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Tumbling wings are one of Nature’s many tricks to enhance the dispersal efficiency
of flying seedpods. However, the interplay between the seedpod morphology and
its dispersal range is not well understood. Here, we investigate the question of how
planform geometry affects two-dimensional tumbling flight by designing wings of
various planform and length-to-width ratios. Through a combination of experiments
and modelling, we compare the wings’ flight characteristics, specifically the rotation
rate and descent angle, both of which are key parameters in the wing’s ability
to drift away from its initial location. Starting from the quasi-steady flight model
proposed by Wang et al. (J. Fluid Mech., vol. 733, 2013, pp. 650–679), we derive
theoretical predictions of the performance of wings of arbitrary planform. Upon further
simplifications, we arrive at a performance index based purely on wing geometry and
we use it to obtain theoretically optimal wing shapes. These optimal predictions are
then tested experimentally. We conclude by discussing the advantages and limitations
of the theoretical approach and its utility in informing the design of aerodynamically
efficient tumbling wings.

Key words: swimming/flying, low-dimensional models

1. Introduction
A thin rectangular plate tumbles spontaneously along its longest axis as it falls

in air (Maxwell 1853). Tumbling generates lift, due to the so-called ‘Magnus effect’
(Magnus 1853), which causes the wing to drift horizontally (Mahadevan, Ryu &
Samuel 1999). This tumbling-induced drift is one of many strategies exploited
by seeds to fly away from parent trees and spread spatially (Vogel 1994). Other
noteworthy strategies improving dispersal efficiency include: auto-rotation around a
vertical axis (Norberg 1973; Lentink et al. 2009; Varshney, Chang & Wang 2012;
Lee, Lee & Sohn 2014); gliding (Azuma & Okuno 1987); and vortex-induced drag
enhancement (Greene & Johnson 1990; Cummins et al. 2018). While auto-rotation
and drag enhancement lead to substantial increase in the seedpods’ flight time, they
do not intrinsically generate drift and therefore rely on wind gusts to effectively carry
the seed away from its parent tree. In contrast, the tumbling flight mode produce drift
per se, and allows dispersion in windless or even breezy conditions (Matlack 1987),
likely giving trees that rely on them, such as A. Altissima, an invasive species
(Kowarik & Säumel 2007), a clear edge for efficient reproduction.

† Email address for correspondence: kanso@usc.edu
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FIGURE 1. Experimental apparatus and methods. (a) Wings are tested by releasing
them edge on with no linear or rotational velocity and measuring typical characteristics
such as rotational speed Ω and descent angle β. (b) In vivo examples illustrating the
variety of geometries of winged seedpods: Alsomitra macrocarpa (gliding); Acer griseum
(auto-rotating); Ailanthus altissima (tumbling – this study). (c) The two families of
planform shapes initially considered in this study. (d) Wings kinematics and performance
were studied by means of a quasi-steady, quasi-two-dimensional model.

The dynamics of a tumbling plate is substantially more complicated than that of
a fixed wing due to the complexity of the induced flow (Lugt 1983; Ruifeng 2015).
This complication hinders analytical developments and has led to a large body
of experiment-based studies, both in free fall and in a fixed, more controlled
configuration (Dupleich 1941; Smith 1971; Iversen 1979; Lugt 1983; Andersen,
Pesavento & Wang 2005b). The vast majority of these studies focused on the
canonical case of a uniform rigid rectangular wing falling in air, or exposed to
a constant stream of air. Only recently has attention been directed to variations
of this elementary framework, for instance with the addition of wing flexibility
(Tam et al. 2010), mass inhomogeneity (Huang et al. 2013), asymmetric changes
to geometry (Varshney, Chang & Wang 2013) or variations in the wing slenderness
(Wang et al. 2013). Wang et al. (2013) quantified the role of the wing’s slenderness,
showing that long rectangular wings fly significantly better than short ones: while
slenderness has been exploited for centuries in conventional, fixed-wing aeronautics
(Anderson 2001), its effect was found to be more pronounced in tumbling wings.

Here, we aim to understand the effect of the wing planform on tumbling flight.
We are particularly interested in quantifying how the wing’s spinning rate and
performance change as the wing geometry deviates from the canonical rectangular
shape. In our experimental set-up (figure 1a), the wings are released edge on (±3◦),
with no translational or angular velocity from an electromagnetic clamp, and allowed
to fall 1.40 m vertically. To make sure the wings fall in a controlled and quiescent
environment, the set-up is placed in an air-conditioned room at 22 ◦C, away from
vents, and is operated remotely to avoid disturbances. Upon release, the pitching
moment of the lift force quickly initiates rotation and the wing quickly settle into a
steady tumbling at a constant time-averaged rotation rate, in a regime well beyond
the fluttering–tumbling transition (Belmonte, Eisenberg & Moses 1998). We observe
the terminal rotation rate, reached in all cases within 80 cm of fall, to be independent
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of the inevitable variability of initial conditions (drop angle) in our experiments. The
tumbling motion creates substantial lift and induces a horizontal drift, see figure 1(a).
Trajectories are captured in their entirety using a high-speed camera (Vision Research
Phantom Miro M-110) at 400 frames per second and 1280× 800 resolution, covering
a 2.4 × 1.5 m field of view (converting to 0.045 pixel/plate width). A mirror is
positioned so that the camera simultaneously records the side and back views of the
wing. Using an in-house image processing script that utilizes both views, we quantify
the instantaneous angular velocity θ̇ and linear velocity v. These flight characteristics
fall in the range θ̇ = 40–80 rad s−1 and v = 1.45–1.65 m s−1. The wing eventually
reaches a periodic tumbling regime, with constant time-averaged speed V = 〈v〉 and
time-averaged rotation rate Ω = 〈θ̇〉. Here, 〈·〉 is a time integral over one rotation
period divided by the period of rotation. A minimum of three full rotations are used
to calculate the time-averaged values of Ω and V for each trial.

