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A detachment of a hypergraph is formed by splitting each vertex into one or more subvertices, and
sharing the incident edges arbitrarily among the subvertices. For a given edge-coloured hypergraph
F , we prove that there exists a detachment G such that the degree of each vertex and the multipli-
city of each edge in F (and each colour class of F ) are shared fairly among the subvertices in G
(and each colour class of G , respectively).

Let (λ1, . . . , λm)K
h1 ,..., hm
p1 ,..., pn be a hypergraph with vertex partition {V1, . . . , Vn}, |Vi| = pi for 1 �

i � n such that there are λi edges of size hi incident with every hi vertices, at most one vertex
from each part for 1 � i �m (so no edge is incident with more than one vertex of a part). We use
our detachment theorem to show that the obvious necessary conditions for (λ1, . . . , λm)K

h1 ,..., hm
p1 ,...,pn

to be expressed as the union G1 ∪ · · · ∪ Gk of k edge-disjoint factors, where for 1 � i � k, Gi
is ri-regular, are also sufficient. Baranyai solved the case of h1 = · · · = hm, λ1 = · · · = λm = 1,
p1 = · · · = pm, r1 = · · · = rk . Berge and Johnson (and later Brouwer and Tijdeman, respectively)
considered (and solved, respectively) the case of hi = i, 1 � i �m, p1 = · · · = pm = λ1 = · · · =

λm = r1 = · · · = rk = 1. We also extend our result to the case where each Gi is almost regular.

AMS 2010 Mathematics subject classification: 05C65, 05C15, 05C70, 05C51, 05B40, 05B05

1. Introduction

Intuitively speaking, a detachment of a hypergraph is formed by splitting each vertex into one or
more subvertices, and sharing the incident edges arbitrarily among the subvertices. As the main
result of this paper (see Theorem 4.1), we prove that for a given edge-coloured hypergraph F ,
there exists a detachment G such that the degree of each vertex and the multiplicity of each edge
in F (and each colour class of F ) are shared fairly among the subvertices in G (and each colour
class of G , respectively). This result is not only interesting by itself and generalizes various
graph-theoretic results (see for example [1, 9, 12, 14, 15, 17, 18, 19]), but is also used to obtain
extensions of existing results on edge-decompositions of hypergraphs by Bermond, Baranyai
[2, 3], Berge and Johnson [4, 13], and Brouwer and Tijdeman [5, 6].

Given a set N of n elements, Berge and Johnson [4, 13] addressed the question of when do
there exist disjoint partitions of N, each partition containing only subsets of h or fewer elements,
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such that every subset of N having h or fewer elements is in exactly one partition. Here we state
the problem in a more general setting with the hypergraph-theoretic notation.

Let (λ1 . . . , λm)Kh1 ,..., hm
p1 ,..., pn

be a hypergraph with vertex partition {V1, . . . , Vn}, |Vi| = pi for 1 �
i � n such that there are λi edges of size hi incident with every hi vertices, at most one vertex
from each part for 1 � i � m (so no edge is incident with more than one vertex of a part). We use
our detachment theorem to show that the obvious necessary conditions for (λ1 . . . , λm)Kh1 ,...,hm

p1 ,...,pn
to

be expressed as the union G1 ∪ · · · ∪ Gk of k edge-disjoint factors, where for 1 � i � k, Gi is ri-
regular, are also sufficient. Baranyai [2, 3] solved the case of h1 = · · · = hm, λ1 = · · · = λm = 1,
p1 = · · · = pm, r1 = · · · = rk. Berge and Johnson [4, 13] (and later Brouwer and Tijdeman [5, 6],
respectively) considered (and solved, respectively) the case of hi = i, 1 � i � m, p1 = · · · =

pm = λ1 = · · · = λm = r1 = · · · = rk = 1. We also extend our result to the case where each Gi is
almost regular.

In the next two sections, we give more precise definitions along with terminology. In Section 4,
we state our main result, followed by the proof in Section 5. In the last section, we show the
usefulness of the main result on decompositions of various classes of hypergraphs. We defer the
applications of the main result in solving embedding problems to a future paper.

2. Terminology and precise definitions

If x, y ∈ R (R is the set of real numbers), then �x� and �x� denote the integers such that
x− 1 < �x� � x � �x� < x+ 1, and x ≈ y means �y� � x � �y�. We observe that the relation
≈ is transitive (but not symmetric) and for x, y ∈ R, and n ∈ N (N is the set of positive integers),
x ≈ y implies x/n ≈ y/n. These properties of ≈ will be used in Section 5 without further
explanation. For a multiset A and u ∈ A, let μA(u) denote the multiplicity of u in A, and let
|A| =

∑
u∈A μA(u). For multisets A1, . . . , An, we define A =

⋃n
i=1 Ai by μA(u) =

∑n
i=1 μAi (u).

