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Abstract

Influenza is an extremely contagious respiratory disease, which predominantly affects the
upper respiratory tract. There are four types of influenza virus, and pigs and chickens are con-
sidered two key reservoirs of this virus. Equine influenza (EI) virus was first identified in
horses in 1956, in Prague. The influenza A viruses responsible for EI are H7N7 and H3N8.
Outbreaks of EI are characterized by their visible and rapid spread, and it has been possible
to isolate and characterize H3N8 outbreaks in several countries. The clinical diagnosis of this
disease is based on the clinical signs presented by the infected animals, which can be con-
firmed by performing complementary diagnostic tests. In the diagnosis of EI, in the field,
rapid antigen detection tests can be used for a first approach. Treatment is based on the man-
agement of the disease and rest for the animal. Regarding the prognosis, it will depend on
several factors, such as the animal’s vaccination status. One of the important points in this
disease is its prevention, which can be done through vaccination. In addition to decreasing
the severity of clinical signs and morbidity during outbreaks, vaccination ensures immunity
for the animals, reducing the economic impact of this disease.

Introduction

Influenza, also called the flu, is an extremely contagious respiratory disease, caused by the
influenza virus (IV). The virus predominantly affects the upper respiratory tract (nose and
throat), and in some cases may affect the lungs. The severity of clinical signs is variable,
and they include fever, cough, sore throat, nasal congestion, difficulty breathing, muscle
pain, headache, fatigue, nausea, vomiting, diarrhea, and lack of appetite (CDC, 2020a, 2020b).

IVs capable of infecting humans and causing epidemics and pandemics are viruses of the
genera Influenzavirus A, B, and C, of the Orthomyxoviridae family. In addition to these,
Influenzavirus D was identified in 2011. IVs infect different species, species A infects humans
and animals in general, such as horses, birds, pigs, and dogs; species B infects humans, seals,
and ferrets; species C infects humans, dogs and pigs; and species D was identified in goats,
sheep, pigs, and cattle (Fig. 1). However, antibodies reactive to species D IV have already
been identified in horses and humans (Jakeman et al., 1994; Youzbashi et al., 1996;
Osterhaus et al., 2000; Matsuzaki et al., 2002; Hause et al., 2013; Ferguson et al., 2016;
Nedland et al., 2018). Although the pathogenesis of the latter virus has not been fully studied,
some authors argue that humans, like pigs, can be infected with all IVs (Bailey et al., 2018;
CDC, 2019). Pigs and chickens are considered two key reservoirs for IVs (Rajao et al.,
2018). However, the classification of natural reservoirs belongs mainly to water birds and
wild sea birds (Yoon et al., 2014).

Genus A IV is considered the ancestral virus for all IVs (Doyle and Hopkins, 2011;
Chambers, 2014). Being the most frequently found in circulation, this one is the main
cause for the appearance of the disease, and has a greater predisposition to mutations and
is the IV genus generally associated with epidemics and pandemics (Gasparini et al., 2014a,
2014b). IV A undergoes changes through the mutation, recombination, and rearrangement
of its genetic material, constantly challenging the host’s immune system (Webster et al.,
1992; Mehle et al., 2012). This virus has 13 proteins, among which are hemagglutinin (HA)
and neuraminidase (NA), which represent 45% of the virus mass. Eighteen HA and 11 NA
were identified, which are important in the classification of the strain (Aoyama et al., 1991,
Hay et al., 2001; Jagger and Digard, 2012; Cullinane and Newton, 2013; Lewis et al., 2014).
The disease caused by this virus affects a significant percentage of the world population,
with epidemics and pandemics being described chronologically and geographically since
ancient times, causing a total of ∼10 million human deaths (Soema et al., 2015).
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The first report of a disease that resembles influenza dates back
to 412 BC, by Hippocrates, in his ‘Book of Epidemics’ with the
name ‘fever of Perinthus’ or ‘cough of Perinthus.’ Some authors
even claim that this is the first historical description of influenza
(Kohn, 2007; Pappas et al., 2008). In 1173 and 1500 two out-
breaks of influenza were described; however, the details of these
episodes are not fully known (Kuszewski and Brydak, 2000).
The name ‘influenza’ appeared only in the 15th century, in
Italy, due to an epidemic whose origin was attributed to the ‘influ-
ence of the stars,’ and the name spread throughout Europe, Asia,
and Africa (Gintrac, 1872).

Some authors and historians debate influenza on the
American continent; that is to say, whether the disease already
existed in this territory or whether it was introduced to the
new world by infected pigs. There are some texts of Aztec ori-
gin that describe an outbreak of ‘pestilent catarrh’ between
1450 and 1456, in the current zone of Mexico. However, the
hypotheses presented seem controversial and the manuscripts
are difficult to translate for a complete and correct interpret-
ation (de Souza, 2008). The first reliable documents date
from 1510, describing a disease very similar to influenza and
a virus that spread in Europe but originated in Africa. In
1557, the first large-scale epidemic occurred, but without
contradiction the first pandemic dates from 1580. This pan-
demic originated in Asia and Russia, spreading to Europe
through Asia Minor and North-West Africa, eventually affect-
ing the American continent as well. The major tragedies
occurred in Italy, where more than 8000 deaths were regis-
tered, and in Spain, where the disease even decimated entire
cities (Potter, 2001).

From the 15th century to the mid-19th century, 31 epidemics
linked to influenza were recorded, including eight pandemics.
Some of the outbreaks with the greatest impact occurred in
1729, from 1781 to 1782, from 1830 to 1833, from 1847 to
1848, and from 1898 to 1900. However, one of the most devastat-
ing outbreaks was the pandemic that occurred between 1918 and
1919, which was called the ‘Spanish’ flu, causing the death of
more than 20 million people. Some authors described it as ‘the
greatest medical holocaust in history’ (Waring, 1971; Potter,
2001). It was only in 1932/1933 that the virus was isolated for
the first time, by collecting nasal secretions from infected patients
(Smith et al., 1933). Subsequently, four pandemics related to
swine IV were identified in humans in 1918, 1957, 1968, and
2009, namely H1N1, H2N2, H3N2, and H1N1, respectively
(Scholtissek et al., 1978; Crosby, 2003; Krueger and Gray, 2012;
Mena et al., 2016) In 2018, >10 subtypes of swine IV circulating
in the United States were reported (Walia et al., 2018).

Equine influenza

Equine influenza (EI) is a highly infectious disease that affects the
respiratory system of horses, with a high economic impact (Glass
et al., 2002; Arthur and Suann, 2011).

Etiology

The EI virus (EIV) belongs to the Influenzavirus A genus and the
Orthomyxoviridae family and is considered the most significant
respiratory pathogen in horses (Timoney, 1996). This was first
identified in horses in 1956, in Prague. However, its presence

Fig. 1. Schematic representation of types A, B, C, and D of the influenza virus (IV) and the respective target species. IV A targets humans, horses, birds, pigs, and
dogs; IV B affects humans, seals, and ferrets; IV C targets humans, pigs, and dogs; and IV D affects pigs, cows, goats, and sheep.
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was suggested as far back as 433 AD by the Greek veterinarian
Absyrtus. In the year 1872, a huge outbreak was described that
affected a considerable part of the horse population in North
America, also affecting the entire economic situation and com-
mercial services provided. EIV is considered a highly contagious
agent, responsible for outbreaks of respiratory disease in horses
in many countries, with high rates of transmission even among
other species (Law, 1874; Sovinova et al., 1958; van Maanen
and Cullinane, 2002; Myers and Wilson, 2006).