We define the gravitational velocity scale Vg =
√

2(ρs/ρ − 1)gh, where ρs and ρ

are the densities of the wing and of air, respectively, h is the wing thickness, and
g is the gravitational acceleration. The typical Archimedes number associated with
the flow around the wing Ar = WVg/ν, with ν being the kinematic viscosity of air,
is close to 4000 in all experiments. We also use Vg to construct the dimensionless
Strouhal number St = ΩW/2πVg, where W is the mid-section width. The Strouhal
number is a non-dimensional measurement of the wing’s angular velocity. Flight
performance is based on the terminal descent angle β, defined as the angle between
the horizontal direction and the average velocity vector in the quasi-steady regime
(figure 1a). Smaller descent angle indicates better performance. The flight range is
defined as the total horizontal distance travelled by the wing from the dropping point,
and it naturally increases when the descent angle decreases. However, unlike the
flight range, the descent angle is independent of the initial conditions and transient
dynamics, and is therefore a more universal measurement of flight performance.

Wings are made of three strips of 100 µm thick printer paper (ρs = 760 Kg m−3),
held together with a thin layer of glue of negligible mass. The wing’s mass is
expressed by m = ρsSh, where S is the wing’s planform area. We first consider
two families of wing geometries: sharp shapes and tapered shapes, as illustrated
in figure 1(c). These families correspond to two different strategies for re-shaping
a rectangle of length L and width W, by trimming, into a lozenge of the same
length L and mid-width W. In the family of sharp shapes, the wing tips are trimmed
symmetrically in a linearly decreasing fashion, forming sharp tips while leaving
the middle of the wing intact. In the second family, wings are tapered by linearly
decreasing the width from the mid-section of the wing (width W) to its tips. In both
families, wings are defined by two non-dimensional parameters: the length-to-width
ratio L/W, ranging between 2.85 and 5.7 in this study, and the shape parameter
s= S/LW. Here, it is worth distinguishing between the length-to-width ratio L/W and
the aspect ratio λ= L2/S of the wings. The shape parameter s varies between s= 1
(control rectangular shape) and s = 0.5 (lozenge shape). These two extremes aside,
shapes for a given s differ between the two families. All wings have equal mass per
unit area (wing loading) ρsh. Additionally, wings for a given L/W and s have the
same mass, independently of the family it belongs to.

These two families of shapes are borrowed from existing engineered or naturally
occurring shapes. Sharp shapes are adopted by some winged seedpods (see figure 1b),
while tapered shapes are standard in aircraft wings. The latter are known to generate a
lower amount of induced drag compared to a rectangular planform (Anderson 2001)
but these conclusions are obtained at a fixed angle of attack and may not apply to
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tumbling wings. The goal of the present study is to compare the performance of
these two families of tumbling wings and to develop a set of tools for evaluating the
performance of wings of arbitrary planform.

The organization of this work is as follows. In § 2, we clarify the role of aspect
ratio, which is known to significantly affect the performance of rectangular wings
(Wang et al. 2013). In § 3, we generalize the model adapted from Wang et al. (2013)
to arrive at fully analytical predictions of tumbling rate and flight performance for
wings of any geometry. We test the validity of the model for the two families of
wings described above. We show that the wing’s performance is closely tied to the
Strouhal number (tumbling rate), with higher Strouhal number typically indicating
higher performance. We also show that, while two-dimensional predictions provide
the right trend and prove useful to compare and rank the wing shapes, ad hoc aspect
ratio corrections (Oswald efficiency) have to be incorporated into the model to obtain
near-perfect agreement with experimental observations. In § 4, we derive a simple,
universal performance index, independent of aerodynamic parameters. We use the
performance index to identify, through an optimization routine, a family of shapes
with higher performance than the sharp and tapered wing families and we verify our
prediction experimentally.

2. Rectangular wings

We follow the approach of Wang et al. (2013) and write the equations of motion for
tumbling wings in the quasi-steady regime, where the wing’s linear velocity, angular
velocity and descent angle have all reached their terminal values. We decompose the
forces acting on the wing into lift forces F(·) acting perpendicularly to the wing’s
trajectory, and drag forces D(·) acting parallel to the trajectory. The time-averaged
balance of forces and moments are given by (Wang et al. 2013)

Fr + Fl + Fa −m′g cos β = 0, (2.1a)
Dr +Dl +Da +Ds −m′g sin β = 0, (2.1b)

MF,l +MD,l +MF,r +MD,r +Ma +Ms = 0. (2.1c)

Here, m′ = m(1 − ρf /ρ) is the wing’s buoyancy-corrected mass. All forces and
moments are expressed in a time-averaged form.

We first focus on the lift balance (2.1a). According to the Kutta–Joukowski theorem,
the rotational lift force Fr is directly proportional to the average circulation Γ around
the wing and is given by Fr = ρLΓ V . For rectangular wings, the rotation-induced
circulation is approximated by Γ = 1

2 CrW2Ω , where Cr is a non-dimensional
coefficient (Andersen et al. 2005b; Wang et al. 2013). This yields Fr =

1
2 CrρVΩW2L.

The time-averaged translational lift Fl is identically zero (Wang et al. 2013). The
added mass force in the perpendicular direction is Fa = −

1
2(m11 + m22)ΩV , where

m11 = (π/4)ρh2L and m22 = (π/4)ρW2L are the added mass coefficients for a
rectangular plate (Sedov 1965; Wang et al. 2013). Since h � W, it follows that
Fa ≈ −(π/8)ρVΩW2L. We compare Fa and Fr using Cr = π obtained from the
inviscid calculation of Munk (1925). We get that Fa is approximately four times
smaller than Fr in our experiments; thus, we neglect the added mass term Fa in (2.1a),
leaving Fr as the only lift force in our model.