We may use abbreviations such as {ur} for {u, . . . , u︸ ︷︷ ︸
r

}, for example

{u2, v, w2} ∪ {u, w2} = {u3, v, w4}.

For the purpose of this paper, a hypergraph G is an ordered quintuple (V (G ), E(G ), H(G ),

ψ, φ) where V (G ), E(G ), H(G ) are disjoint finite sets, ψ : H(G ) → V (G ) is a function and φ :

H(G ) → E(G ) is a surjection. Elements of V (G ), E(G ), H(G ) are called vertices, edges and
hinges of G , respectively. A vertex v (edge e, respectively) and hinge h are said to be incident
with each other if ψ(h) = v (φ(h) = e, respectively). A hinge h is said to attach the edge φ(h) to
the vertex ψ(h). In this manner, the vertex ψ(h) and the edge φ(h) are said to be incident with
each other. If e ∈ E(G ), and e is incident with n hinges h1, . . . , hn for some n ∈ N, then the edge
e is said to join (not necessarily distinct) vertices ψ(h1), . . . , ψ(hn). If v ∈ V (G ), then the number
of hinges incident with v (i.e., |ψ−1(v)|) is called the degree of v and is denoted by d(v). The
number of (distinct) vertices incident with an edge e, denoted by |e|, is called the size of e. If, for
all edges e of G , |e| � 2 and |φ−1(e)| = 2, then G is a graph.

Thus a hypergraph, in the sense of our definition, is a generalization of a hypergraph as it is
usually defined. In fact, if for every edge e, |e| = |φ−1(e)|, then our definition is essentially the
same as the usual definition. Here, for convenience, we imagine each edge of a hypergraph to be
attached to the vertices which it joins by in-between objects called hinges. Readers from a graph
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Figure 1. Representation of a hypergraph G .

theory background may think of this as a bipartite multigraph with vertex bipartition {V , E}, in
which the hinges form the edges. A hypergraph may be drawn as a set of points representing the
vertices. A hyperedge is represented by a simple closed curve enclosing its incident vertices. A
hinge is represented by a small line attached to the vertex incident with it (see Figure 1).

The set of hinges of G which are incident with a vertex v (and an edge e, respectively), is
denoted byH(v) (H(v, e), respectively). Thus, if v ∈ V (G ), thenH(v) = ψ−1(v), and |H(v)| is the
degree d(v) of v. IfU is a multi-subset of V (G ), and u ∈ V (G ), let E(U) denote the set of edges e
with |φ−1(e)| = |U| joining vertices inU. More precisely, E(U) = {e ∈ E(G )| for all v ∈ V (G ),

|H(v, e)| = μU(v)}. For U1, . . . , Un ⊂ V , where for 1 � i � n each Ui is a multiset, let
E(U1, . . . , Un) denote E(

⋃n
i=1Ui). We write m(U) for |E(U)| and call it the multiplicity of U.

For simplicity, E(ur, U) denotes E({ur}, U), and m(um1

1 , . . . , u
mr
r ) denotes m({um1

1 , . . . , u
mr
r }). The

set of hinges that are incident with u and an edge in E(ur, U) is denoted by H(ur, U).

Example 2.1. Let G = (V , E,H, ψ, φ), with

V = {v1, v2, v3, v4, v5}, E = {e1, e2, e3}, H = {hi, 1 � i � 7},

such that

ψ(h1) = ψ(h2) = v1, ψ(h3) = v2, ψ(h4) = ψ(h5) = v3, ψ(h6) = v4, ψ(h7) = v5

and

φ(h1) = φ(h2) = φ(h3) = φ(h4) = e1, φ(h5) = φ(h6) = e2, φ(h7) = e3.

We have:

• |e1| = 3, |e2| = 2, |e3| = 1,
• d(v1) = d(v3) = 2, d(v2) = d(v4) = d(v5) = 1,
• H(v1) = {h1, h2}, H(v2) = {h3}, H(v3) = {h4, h5},
• H(v3, e1) = {h4}, H(v3, e2) = {h5}, H(v3, e3) = ∅,
• E({v1, v2, v3}) = ∅, E({v21 , v2, v3}) = E(v21 , {v2, v3}) = {e1},
• m(v1, v2, v3) = 0, m(v21 , v2, v3) = 1,
• H(v21 , {v2, v3}) = {h1, h2}, H(v1, {v2, v3}) = ∅, H(v3, {v21 , v2}) = {h4}.
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A k-edge-colouring of G is a mapping f : E(G ) → C, where C is a set of k colours (we often
use C = {1, . . . , k}), and the edges of one colour form a colour class. The sub-hypergraph of
G induced by the colour class j is denoted by G (j). To avoid ambiguity, subscripts may be
used to indicate the hypergraph in which hypergraph-theoretic notation should be interpreted:
for example, dG (v), mG (v2, w), HG (v).