The diameter of the virus ranges from 80 to 120 nm (Palese
and Schulman, 1976; Ritchey et al., 1976; Timoney, 1996;
Burnouf et al., 2004; Krumbholz et al., 2010; Elton et al., 2013).
The EIV genome is composed of eight negative-sense RNA seg-
ments, which are encapsulated by a nucleoprotein, giving them
helical symmetry. Each of these RNA segments encodes up to
10 structural and non-structural proteins. The seventh segment
is responsible for the shape of the EIV because it encodes the
membrane protein. Certain more virulent strains encode the
11th protein. This protein has the ability to affect multiple sys-
tems, inducing apoptosis, promoting inflammation, and regulat-
ing viral polymerase activity.

The proteins encoded by the virus are HA, NA, matrix protein
(M), nucleoprotein, three polymerase proteins [basic polymerase
protein 1 (PB1), basic polymerase protein 2 (PB2) and acid poly-
merase protein (PA)], a nuclear export protein (NEP) and a non-
structural protein (NS1) (Timoney, 1996; Elton and Bryant, 2011).

NS1 and PB1-F2 are proteins with an active role in viral rep-
lication but are not incorporated into the viral structure. PB1-F2 is
a derivation of PB1 and is a smaller protein encoded by the open
reading frame observed in some strains. NS1 is considered the
most antagonistic protein in the immune response of target
cells, interfering with type 1 interferons (INF) and thus reducing
the production of IFN-β. NS1 is made up of 230 amino acids,
however, it presents a different size when compared to that pre-
sent in other species, especially with that observed in humans
and swine. It also performs an RNA binding function and effector
function (Suarez and Perdue, 1998; Hale et al., 2008; Wang et al.,
2008; Boukharta et al., 2015). NEP, which used to be considered
as a non-structural protein called NS2, has now been shown to be
linked to M protein, having been identified in the virion. Its
action is essential for the release of viral ribonucleoproteins
from the host cell, more specifically the nucleus (Paterson and
Fodor, 2012).

The HA glycoprotein is responsible for the response to host
antibodies and the NA glycoprotein is responsible for the prolif-
eration of the virus, by migration through the mucous membrane
of the cells of the respiratory tract, which later, after proliferating,
will release the viruses from the affected cells. These glycoproteins
are responsible for the spikes that project outside the viral enve-
lope (Timoney, 1996; Matrosovich et al., 2004; Elton and
Bryant, 2011).

The two subtypes of IV A which cause EI are H7N7 (subtype
1) and H3N8 (subtype 2), with H7N7 being the first to be iden-
tified in horses in Eastern Europe. This subtype H7N7 has not
been isolated in horses since 1979 and is considered extinct
(Sovinova et al., 1958; Webster, 1993; Timoney, 1996). The non-
existence of the H7N7 subtype cases is a consequence of the
strong bonds of the codon of this virus, made by a sequence of
three nitrogenous bases of messenger RNA that encode an
amino acid, without alterations based on the mutation or nucleo-
tide composition. Some authors believe that it is far easier to
induce protection against this virus and the widespread

vaccination program contributed to the disappearance of this
virus (Yarus et al., 2009; Murcia et al., 2011; Kumar et al., 2016).

In 1963, H3N8 was isolated for the first time from horses.
Initially an avian IV (AIV), it later diverged into two different
lineages around 1980, which were called American and
Eurasian (Daly et al., 1996; Damiani et al., 2008; Cullinane
et al., 2010; Saenz et al., 2010). Subsequently, the American lin-
eage diverged into Florida, Kentucky, and Argentina sublineages.
Among these three sublineages, there is a predominance of rota-
tion, varying from year to year, which is called ‘re-cycling.’ This
process is continuous and, after 3 years, it will repeat the predom-
inance of the strain that started the cycle. It is believed that this
mechanism allows for the survival of the virus and its perpetu-
ation, changing the immunological target without evolution (Lai
et al., 2001, 2004). In practice, the Florida line is predominant,
because of the sequencing of HA, it was possible to identify two
derivations of this line, which were classified as ‘clade 1’ and
‘clade 2.’ The major difference between each type is found in
the sequence of HA, NA, and PA (Bryant et al., 2009, 2011;
Murcia et al., 2011). There are authors who defend the disappear-
ance of pre-divergent strains and that these were overtaken by
viruses that evolved in other strains and lineages. On the other
hand, there are data that prove the similarity of strains identified
in 2004 with strains that circulated before 1990, some with 99%
compatibility (Martella et al., 2007; Boukharta et al., 2015).

The appearance of new strains is due to antigenic drift, which
consists of the accumulation of mutant spots in the gene that
encodes the surface of the HA and NA protein. They are small
changes that occur in this protein, but the other proteins are
also susceptible to this process. Usually, the result from these
changes is a virus like the original, allowing the body to recognize
and be able to have an immune response. When these changes are
accumulated through time, they can result in a totally different
virus. Antigenic shift is another type of process that can result
in a new strain. This is a remarkable event in the viral genome,
caused by a rearrangement of the genes, majoritarian at the
level of NA or HA or both, that may result from a co-infection
with another strain, and may even be secondary to a process of
cross-infection. These alterations can be observable at various
levels of amino acids which lead to the appearance of new strains,
sometimes with similarities to old strains. These changes also
affect the behavior of the virus at various levels (Lindstrom
et al., 1998; Lewis et al., 2011; Rash et al., 2017; CDC, 2021).

Epidemiology

Genetically, EIV and AIV are very similar, which may indicate the
coexistence of IV in both horses and birds. The distinction
between strains of EIV can be made by analysing a common elem-
ent visible in all strains that belong to the American lineage. This
is the presence of I194 V, which does not occur in strains derived
from the Eurasian lineage (Cullinane and Newton, 2013;
Chambers, 2014; Landolt, 2014). Transmission of the virus
between species, namely between horses and carnivores, can
occur, as has already been identified in an outbreak of influenza
in dogs. Laboratory analyses identified the presence of the
H3N8 subtype in an EI outbreak in racing dogs (English
Greyhounds) on a track in the United States and the United
Kingdom. It was found that the transmission occurred due to
proximity to the horses; however, there was no lateral transmission
(Radostits et al., 2003; Crawford et al., 2005; Daly et al., 2008;
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Gibbs and Anderson, 2010; Kirkland et al., 2010; Crispe et al.,
2011; Wang et al., 2017).

EIV transmission is not solely confined to dogs, there is evi-
dence of transmission in humans, camels, and zebras. It is
assumed that the presence of this virus in other species, such as
humans, can lead to its rearrangement with human IV, with the
consequent appearance of new strains. When the virus infects
humans, it cannot be attenuated and it is able to infect healthy
horses with an infection capacity similar to that which exists
between horses (Couch et al., 1969; Yondon et al., 2014; Larson
et al., 2015; Na et al., 2016). In China, EIV has also been isolated
from two pigs. They did not have any symptoms, but they served
as a vehicle for viral rearrangement and the emergence of a new
strain (Solórzano et al., 2015). In addition to the animals already
mentioned, it has been possible to demonstrate that cats can also
be infected through the experimental transmission of EIV H3N8
(Tu et al., 2009; Su et al., 2014) (Fig. 2). There are no data on
infection of horses with H1N1 AIV, but the same cannot be
said for H3N8, whose avian strain A/equine/Jilin/1/1989, which
appeared in China in 1989, was the cause of a high equine mor-
tality rate and can be characterized as a more severe disease. EIV
can affect dogs and, as it is a cross-transmission, causes serious
illness and death (Webster and Yuanji, 1991; Crawford et al.,
2005).

