer. Farther away
from the wall (see figures 9 and 10, where the results are reported at y+ = 40 and 100
respectively), consistent with the findings of Adrian et al. (2000), the streaks are found
to be wider and less elongated, and vortex tubes have an increasing importance, their
induced velocity becoming comparable (in magnitude) to that of vortex sheets.
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Figure 8. Contours of streamwise velocity fluctuations at y+ =15 (24 contours from −0.5 to
0.5, black to white). (a) DNS; (b) reconstructed from vorticity field; (c) reconstructed from
sheets only; (d ) reconstructed from tubes only. Solid lines indicate: (a) + (b) iso-line ω/ω′ =2;
(c) iso-line ωs/ω

′ = 2; (d ) iso-line ωt/ω
′ = 2.

4.3. Statistical properties

To characterize the quantitative contribution of the different types of vortical
structures to the wall layer dynamics, we have analysed the statistics of the DNS and
the velocity fields reconstructed from vortical structures. The results that follow are
presented for a threshold parameter α = 1, a different choice yielding qualitatively
similar results.

The distributions of the volume fractions (Vr ) of vortex sheets, tubes, strong vorticity
events and roll-up events are reported in figure 11. The figure confirms that the near-
wall region is populated mainly by vortex sheets, which contribute almost entirely
to the strong vorticity events; consistent with the findings of Stanislas et al. (2008)
and Pirozzoli et al. (2008), vortex tubes are found to be nearly absent in the viscous
sublayer. In the buffer layer, the volume fraction of vortex sheets decreases, whereas
vortex tubes become more frequent, being frequently associated with roll-up events.
In the log layer, the volume fractions of sheets and tubes attain an approximately
constant value (of comparable magnitude), and the percentage of roll-up events is
approximately 60 % of the total number of tubes.
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Figure 9. Contours of streamwise velocity fluctuations at y+ = 40 (24 contours from −0.5 to
0.5, black to white). (a) DNS; (b) reconstructed from vorticity field; (c) reconstructed from
sheets only; (d ) reconstructed from tubes only. Solid lines indicate: (a) + (b) iso-line ω/ω′ = 2;
(c) iso-line ωs/ω

′ = 2; (d ) iso-line ωt/ω
′ = 2.

To get some insight into the dynamical significance of sheets and tubes, we
have analysed their contributions to the mean momentum balance (through the
turbulent shear stress τxy = ũ′′v′′) and to the turbulence kinetic energy and enstrophy

balances. The transport equation for the turbulence kinetic energy (k = 1/2 ũ′′
i u

′′
i ) in a

compressible flow is cast in the form (Pirozzoli, Grasso & Gatski 2004)

∂ρk

∂t
=Ck + Tk + Pk + Vk + Dk + Kk, (4.12)

where Ck , Tk , Pk , Vk and Dk represent, respectively, the contributions of mean
advection, turbulent transport, production by mean velocity gradient, viscous diffusion
and viscous dissipation. The term Kk accounts for the direct effect of compressibility
through pressure–dilatation correlation and mass diffusion. The explicit expressions
for the various terms are as follows:

Ck = −∂ρũj k

∂xj

, (4.13)

Tk = − ∂

∂xj

[
1

2
ρ ˜u′′

i u
′′
i u

′′
j + p′u′′

j

]
, (4.14)
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Figure 10. Contours of streamwise velocity fluctuations at y+ = 100 (24 contours from −0.5
to 0.5, black to white). (a) DNS; (b) reconstructed from vorticity field; (c) reconstructed from
sheets only; (d ) reconstructed from tubes only. Solid lines indicate: (a) + (b) iso-line ω/ω′ =2;
(c) iso-line ωs/ω

′ = 2; (d ) iso-line ωt/ω
′ = 2.