3. Amalgamations and detachments

If F = (V , E,H, ψ, φ) is a hypergraph and Ψ is a function from V onto a set W , then we
shall say that the hypergraph G = (W,E,H,Ψ ◦ ψ,φ) is an amalgamation of F and that F is
a detachment of G . Associated with Ψ is the number function g : W → N defined by g(w) =

|Ψ−1(w)|, for each w ∈ W ; being more specific, we may also say that F is a g-detachment of
G . Intuitively speaking, a g-detachment of G is obtained by splitting each u ∈ V (G ) into g(u)
vertices. Thus F and G have the same edges and hinges, and each vertex v of G is obtained by
identifying those vertices of F which belong to the set Ψ−1(v). In this process, a hinge incident
with a vertex u and an edge e in F becomes incident with the vertex Ψ(u) and the edge e in G .

There are quite a lot of other papers on amalgamations, and some highlights include [7], [8],
[9], [10], [12], [14], [18] and [19].

4. Main result

A function g : V (G ) → N is said to be simple if

|H(v, e)| � g(v) for v ∈ V (G ), e ∈ E(G ).

A hypergraph G is said to be simple if g : V (G ) → N with g(v) = 1 for v ∈ V (G ) is simple. It is
clear that for a hypergraph F and a function g : V (F ) → N, there exists a simple g-detachment
if and only if g is simple.

Theorem 4.1. Let F be a k-edge-coloured hypergraph and let g : V (F ) → N be a simple
function. Then there exists a simple g-detachment G (possibly with multiple edges) of F with
amalgamation function Ψ : V (G ) → V (F ), g being the number function associated with Ψ,
such that:

(A1) dG (v) ≈ dF (u)/g(u) for each u ∈ V (F ) and each v ∈ Ψ−1(u),

(A2) dG (j)(v) ≈ dF (j)(u)/g(u) for each u ∈ V (F ), each v ∈ Ψ−1(u) and 1 � j � k,

(A3) mG (U1, . . . , Ur) ≈ mF (um1

1 , . . . , u
mr
r )/Πr

i=1(
g(ui)
mi

) for distinct u1, . . . , ur ∈ V (F ) and Ui ⊂
Ψ−1(ui) with |Ui| = mi � g(ui) for 1 � i � r, and

(A4) mG (j)(U1, . . . , Ur) ≈ mF (j)(u
m1

1 , . . . , u
mr
r )/Πr

i=1(
g(ui)
mi

) for distinct u1, . . . , ur ∈ V (F ) and

Ui ⊂ Ψ−1(ui) with |Ui| = mi � g(ui) for 1 � i � r and 1 � j � k.

A family A of sets is laminar if, for every pair A,B of sets belonging to A , either A ⊂ B, or
B ⊂ A, or A ∩ B = ∅. To prove the main result, we need the following lemma.
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Lemma 4.2 (Nash-Williams [18], Lemma 2). If A ,B are two laminar families of subsets of
a finite set S , and n ∈ N, then there exists a subset A of S such that, for every P ∈ A ∪ B,
|A ∩ P | ≈ |P |/n.

5. Proof of Theorem 4.1

5.1. Inductive construction of G

Let F = (V , E,H, ψ, φ). Let n =
∑

v∈V (g(v) − 1). Initially we let F0 = F and g0 = g, and we
let Φ0 be the identity function from V into V . Now assume that

F0 = (V0, E0, H0, ψ0, φ0), . . . ,Fi = (Vi, Ei, Hi, ψi, φi)

and Φ0, . . . ,Φi have been defined for some i � 0. Also assume that the simple functions g0 :

V0 → N, . . . , gi : Vi → N have been defined for some i � 0. Let Ψi = Φ0 · · · Φi. If i = n, we
terminate the construction, letting G = Fn and Ψ = Ψn.

If i < n, we can select a vertex α of Fi such that gi(α) � 2. As we will see, Fi+1 is formed
from Fi by splitting off a vertex vi+1 from α so that we end up with α and vi+1. Let

Ai = {HFi
(α)}⋃

{HFi(1)(α), . . . , HFi(k)(α)}⋃
{HFi(j)(α, e) : e ∈ EFi(j)(α), 1 � j � k}, (5.1)

and let

Bi = {HFi
(αt, U) : t � 1, U ⊂ Vi\{α}}⋃

{HFi(j)(α
t, U) : t � 1, U ⊂ Vi\{α}, 1 � j � k}. (5.2)

It is easy to see that both Ai and Bi are laminar families of subsets of H(Fi, α). Therefore, by
Lemma 4.2, there exists a subset Zi of H(Fi, α) such that

|Zi ∩ P | ≈ |P |/gi(α), for every P ∈ Ai ∪ Bi. (5.3)