For the drag balance (2.1b), we have the induced translational drag Dl, the induced
rotational drag Dr, the added mass drag Da and the dissipative drag Ds given by
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(Wang et al. 2013)

Dl =
π3λL2ρV2

g

24(1+ 2λ/π)2
, Dr =

1
8π
ρC2

r W4Ω2 ln (1+ 2λ), Ds=
1
2

CdρV2
g LW, (2.2a−c)

while the added mass force projected in the direction of translation is Da = 0 (Wang
et al. 2013). Here, Cd is a non-dimensional drag coefficient, to be fitted to our
experimental data. Note that the induced translational and rotational drag Dl and Dr

depend on the aspect ratio λ, while the dissipative drag Ds does not.
Lastly, the quasi-steady moments in (2.1c) consist of the moments induced by the

translational lift and drag, MF,l and MD,l, and the rotational lift and drag, MF,r and
MD,r, respectively, in addition to the added mass contribution, Ma, and the dissipative
moment, Ms. For a rectangular wing, the expressions for MF,l and MD,l depend on the
wing aspect ratio λ= L2/S (Wang et al. 2013)

MF,l =
π2ρλLW2V2

32(1+ 2λ/π)
, MD,l =−

π2ρλLW2V2

32(1+ 2λ/π)2
. (2.3a,b)

The moment due to rotational lift is given by

MF,r =
1
16ρCrLW3VΩ. (2.4)

The moments MD,r and Ma are both identically zero (Wang et al. 2013). Following
Andersen et al. (2005b) and Huang et al. (2013), we write the dissipative term Ms as
a function of Ω2 only,

Ms =
π

16
µρLW4Ω2. (2.5)

We now renormalize the equations of motion (2.1) and use the subscript ‘o’
to designate predictions for rectangular wings. Moreover, we assume that the
average translational velocity V is independent of λ and planform geometry, and
is approximately equal to the velocity scale Vg, as suggested by our experimental
data and the work of Wang et al. (2013). In our experimental measurements, we get
V ' 0.8Vg ± 0.03 (data not shown for brevity). Lastly, we renormalize all the forces
by 1

2ρSoV2
g , where So = LW is the area of the rectangular wing taken as reference.

The balance of lift forces (2.1a) becomes

πCrSto =m′g cos βo, (2.6)

and the balance of drag forces (2.1b),

Cd +
π3

12
A+πC2

r St2
oB=m′g sin βo, (2.7)

where A= λ/(1+ 2λ/π)2 and B= ln (1+ 2λ)/λ are two non-dimensional parameters.
We define the aerodynamic performance of the wing as the lift-to-drag ratio, obtained
by dividing (2.6) by (2.7),

cot(βo)=
πCrSto

Cd +π3A/12+πC2
r St2

oB
. (2.8)
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FIGURE 2. Effect of aspect ratio λ = L2/S on (a) tumbling rate and (b) aerodynamic
performance of rectangular wings. Performance is measured by cot(β), where β is
the descent angle. Our model (−) adapted from Wang et al. (2013) agrees well with
our experimental data. W = 4.2 cm. Data from Wang et al. (2013) are reproduced for
reference.

Likewise, we renormalize moments by 1
2ρLW2V2

g ; the moment balance (2.1c),
rewritten in non-dimensional form for a rectangular wing, yields

− 8πµSt2
o + (4/π)CrSto +C(λ)− A(λ)= 0, (2.9)

where C = λ/(1 + 2λ/π). Equation (2.9) is a quadratic equation in Sto where the
aspect ratio λ=L2/S appears as a control parameter while µ and Cr are two adjustable
parameters to be fitted from experimental data.

Expressions (2.8) and (2.9) completely describe the wings’ behaviour, and are
similar to the ones derived in Wang et al. (2013). Barring the simplified form of Ms
and the exclusion of the added mass lift force, the main difference is our choice to use
the velocity scale Vg in place of the terminal translational velocity V , in agreement
with our experimental data. This assumption results in considerable simplification.
For instance, equations (2.9) and (2.8) are now only one-way coupled, that is, the
non-dimensional tumbling rate Sto can be predicted independently from the force
balance. There are three adjustable parameters: µ, Cr and Cd. By fitting the model
based on our experimental data for rectangular wings, we get µ = 1.9, Cr = 2.7
and Cd = 1.08; these values are consistent with previous implementations of such
quasi-steady models (Andersen, Pesavento & Wang 2005a; Andersen et al. 2005b;
Tam et al. 2010; Huang et al. 2013; Wang et al. 2013).

In figure 2, we plot the non-dimensional tumbling rate and the flight performance
of six rectangular wings of aspect ratios ranging between 2.1 and 5.7. Comparing
our experimental data to Wang et al. (2013) shows that our results follow a similar
trend, albeit at larger values likely due to differences in the Archimedes (or Reynolds)
number. We also plot the corresponding predictions based on (2.9) and (2.8). The
theoretical predictions are in very good agreement for all aspect ratios, giving us
confidence to use and adapt this model for arbitrary geometry.

3. Wings of arbitrary geometry
We generalize (2.9) and (2.8) to wings with arbitrary geometry, where the

width w(x) varies along the span x of the wing. We use the blade element
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theory (Drzewiecki 1892) to determine the total moments acting on these wings
by integrating elementary moment elements along the full wing span. To this end,
we let x̂ = x/L and ŵ(x̂) = w(x)/W be the dimensionless location along the wing
span and dimensionless local width at x̂. The elementary moment element induced
by rotational lift is (1/16)ρCrVgΩ(W3ŵ3(x̂))L dx̂. Assuming that Cr is independent
of x̂ and integrating this expression over the wing span yields

ML,R =
1
16ρCrLW3VΩ

∫ x̂=1

x̂=0
ŵ3 dx̂. (3.1)

That is to say, ML,R is the product of the expression in (2.4) and the integral
∫ 1

0 ŵ3 dx̂.
We perform a similar integration for all other terms, and obtain the following moment
balance:

− 8πµSt2
∫ 1

0
ŵ4 dx̂+

4
π

CrSt
∫ 1

0
ŵ3 dx̂+ [C− A]

∫ 1

0
ŵ2 dx̂= 0. (3.2)

The first term that arises from the dissipative torque has the highest power in ŵ, and,
therefore, it is the most sensitive to the wing’s geometry.

