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On the generalizations of the theorems of Parseval and Riesz-
Fischer. By Mr S. POLLARD, Trinity College.

[Received 14 June, read 25 July 1927.]

1. Any two real numbers p and q will be called conjugate if

1 + 1 = 1.
P 9

In what follows it is supposed that p^l. This implies q^l
and either p = q = 2 or p and q are separated by 2.

The theorems in question are:

A. Ifp > 2 and

I" \f(x)\'dx<eo,
J —IT

then V2
where, for n = 0, 1, 2, ...,

1 /""• If"

an= - I /(<) cos n£ cfo, &„ = --1 f(t) sin ntf dt,

B.

(1-2) Oo p »

there is a function g(x) such that

(° |flr(*)|«<oo.
J —IT

and, for n = 0, 1, 2, . . . ,

(1-3) an= - [ " «(<) cos m£d«, bn= - I g(t)sinnirf«.

Moreover

_

Theorem A generalizes Parseval's theorem and theorem B that
of Riesz-Fischer*.

• K. W. Hobson, Theory of Functions of a Real Variable, 2 (1926), 599-606.
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It will be observed that a distinction is drawn between the
function which appears in the enunciation of B and that which
appears in the enunciation of A. The two functions should not be
confused.

2. As is well known these two theorems are of different types.
Theorem A is of "function" type, i.e. is a direct theorem about the
Fourier series of a given function ; while theorem B is of " coeffi-
cient" type, i.e. is a theorem about trigonometrical series whose
terms are given. It will be observed that, when the coefficients in
theorem B are the Fourier coefficients of a given function f(x),
there is nothing in the theorem which allows us to identify this
function with the function g(x) given by the theorem. It is
certainly true that f(x) and g (x) are essentially the same, but this
is because of a special property of the trigonometrical orthogonal
system which it does not share with all orthogonal systems.

The object of this note is to obtain a single theorem of
" function " type which covers as much as possible of the ground
covered by theorems A and B. It does not cover all the ground, but
requires only to be supplemented by part of the ordinary Riesz-
Fischer theorem, i.e. by the consequences of the usual theory of
convergence on the mean.

It should be observed that the single theorem is designed in
such a way that its hypothesis is as free as possible from restrictions.
The only assumption made is that of integrability in the general
Denjoy sense.

3. Consider:
C. Iff(x) is integrable in the general Denjoy sense in (— IT, ir) and,
for n = 0,1, 2, ....

an = — f' f(t) cos nt dt, bn = — f" /(<) sin nt dt,

then

bears to "+ £ (|anj* +
the same relation of inequality that p bears to 2 in the sense that

(3-1)
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1 / + i Qan\r + \bn\
_ . * n=l

D. / /
00

(3'3) 4a0
3 + 2 (an

3 + 6n
s) < oo

n=l
then the equations

If" • I f " .
an=—\ g(t)cosntdt, bn = — I a(Osinnidi (n = 0,1, 2...)

a. solution g (f) which is integrable.
Of these D is part of the ungeneralized Riesz-Fischer theorem,

and C is the proposed direct theorem.

4. LEMMA. If fix) and g(x) are integrable in (—IT, TT) in the
general Denjoy sense and have the same Fourier coefficients, then *

(4-1) /(«)~#(#) (-ir^x^v).

Write

* » = I" {/(«) - W dt, G («) = f * {fir«) - } a,} dt,

so that F(—TT), F(TT), Q(—ir), G(TT) all vanish and integration by
parts shows that F(x) and G(x) have the same Fourier coefficients.

Now -F(a;) and G{x) are continuous functions arid therefore,
by FejeYs theorem, can be obtained from their Fourier series by
the process of summation by arithmetic means. Since the Fourier
series are the same it follows that F(x) and G(x) are the same.

Denjoy and others have, however, shown that a function which
is integrable in the general Denjoy sense can be obtained almost
everywhere from its indefinite integral by the process of asymptotic
differentiation. Thus, provided that a function cannot have at a
given point two different asymptotic differential coefficients,

f(x) - £a0 ~ g{x) - £a0 (-ir^x^ir),
which is (4-l).

To investigate the point just raised suppose that, if possible,
F(x) has at a point £ two different asymptotic differential co-
efficients A,, A2. Then there are sets Eu E2 of unit density at f
such that

-»> A3 (a; -»• £ in S2).

