
TLP 6 (4): 355–393, 2006. C© 2006 Cambridge University Press

doi:10.1017/S1471068405002619 Printed in the United Kingdom

355

Epistemic foundation of stable model semantics

YANN LOYER

Laboratoire PRiSM, Université de Versailles Saint Quentin, Versailles, France

(e-mail: Yann.Loyer@prism.uvsq.fr)

UMBERTO STRACCIA

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, Consiglio Nazionale

delle Ricerche, Pisa, Italy

(e-mail: straccia@isti.cnr.it)

submitted 14 January 2005; accepted 22 June 2005

Abstract

Stable model semantics has become a very popular approach for the management of negation

in logic programming. This approach relies mainly on the closed world assumption to complete

the available knowledge and its formulation has its basis in the so-called Gelfond–Lifschitz

transformation. The primary goal of this work is to present an alternative and epistemic-

based characterization of stable model semantics, to the Gelfond-Lifschitz transformation. In

particular, we show that stable model semantics can be defined entirely as an extension of the

Kripke-Kleene semantics. Indeed, we show that the closed world assumption can be seen as

an additional source of ‘falsehood’ to be added cumulatively to the Kripke-Kleene semantics.

Our approach is purely algebraic and can abstract from the particular formalism of choice

as it is based on monotone operators (under the knowledge order) over bilattices only.

KEYWORDS: Bilattices, Fixed-point semantics, Logic programs, Stable model semantics,

Non-monotonic reasoning

1 Introduction

Stable model semantics (Gelfond and Lifschitz 1988; Gelfond and Lifschitz 1991) is

probably the most widely studied and most commonly accepted approach adopted

to give meaning to logic programs (with negation). Informally, it consists in relying

on the Closed World Assumption (CWA) to complete the available knowledge –CWA

assumes that all atoms not entailed by a program are false (see Reiter (1978)), and

is motivated by the fact that explicit representation of negative information in logic

programs is not feasible since the addition of explicit negative information could

overwhelm a system. Defining default rules which allow implicit inference of negated

facts from positive information encoded in a logic program has been an attractive

alternative to the explicit representation approach.

Stable model semantics defines a whole family of models of (or ‘answers to’) a logic

program and, remarkably, one of these stable models, the minimal one according

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

356 Y. Loyer and U. Straccia

to ‘knowledge or information ordering’, is taken as the favorite (Denecker 1998;

Denecker et al. 2001; Przymusinski 1990c), and is one-to-one related with the so-

called well-founded semantics (van Gelder 1989; van Gelder et al. 1991).

The original formulation of stable model semantics was classical, two-valued,

over the set of truth-values {f, t}. But, some programs have no stable model

under this setting. To overcome this problem, Przymusinski (1990a; 1990b; 1990c)

extended the notion of stable model semantics to allow three-valued, or partial,

stable model semantics. Remarkably, three-valued logics has also been considered

in other approaches for providing semantics to logic programs, such as in Fitting

(1985) and Kunen (1987), where Clark’s completion is extended to three-valued

logics, yielding the well-known Kripke-Kleene semantics of logic programs. In three-

valued semantics, the set of truth values is {f, t,⊥}, where ⊥ stands for unknown.

Przymusinski showed that every program has at least a partial stable model and that

the well-founded model is the smallest among them, according to the knowledge

ordering. It is then a natural step to move from a three-valued semantics, allowing the

representation of incomplete information, to a four-valued semantics, allowing the

representation of inconsistency (denoted �). The resulting semantics is based on the

well-known set of truth-values FOUR = {f, t,⊥,�}, introduced by Belnap (1977)

to model a kind of ‘relevance logic’ (there should be some ‘syntactical’ connections

between the antecedent and the consequent of a logical entailment relation α |= β

(Anderson and Belnap 1975; Dunn 1976; Dunn 1986; Levesque 1984; Levesque

1988). This process of enlarging the set of truth-values culminated with Fitting’s

progressive work (1985; 1991; 1992; 1993; 2002) on giving meaning to logic programs

by relying on bilattices (Ginsberg 1988). Bilattices, where FOUR is the simplest

non-trivial one, play an important role in logic programming, and in knowledge

representation in general. Indeed, Arieli and Avron (1996; 1998) show that the use of

four values is preferable to the use of three values even for tasks that can in principle

be handled using only three values. Moreover, Fitting explains clearly (Fitting 1991)

why FOUR can be thought of as the ‘home’ of classical logic programming.