We apply a similar approach to calculate the lift and drag forces. To this end, the
lift force induced by flow circulation is given by

F=πρCrLWV2
g St

∫ 1

0
ŵ2 dx̂. (3.3)

Renormalizing by 1
2ρSoV2

g , the dimensionless lift is

F=πCrSt
∫ 1

0
ŵ2 dx̂. (3.4)

Similarly, we calculate the dimensionless drag force D, and we define the flight
performance cot(β) of the wing as before

cot(β)=
F
D
=

πCrSt
Cd +π3A/12+πC2

r St2B

∫ 1

0
ŵ2 dx̂∫ 1

0
ŵ dx̂

. (3.5)

Equations (3.5) and (3.2) provide analytical predictions for the Strouhal number
and flight performance for wings with arbitrary geometries. Expression (3.5) can
be compared to (2.8) to highlight the change in performance relative to rectangular
wings

cot(β)
cot(βo)

=
St
Sto

∫ 1

0
ŵ2 dx̂∫ 1

0
ŵ dx̂

. (3.6)

The change in performance compared to the rectangular wings is closely tied to the
change in Strouhal number (dimensionless tumbling rate): an increase in Strouhal
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FIGURE 3. Non-dimensional tumbling rates of (a,b) sharp wings, and (c,d) tapered shapes
for length-to-width ratios: L/W= 2.9 (r), 3.6 (f), 4.3 (u), 5.0 (t) and 5.7 (p). (a,c) Raw
data; (b,d) data renormalized with respect to the predicted value for a rectangular wing
of the same aspect ratio λ= L2/S. Analytical two-dimensional predictions (dashed lines)
are in reasonable agreement for all shapes; prediction can be improved by applying an
Oswald efficiency e to the aspect ratio, accounting for the influence of geometry changes
on tip vortices (solid lines).

number results in increased performance, provided that it overcomes the decrease in
the value of the integral ratio

∫ 1
0 ŵ2 dx̂/

∫ 1
0 ŵ dx̂. This quasi-two-dimensional model

is based on the idea that integration of forces and moments along the span correctly
accounts for the modified flow around the wings, while three-dimensional effects
are lumped into the dependence of these forces and moments on the aspect ratio
λ= L2/S. Here, S is given by S= LW

∫ 1
0 ŵ dx̂. The underlying assumption is that the

wing tip vortices are not strongly affected by the change of width distribution.
In figure 3(a,c), we report the non-dimensional tumbling rate of sharp wings (a,b)

and tapered wings (c,d) obtained from experiments as a function of s = S/LW =∫ 1
0 ŵ dx̂ and for various length-to-width ratios L/W. Wings with the same length-to-
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width ratio are depicted using the same symbols, namely, L/W = 2.9 (r), 3.6 (f),
4.3 (u), 5.0 (t) and 5.7 (p). The tumbling rate globally decreases as the wing
morphs from the most deformed (lozenge) configuration s = 0.5 to a rectangular
wing s= 1. This makes intuitive sense, since the lozenge is a skinnier shape than its
rectangular counterpart of the same L, W and weight, it is expected to rotate faster
based on simple scaling arguments (Mahadevan et al. 1999). Less intuitive are the
strong variations between the two families. For sharp shapes, the dependence of St on
s is gradual, almost linear; for tapered shapes, St depends nonlinearly on s. A direct
comparison of St between the two families suggests that, for a given shape parameter
s, one trimming strategy induces a higher rotation rate than the other, leading to
higher performance as well.

Figure 3 shows that the tumbling rate is also affected by the wing’s length-to-width
ratio: St globally increases as L/W increases. The underlying reason is that the
increase in tumbling rate results from two main contributions: the decreasing influence
of wing tip vortices as the aspect ratio increase, which is a three-dimensional
effect, and the effect of the width distribution, which is a two-dimensional effect
directly accounted for in our model. There is a third, more intricate contribution: the
modification of induced drag due to the change in geometry (Hoerner 1949; Anderson
2001; Kroo 2001). In a first approach (λ-model), we assess the predictive power of
the model without considering this last contribution.

In order to isolate the effect of width distribution, we renormalize the raw data of
the tumbling rate by the theoretical value Sto for rectangular wings of the same aspect
ratio λ = S/L2. The renormalized graphs are shown in figure 3(b,d). Barring some
outliers in the shortest wings, the data for various lengths collapse to a single curve
for both families, which implies that the effect of aspect ratio is correctly subtracted
by this renormalization. The renormalization makes it even more evident that for a
given s, tapered shapes tumble significantly faster than sharp shapes. For example, for
s= 0.7, tapered shapes tumble at St≈ 1.35Sto, while the sharp shapes tumble at St≈
1.15Sto, implying that the wing’s geometry has a first-order effect on the tumbling
rate, and, likely, on the wing’s performance.