Let vi+1 be a vertex which does not belong to Vi and let Vi+1 = Vi ∪ {vi+1}. Let Φi+1 be the
function from Vi+1 onto Vi such that Φi+1(v) = v for every v ∈ Vi and Φi+1(vi+1) = α. Let Fi+1

be the detachment of Fi under Φi+1 such that V (Fi+1) = Vi+1, and

HFi+1
(vi+1) = Zi,HFi+1

(α) = HFi
(α)\Zi. (5.4)

In fact, Fi+1 is obtained from Fi by splitting α into two vertices α and vi+1 in such a way
that hinges which were incident with α in Fi become incident in Fi+1 with α or vi+1 ac-
cording to whether or not they belong to Zi, respectively. Obviously, Ψi is an amalgamation
function from Fi+1 into Fi. Let gi+1 be the function from Vi+1 into N, such that gi+1(vi+1) =

1, gi+1(α) = gi(α) − 1, and gi+1(v) = gi(v) for every v ∈ Vi\{α}. This finishes the construction of
Fi+1.
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5.2. Relations between Fi+1 and Fi

The hypergraph Fi+1, satisfies the following conditions:

(B1) dFi+1
(α) ≈ dFi

(α)gi+1(α)/gi(α),

(B2) dFi+1
(vi+1) ≈ dFi

(α)/gi(α),

(B3) mFi+1
(vsi+1, α

t, U) = 0 for s � 2, and t � 0,

(B4) mFi+1
(αt, U) ≈ mFi

(αt, U)(gi(α) − t)/gi(α) for each U ⊂ Vi\{α}, and gi(α) � t � 1,
(B5) mFi+1

(αt, vi+1, U) ≈ (t+ 1)mFi
(αt+1, U)/gi(α) for each U ⊂ Vi\{α}, and t � 0.

Proof. Since HFi
(α) ∈ Ai, from (5.4) it follows that

dFi+1
(vi+1) = |HFi+1

(vi+1)| = |Zi| = |Zi ∩HFi
(α)|

≈ |HFi
(α)|/gi(α) = dFi

(α)/gi(α),

dFi+1
(α) = |HFi+1

(α)| = |HFi
(α)| − |Zi|

≈ dFi
(α) − dFi

(α)/gi(α) = (gi(α) − 1)dFi
(α)/gi(α)

= dFi
(α)gi+1(α)/gi(α).

This proves (B1) and (B2).
If t � 1, U ⊂ Vi\{α}, and e ∈ EFi

(αt, U), then for some j, 1 � j � k, HFi(j)(α, e) ∈ Ai, so

|Zi ∩HFi(j)(α, e)| ≈ |HFi(j)(α, e)|/gi(α) = t/gi(α) � 1,

where the inequality is implied by the fact that gi is simple. Thus, either |Zi ∩HFi(j)(α, e)| = 1

and consequently e ∈ EFi+1
(αt−1, vi+1, U), or Zi ∩HFi(j)(α, e) = ∅ and consequently

e ∈ EFi+1
(αt, U). Therefore

mFi+1

(
vsi+1, α

r, U
)

= 0,

for r � 1, and s � 2. This proves (B3). Moreover, since HFi
(αt, U) ∈ Bi, we have

mFi+1
(αt−1, vi+1, U) = |Zi ∩HFi

(αt, U)|
≈ |HFi

(αt, U)|/gi(α)
= tmFi

(αt, U)/gi(α),

mFi+1
(αt, U) ≈ mFi

(αt, U) − |HFi
(αt, U)|/gi(α)

= mFi
(αt, U) − tmFi

(αt, U)/gi(α)

= mFi
(αt, U)(gi(α) − t)/gi(α).

This proves (B4) and (B5).

Let us fix j ∈ {1, . . . , k}. It is enough to replace Fi with Fi(j) in the statement and the proof
of (B1)–(B5) to obtain companion conditions, say (C1)–(C5), for each colour class.

5.3. Relations between Fi and F

Recall that Ψi = Φ0 · · · Φi, that Φ0 : V → V , and that Φi : Vi → Vi−1 for i > 0. Therefore Ψi :

Vi → V and thus Ψ−1
i : V → Vi. Now we use (B1)–(B5) to prove that the hypergraph Fi satisfies

the following conditions for 0 � i � n:
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(D1) dFi
(v)/gi(v) ≈ dF (u)/g(u) for each u ∈ V and each v ∈ Ψ−1

i (u),

(D2) mFi
(ua1

1 , U1, . . . , u
ar
r , Ur)/Π

r
j=1(

gi(uj )
aj

) ≈ mF (um1

1 , . . . , u
mr
r )/Πr

j=1(
g(uj )
mj

) for distinct vertices

u1, . . . , ur ∈ V , aj � 0, Uj ⊂ Ψ−1
i (uj)\{uj} with 1 � mj = aj + |Uj | � g(uj), 1 � j � r

if gi(uj) � aj , 1 � j � r.