Pk = −ρ ũ′′
i u

′′
j

∂ũi

∂xj

, (4.15)

Vk =
∂

∂xj

(
σ ′

ij u
′′
i

)
, (4.16)

Dk = −σ ′
ij

∂u′′
i

∂xj

, (4.17)

Kk = p′ ∂u′′
i

∂xi

+ u′′
i

(
∂σ ij

∂xj

− ∂p

∂xi

)
, (4.18)

where the tilde denotes the Favre averaging operator and the double prime denotes
fluctuations with respect to Favre averages, i.e.

f̃ =
ρf

ρ
, f ′′ = f − f̃ .

The transport equation for the enstrophy (Ω =1/2 ω′
iω

′
i) is cast in a form such

that all terms are formally identical to their incompressible counterparts (Tennekes &
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Figure 11. Volume fraction of strong vorticity events (- - - -), vortex sheets (- · - · -), vortex
tubes (– – – –) and ‘roll-up’ events (· · · · ·).

Lumley 1972),

∂Ω

∂t
= CΩ + TΩ + PΩ + SΩ1

+ SΩ2
+ SΩ3

+ VΩ + DΩ + KΩ, (4.19)

where

CΩ = − uj

∂Ω

∂xj

, (4.20)

TΩ = − ω′
iu

′
j

∂ω′
i

∂xj

, (4.21)

PΩ = − ω′
iu

′
j

∂ωi

∂xj

, (4.22)

SΩ1
= ωj ω′

i

∂u′
i

∂xj

, (4.23)

SΩ2
= ω′

iω
′
j

∂ui

∂xj

, (4.24)

SΩ3
= ω′

iω
′
j

∂u′
i

∂xj

, (4.25)

VΩ = ν
∂2Ω

∂x�∂x�

, (4.26)

DΩ = − ν
∂ω′

i

∂xj

∂ω′
i

∂xj

, (4.27)

KΩ = ω′
iν

′ ∂2ωi

∂x�∂x�

+ ω′
iν

′ ∂2ω′
i

∂x�∂x�

+ ω′
i F

′
i , (4.28)

and

Fi = −ωi

∂uk

∂xk

− 1

ρ2
εijk

∂ρ

∂xj

∂p

∂xk

+ εijk

∂

∂xj

(
1

ρ

∂σk�

∂x�

)
− ν

∂2ωi

∂x�∂x�

. (4.29)
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Figure 12. Distribution of turbulence kinetic energy (a), turbulent shear stress (b) and
enstrophy (c) as a function of wall distance in wall units: DNS (——); strong vorticity
events (- - - -); vortex sheets (- · - · -); vortex tubes (– – – –); ‘roll-up’ events (· · · · ·).

The term CΩ is associated with mean advection of enstrophy; TΩ is the turbulent
transport term, involving third-order velocity–vorticity correlations; PΩ is associated
with enstrophy production owing to mean vorticity gradient (the counterpart of
the Pk term in the kinetic energy budget); SΩ1

is associated with the interaction
of the fluctuating stretching vector (ω′ · ∇u′) with the mean vorticity; SΩ2

is a
production/destruction term associated with the mean velocity gradient; SΩ3

is due to
self-stretching of the fluctuating vorticity field; VΩ accounts for viscous diffusion of
enstrophy and DΩ for viscous dissipation; and KΩ incorporates all terms responsible
for the direct effect of compressibility.

The distributions of turbulence kinetic energy, turbulent shear stress and enstrophy
associated with sheets, tubes and strong vorticity events (evaluated from the respective
reconstructed fields) are reported in figure 12, as a function of the wall distance. The
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Figure 13. Turbulence kinetic energy budget (only leading terms are shown). (a) DNS; (b)
vortex sheets; (c) vortex tubes. �, Pk; �, Tk; �, Vk; �, Dk . The dotted line indicates the sum
of all terms on the right-hand side of (4.12). All terms are scaled with respect to ρwu4

τ /νw .

figure indicates that strong vorticity events provide a substantial contribution to
both the overall turbulence kinetic energy and shear stress (about 60 %) and to the
enstrophy (about 70 %). Vortex sheets are responsible for large part of the effect
of vortical structures, and they dominate the inner layer dynamics. Tubes become
dynamically important in the outer layer (y+ � 60, corresponding to y/δ � 0.18), but
their collective contribution is less significant than the one associated with sheets. The
same conclusions also apply (the figures being omitted) to the individual components
of the Reynolds stress and the vorticity fluctuations.