For sharp shapes, St/Sto changes monotonically between s = 0.5 and s = 1. For
tapered shapes, there is a distinct optimum at s ≈ 0.7. Because lift increases with
tumbling rate, see (3.3), it is tempting to think that these maxima are also reflected in
the flight performance. As we shall see, this is not the case. The reason lies in (3.6):
to guarantee a performance improvement, that is cot(β)/cot(βo)> 1, the increase of St
has to overcome the decrease in

∫ 1
0 ŵ2 dx̂/

∫ 1
0ŵ dx̂=

∫ 1
0 ŵ2 dx̂/s. The numerator is the

rotation-induced circulation, responsible for lift. Due to the competition between the
contribution of St and the geometric integral, the maxima of tumbling rate and flight
performance do not coincide.

We now compare the normalized tumbling rate St/Sto to the analytical model
in (3.2), depicted in figure 3 as a dashed line. The model agrees very well with
experimental data for sharp shapes and fairly well for tapered shapes. In particular,
the model predicts almost perfectly the value for the lozenge shape as well as the
general trend for the dependence of St/Sto on s. One notable discrepancy is that
the model consistently under-predicts the tumbling rate for tapered shapes (c,d).
This suggests the need for an additional empirical parameter to account for the
three-dimensional effects neglected in this quasi-steady model, such as the effect
of wing tip vortices. Wing tip vortices depend not only on the aspect ratio of the
wing but also on the variation in the wing’s width along its span. Following an
approach borrowed from low angle-of-attack aerodynamics (Anderson 2001), we
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propose a refined model (‘eλ-model’) incorporating an ad hoc efficiency factor e
(Oswald efficiency). In the refined model, e appears as a corrective factor to the
aspect ratio: λ is replaced by eλ in all equations containing λ. Here, we choose e
as a second-degree polynomial in s, independently of λ, which we fit to obtain the
best overall agreement for both the tumbling rate and the descent angle. The usual
definition of e uses an elliptical wing as a reference; elliptical wings are characterized
by the lowest induced drag, which implies that e < 1 (Anderson 2001). In contrast,
our definition uses the rectangular wing as a reference and allows the values of e to
be greater than one. Physically speaking, e is a measure of the relative drag induced
by wing tip vortices compared to this drag on a rectangular wing. An efficiency
factor e < 1 indicates that the wing behaves worse than a rectangular wing of the
same aspect ratio, in the sense that it experiences larger drag due to wing tip vortices;
e> 1 indicates a relatively better wing.

The Oswald efficiency is reported in figure 3 for a few representative shapes.
The lowest value (e = 0.9) is attributed to the lozenge shape, indicating it is a
poor planform shape with respect to wing tip vortices. The largest factor (e = 1.37)
corresponds to tapered shapes with s≈ 0.75; this optimum corresponds to a taper ratio
(tip to root width) close to 0.5. Interestingly, changes of e with geometry echo changes
of induced drag in tapered wings at a fixed angle of attack: tapered shapes exhibit
decreased drag relative to rectangular shapes (by approximately 8 % for a taper ratio
of 0.5), and lozenge shapes are characterized by increased drag (McCormick 1994).
Our correction factor e − 1 for the tumbling wings is approximately 30 %, which is
significantly larger than the changes in induced drag reported in McCormick (1994).
This is because tumbling wings are affected by strong length-wise vortices (Smith
1971; Lugt 1983), which are absent from the fixed, low angle-of-attack situation.
Moreover, due to the wing’s rotation, the variations of e alone are not sufficient to
predict the best shapes in terms of the flight performance cot(β), and should be
combined with predictions from our quasi-steady model.

We report the wing’s performance in figure 4. Panel (a,c) shows the values of
cot β for all wings. For a given length-to-width ratio, sharp wings show a slight
dip around s ≈ 0.7, but little change overall. Tapered wings, on the other hand,
show a clear optimum around s = 0.75 for all length-to-width ratios. To interpret
these patterns, we normalize the performance cot(β) by that of rectangular wings
from (2.8). The re-normalized data are displayed in figure 4(b,d). The data mostly
collapse onto a master curve, suggesting we have correctly subtracted the effect of
aspect ratio. Sharp shapes (a,b) show a steady, monotonic decrease in performance
compared to rectangular wings, while tapered shapes exhibit an optimal performance
at s≈ 0.85. The presence of this optimum is not reflected in the analytical λ-model
(dashed line), which predicts a gradual decrease of performance for both families.
This emphasizes the need for the introduction of the efficiency factor e. Moreover,
the maximum performance for tapered shapes (at s ' 0.85) does not coincide with
the maximum value of the efficiency factor (at s ' 0.75), which suggests that the
best performer benefits both from favourable three-dimensional effects and an optimal
width distribution.

Taken together, these results suggest that there exist non-rectangular planforms that
perform better than rectangular wings over a large range of aspect ratios. From the
shapes we tested, the best performer is a tapered shape, suggesting that it is more
advantageous to trim the wing along its entire length instead of only altering the tips
of the wing.

Our analytical λ-model satisfactorily predicts general trends and two extremes
(the lozenge and rectangular shapes), but it is unable to predict the presence of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

88
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.88


Shape optimization of tumbling wings 889 A9-11

0.8

1.8

1.0

1.2

1.4

1.6

0.6

0.8

1.0

0.4

1.2

1

1.31.37

1.24
e = 0.9

0.8

1.8(a) (b)

(c) (d)

1.0

1.2

1.4

1.6

co
t (

ı)

co
t(

ı)
/c

ot
(ı

o)
co

t(
ı)

/c
ot

(ı
o)

co
t (

ı)