It is important to note that IV has restrictions on cross-
infection due to HA. As it is a viral receptor-binding protein, it
has the function of binding to the sialic acid of the host cell recep-
tor. Sialic acid can appear as N-acetylneuramic acid or
N-gluconeuramine. The bond depends on the sialic acid and
the galactose portion, corresponding to the α(2→6) or α(2→3)
linkage. It is possible to state that human IV, unlike animal IV
(avian, canine, and equine), has a preference for the α(2→6)-gal
linkage with N-acetylneuraminic acid (Ito and Kawaoka, 2000).

The differences between the EIV isolated from the horse and
the dog occur so that these viruses correspond to the specificities
of the target cell receptors of each species. However, the biology of
the virus remains virtually unchanged when it moves to another
host. There are changes in viruses whose effects are only visible

when cross-infection occurs, as in the case of the strain that
caused moderate pathogenesis in horses, and then originated
the canine IV in Colorado. The observed change was the mutation
in the acquired receptor for the virus to enter the target cell.
Canine and equine H3N8 viruses show little difference from
each other, with a mutation in the PA-X protein present in
both (Collins et al., 2014; Feng et al., 2015, 2016). The simultan-
eous circulation of the virus in dogs and horses allows bidirec-
tional transmission between these species (Rivailler et al., 2010).

Outbreaks of EI are characterized by a visible and rapid spread
of the disease, with the peak occurring 1 week after the first case is
identified and new cases will no longer be identified after 21–28
days. The spread of EI around the world is mostly due to the traf-
fic of horses, with its reintroduction taking place in countries that
no longer had the disease, as was the case in Japan (Mumford,
1990; Powell et al., 1995; Morley et al., 2000; Radostits et al.,
2003; Yamanaka et al., 2008a).

According to data from the World Organization for Animal
Health (OIE), outbreaks of EIV (H3N8) strains were isolated
and characterized in several countries such as Argentina,
Germany, Chile, China, United States, France, Holland, Ireland,
Nigeria, Sweden, United Kingdom, and Uruguay. In 2019, the
same organization confirmed the occurrence of five new out-
breaks in Italy, with the last outbreak recorded in that country
in 1999 (OIE, 2019a, 2019d). According to the OIE, some coun-
tries have never reported cases of EI, such as Bangladesh, Belarus,
Bolivia, Bulgaria, Ethiopia, Georgia, Greenland, French Guiana,
Honduras, Iran, Iceland, Laos, Latvia, Lithuania, Malawi,
Madagascar, Myanmar, New Zealand, Central African Republic,
Sri Lanka, Swaziland, Sudan, Togo, Thailand, Chinese Taipei,
and Zimbabwe (OIE, 2019b) (Fig. 3).

In the past, EI epidemics have been identified in several coun-
tries in Europe and North America at different times, such as the
most prominent cases of the 1956 epidemics due to the H7N7
subtype, and the 1963, 1969, 1979, and 1989 epidemics due to
the H3N8 subtype (van Maanen and Cullinane, 2002; Radostits
et al., 2003). These outbreaks have been linked to the appearance
of a new virus, as was the case in Miami in 1963, or to mutations

Fig. 2. The equine influenza virus (EIV) can directly
infect the horse or come via other animals, such as
pigs and birds. Pigs act as a vector for genetic
rearrangement, allowing two strains to infect the ani-
mal, which will later result in a new strain. The presence
of EIV has already been detected in zebras, camels,
humans, and dogs. The virus can infect humans and
infect other horses without losing its pathogenesis.
Although cats can be infected, it has only been demon-
strated at the laboratory level.
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in the strains, resulting in vaccine inefficiency. Another outbreak
resulting from a vaccine failure was reported in Croatia, in 2004
(Radostits et al., 2003; Barbic et al., 2009). The H7N7 virus has
also been linked to two outbreaks on the Asian continent, one
in 1977 in Malaysia and the other in 1987 in India (Uppal and
Yadav, 1987; Uppal et al., 1987). The largest outbreaks of EI
were recorded in China in 1989, where more than one million
horses were affected by the A/equine/Jilin/1/1989 (H3N8JL89)
strain, an avian-like virus, and in 1993/1994, due to the conven-
tional strain of the H3N8 virus, very similar to the strain isolated
in Europe in 1991 (van Maanen and Cullinane, 2002). The
Florida strain has been isolated in Europe since 2003, where a
large-scale outbreak occurred in Newmark, with infection of vac-
cinated and unvaccinated horses (Newton et al., 2006).

Most cases of EI identified in Europe, from 2006 to 2008,
belong to the Florida clade 2 (FC2), because it was the predomin-
ant strain with a major outbreak in Sweden in 2007. On the other
hand, the Florida clade 1 (FC1) has been identified more sporad-
ically, and few outbreaks have been associated with this strain
(Bryant et al., 2009, 2011; Gildea et al., 2012; Legrand et al.,
2013; Woodward et al., 2014). The FC1 is the main cause of out-
breaks in the United States, whereas FC2 is more recently occur-
ring in North America, having only been identified for the first
time in a horse imported from Europe (Bryant et al., 2011;
Pusterla, et al., 2014).

Between 2007 and 2008, an outbreak of FC1 occurred in Japan
and Australia, and in the same time span there was a major out-
break that affected China, Mongolia, and Kazakhstan. The out-
break occurring in Australia, a country that was free of
influenza, resulted from the importation of a subclinically infected
horse (EDS, 2008; Bryant et al., 2009; Watson et al., 2011). Later,
in 2012, an outbreak occurring in these countries was caused by
strains derived from FC2. The number of infected animals in
Australia was ∼76,000 (Cullinane and Newton, 2013; Paillot,
2014; Yondon, et al., 2014).

In 2011, the FC1 strain was isolated for the first time in
Sweden, and since then only sporadic cases have appeared.
Between 2012 and 2014 all cases of EI identified in Sweden
were caused by FC2. The same occurred in Ireland, with the
first case of FC1 being identified in 2010, and only FC2 cases
have been identified since 2011. The 2011 outbreak in Sweden
demonstrated the presence of both strains simultaneously, how-
ever with different origins (Gildea et al., 2012, 2013; Back et al.,
2016).

In France, something similar occurred, in which the predom-
inant strain was FC2 between 2005 and 2010, with an outbreak of
FC1 in 2009 attributed to a failure in vaccines (Legrand et al.,
2013). In the United Kingdom, a case of FC1 occurred in
2006–2007, and from 2008 to 2009 the outbreaks were associated
with both strains (Bryant et al., 2009, 2011). Between 2010 and
2012, only FC2 cases were detected in Germany and the United
Kingdom (Woodward et al., 2014).