Proof. The proof is by induction. Recall that F0 = F , and g0(u) = g(u) for u ∈ V . Thus, (D1)
and (D2) are trivial for i = 0. Now we will show that if Fi satisfies the conditions (D1) and (D2)
for some i < n, then Fi+1 satisfies these conditions by replacing i with i+ 1; we denote the
corresponding conditions for Fi+1 by (D1)′ and (D2)′.

Let u ∈ V . If gi+1(u) = gi(u), then (D1)′ is obviously true. So we just check (D1)′ in the
case where u = α. By (B1) and (D1) we have dFi+1

(α)/gi+1(α) ≈ dFi
(α)/gi(α) ≈ dF (α)/g(α).

Moreover, from (B2) and (D1) it follows that dFi+1
(vi+1) ≈ dFi

(α)/gi(α) ≈ dF (α)/g(α). Since
in forming Fi+1 no edge is detached from vr for each vr ∈ Ψ−1

i (α)\{α}, we have dFi+1
(vr) =

dFi
(vr). Therefore dFi+1

(vr) = dFi
(vr) ≈ dF (α)/g(α) for each vr ∈ Ψ−1

i (α)\{α}. This proves
(D1)′. Let u1, . . . , ur be distinct vertices in V . If gi+1(uj) = gi(uj) for 1 � j � r, then (D2)′ is
clearly true. Therefore, in order to prove (D2)′, without loss of generality we may assume that
gi+1(u1) = gi(u1) − 1 (so α = u1 and vi+1 ∈ Ψ−1

i (u1)). First, note that for integers a, b we always
have (a− b)(ab) = a(a− 1

b ) = (b+ 1)( a
b+ 1). If vi+1 /∈ U1, we have

mFi+1

(
ua1

1 , U1, . . . , u
ar
r , Ur

)
Πr
j=1

(
gi+1(uj )
aj

) (B4)
≈

mFi

(
ua1

1 , U1, . . . , u
ar
r , Ur

)
(gi(u1) − a1)/gi(u1)(

gi(u1)−1
a1

)
Πr
j=2

(
gi(uj )
aj

)
=

mFi

(
ua1

1 , U1, . . . , u
ar
r , Ur

)
(gi(u1) − a1)/gi(u1)

(gi(u1) − a1)/gi(u1)
(
gi(u1)
a1

)
Πr
j=2

(
gi(uj )
aj

)
=

mFi

(
ua1

1 , U1, . . . , u
ar
r , Ur

)
Πr
j=1

(
gi(uj )
aj

)
(D2)
≈

mF

(
um1

1 , . . . , u
mr
r

)
Πr
j=1

(
g(uj )
mj

) .

If vi+1 ∈ U1, we have

mFi+1

(
ua1

1 , U1, . . . , u
ar
r , Ur

)
Πr
j=1

(
gi+1(uj )
aj

) (B5)
≈

mFi

(
ua1+1

1 , U1\{vi+1}, . . . , uarr , Ur

)
(a1 + 1)/gi(u1)(

gi(u1)−1
a1

)
Πr
j=2

(
gi(uj )
aj

)

=
mFi

(
ua1+1

1 , U1\{vi+1}, . . . , uarr , Ur

)
gi(u1)/(a1 + 1)

(
gi(u1)−1

a1

)
Πr
j=2

(
gi(uj )
aj

)

=
mFi

(
ua1+1

1 , U1\{vi+1}, . . . , uarr , Ur

)
(
gi(u1)
a1+1

)
Πr
j=2

(
gi(uj )
aj

)
(D2)
≈

mF

(
um1

1 , . . . , u
mr
r

)
Πr
j=1

(
g(uj )
mj

) .

This proves (D2)′.
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Let us fix j ∈ {1, . . . , k}. It is enough to replace F with F (j), Fi with Fi(j), Fi+1 with
Fi+1(j), and (Bi) with (Ci) for i = 1, 2, 4, 5, in the statement and the proof of (D1) and (D2) to
obtain companion conditions, say (E1) and (E2), for each colour class.

5.4. G satisfies (A1)–(A4)
Recall that G = Fn and gn(u) = 1 for every u ∈ V , therefore when i = n, (D1) implies (A1).
Moreover, if we let i = n in (D2), we have aj ∈ {0, 1} for 1 � j � r and thus Πr

j=1(
gi(uj )
aj

) =

Πr
j=1(

1
aj
) = 1. This proves (A3). By a similar argument, one can prove (A2) and (A4), and this

completes the proof of Theorem 4.1.