10.975
0.95

0.925e = 0.9

Experiments

¬-model

0.6

0.8

1.0

0.4

1.2

S L
W

S
LW

Performance index p

e¬-model

In
cr

ea
sin

g 
L/

W
 

In
cr

ea
sin

g 
L/

W
 

0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 0.9 1.0

0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 0.9 1.0
s s

s = S/LW s

FIGURE 4. Flight performance of (a,b) sharp wings and (c,d) tapered shapes for length-
to-width ratios: L/W = 2.9 (r), 3.6 (f), 4.3 (u), 5.0 (t) and 5.7 (p). Performance is
indicated by cot(β), where β designates the descent angle; higher values indicate better
performance. (a,c) Raw data; (b,d) data renormalized with respect to the predicted value
for a rectangular wing of the same aspect ratio. Tapered shapes of a shape parameter
between 0.75 and 1 outperform their corresponding rectangular control. All other shapes
perform worse than the control. Fully analytical predictions (thin dashed line) are very
good for sharp shapes (a,b), and fair for tapered shapes (c,d); introducing the corrected
aspect ratio λe improves predictions for all shapes. The thick dashed line is the simplified
performance index (4.3).

optimal shapes for tapered shapes. Incorporating an ad hoc Oswald efficiency e
improves its accuracy and provides indirect information about the efficiency of
various planform shapes with respect to wing tip vortices. Yet, the original λ-model
is able to help identify shapes that are better than others. Pursuing that direction,
we show in the next section that the model can be used to compare and hierarchize
wings of various shapes for a given shape parameter.

4. Shape optimization
A more practical and insightful criteria for the influence of wing shape on

performance can be obtained by considering a further simplification of (3.2). The
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simplification comes from a direct comparison between the pre-factors 8πµ' 48 and
4/Cr ' 1.5, which suggests that we can neglect the second term in (3.2). To this
end, (3.2) becomes

− 8πµSt2
∫ 1

0
ŵ4 dx̂+ (C− A)

∫ 1

0
ŵ2 dx̂= 0. (4.1)

Solving for the Strouhal number, we obtain

St=

C− A
8πµ

∫ 1

0
ŵ2 dx̂∫ 1

0
ŵ4 dx̂


1/2

, (4.2)

where the negative root was eliminated because it has no physical meaning. The
Strouhal number for the rectangular control wing (characterized by

∫ 1
0 ŵn dx̂ = 1 for

n= 1, 2, 3, 4) is given by Sto =
√
(C− A)/8πµ.

Substituting St and Sto into (3.6), we arrive at

cot(β)
cot(βo)

=


∫ 1

0
ŵ2 dx̂∫ 1

0
ŵ4 dx̂


1/2 ∫ 1

0
ŵ2 dx̂∫ 1

0
ŵ dx̂

. (4.3)

Here, the wing performance depends only on three geometric integrals,
∫ 1

0 ŵn dx̂,
n = 1, 2, 4, that depend on the width distribution only, and it is independent of the
aerodynamic parameters Cr, Cd, A and B used to adjust the model. Equation (4.3)
is a straightforward and universal analytical prediction of the flight performance of
tumbling wings.

The performance index in (4.3) is shown in figure 4 by the dash-dotted line. The
general trend is similar to both the data and the eλ-model, albeit less accurate than
the latter. It is, however, much more straightforward to compute.

We illustrate the usefulness of the performance index in (4.3) by using it to uncover
a family of new candidates. In this optimization routine, we constrain the range of
possible geometries to a family of shapes described in terms of two non-dimensional
measurements: W1/W and W2/W, where W2 is the tip width, and W1 is the width
half-way from root to tip, as shown in the inset of figure 5. We then compute the
performance index for thousands of shapes with W1/W and W2/W between 0 and 1
while imposing W1 > W2 to produce realistic shapes, with monotonically decreasing
width from root to tip. We then keep the shapes that correspond to the highest (best
shapes) and lowest (worst shapes) values of the performance index for each value of
the shape parameter s.

We show in figure 5(a) the best and worst shapes obtained through this optimization
routine as a function of the parameter s (black line). These shapes can be split into
two categories: concave shapes characterized by W2 > (2W1 − W)/W and convex
shapes where W2 < (2W1 − W)/W. Tapered shapes, for which W2 = (2W1 − W)/W,
are added for reference (grey line). Concave shapes perform better between s' 0.64
and s= 1, while convex shapes perform better for s< 0.65. The maximum difference
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FIGURE 5. Flight performance as a function of s= S/LW. (a) Numerical results based on
the performance index. The percentage indicates the expected enhancement in performance
of the optimal shape relative to the tapered shape (light grey line) for the same s. Concave
shapes are the best performers for s>0.64; convex shapes are expected to take over below
this threshold value. (b) Flight performance, relative to the rectangular shape and corrected
for aspect ratio, of the two families of tapered (blue) and sharp (yellow) shapes discussed
in § 3, as well as the new family of concave shapes (red) suggested by the optimization
routine: experiments (symbols and thin line), and performance index (thick dashed-dotted
line). The new family outperforms the tapered and sharp wings for s . 0.75.

between the best and worst designs is approximately 5 % for s' 0.8. Tapered shapes
are consistently good for s > 0.85: their performance is close to that of the best
shapes, with less than 1 % difference. However, they are largely outperformed for
smaller s. Some of the designs obtained in this third family of wings are similar to
the ones we tested earlier: for instance, for s' 0.8, the worst performer, looks like a
sharp shape; for s' 0.64, it is a tapered shape.

To test these analytical predictions experimentally, we build a third family of shapes
(‘tapered–straight’). In figure 5(b), we report the experimental results based on the
new concave shape (tapered–straight) suggested by the optimization routine, shown
in red. We superimpose the data for the two families of tapered and sharp shapes
discussed in § 3 (tapered in blue, sharp in yellow). We also report the theoretical
performance index for each of these families (in dashed thick lines). Clearly, the
theoretical predictions do not quantitatively match with experimental measurements
(solid thin lines). However, the theoretical model exhibits some promising trends.
For instance, the performance index correctly predicts that the worst family is, by
far, the sharp shapes, and that the lozenge shape (s = 0.5) is the worst performer
of all shapes. Moreover, the general trend (decreasing performance as s decreases)
is well reproduced by the model. Finally, the tapered–straight wings inspired by the
optimization routine outperform wings from the other two families for nearly half of
the total range of s, namely, from s= 0.5 to s' 0.75.