• By (4-1) is to be understood that f(x)=g(x) throughout - » < x ^ i r except
possibly at the points of a set of measure zero.
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Since Et and E2 are of unit density at £, corresponding to each
positive number e there is a positive number 77 such that

mE-,1, mE^I > (1 — e) ml

for all intervals / enclosing f of length not greater than 77. Thus

mE1EJ>(l-2e)mI,

which shows that EtE2 has unit density at £
This is impossible unless £ is a limit point of E1E2, and we now

have ———-r—- tending to both At and A2 as x-*-% in E1E2,x — §
which cannot be the case.

5. Suppose p^ 2. Then unless (1*1) holds, (31) goes without
saying, and if (11) holds, (31) is a consequence of A.

Now suppose p ̂  2. Unless (1*2) holds, (3-2) goes without
saying. If (1'2) holds, then there is a function g (x) such that (1*3)
holds. The functions f(x) and g (x) have the same Fourier co-
efficients and, by the lemma, must coincide almost everywhere.
And now (3'2) follows from (1'4).

Theorem C is thus completely established.
I t will be observed that, as (l-2) with p < 2 implies (3"3), the

special case D of B is sufficient to establish the existence of the
function g (x).

6. It is easily seen that C and D are in effect A and B
together with the equivalence off(x) and g(x). So that C and D
state a little more than A and B.

In view of this a certain amount of care has to be exercised.
For C and D do not extend to the case of an arbitrary orthogonal
system in the same way that A and B do.

The difference is most easily illustrated in the case p = 2, when
A and B are known to hold, with appropriate modifications, for all
complete systems of normalized orthogonal functions. The-same is
true of D, but not of C.

For, with the aid of a construction due to Banach*, it is
possible, given any integrable function f(x) such that

to obtain a complete system of normalized orthogonal functions

(61) <f>t(x), <p2(x), ...,4>n(x), ....

* S. Banach, Proe. London Math. Soc. (2) 21 (1923), 95-97. Banach assumes
that / (x) is positive and so absolutely integrable. It is interesting to verify that his
construction can be extended to the case of conditionally integrable functions.
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with (a, b) as basic interval, such that, if

c»=f f(t)<t>n(t)dt,
J a

then, for every n,
(6-2) cn = 0,
so that the analogue of (3"2) cannot hold.

7. hetf{x) be as described and write

7 -
so that 7 ^ 0 .

Take *(.).(_!_)*,

so that the functions ~*\rr{x) are the trigonometrical orthogonal
system adjusted to the interval (a, 6) and normalized.

Since each Vp"(a;) ^s °f bounded variation, the product
f(x)irn(^) is integrable. Write

7«-[*/(*)*»(*)#,
so that, by theorem C,

(71) I yn>
»=1

Take now X»(a;) = f»(*) - ^ ,
so that

(7-2) f'/(«) x» (0 d« = f V («) f» (0 * - - f
Jo J« 7 Jo

= 7« - 7n = 0.
If possible, let the functions Xn (#) form an incomplete system,

so that there is a normalized function F (x) such that

for every n.
This gives

(7-3) I
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Now, by theorem C,

(7-4) I IV = \bFi(t)dt = \.
»=1 Jo

Thus, by (7"3)
\ F(t)dt\ S 7 n

2 = 7
2,

(J a ) n = l

which is impossible, in view of (7'1), as

f F(t)dt$O,
J a

for otherwise, by (7-3), all the coeflScients Fn would vanish, in
defiance of (7-4).

It follows that no function such as F(x) can exist and the
system JXn(Ot must be complete, but not necessarily orthogonal.

The first function Xi (x) is easily seen to vanish, since

7 \b-aj y) b-a
dt

but for all the others

= 1 + ( 6 - 0 ) ^

and the system

can be converted, in the usual way, into a complete normalized
orthogonal system (6"1).

Since </>„(#) is a finite linear combination of the functions
X»(x)> cn vanishes in view of (72). Thus (6"2) holds, as had to
be proved.

It may be observed that, since the system ^ n (a;) is complete it
must contain functions whose norm relative to (a, b) does not
vanish and so is capable of yielding a normalized orthogonal
system. The analysis given, however, snows that ^i (?) is the only
function whose norm vanishes.
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