6. Corollaries

For a matrix A, let Aj denote the jth column of A, and let s(A) denote the sum of all the
elements of A. Let R = [r1 . . . rk]

T (or RT = [ri]1×k), Λ = [λ1 . . . λm]T and H = [h1 . . . hm]T be
three column vectors with ri, λi ∈ N, and hi ∈ {1, . . . , n} for 1 � i � m, such that h1, . . . , hm are
distinct. Let ΛKH

n denote a hypergraph with vertex set V , |V | = n, such that there are λi edges
of size hi incident with every hi vertices for 1 � i � m. A hypergraph G is said to be k-regular
if every vertex has degree k. A k-factor of G is a k-regular spanning sub-hypergraph of G . An
R-factorization is a partition (decomposition) {F1, . . . , Fk} of E(G ) in which Fi is an ri-factor
for 1 � i � k. Note that ΛKH

n is
∑m

i=1 λi(
n− 1
hi − 1)-regular. We show that the obvious necessary

conditions for the existence of an R-factorization of ΛKH
n are also sufficient.

Theorem 6.1. ΛKH
n is R-factorizable if and only if s(R) =

∑m
i=1 λi(

n− 1
hi − 1), and there exists a

non-negative integer matrix A = [aij]k×m such that AH = nR, and s(Aj) = λj(
n
hj
) for 1 � j � m.

Proof. To prove the necessity, suppose that ΛKH
n is R-factorizable. Since each ri-factor is an

ri-regular spanning sub-hypergraph for 1 � i � k, and ΛKH
n is

∑m
i=1 λi(

n− 1
hi − 1)-regular, we must

have s(R) =
∑k

i=1 ri =
∑m

i=1 λi(
n− 1
hi − 1). Let aij be the number of edges (counting multiplicities)

of size hj contributing to the ith factor for 1 � i � k, 1 � j � m. Since for 1 � j � m, each edge
of size hj contributes hj to the sum of the degrees of the vertices in an ri-factor for 1 � i � k, we
must have

∑m
j=1 aijhj = nri for 1 � i � k and

∑k
i=1 aij = λj(

n
hj
) for 1 � j � m.

To prove the sufficiency, let F be a hypergraph consisting of a single vertex v with mF (vhj ) =

λj(
n
hj
) for 1 � j � m. Note that F is an amalgamation of ΛKH

n . Now we colour the edges of F

so that mF (i)(v
hj ) = aij for 1 � i � k, 1 � j � m. This can be done, because

k∑
i=1

mF (i)(v
hj ) =

k∑
i=1

aij = λj

(
n

hj

)
= mF (vhj ) for 1 � j � m.

Moreover,

dF (i)(v) =

m∑
j=1

aijhj = nri for 1 � i � k.

Let g : V (F ) → N be a function so that g(v) = n. Since for 1 � i � m, hi � n, g is simple. By
Theorem 4.1, there exists a simple g-detachment G of F with n vertices, say v1, . . . , vn, such
that by (A2), dG (i)(vj) ≈ dF (i)(v)/g(v) = nri/n = ri for 1 � i � k, 1 � j � n, and by (A3), for
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each U ⊂ {v1, . . . , vn} with |U| = hj , mG (U) ≈ mF (vhj )/( nhj) = λj(
n
hj
)/( nhj) = λj for 1 � j � m.

Therefore G ∼= ΛKH
n , and the ith colour class induces an ri-factor for 1 � i � k.

In particular, if m = 1, h := h1, λ1 = 1, r := r1 = · · · = rk, then Theorem 6.1 implies Baran-
yai’s theorem: the complete h-uniform hypergraph Kh

n is r-factorizable if and only if h | rn and
r | (n− 1

h− 1).

Now let hi � 2 for 1 � i � m, and let ΛKH
p1 ,..., pn

be a hypergraph with vertex partition
{V1, . . . , Vn}, |Vi| = pi for 1 � i � n such that there are λi edges of size hi incident with every hi
vertices, at most one vertex from each part for 1 � i � m (so no edge is incident with more than
one vertex of a part). If p1 = · · · = pn := p, we denote ΛKH

p1 ,..., pn
by ΛKH

n×p.

Theorem 6.2. ΛKH
p1 ,..., pn

is R-factorizable if and only if p1 = · · · = pn := p, s(R) =
∑m

i=1

λi(
n− 1
hi − 1)p

hi−1, and there exists a non-negative integer matrix A = [aij]k×m such that AH = npR,

and s(Aj) = λj(
n
hj
)phj for 1 � j � m.