There are also notable discrepancies between model and experiments. First, the
effect of changing geometry is globally stronger than predicted: the actual overall
performance drop from s = 1 to s = 0.5 is approximately 25 % in experiments
versus approximately 14 % in the model. The second, and perhaps the most
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striking difference, is that, in experiments, the tapered wings (blue) outperform
the tapered–straight wings (red) for s& 0.75. As we explained in § 3, we believe that
the enhanced performance of the tapered wings at and around s≈ 0.85 is likely due
to the effect of non-uniform width distribution on induced drag (not accounted for in
the quasi-steady model) which provides a large performance boost to tapered shapes.
Finally, while the overall hierarchy of performance between families is well predicted,
the range of superiority for the tapered–straight wings is somewhat shifted to smaller
values of s in the experiments, with predictions falling below the performance of the
two other families for s' 0.57, while actual wings retain superiority until s= 0.5.

Taken together, these results suggest that the performance index in (4.3) could be a
useful indicator of performance and can be used as a zero-order model in the design
of better tumbling wings. For instance, computing the performance index beforehand
in our case would have allowed us to rule out the ‘sharp’ shape family from the start
and discard it from the optimal wing search. However, the performance index should
be used as an indicator only, largely because it neglects three-dimensional effects due
to wing tip vortices – an effect with potentially large consequences (see § 3), and
ultimately, we must subject the top theoretical performers (such as blue and red wings
in figure 5b) to additional scrutiny using either experimental tests or more accurate
numerical models.

5. Conclusion

We investigated the role of geometry on the flight performance of tumbling wings.
We first looked at the tumbling rate and descent angle of planar wings pertaining
to two families of simple geometries, parameterized by the shape parameter s and
aspect ratio λ. We found that geometry has a strong effect on the flight performance,
even after subtracting the effect of aspect ratio. We wrote balance laws for the forces
and torques acting on the wing based on two-dimensional, quasi-steady aerodynamics.
We used the resulting equations to derive a performance parameter: the ratio of the
cotangent of the descent angle of the wing to that of a rectangular wing with the same
shape parameter. The agreement between the experimental data and the model spans
a large range of aspect ratios. This agreement gives the analytical model credibility
as a suitable tool to identify better geometries. We pushed the analysis further and
derived a simpler performance index, independent of the aerodynamic parameters, that
is a function of shape only. We illustrated the potential of this performance index as
a tool for wing shape optimization by applying it to a family of wings consisting
of two straight segments. We identified best (and worst) candidates for every shape
parameter: for shapes close to rectangles, concave shapes seem to perform better,
while for a narrow range of the shape parameter (near the lozenge shape), convex
shapes outperform their concave counterparts. To test the increase in performance
predicted by the model, we built a third family of wings with tapered–straight
(concave) shapes.

We experimentally compared the performance of these wings of the two families of
tapered and sharp wings. Despite the qualitative and quantitative differences between
the model predictions and the experimental findings, the theoretical performance index
was able to properly rank the three families according to their actual performance and
to predict performance change across most of the range of shape parameters. It is thus
a promising tool to quickly explore the space of possibilities and select favourable
shapes, with the understanding that they should be subject to additional scrutiny either
experimentally or computationally.
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This approach provides a robust and efficient framework for evaluating the
performance of tumbling wings and for quickly classifying wings of different shapes
according to their performance index. It can be viewed as a complementary tool to the
experimental shape optimization in Quinn, Lauder & Smits (2015) and Ramananarivo,
Mitchel & Ristroph (2019) and to the computational shape optimization in Kern,
Koumoutsakos & Eschler (2007) and Eloy (2013). Its utility can be extended
beyond the current set-up to develop hierarchical optimization tools that use such
a low-order approach to quickly sweep through the shape space and select shape
candidates to be probed further, either experimentally (as done here) or through
direct numerical simulations that account for fluid–structure interactions, as done
in Auguste, Magnaudet & Fabre (2013).

In future work, we will compare optimal shapes of tumbling wings to the shape
of natural seedpods, and we will extend our analysis to understand the effect of
environmental conditions on flight. These conditions can vary dramatically in the
presence of steady or unsteady wind or wind gusts. Seedpods lack active stabilization
mechanisms in the face of environmental disturbances and rely heavily on their
auto-rotation to stay suspended. Optimal wing shapes should thus be assessed under
different environmental conditions. Note that a deep understanding the performance
of biological and engineered flyers at moderate Reynolds numbers in the face of
environmental perturbations remains a challenge for current and future research.

It would also be interesting in future extensions of this work to assess the effect of
wing shape on performance under different modes of flight, including flapping flight.

A comparison of optimal wing geometries in active (flapping) and passive
(tumbling) flight would be interesting to extract general design rules as well as
to distinguish specific design criteria that depend on the flight mode. For example,
the optimal tapered–straight shape carries a remarkable resemblance to the planform
of certain birds. It is not clear whether or not this resemblance is due to aerodynamic
mechanisms that span multiple flight modes.

REFERENCES

ANDERSEN, A., PESAVENTO, U. & WANG, Z. J. 2005a Analysis of transitions between fluttering,
tumbling and steady descent of falling cards. J. Fluid Mech. 541, 91–104.

ANDERSEN, A., PESAVENTO, U. & WANG, Z. J. 2005b Unsteady aerodynamics of fluttering and
tumbling plates. J. Fluid Mech. 541, 65–90.