FC2 is considered endemic in Europe and Asia, with periodic
outbreaks, while FC1 is endemic in the United States, causing out-
breaks which are sporadic and occur in different parts of the
world (Back et al., 2016).

Currently, the virus circulates around the world, but South
America is considered the epicenter of the spread of the H3N8
virus (Perglione et al., 2016). These data led us to conclude that
the prevalence of the disease in Europe has been changing from
the Eurasian strain to the Florida strain, with an increase in
cases of FC1 and FC2. Studies show that FC2 is diverging, and
changes in strain antigens detected between 2013 and 2015
were characterized in a study conducted in the United Kingdom
(Gildea et al., 2012; Rash et al., 2017). According to data from
the National Institute for Agricultural and Veterinary Research
(Instituto Nacional de Investigação Agrária e Veterinária –
INIAV), in 2018 and 2019, two cases of EI were detected in
Portugal caused by H3N8. According to the Animal Health
Trust, in 2019, 21 cases of EI were identified in Ireland, 229

Fig. 3. Worldwide distribution of equine influenza (EI), where it is possible to identify countries without reported cases (green), countries with reported cases
(yellow) and countries with reported outbreaks (red).
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cases in the United Kingdom, and four cases in Sweden
(Equineflunet, 2020). Conducting studies on the disease and the
development of outbreaks in countries is extremely important
for controlling the virus and identifying strains so that vaccines
remain effective. Lack of monitoring can lead to the introduction
of new lineages that have not been identified in such countries,
triggering a mutation and leading to an outbreak of two lineages.
The decrease or absence of control when new animals are brought
into a country can lead to the occurrence of an outbreak, at a dis-
tance of 400 km, as was caused by the transport of horses across
the Nordic countries (Back et al., 2016).

More recently, in December 2018 and January 2019, outbreaks
were reported in several European countries, like France,
Germany, and the UK (EFP, 2019; ICC, 2019; RESPE, 2019).
The outbreak in France was identified to be like FC1, much
more common in the American strains, and the virus identified
in France was very similar to that of South America. The presence
of this lineage in France has not been reported since 2009, and
this situation changed by the introduction of unvaccinated and
infected horses in French premises (Fougerolle et al., 2017;
Paillot et al., 2019). The outbreak was confirmed until August
in the UK and later in October, another report was presented
involving an imported horse (British Veterinary Association,
2019).

Almost at the same time, later in 2018, several African coun-
tries reported mortality in donkeys and horses. Through field
samples, EIV FC1 was identified in Niger and Senegal. The pres-
ence of EI was also suspected in Ghana, but not yet confirmed
(Diallo et al., 2020). The outbreaks in Niger, Senegal, and
Nigeria, showed an EIV much more similar to the virus present
in South America than that in Europe and the United States.
This similarity supports an epidemiological link between South
America and West Africa, and this is linked with the importation
of horses from one region to the other (Sule et al., 2015; Diallo
et al., 2020).

The gender of the animal has no influence at all on predispos-
ition to infection by EIV (Nyaga et al., 1980; Gross et al., 2004).
According to some studies, there seems to be some breed predis-
position to infection by EIV and the development of the disease.
Thoroughbred English horses appear to be more resistant to
infection by EIV when compared to other breeds. Quarter
Horses are the breed of horses most at risk of infection by EIV
(Nyaga et al., 1980; Gildea et al., 2010). Regarding age, all age
groups are susceptible to the development of the disease.
However, the period of greatest susceptibility occurs between 2
and 6 months of age, due to the loss of antibodies acquired pas-
sively from 2 months of age. Some studies consider animals up to
5 years old more vulnerable to the disease (Nyaga et al., 1980; Liu
et al., 1985; Landolt, 2014). Older horses are practically immune,
due to natural exposure to the disease or vaccination (Morley
et al., 2000). Vaccination history and exposure to the disease
are also considered important factors. The higher the concentra-
tion of antibodies, the lower is the risk of developing the disease
(Bogdan et al., 1993; Morley et al., 2000).

Transmission and pathogeny

The spread of EIV is considered to be one of the fastest among the
other respiratory diseases that affect horses. The IV is relatively
susceptible to environmental conditions; however, horses can be
infected by the proximity of another sick animal through aerosols
or by direct contact with contaminated equipment (fomites).

Droplets from nasal discharges play a very important role in the
spread of EIV and are one of the main causes for the spread of
disease, not least because they lead to the creation of fomites
(Timoney, 1996; Easterday et al., 1997). Aerosols can propagate
up to a distance of up to 35 m from the infected horse, and this
may be greater, depending on the frequency of the cough. The
lifetime of EIV in the environment as an aerosol is 24 to 36 h,
but on surfaces, it can reach up to three days, whereas human
IV survives only 15 h as an aerosol. Incubation time is one to
three days, with a period of three to eight days (sometimes up
to 10 days) of transmissibility to other animals (Radostits et al.,
2003; Daly et al., 2004; Gross et al., 2004). Keeping animals in
closed stables, with poor ventilation and a high concentration of
animals, facilitates the spread of the virus (Morley et al., 2000).
In unvaccinated horses, the rate of infection is ∼100%. Partially
immunized animals become subclinically infected and tend to
spread the virus less when compared to non-immunized animals
(Chambers, 2014; Landolt, 2014). Horses with clinical signs have
a higher rate of infection spread when compared to asymptomatic
animals (Cullinane and Newton, 2013). After recovery, the animal
does not have the virus and, therefore, the disease is considered
self-limiting and sterile (Cullinane and Newton, 2013).

EIV causes an infection in the upper and lower respiratory
tract, and the development of lesions in the lungs of adult horses
is common. In foals, the virus can cause severe pneumonia, which
is sometimes fatal (Britton and Robinson, 2002; Gross et al., 2004;
Peek et al., 2004).

After inhalation, the virus adheres to epithelial cells through
the HA glycoprotein spikes, which eventually fuse with the cell
by adhering to the sialic acid receptors on the cell surface, thus
allowing the viral particle to enter the cytoplasm in order to rep-
licate. Horses have a mucus layer in the nasal cavity that can pre-
vent HA virus binding, thereby inhibiting the virus from entering
the cell (Scocco and Pedini, 2008). The low pH inside the epithe-
lial cell provides conditions for the fusion process between the
virus and the cell membrane to take place. The acidic pH allows
the alteration of HA, the opening of the ion channel, also called
M2, and acidification of the virus nucleus, leading to the entry
of viral RNA into the nucleus of the target cell. The presence of
a high concentration of the Neu5Gc2-3Gal molecular complex
essential for viral replication, which is present in the respiratory
epithelium of the horse – and that NA also greatly favors – is
essential for the rapid release of virions resulting from replication.
Virions formed by viral replication are released by the infected
cell, allowing the infection of new cells or propagation into the
environment (Suzuki, 2000; Radostits et al., 2003; Takahashi
et al., 2016).

This first phase of viral infection and replication occurs mainly
in the nasopharyngeal mucosa. The virus can be detected in the
entire respiratory tract 3–7 days after infection. After infection
of the ciliated epithelial cells, the horse loses the ability to elimin-
ate foreign substances that enter via this route. This viral process
induces the death of the epithelial cells of the respiratory mucosa,
inflammation, oedema and loss of the protective mucociliary bar-
rier. Cell death occurs as a result of EIV-induced apoptosis of epi-
thelial respiratory cells and systemic and local increase in type I
INF (INF-α and INF-β) and interleukin-6 (Suzuki, 2000; Lin
et al., 2002; Wattrang et al., 2003; Takahashi et al., 2016). The
synthesis of INF is activated as a cellular defense mechanism by
the presence of viral RNA (Jiao et al., 2008).