Proof. To prove the necessity, suppose that ΛKH
p1 ,..., pn

is R-factorizable (so it is regular). Let
u and v be two vertices from two different parts, say the ath and bth parts, respectively. Since
d(u) = d(v), we have∑

1�j�m
λj

∑
1�i1< ···<i

hj−1
�n

a/∈{i1 ,..., ihj−1
}

pi1 · · · pihj−1
=

∑
1�j�m

λj
∑

1�i1< ···<i
hj−1

�n
b/∈{i1 ,..., ihj−1

}

pi1 · · · pihj−1

⇐⇒
∑

1�j�m
λj

⎛
⎜⎜⎜⎜⎜⎝

∑
1�i1< ···<i

hj−1
�n

a/∈{i1 ,..., ihj−1
}

pi1 · · · pihj−1
−

∑
1�i1< ···<i

hj−1
�n

b/∈{i1 ,..., ihj−1
}

pi1 · · · pihj−1

⎞
⎟⎟⎟⎟⎟⎠ = 0

⇐⇒
∑

1�j�m
λj

⎛
⎜⎝pb ∑

1�i1< ···<i
hj−2

�n
pi1 · · · pihj−2

− pa
∑

1�i1< ···<i
hj−2

�n
pi1 · · · pihj−2

⎞
⎟⎠ = 0

⇐⇒ (pb − pa)
∑

1�j�m
λj

∑
1�i1< ···<i

hj−2
�n
pi1 · · · pihj−2

= 0

⇐⇒ pb = pa.

Therefore, p1 = · · · = pn := p. So ΛKH
n×p is

∑m
i=1 λi(

n− 1
hi − 1)p

hi−1-regular, and we must have
s(R) =

∑k
i=1 ri =

∑m
i=1 λi(

n− 1
hi − 1)p

hi−1. Moreover, there must exist non-negative integers aij , 1 �
i � k, 1 � j � m, such that

∑m
j=1 aijhj = npri for 1 � i � k and

∑k
i=1 aij = λj(

n
hj
)phj for 1 �

j � m. We note that aij is in fact the number of edges (counting multiplicities) of size hj contrib-
uting to the ith factor.

To prove the sufficiency, let Λp = [phiλi]
T
1×m, and let F = ΛpKH

n with vertex set V =

{v1, . . . , vn}. Note that F is an amalgamation of ΛKH
n×p. By Theorem 6.1, F is pR-factorizable.
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Therefore, we can colour the edges of F so that

dF (i)(v) = pri for v ∈ V , 1 � i � k.

Let g : V → N be a function so that g(v) = p for v ∈ V . Since p � 1, g is simple. By The-
orem 4.1, there exists a simple g-detachment G of F with np vertices, say vi is detached to
vi1, . . . , vip for 1 � i � n, such that by (A2), dG (i)(vab) ≈ dF (i)(va)/g(va) = pri/p = ri for 1 � i �
k, 1 � a � n, 1 � b � p, and by (A3), mG (va1b1

, . . . , vahj bhj ) ≈ mF (va1
, . . . , vahj )/p

hj = phj λj/

phj = λj for 1 � j � m, 1 � a1 < · · · < ahj � n, 1 � b1, . . . , bhj � p. Therefore G ∼= ΛKH
n×p,

and the ith colour class induces an ri-factor for 1 � i � k.

In particular, if m = 1, h := h1, λ1 = 1, r := r1 = · · · = rk, then Theorem 6.2 implies another
one of Baranyai’s theorems: the complete h-uniform n-partite hypergraph Kh

n×p is r-factorizable

if and only if h | npr and r | (n− 1
h− 1)p

h−1.

Let JTk = [1 . . . 1]1×k. For two column vectors Q = [q1 . . . qk]
T , R = [r1 . . . rk]

T , if qi � ri for
1 � i � k, we say that Q � R. For a hypergraph G , a (q, r)-factor is a spanning sub-hypergraph
in which

q � d(v) � r for each v ∈ V (G ).

A (Q,R)-factorization is a partition {F1, . . . , Fk} of E(G ) in which Fi is a (qi, ri)-factor for 1 �
i � k. An almost k-factor of G is (k − 1, k)-factor. An almost R-factorization is an (R − Jk, R)-
factorization. The proofs of the following theorems are very similar to those of Theorem 6.1
and 6.2.

Theorem 6.3. ΛKH
n is (Q,R)-factorizable if and only if s(Q) �

∑m
i=1 λi(

n− 1
hi − 1) � s(R), and there

exists a non-negative integer matrix A = [aij]k×m such that nQ � AH � nR, and s(Aj) = λj(
n
hj
)

for 1 � j � m.

Proof. To prove the necessity, suppose that ΛKH
n is (Q,R)-factorizable. Because ΛKH

n is∑m
i=1 λi(

n− 1
hi − 1)-regular, we must have

s(Q) =

k∑
i=1

qi �
m∑
i=1

λi

(
n− 1

hi − 1

)
�

k∑
i=1

ri = s(R).