Interestingly, the algebraic work of Fitting’s fixed-point characterisation of stable

model semantics on bilattices (Fitting 1993; Fitting 2002) has been the starting

point of the work carried out by Denecker, Marek and Truszczyński (1999; 2002;

2003), who extended Fitting’s work to a more abstract context of fixed-points

operators on lattices, by relying on interval bilattices (these bilattices are obtained

in a standard way as a product of a lattice – see, for instance, Fitting (1993, 1992).

Denecker, Marek and Truszczyński (1999; 2003) showed interesting connections

between (two-valued and four-valued) Kripke-Kleene (Fitting 1985), well-founded

and stable model semantics, as well as to Moore’s (1984) autoepistemic logic and

Reiter’s (1980) default logic. Other well-established applications of bilattices and/or

Kripke-Kleene, well-founded and stable model semantics to give semantics to logic

programs can be found in the context of reasoning under paraconsistency and

uncertainty (Alcantâra et al. 2002; Arieli 2002; Blair and Subrahmanian 1989;

Damásio and Pereira 1998; Damásio and Pereira 2001; Loyer and Straccia 2002a;

Loyer and Straccia 2002b; Loyer and Straccia 2003a; Loyer and Straccia 2003b;

Lukasiewicz 2001; Ng and Subrahmanian 1991). Technically, classical two-valued

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

Epistemic foundation of stable model semantics 357

stable models of logic programs are defined in terms of fixed-points of the so-

called Gelfond-Lifschitz operator, GL(I), for a two-valued interpretation I . This

operator has been generalized to bilattices by Fitting (1993), by means of the Ψ′P(I)

operator, where this time I is an interpretation over bilattices. Informally, the main

principle of these operators is based on the separation of the role of positive and

negative information. That is, given a two-valued interpretation I , GL(I) is obtained

by first evaluating negative literals in a logic program P by means of I , determining

the reduct PI of P, and then, as PI is now a positive program, to compute the

minimal Herbrand model of PI by means of the usual Van Emden-Kowalski’s

immediate consequence operator TP (Emden and Kowalski 1976; Lloyd 1987).

The computation of Ψ′P(I) for bilattices is similar. As a consequence, this separation

avoids the natural management of classical negation (i.e. the evaluation of a negative

literal ¬A is given by the negation of the evaluation of A), which is a major feature

of the Kripke-Kleene semantics (Fitting 1985; Fitting 1991) of logic programs with

negation.

The primary goal of this study is to show, in the quite general setting of bilattices

as space of truth-values, that this separation of positive and negative information

is nor necessary nor is any program transformation required to characterize stable

model semantics epistemologically. Another motivation is to evidence the role of

CWA as a discriminating factor between the most commonly accepted semantics

of logic programs. We show that the only difference between Kripke-Kleene, well-

founded and stable model semantics is the amount of knowledge taken from CWA

that they integrate. We view CWA, informally as an additional source of information

to be used for information completion, or more precisely, as a carrier of falsehood,

to be considered cumulatively to Kripke-Kleene semantics. This allows us to view

stable model semantics from a different, not yet investigated perspective. Roughly

speaking, in Kripke-Kleene semantics, CWA is used to consider only those atoms

that do not appear in head of any rule as false (and that can obviously not be

inferred as true), while the well-founded and stable model semantics integrate more

CWA-provided knowledge. To identify this knowledge, we introduce the notion of

support. This is a generalization of the notion of greatest unfounded set (van Gelder

et al. 1991) (which determines the atoms that can be assumed to be false) to the

bilattice context. It determines in a principled way the amount of falsehood provided

by CWA that can ”safely” be assumed. More precisely, as we are considering a many-

valued truth space, it provides the degree of falseness that can ”safely” be assumed

for each atom. We then show how the support can be used to complete the Kripke-

Kleene semantics in order to obtain the well-founded and stable model semantics

over bilattices. In particular, we show that the well-founded semantics is the least

informative model in the set of models containing their own support, while a model

is a stable model if and only if it is deductively closed under support completion,

i.e. it contains exactly the knowledge that can be inferred by activating the rules

over the support. We thus show an alternative characterisation of the stable model

semantics to the well-known, widely applied and long studied technique based

on the separation of positive and negative information in the Gelfond-Lifschitz

transformation, by reverting to the classical interpretation of negation. While the