Infection with EIV allows for the emergence and proliferation
of opportunistic bacteria, among which Streptococcus equi var.
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zooepidemicus stands out, due to the loss of regular response to
their control. This secondary infection by bacteria leads to an
increase in inflammation, which will also cause bronchopneumo-
nia, which can lead to an increase in mortality (Wilson, 1993;
Paillot, 2014). EIV has not been identified in any tissue other
than the respiratory tract. However, when it comes to a strain
resulting from the interspecies transmission, as was the case
with A/equine/Jilin/1/1989 strain, atypical clinical signs may
appear, with the virus having been identified in horses with enter-
itis (Webster and Yuanji, 1991; Wilson, 1993; van Maanen and
Cullinane, 2002).

Diagnosis

Clinical diagnosis
The clinical diagnosis of this disease is based on the clinical signs
presented by the infected animals, which can be confirmed by
performing complementary diagnostic tests (Timoney, 1996).
Diagnosis using complementary diagnostic imaging methods,
such as ultrasound, is still not frequently used. The use of ultra-
sonography for the diagnosis of EI needs further studies, while
radiography is difficult to use in adult horses (Gross et al.,
2004). Among the most common clinical signs are nasal dis-
charge, serous initially and subsequently mucopurulent, dry
cough, fever, depression, and lack of appetite. The presence of
these signs and their intensity may vary according to the age of
the animal and the individual susceptibility to the disease
(Timoney, 1996; Gross et al., 1998, 2004; Morley et al., 2000;
Cullinane and Newton, 2013). The occurrence of abortion in
pregnant mares is not frequent (Radostits et al., 2003).

The clinical signs present in previously unexposed horses
infected with EIV include pyrexia with values between 38.5 and
41 °C, which appears after the incubation period of 24–72 h;
depression in some animals; the refusal of food or anorexia; reluc-
tance to move; dry and rough cough, which is one of the domin-
ant clinical signs and appears soon after the temperature
increases, lasting from 1 to 3 weeks, being easily stimulated
through manual compression of the cranial portion of the trachea;
pain on palpation of the submaxillary lymph nodes, particularly
in younger animals; and mucous nasal discharge. Lung ausculta-
tion may present altered sounds, such as increased breathing
intensity, crackles and wheezing. These changes to auscultation
may be present in a horse with secondary bacterial pneumonia
(Timoney, 1996; Gross et al., 1998, 2004; Morley et al., 2000;
Cullinane and Newton, 2013).

In foals, the disease presents a more severe form, with fever,
severe breathing difficulties and acute interstitial pneumonia
(Oxburgh and Klingeborn, 1999; Britton and Robinson, 2002).

Horses that develop a secondary infection, usually Streptococcus
zooepidemicus, present mucopurulent nasal discharges, persistent
fever and more marked abnormal sounds on pulmonary ausculta-
tion. Rarer cases may present jaundice, signs of encephalitis, inco-
ordination, and myoglobinuria (Wilson, 1993).

Laboratorial diagnosis
The diagnosis of EI in the field can be made using rapid antigen
detection tests, which are also used in the detection of human
influenza. This need for rapid identification of EI is due to the
urgent need to introduce control measures for its spread. Tests
such as Directigen Flu A are approved and have been validated
for antigen detection in horses. Other tests have already been
tested, but their sensitivity and specificity are considered to be

low when compared to reverse transcriptase-polymerase chain
reaction (PCR) (Chambers et al., 1994; Yamanaka et al., 2008b,
2015b). Insulated isothermal PCR was developed for the detection
of HA3 from EIV, and can be performed in 1 h, using a portable
device, with high sensitivity and specificity (Balasuriya et al.,
2014; Galvin et al., 2014; Brister et al., 2019).

Rapid tests for the diagnosis of infection by EIV should not be
considered substitutes for laboratory tests, because the perform-
ance of the latter leads to the identification of the virus, which
allows the outbreak to be characterized, to carry out vaccine
and epidemiological studies, and guarantees, with certainty, that
an animal is infected with EIV (Radostits et al., 2003). The
most commonly used laboratory test to detect the virus and diag-
nose the disease is the reverse-transcription PCR of samples col-
lected from nasopharyngeal swab (Chambers et al., 1994;
Oxburgh and Hagstrom, 1999; Back et al., 2016; Gora et al.,
2017; OIE, 2019c). This technique was used, for example, in the
detection of an outbreak in Mongolia in which the horses with
EIV presented uncommon clinical signs. The primers used are
specific to a specific region of the virus, allowing results to be
obtained quickly and with great sensitivity, even when the excre-
tion of the virus was weak. The primers are not exclusive, in other
words, they can detect strains not yet studied (Alvarez et al., 2008;
Yondon et al., 2013; Aeschbacher et al., 2015). Detection of the
presence of double-stranded RNA and replication are signs of
viral infection and triggers an exuberant antiviral defense mech-
anism (Daly and Reich, 1993; Stark et al., 1998; Jiao et al.,
2008). The influenza virus is capable of counteracting the produc-
tion of IFN-α/β by the host cell, by inhibiting the transcription
factors involved in the activation of IFN and therefore attenuating
host expression (Noah et al., 2003; Garcia-Sastre, 2006; Mibayashi
et al., 2007).

With the advancement of technology and based on the ‘One
Health’ concept, diagnostic kits have been developed, such as
the FluChip-8 G from InDevR Inc., which allow for the character-
ization and identification of influenza A or B subtypes in <10 h
(Borkenhagen et al., 2019). Tests are constantly being developed,
such as lateral flow immunochromatography using colloidal silver
as a revealer of the antigen–antibody interaction, which are highly
sensitive and allow early detection of the virus, and pyrosequen-
cing, which enables the differentiation of the strain in cases of
the outbreak (Bernardino et al., 2016; Yamanaka et al., 2017).

Measuring the concentration of antibodies against viral HA is
important for confirming exposure to the virus, measuring the
animal’s vulnerability to infection and the effectiveness of a par-
ticular vaccine. The preferred test for this measurement is the
simple radial haemolysis test when compared to the hemagglutin-
ation inhibition test. The enzyme-linked immunosorbent assay
(ELISA) can also be used to detect anti-nucleoprotein antibodies,
enabling the identification and differentiation of vaccinated ani-
mals and infected animals, because the antibodies resulting
from the vaccination do not contain HA protein and are not
detected in this test (Daly et al., 2004; Gildea et al., 2010, 2011;
Kirkland and Delbridge, 2011; Galvin et al., 2013; Chambers
and Reedy, 2014b; OIE, 2019c). The identification of antibodies
against non-structural proteins of the virus in horses means it is
possible to determine that the animal suffered a natural infection
of the virus, as these antibodies are not identified when animals
are immunized with an inactivated virus vaccine (Ozaki et al.,
2001).