Since for 1 � j � m, each edge of size hj contributes hj to the the sum of the degrees of the
vertices in each (qi, ri)-factor, for 1 � i � k, there must exist non-negative integers aij , 1 � i � k,
1 � j � m, such that nqi �

∑m
j=1 aijhj � nri for 1 � i � k and

∑k
i=1 aij = λj(

n
hj
) for 1 � j � m.

To prove the sufficiency, let F be a hypergraph consisting of a single vertex v with mF (vhj ) =

λj(
n
hj
) for 1 � j � m. Note that F is an amalgamation of ΛKH

n . Now we colour the edges of F

so that mF (i)(v
hj ) = aij for 1 � i � k, 1 � j � m. This can be done, because

k∑
i=1

mF (i)(v
hj ) =

k∑
i=1

aij = λj

(
n

hj

)
= mF (vhj ) for 1 � j � m.
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Moreover,

nqi � dF (i)(v) =

m∑
j=1

aijhj � nri for 1 � i � k.

Let g : V (F ) → N be a function so that g(v) = n. Since for 1 � i � m, hi � n, g is simple. By
Theorem 4.1, there exists a simple g-detachment G of F with n vertices, say v1, . . . , vn, such
that by (A2), qi = nqi/n � dG (i)(vj) � nri/n = ri for 1 � i � k, 1 � j � n, and by (A3), for
each U ⊂ {v1, . . . , vn} with |U| = hj , mG (U) ≈ mF (vhj )/( nhj) = λj(

n
hj
)/( nhj) = λj for 1 � j � m.

Therefore G ∼= ΛKH
n , and the ith colour class induces a (qi, ri)-factor for 1 � i � k.

Theorem 6.4. ΛKH
n is almost R-factorizable if and only if s(R) − k �

∑m
i=1 λi(

n− 1
hi − 1) � s(R),

and there exists a non-negative integer matrix A = [aij]k×m such that n(R − Jk) � AH � nR,
and s(Aj) = λj(

n
hj
) for 1 � j � m.

Proof. It is enough to take Q = R − Jk in Theorem 6.3.

Theorem 6.5. ΛKH
n×p is (Q,R)-factorizable if and only if s(Q) �

∑m
i=1 λi(

n− 1
hi − 1)p

hi−1 � s(R),
and there exists a non-negative integer matrix A = [aij]k×m such that npQ � AH � npR, and
s(Aj) = λj(

n
hj
)phj for 1 � j � m.

Proof. To prove the necessity, suppose that ΛKH
n×p is (Q,R)-factorizable. Since ΛKH

n×p is∑m
i=1 λi(

n− 1
hi − 1)p

hi−1-regular, we must have

s(Q) =

k∑
i=1

qi �
m∑
i=1

λi

(
n− 1

hi − 1

)
phi−1 �

k∑
i=1

ri = s(R).

Moreover, there must exist non-negative integers aij , 1 � i � k, 1 � j � m, such that npqi �∑m
j=1 aijhj � npri for 1 � i � k and

∑k
i=1 aij = λj(

n
hj
)phj for 1 � j � m.

To prove the sufficiency, let Λp = [phiλi]
T
1×m, and let F = ΛpKH

n with vertex set V =

{v1, . . . , vn}. Note that F is an amalgamation of ΛKH
n×p. By Theorem 6.3, F is (pQ, pR)-

factorizable. Therefore, we can colour the edges of F so that

pqi � dF (i)(v) � pri for v ∈ V , 1 � i � k.

Let g : V → N be a function so that g(v) = p for v ∈ V . Since p � 1, g is simple. By
Theorem 4.1, there exists a simple g-detachment G of F with np vertices, say vi is detached to
vi1, . . . , vip for 1 � i � n, such that by (A2), qi = pqi/p � dG (i)(vab) � pri/p = ri for 1 � i � k,
1 � a � n, 1 � b � p, and by (A3),mG (va1b1

, . . . , vahj bhj ) ≈ mF (va1
, . . . , vahj )/p

hj = phj λj/p
hj =

λj for 1 � j � m, 1 � a1 < · · · < ahj � n, 1 � b1, . . . , bhj � p. Therefore G ∼= ΛKH
n×p, and the

ith colour class induces a (pi, ri)-factor for 1 � i � k.

Theorem 6.6. ΛKH
n×p is almost R-factorizable if and only if

s(R) − k �
m∑
i=1

λi

(
n− 1

hi − 1

)
phi−1 � s(R),
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and there exists a non-negative integer matrix A = [aij]k×m such that np(R − Jk) � AH � npR,
and s(Aj) = λj(

n
hj
)phj for 1 � j � m.

Proof. It is enough to take Q = R − Jk in Theorem 6.5.
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