ANDERSON, J. D. 2001 Fundamentals of Aerodynamics, 3rd edn. McGraw-Hill Higher Education.
AUGUSTE, F., MAGNAUDET, J. & FABRE, D. 2013 Falling styles of disks. J. Fluid Mech. 719,

388–405.
AZUMA, A. & OKUNO, Y. 1987 Flight of a samara, alsomitra macrocarpa. J. Theor. Biol. 129,

263–274.
BELMONTE, A., EISENBERG, H. & MOSES, E. 1998 From flutter to tumble: inertial drag and Froude

similarity in falling paper. Phy. Rev. Lett. 81 (2), 345–348.
CUMMINS, C., SEALE, M., MACENTE, A., CERTINI, D., MASTROPAOLO, E., VIOLA, I. M. &

NAKAYAMA, N. 2018 A separated vortex ring underlies the flight of the dandelion. Nature
562, 414–418.

DRZEWIECKI, S. 1892 Méthode pour la détermination des éléments mécaniques des propulseurs
hélicoïdaux. Association technique maritime.

DUPLEICH, P. 1941 Rotation in free fall of rectangular wings of elongated shape. NACA Tech. Memo.
1201.

ELOY, C. 2013 On the best design for undulatory swimming. J. Fluid Mech. 717, 48–89.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

88
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.88


889 A9-16 L. Vincent, Y. Liu and E. Kanso

GREENE, D. F. & JOHNSON, E. A. 1990 The aerodynamics of plumed seeds. Funct. Ecol. 4 (1),
117–125.

HOERNER, S. 1949 Aerodynamic shape of the wing tips. Tech. Rep. 5752. Air Force Materiel
Command.

HUANG, W., LIU, H., WANG, F., WU, J. & ZHANG, H. P. 2013 Experimetal study of a freely falling
plate with an inhomogeneous mass distribution. Phys. Rev. E 88, 053008.

IVERSEN, J. D. 1979 Autorotating flat-plate wings: the effect of the moment of inertia, geometry
and Reynolds number. J. Fluid Mech. 92 (02), 327–348.

KERN, S., KOUMOUTSAKOS, P. & ESCHLER, K. 2007 Optimization of anguilliform swimming. Phys.
Fluids 19 (9), 91102.

KOWARIK, I. & SÄUMEL, I. 2007 Biological flora of Central Europe: Ailanthus altissima (mill.)
swingle. Perspect plant ecol. 7, 207–237.

KROO, I. 2001 Drag due to lift: concepts for prediction and reduction. Annu. Rev. Fluid Mech. 33,
587–617.

LEE, S. J., LEE, E. J. & SOHN, M. H. 2014 Mechanism of autorotation flight of maple samaras
(Acer palmatum). Exp. Fluids 55, 1718–4.

LENTINK, D., DICKSON, W. B., VAN LEEUWEN, J. L. & DICKINSON, M. H. 2009 Leading-edge
vortices elevate lift of leading-edge vortices elevate lift of autorotating plant seeds. Science
324, 1438–1440.

LUGT, H. J. 1983 Autorotation. Annu. Rev. Fluid Mech. 15, 123–147.
MAGNUS, G. 1853 Ueber die abseichung der geschosse. Poggendorfer Ann. Phys. 88, 604.
MAHADEVAN, L., RYU, W. S. & SAMUEL, A. D. T. 1999 Tumbling cards. Phys. Fluids 11 (1),

1–3.
MATLACK, G. R. 1987 Diaspore size, shape, and fall behavior in wind-dispersed plant species.

Am. J. Bot. 74 (8), 1150–1160.
MAXWELL, J. C. 1853 On a particular case of a descent of a heavy body in a residing medium.

Camb. Dublin Math. J. 9, 145–148.
MCCORMICK, B. W. 1994 Aerodynamics, Aeronautics and Flight Mechanics, 2nd edn. Wiley.
MUNK, M. M. 1925 Note on the air forces on a wing caused by pitching. NACA Tech. Notes 217,

1–6.
NORBERG, R. A. 1973 Autorotation, self-stability, and structure of single-winged fruits and seeds

(samaras) with comparative remarks on animal flight. Biol. Rev. 48, 561–596.
QUINN, D. B., LAUDER, G. V. & SMITS, A. J. 2015 Maximizing the efficiency of a flexible

propulsor using experimental optimization. J. Fluid Mech. 767, 430–448.
RAMANANARIVO, S., MITCHEL, T. & RISTROPH, L. 2019 Improving the propulsion speed of

a heaving wing through artificial evolution of shape. Proc. R. Soc. Lond. A 475 (2221),
20180375.

RUIFENG, H. 2015 Three-dimensional flow past rotating wing at low Reynolds number: a
computational study. Fluid Dyn. Res. 47, 045503.

SEDOV, L. I. 1965 Two-dimensional Problems in Hydrodynamics and Aerodynamics. Wiley.
SMITH, E. H. 1971 Autorotation wings: an experimental investigation. J. Fluid Mech. 50, 513–534.
TAM, D., BUSH, J. W. M., ROBITAILLE, M. & KUDROLLI, A. 2010 Tumbling dynamics of passive

flexible wings. Phys. Rev. Lett. 104, 184504.
VARSHNEY, K., CHANG, S. & WANG, Z. J. 2012 The kinematics of falling maple seeds and the

initial transition to a helical motion. Nonlinearity 25 (1), C1.
VARSHNEY, K., CHANG, S. & WANG, Z. J. 2013 Unsteady aerodynamic forces and torques on

falling parallelograms in coupled tumbling-helical motions. Phys. Rev. E 87, 053021.
VOGEL, S. 1994 Life in Moving Fluids: The Physical Biology of Flow. Princeton University Press.
WANG, W. B., HU, R. F., XU, S. J. & WU, Z. N. 2013 Influence of aspect ratio on tumbling

plates. J. Fluid Mech. 733, 650–679.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

88
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.88

	Shape optimization of tumbling wings
	Introduction
	Rectangular wings
	Wings of arbitrary geometry
	Shape optimization
	Conclusion
	References