In case of pulmonary auscultation for suspected pneumonia,
tracheal lavage should be performed. Animals with bronchitis
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or pneumonia have a high number of granulocytes, especially
neutrophils in this secretion (Gross et al., 1998). In terms of hist-
ology, it is possible to observe necrotic lesions in the bronchi and
alveoli, infiltration of neutrophils, formation of hyaline mem-
branes, squamous metaplasia and hyperplasia of the airway epi-
thelium (Patterson-Kane et al., 2008).

The collection of material for laboratory analysis must be done
carefully, as the quality of the sample can compromize the reli-
ability of the results. As the density of the virus is higher in the
nasopharynx than in the nasal cavities, swab collection should
preferably be performed at the nasopharynx level. It is important
that the transport of the samples is carried out under appropriate
storage conditions (i.e. refrigerated), and if the transport to the
laboratory takes longer than two days, they must be kept at
−60 °C or lower (Chambers and Reedy, 2014a; Gora et al., 2017).

Differential diagnosis

As a differential diagnosis for EI, the following diseases should be
considered: pasteurellosis, pleuropneumonia, and equine infec-
tious adenitis, infection by equine rhinovirus and adenovirus,
equine viral arteritis, equine rhinopenumonitis or equine herpes-
virus, Hendra virus or equine morbilivirus (Radostits et al., 2003;
Rush and Mair, 2004; FAO, 2019).

When EIV infects animals which have been vaccinated or pre-
viously exposed to the virus, the disease is considered mild,
because the horses are already immune and thus it can be clinic-
ally indistinguishable from an upper respiratory illness associated
with other agents, such as equine herpesvirus-4, equine rhinitis
virus, and arthritis virus.

Treatment

Treatment of a horse with EI is based on the management of the
disease and rest for the animal. Although Amantadine has been
tested for the treatment of EI, the existence of a specific antiviral
available on the market to treat this disease has not yet been
described. The use of NA inhibitors is indicated at an early
stage, as it reduces the spread of the virus and limits its transmis-
sion to other animals (Radostits et al., 2003; Yamanaka et al.,
2015a). Baloxavir marboxil is an enzyme inhibitor targeting the
cap-dependent endonuclease activity of EIV and is an available
option for the treatment of EI (Koszalka et al., 2017). However,
the usage of this antiviral agent has an ability to reduce, in long-
term, the susceptibility of the virus to the treatment, because this
agent induces mutations in EIV, at position 38 in polymerase
acidic protein. Baloxavir marboxil can be used and can be useful
in new outbreaks, but with more of its use the more mutation is
induced (Omoto et al., 2018; Nemoto et al., 2019a). The resting
time indicated should be equivalent to the number of days the
horse has presented a fever so that the respiratory epithelium
can be recovered. In addition to the usual care taken with
water, food and the horse’s stall, it is necessary to pay particular
attention so that the animal’s recovery space has good ventilation.
The bed must be made of materials that do not cause dust and the
food must be of good quality without dust. After resting, work can
be introduced gradually. Failure to comply with the rest period or
the sudden introduction of high-stress work can lead to the devel-
opment of chronic obstructive pulmonary disease and myocardi-
tis (Chambers et al., 1995).

In horses with signs of secondary infection, antibiotherapy
with broad-spectrum antibiotics is recommended, such as

potentiated sulfonamides (e.g. Equibactin vet®), Ceftiofur (e.g.
Cftiomax®), Penicillin G Procaine (e.g. Combiotic suspension
for injection for cattle, sheep, pigs, and horses®), with or without
Gentamicin. Penicillin can also be used in animals with secondary
infection (Ensink et al., 1996, 2003). Although its efficacy is not
fully known, animals with EI can be given mucolytics. The
administration of corticosteroids and the use of antitussives are
contraindicated due to their side effects and the possibility of
masking complications, while the use of non-steroidal anti-
inflammatory drugs should be considered (Kastner et al., 1999).
The use of antipyretics with non-steroidal anti-inflammatory
action is not contraindicated, and the following drugs can be
used: phenylbutazone, flunixin meglumine, or dipyrone
(Wilson, 1993).

Prognosis

The prognosis of a horse with EI depends a lot on the vaccination
status of the animal, the strain of the virus responsible for the
infection, the age of the animal and the treatment implemented.
In foals, a more severe form of the disease is reported, which is
usually fatal when acute interstitial pneumonia appears (Britton
and Robinson, 2002).

In general, the mortality rate is low, being considered <1%.
However, due to the breakdown of immunity, after a viral infec-
tion, a bacterial infection can occur and usually this secondary
infection is responsible for mortality. In 1989, the epidemic ori-
ginating from an avian strain in China, showed a high rate of
morbidity (80%) and mortality (20–35%), due to complications
such as pneumonia and enteritis. The prognosis is also considered
to be reserved when the viral strain responsible for the infection is
the result of cross-infection (Webster and Yuanji, 1991; Oxburgh
and Klingeborn, 1999; Britton and Robinson, 2002).

Most horses that are protected from the least favorable envir-
onmental conditions, which can cause immunosuppression, that
have no complications, secondary infections or efforts before
the recommended time, fully recover in 7–14 days. However,
coughing may persist for a few weeks and horses with a more
severe illness may take a month to recover (Morley et al., 2000;
Cullinane and Newton, 2013). Recovering horses that are trans-
ported, exercised or are exposed to adverse climatic conditions,
may present with cough, severe bronchitis, pneumonia and may
develop oedema of the limbs (Wilson, 1993).

Before the existence of vaccines, EI outbreaks in Mongolia had
a mortality rate of 20%, having been reduced to 5% with the intro-
duction of vaccination (Yin et al., 2013; Yondon et al., 2013).
Horses that are vaccinated or have previously been exposed to
the virus are associated with low morbidity, mortality, and
speed of spread of the disease. In an outbreak in Hong Kong in
1992, among vaccinated horses, 75% of the animals had positive
serological tests, 37% had clinical signs and the mortality rate
was only 0.2%. Horses from areas where the disease did not
occur, such as New Zealand, had a morbidity rate of 52%.
However, horses from the northern hemisphere had a morbidity
rate of 20%, indicating previous exposure to EIV or vaccination
(Powell et al., 1995).

Prophylaxis

Vaccine surveillance and updating programs remain the best way
to prevent and control EI (Gildea et al., 2012). Prevention of the
disease must be done through the use of effective vaccines, this
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being more efficient in limiting the severity of clinical signs and
their morbidity during outbreaks. Vaccines thus have an import-
ant role in controlling propagation, but they do not eliminate the
chance of horses becoming infected, so it is important to carry out
vaccine boosters (Powell et al., 1995; Daly et al., 2004; Minke
et al., 2004; Elton and Cullinane, 2013). In the event of outbreaks,
a strategic vaccination can be carried out in order to control the
spread of the disease (Daly et al., 2013).

There are four types of vaccines: inactivated, sub-unit, attenu-
ated, and viral vector. However, there are other vaccine types
under development or under study, such as the case of the vaccine
based on reverse genetics and others that have not shown benefits
in relation to the existing ones, such as a DNA vaccine (Landolt
et al., 2010; Daly et al., 2013; Rodriguez et al., 2018). The first vac-
cine against EI appeared in the 1960s, and it was an inactivated
virus vaccine (Daly et al., 2013). The choice of the most suitable
vaccine must meet several requirements, such as inducing an
immune response capable of being detected, demonstrating pro-
tection against natural or induced infection, containing significant
and up-to-date viral strains, being safe and easy to administer
(Radostits et al., 2003).