The distributions of the various terms in the kinetic energy budget are reported in
figure 13 (for clarity, only the most significant terms are included). With good accuracy,
the terms on the right-hand side of (4.12) add up to zero, thus confirming that statistics
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Figure 14. Enstrophy budget (only leading terms are shown). (a) DNS; (b) vortex sheets; (c)
vortex tubes. �, SΩ1

; �, SΩ2
; �, SΩ3

; �, VΩ ; �, DΩ . The dotted line indicates the sum of all
terms on the right-hand side of (4.19). All terms are scaled with respect to u5

τ /ν
3
w .

are properly converged. As also found in canonical incompressible boundary layers,
the budget in the near-wall region is characterized by the equilibrium between viscous
diffusion and dissipation, whereas production balances dissipation in the outer layer.
The kinetic energy budgets associated with vortex sheets and vortex tubes, reported
in figures 13(b) and 13(c), respectively, support the importance of vortex sheets in the
mechanisms of kinetic energy production, transport and dissipation, whereas vortex
tubes only provide minor contributions for y+ � 60.

The overall enstrophy budget has been depicted in figure 14(a) (only the most
significant terms of (4.19) are reported). Again, a satisfactory balance of the various
terms is obtained. The figure shows that in the very near-wall region, viscous
diffusion balances dissipation, whereas in the buffer region, dissipation is balanced by
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production owing to vortex stretching (given by the terms SΩ1
, SΩ2

, SΩ3
). Consistent

with the order of magnitude analysis reported by Stanislas et al. (2008), the only
production term left at distances from the wall y+ > 40 is the one associated with
self-stretching of the fluctuating field. The enstrophy budgets associated with vortex
sheets and vortex tubes, reported in figures 14(b) and 14(c), confirm dominance of
sheets in the vorticity dynamics. A negative imbalance is observed in the budgets
associated with vortex sheets and tubes, thus implying a net decrease of enstrophy in
the zones where vorticity is largest. As pointed out by one of the referees, such effect
is likely to be related to the occurrence of negative vortex stretching in regions with
intense vorticity (Horiuti & Fujisawa 2008).

5. Structural properties of vortex sheets
The structural properties of vortex tubes (which are essentially one-dimensional

objects) in wall-bounded turbulent flows are relatively well understood, having been
investigated in detail by Tanahashi et al. (2004), Carlier & Stanislas (2005), Das et al.
(2006) and Pirozzoli et al. (2008). On the contrary, the geometrical properties of
vortex sheets (which are essentially two-dimensional in nature) are more difficult to
characterize and have not received comparable attention.

To get some insight into the spatial organization of vortex sheets, we determine
their size (Lj , denoting the length scale in the j th direction) and their inclination with
respect to the wall (θs) by analysing the two-point correlation coefficient based on ωs ,

R(�x, �y, �z; y) =
〈ω′

s(x + �x, y + �y, z + �z, t) ω′
s(x, y, z, t)〉〈

ω′2
s (x, y, z, t)

〉1/2 〈
ω′2

s (x, y + �y, z, t)
〉1/2

, (5.1)

where the brackets denote averaging with respect to time and the spanwise and
streamwise directions, and y represents the distance from the wall of the point
around which statistics are collected. The characteristic length scales are determined
by considering the extent of the zone where R is larger than a suitable threshold value
(here we arbitrarily select R � 0.1), and the expected inclination angle θs is obtained
by linear least-square fit of R in the x–y plane.