Inactivated vaccines provide protection to horses without
releasing the virus, requiring boosters to be more effective.
These vaccines are the most suitable for the vaccination of preg-
nant mares. Inactivated vaccines can be presented with an
immunity-stimulating complex (ISCOM)–matrix adjuvant,
which allows the duration of immunity to be increased
(Bengtsson, 2013; Paillot et al., 2013). Adjuvants promote cellular
and humoral responses. Vaccines with ISCOMs demonstrated a
reduction in clinical signs in horses, prevention of virus release,
and the induction of specific IFN-γ production. The production
of this IFN is possible through the activation of Th1 cells. The
use of aluminium hydroxide gel adjuvant has been shown to be
safe in inactivated vaccines, promoting good immunity. The
administration of the vaccine combined with the inactivated
equine herpes vaccine has shown an improvement in the immune
response against EIV (Paillot et al., 2006, 2008; Horspool and
King, 2013; Gildea et al., 2016).

Subunit vaccines are composed of purified antigens, and can
also be presented with ISCOM. In this case, they are particles
derived from the combination of the viral protein with choles-
terol, phospholipids, chylamine saponins, hydrophobic antigen,
and membrane proteins. The response obtained with ISCOM in
this type of vaccine is more prominent, observing the induction
of strong antibody response with high levels of IFN-γ. If these
are administered intranasally, as a vaccine booster, the animal pre-
sents high levels of immunoglobulin A (IgA) specific to the virus.
This type of vaccine has a longer response duration when admi-
nistered in a protocol combining vaccines for intramuscular
administration (Sjolander et al., 1998; Crouch et al., 2005;
Paillot et al., 2008; Elton and Bryant, 2011; Dilai et al., 2018).

The attenuated vaccines aim to simulate a natural infection,
and they are able to generate local and systemic immune
responses. Due to the strain’s ability to replicate only in the
upper respiratory tract, the development of more severe clinical
signs is avoided (Townsend et al., 2001; Paillot, 2014).

Viral vector vaccines should be administered by intramuscular
injection, with a six-monthly vaccination protocol. These are able
to promote the production of a good amount of antibodies and
are indicated for vaccination of pregnant mares, more specifically
in the last stage of gestation, leading to the presence of consider-
able levels of antibodies in the colostrum. The canarypox vector

allows antibodies to act only in HA, making it possible to distin-
guish between vaccinated animals and naturally infected animals
in laboratory tests. This type of vaccine demonstrated rapid devel-
opment of immunity, with a prolonged duration against the
American strain, thus allowing the vaccination booster to take
place after 1 year (Daly et al., 2004, 2011; Minke et al., 2007;
Soboll et al., 2010; Paillot and El-Hage, 2016).

In North America, a live modified virus vaccine is used, which
has already demonstrated experimental effectiveness in preventing
the disease in relation to heterologous viruses. In this type of vac-
cine, the virus maintains its ability to infect the host cell, stimu-
lating long-lasting immunity. However, its use generates
concern due to the possibility of reversion to normal virulence,
with consequent impairment of the health of pregnant females
and immunocompromized animals (Townsend et al., 2001;
Paillot et al., 2014).

The greatest difficulty in combating EI lines is controlling the
virus through vaccination and the existence of several animal
reservoirs that enable it to reappear. Mutation of the virus also
plays an important role, as it is a constant threat to the immune
system and, therefore, to vaccines that try to predispose the organ-
ism to respond in the presence of the virus and limit its spread
(Daly et al., 2013; Elton and Cullinane, 2013). Previous studies
have shown that vaccine efficacy can be compromized by chan-
ging a single amino acid (Legrand et al., 2013).

For good disease prevention, active surveillance is recom-
mended, including a genetic and antigenic characterization of
the virus detected, together with clinical and epidemiological
information provided by veterinary associations, and also infor-
mation on possible vaccine failures, which can culminate in an
outbreak of the disease (Back et al., 2016; Daly and Murcia,
2018). The strains used in vaccines are recommended by the
OIE. Every year, the sequencing and analysis of the HA of the
strains that emerge allow us to evaluate the cross-protection pro-
vided by the vaccines in force. The data arising from this analysis
are evaluated and reviewed by the Expert Surveillance Panel,
which is made up of members representing the World Health
Organisation and the OIE, enabling a decision to be made in
the event that it is necessary to update the strain to be used in vac-
cines. Strains are updated only if the one currently being used is
not able to provide adequate immunization (Cullinane et al.,
2010). The OIE recommendations include the use of vaccines
that contain viruses of the FC1 and FC2 lineage, as there have
been no reports of influenza resulting from H7N7 and the
Eurasian line. A/eq/South Africa/04/2003-like or A/eq/Ohio/
2003-like should be administered for FC1; and for FC2, A/eq/
Richmond/1/2007-like should be administered. Vaccines must
be adapted to the existing strains in each country in order to
improve the immune response to the virus. Some strains are
not included in vaccines, although they are more recent, due to
their vulnerability to mutations, which could compromise the
desired response with vaccination (Gamoh and Nakamura,
2017; OIE, 2019b). The vaccine must be administered strategically
and in such a way that it provides the best possible immune
response. The more recent the strain, the better the protection
acquired (Radostits et al., 2003; Barbic et al., 2009; Daly and
Murcia, 2018).

Vaccination of pregnant mares will protect the neonatal foal
against the disease through passive antibody transfer. However,
this transfer of antibodies may be a factor that compromises vac-
cine efficacy (van Maanen, et al., 1992; Cullinane et al., 2001).
Thus, vaccination plans start at 6 months of age to allow the
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level of maternal antibodies to decrease; however, a gap in
immunity may occur. Passive immunity is short-lived and some
foals with newly vaccinated mothers are seronegative at 4 weeks
of age (Nelson et al., 1998). It was also concluded that this gap
can be reduced by starting the vaccination protocol at 3 months
of age. (Perkins and Wagner, 2015)

At this time, authorities in the UK, France, and Ireland recom-
mend administering the first doses between 21 and 92 days apart,
and the third dose with a gap of between 150 and 215 days after
the second dose (Cullinane et al., 2014). These intervals allow
the immune response to be increased immediately before an
increased risk of exposure to the virus. Longer time intervals
increase the period of a possible gap in the immune system
(Daly et al., 2013). With vaccination, young horses increase
their antibody count, but only 75% of the population reaches
values considered to be protective (Newton et al., 2000a). The
use of a semi-annual vaccination plan, instead of an annual
one, reduces the risk of infections by the virus and, in turn,
the appearance of outbreaks (Ryan et al., 2015). Accelerated
vaccination, i.e. the reduction in the interval between vaccine
doses, was successfully carried out in pre-outbreak situations
in South Africa and Australia in 2007. In this situation, the
administration of the second dose was given 14 days after the
first vaccination and the third with an interval of 91 days
after the second, showing identical antibody levels when using
the regulated time and presenting a protective immune response
more quickly. If the animal is infected after the first dose, the
clinical signs are milder in relation to non-vaccinated animals,
with the first administration having the ability to confer a cer-
tain degree of immunity (Arthur and Suann, 2011; El-Hage
et al., 2013).

Racehorses, due to their age, should receive more attention.
When these animals arrive at the running stables, they usually
have antibodies prior to vaccination, however, they are not consid-
ered sufficient for their protection (Newton et al., 2000a). Studies
carried out on English Thoroughbred horses showed that 95% of
the animals at the same training center had already received more
than one vaccine from different laboratories after the first immun-
ization, having been associated with a high number of antibodies
present in these animals compared to the rest. However, with the
increase in vaccinations, average antibody levels have started to
decline, and over-vaccination may lead to problems, such as the
loss of pre-existing antibodies (Ryan et al., 2015).

Five vaccines against EI are marketed in Portugal, approved by
the General Food and Veterinary Directorate (DGAV – Direção
Geral de Alimentação e Veterinária): EquilisPrequenza,
EquilisPrequenzaTe, Equip FT, ProteqFlu, and ProteqFlu-Te.
The vaccines which are available and approved by the DGAV
have been approved by the Committee for Medical Products for
Veterinary Use (CVMP – Comité de Produtos Médicos de Uso
Veterinário) (DGAV, 2019; EMA, 2020).

Outbreak control must be planned with an early and rapid vac-
cination program, and the creation of structures to quarantine
infected horses is necessary. Therefore, it is necessary to set a
deadline for the vaccination of all horses. The quarantine area
must have restricted access and all people with responsibility
must be trained in matters regarding biosafety, and the entrances
and exits must be carefully controlled in order to avoid the spread
of the disease (Arthur and Suann, 2011). In addition to vaccines,
there are other methods of prevention; however, they are more
directed at containing the spread of the virus or preventing its
entry into a stable (Wilson, 1993; Daly et al., 2004).

Immunity

Immunity is achieved in two different ways, that is, by infection
with the virus or through vaccination. The immunity acquired
by exposure to the agent depends on the type of contact with
the virus, the strain and the time of exposure. It is important to
bear in mind that the resistance/immunity that the animal pre-
sents, derived from the disease or vaccination, is greater for hom-
ologous viruses in comparison to the heterologous virus (Yates
and Mumford, 2000). Thus, animals with antibody concentra-
tions within the standard of protection against the homologous
virus are susceptible to disease caused by heterologous viruses
(Newton et al., 2000b; van Maanen et al., 2003; Daly et al.,
2004). After the last contact with breast milk, antibodies can
remain for up to 1 year and in some cases can even reach 2
years, with a low incidence of the disease in foals. Partially immu-
nized animals tend to become infected subclinically (Morley et al.,
1999; Landolt, 2014).

Immunity by contact with the agent and by vaccination is
characterized by the production of different Igs. In the case of nat-
ural infection, IgA, IgGa, and IgGb are produced. IgA is present in
nasal secretions and the other Igs in serum. When immunized by
vaccination, the serum contains only IgG(T) and the antibodies
last for 3–4 months (Hannant et al., 1988, 1989; Wilson, 1993;
Nelson et al., 1998). Determining the antibody concentration
enables the assessment of the animal’s susceptibility to infection,
and it is an indicator of the need for restructuring or application
of a vaccination plan. The radial haemolysis test allows the ana-
lysis of immunity to a single strain and is predictive of disease
resistance both at the field level and the experimental level
(Newton et al., 2000b; van Maanen et al., 2003; Daly et al., 2004).

Most vaccines are composed of inactivated viruses or subunits
of the virus combined with an adjuvant. This combination aims
to maximize the immune response achieved through vaccination,
thus an adjuvant is an important factor in the composition of the
vaccine. It is important to note that the predominant factor in a
vaccine is the inclusion of sufficient amounts of antigen from
viral strains that have immunological value. The concentration
of antigens included in the vaccine has a direct relationship to
the magnitude and duration of the antibody response. Since the
H7N7 virus is not detected, it should not be included in the vac-
cine (Daly et al., 2004; Minke et al., 2004). For preventive immun-
ization, a constant update of the vaccine with the strains
circulating in the equine population is required (Yates and
Mumford, 2000; Daly et al., 2004; Elton and Cullinane, 2013).
A simple change, on the FC2 strains, in the antigenic site A pos-
ition 144 of the HA gene can incapacitate a vaccine, i.e. lead to a
vaccine failure. When this happens, there is no cross-protection
between the existing strain and the vaccine that was administered,
as reported by Nemoto et al. (2019b) where the two vaccines had
less cross-protection when the HA-144A underwent mutation
and it was possible to see HA-A144 V or HA-A144 T
(Yamanaka et al., 2015a; Nemoto et al., 2019b).

The use of live modified virus vaccines has immunity that lasts
up to 6 months. In a study carried out to determine this interval,
ponies showed milder clinical signs, compared to the unvaccin-
ated control group, when exposed to a highly pathogenic virus
6 months after vaccination. Twelve months after the start of the
study, a new data collection was carried out, in which the vacci-
nated animals showed a reduction in the temperature, concentra-
tion, and duration of the virus in relation to the non-vaccinated
animals. According to the study, the use of this vaccine can
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lead to a marked reduction in the frequency, severity and duration
of EI outbreaks in North America (Chambers et al., 2001).

The recombinant vaccine with the canarypox vector was intro-
duced in Europe, where it was widely embraced by Veterinarians
and horse owners (Minke et al., 2004). This vaccine uses the viral
vector to introduce the HA of H3N8 EIV genes into the host cell.
The recombinant virus expresses the HA gene of the American
FC1 and FC2 (Toulemonde et al., 2005; OIE, 2021). Infection
of the cell with Canarypox is abortive, i.e. there is no production
or expression of the vector; however, the EIV gene is expressed
and is demonstrated through the main class 1 histocompatibility
complex by the cell, giving rise to an immune response (Daly
et al., 2004).

A multivalent vaccine with an inactivated virus is considered
to fail when it does not produce a sufficient concentration of anti-
bodies, indicating a lack of protection against infection by a heter-
ologous IV (Newton et al., 2000b; van Maanen et al., 2003; Daly
et al., 2004). Failure to immunize with the vaccine can occur due
to factors such as the incorrect storage of the vaccine, incorrect
administration, or the individual response of each animal, varying
according to genetic factors, age, presence of infections, ongoing
treatments, presence of maternal antibodies, nutritional status
and stress (NOAH, 2020).

Economic impact

EI is associated with little economic loss, due to the low mortality
of horses. However, when outbreaks occur in racehorse stables,
affected animals must stop training, which can lead to suspension
of race events for months in a given country, with associated eco-
nomic losses (Powell et al., 1995). Losses resulting from outbreaks
affect industry and those who depend on racehorses and breeding,
government, and individuals. The affected household will be in
quarantine and the borders can close, to supress the virus
(Smyth et al., 2011).

The outbreak that occurred in Australia, in 2007, forced the
implementation of a contingency plan that cost the government
of that country about one billion Australian dollars. However,
some authors argue that the cost associated with this outbreak
may have been even greater (Cowled et al., 2009; Smyth et al.,
2011). Restricting the movement of animals has caused great dis-
ruption and economic loss for the entire Australian equine sector.
In order to reduce the economic impact, New South Wales has
instituted biosafety classes in the most affected areas. Biosafety
protocols and vaccination programs were also created to control
the disease (Arthur and Suann, 2011).
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