The distributions of the two-point correlation coefficient in the coordinate planes
are reported in figure 15 at various distances from the wall (y+ = 5, 20, 50). The maps
exhibit a strongly elongated shape in the streamwise direction in the near-wall region,
whereas they assume a more compact shape at y+ = 50. In this respect, we must recall
that the two-point correlation maps are to be interpreted in statistical sense only,
since they are obtained by averaging over sheets with different orientations. In the
near-wall layer, the constraining effect of the wall forces the sheets to be preferentially
aligned with the wall. Moving away from the wall, sheets (while still being elongated
in the streamwise direction owing to the effect of the mean shear) have more random
instantaneous orientations and, consequently, the statistically averaged structures are
more ‘isotropic’.

It is interesting to observe that the maps exhibit a secondary lobe located above
(respectively, below) the primary one at y+ = 5 (respectively, y+ =20). To ascertain
the significance of the secondary lobes, we have analysed the conditional expected
field of the ‘signed’ vortex sheet strength in the x–y plane

ω̃s = ωs sign(ωz). (5.2)

The conditional expected signed sheet strength (satisfying the condition ω̃s/ω
′(y) � −1,

which corresponds to shear layers whose vorticity has the same sign as the mean
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Figure 15. Distribution of two-point correlation coefficient of ωs in the three coordinate planes
at different values of y (y+ = y+ + �y+). (a) Streamwise/wall-normal plane; (b) wall-parallel
plane; (c) cross-stream plane. Ten equally spaced contour levels are shown from 0.1 to 1.

vorticity) is reported in figure 16. This figure shows that the secondary lobes in the
two-point correlation coefficient correspond to secondary vortex sheets that have
vorticity of opposite sign with respect to the primary ones. This observation can be
interpreted as the indication that near-wall shear layers often (in statistical sense)
come in pairs, stacked one on top of the other.

The distributions of Lj and θs as a function of the distance from the wall are
depicted in figure 17. To reduce numerical noise, the data have been averaged in bins
of approximately 10 wall units. Consistent with the findings of Johansson et al. (1991),
the characteristic length of shear layers in the near-wall region is of O(200) wall units,
whereas their size in the cross-stream and wall-normal directions is, respectively, of
O(50) and O(10) wall units. In the log layer, the length scale in all three coordinate
directions is about 100 wall units. The results indicate that for 0 � y+ � 20, the
inclination angle with respect to the wall increases almost linearly from 0◦ to 12◦,
and it attains a roughly constant value of 10◦ in the log layer, which compares well
with experimental data. In particular, Johansson, Alfredsson & Eckelmann (1987)
reported an average inclination angle of about 7◦ in the viscous sublayer and 20◦ in
the buffer region; Labraga et al. (2002) showed that shear layers have an inclination
angle of approximately 5◦ for 2.5 � y+ � 30 and approximately 15.5◦ for y+ � 30.

6. Discussion and conclusions
The dynamical relevance of vortex sheets and tubes in wall-bounded turbulence

has been investigated through statistical analysis of a DNS database of a supersonic
turbulent boundary layer at M = 2, Reθ ≈ 1350. An eduction technique to extract
sheets and tubes based on the definition of suitable vorticity-like variables has been

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
99

31
56

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009993156


Dynamical relevance of coherent structures 345

100

50

0

y+

100

50

0

y+

y–+ = 5

100

50

0

y+

–100 –50 0 50 100

y–+ = 20

–100 –50 0 50 100

Δx+

y–+ = 50

–100 –50 0 50 100

(a)

(b)

(c)

Figure 16. Conditional expected field of signed vortex sheet strength ω̃s/ω
′(y) in the x–y

plane for different values of y(y+ = y+ + �y+). Sixteen equally spaced contour levels are
shown from −3 to 3 (solid lines denote negative values).

developed and validated. The analysis has confirmed that the boundary layer is
populated by coherent vortical structures with concentrated vorticity organized as
either vortex sheets or vortex tubes, the former being far more numerous in the near-
wall layer (y+ � 40), whereas the latter only become numerically significant farther
away from the wall. The generation of vortex tubes obeys the mechanisms proposed
by Horiuti & Fujisawa (2008) and is closely associated with the roll-up (mode I) and
the interaction (modes II and III) of vortex sheets. In the log layer, the association
between tubes and sheets is weaker. To isolate the ‘non-local’ dynamical contributions
of coherent structures, an algorithm based on the solution of the Poisson equation for
the vector potential has been developed. On the basis of the current analysis, vortex
tubes do not seem to play a dominant role in the turbulence dynamics. Indeed, shear
layers are found to provide a large collective contribution to the mean momentum
balance (through the Reynolds shear stress) and to the turbulence kinetic energy
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Figure 17. Distribution of characteristic length scales (a) and average inclination angle (b)
of vortex sheets as a function of wall distance: Lx (——); Ly (- - - -); Lz (- · - · -); θs (· · · · ·).

and enstrophy balances. This is especially true in the inner layer, where most of
turbulence production occurs and where the mechanisms responsible for turbulence
self-sustainment take place. Vortex tubes play an important role in the outer layer, but
their collective dynamical contribution is less significant than the one associated with
vortex sheets. Shear layers are found to be strongly elongated objects, with length of
O(200) wall units and inclination of O(10◦) at most, throughout the boundary layer
and exhibit a statistical preference to come in stacked layers with opposite-signed
vorticity.

A study of the existing literature shows that while shear layers are often mentioned
in the description of the wall-layer dynamics, their dynamical relevance has never been
quantified. One of the reasons may be that, since the pioneering work of Robinson
(1991), the commonly used algorithms for the eduction of coherent structures are
specifically designed to extract regions of swirling motions, and therefore are not
capable of identifying shear layers by their own nature. Another difficulty consists in
isolating the conditional dynamical contribution of the different types of structures
encountered in experiments and DNS, since vortex sheets and tubes (especially in the
near-wall layer) are closely associated.

Note that the canonical hairpin vortex paradigm (Adrian 2007) does account for
the co-existence of vortex tubes and shear layers, whereby an horseshoe-shaped
vortex tube (or a ‘packet’ of vortex tubes) triggers an ejection of low-speed fluid,
whose interaction with faster upstream fluid causes the formation of a shear layer on
the back of the hairpin. Vortex-based models relying on ‘forests’ of hairpin-shaped
vortex tubes (Perry & Chong 1982; Marusic 2001) yield accurate predictions of
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many of the statistics of turbulent boundary layers, supporting the notion that the
tubular part of the hairpin vortices plays the most important role in wall turbulence
dynamics.

Previous studies aimed at assessing the dynamical contribution of coherent vortical
structures showed that packets of hairpin-shaped vortices are associated with regions
of intense turbulent shear stress. Ganapathisubramani et al. (2003) found that 28 %
of the total Reynolds stress in the log layer is associated with hairpin packets, which
occupy approximately 4 % of the total volume. Our study confirms that in the log
layer, strong vorticity events account for up to 60 % of the total kinetic energy (a
similar percentage is also found for the turbulence shear stress), and the volume
fraction of vortex tubes is rather small. However, our analysis suggests that Reynolds
stress generation is most likely associated with the shear layers, rather than with the
tubular tips of the hairpins. Similar claims, although based on qualitative observations,
were also made by Liu et al. (1991).

The results of the present study are consistent with the hairpin vortex paradigm,
but suggest that the formation of hairpins is originally associated with the eruption of
three-dimensional shear layers from the near-wall region and that vortex tubes form
following mechanisms of collapse and interaction of parent shear layers. Furthermore,
our ‘non-local’ analysis of the velocity fields induced by tubes and sheets suggests that
the latter have a more important collective dynamical effect, being closely associated
with low-speed streaks and being responsible for a significant (and possibly dominant)
contribution to turbulence kinetic energy and Reynolds stress. More investigations
should be directed to incorporate the effect of vortex sheets in mechanistic vortex-
based models of wall turbulence.

The support of the CINECA supercomputing consortium through the 2008 grant
‘Direct numerical simulation of boundary layers at high Mach numbers’ is gratefully
acknowledged.
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