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

358 Y. Loyer and U. Straccia

Gelfond-Lifschitz transformation treats negation-as-failure in a special way and

unlike other connectives, our approach is an attempt to relate the semantics of

logic programs to a standard model-theoretic account of rules. We show that

logic programs can be analyzed using standard logical means such as the notion

of interpretation and information ordering, i.e. knowledge ordering. Therefore, in

principle, our approach does not depend on the presence of any specific connective,

such as negation-as-failure, nor on any specific rule syntax (the work of Herre

and Wagner (1997), is in this direction, even if it differs slightly from the usual

stable model semantics (Gelfond and Lifschitz 1991) and the semantics is given in

the context of the classical, two-valued truth-space). Due to the generality and the

purely algebraic nature of our results, as just monotone operators over bilattices are

postulated, the epistemic characterisation of stable models given in this study can

also be applied in other contexts (e.g. uncertainty and/or paraconsistency in logic

programming, and nonmonotonic logics such as default and autoepistemic logics).

The rest of the paper is organized as follows. To make the paper self-contained,

in the next section, we will provide definitions and properties of bilattices and

logic programs. Section 3 is the main part of this work, where we present our

characterisation of the stable model semantics, while Section 4 concludes.

2 Preliminaries

2.1 Lattices

A lattice is a partially ordered set 〈L,�〉 such that every two element set {x, y} ⊆ L

has a least upper bound, lub�(x, y) (called the join of x and y), and a greatest lower

bound, glb�(x, y) (called the meet of x and y). For ease, we will write x ≺ y if x � y

and x
= y. A lattice 〈L,�〉 is complete if every subset of L has both least upper

and greatest lower bounds. Consequently, a complete lattice has a least element,

⊥, and a greatest element �. For ease, throughout the paper, given a complete

lattice 〈L,�〉 and a subset of elements S ⊆ L, with �-least and �-greatest we will

always mean glb�(S) and lub�(S), respectively. With min�(S) we denote the set of

minimal elements in S w.r.t. �, i.e. min�(S) = {x ∈ S:
 ∃y ∈ S s.t. y ≺ x}. Note that

while glb�(S) is unique, |min�(S)| > 1 may hold. If min�(S) is a singleton {x}, for

convenience we may also write x = min�(S) in place of {x} = min�(S). An operator

on a lattice 〈L,�〉 is a function from L to L, f:L → L. An operator f on L is

monotone, if for every pair of elements x, y ∈ L, x � y implies f(x) � f(y), while f

is antitone if x � y implies f(y) � f(x). A fixed-point of f is an element x ∈ L such

that f(x) = x.

The basic tool for studying fixed-points of operators on lattices is the well-known

Knaster-Tarski theorem (Tarski 1955).

Theorem 2.1 (Knaster-Tarski fixed-point theorem (Tarski 1955))

Let f be a monotone operator on a complete lattice 〈L,�〉. Then f has a fixed-

point, the set of fixed-points of f is a complete lattice and, thus, f has a �-least

and a �-greatest fixed-point. The �-least (respectively, �-greatest) fixed-point can

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

Epistemic foundation of stable model semantics 359

be obtained by iterating f over ⊥ (respectively, �), i.e. is the limit of the non-

decreasing (respectively, non-increasing) sequence x0, . . . , xi, xi+1, . . . , xλ, . . . , where

for a successor ordinal i � 0,

x0 = ⊥,
xi+1 = f(xi)

(respectively, x0 = �), while for a limit ordinal λ,

xλ = lub�{xi: i < λ} (respectively, xλ = glb�{xi: i < λ}). (1)

We denote the �-least and the �-greatest fixed-point by lfp�(f) and gfp�(f),

respectively.

Throughout the paper, we will frequently define monotone operators, whose

sets of fixed-points define certain classes of models of a logic program. As a

consequence, please note that this also means that a least model always exists for

such classes. Additionally, for ease, for the monotone operators defined in this study,

we will specify the initial condition x0 and the next iteration step xi+1 only, while

Equation (1) is always considered as implicit. To prove that a property holds for a

limit ordinal of an iterated sequence, i.e. for transfinite induction, one usually relies

on a routine least upper bound (or greatest lower bound) argument and on the

Knaster-Tarski theorem. Therefore that case will be considered only in the proof of

Theorem 3.10, while the reasoning is similar for all the other proofs and, thus, will

be omitted.

2.2 Bilattices

The simplest non-trivial bilattice, called FOUR, was defined by Belnap (1977) (see

also Arieli and Avron (1998), Avron (1996) and Ginsberg (1988)), who introduced

a logic intended to deal with incomplete and/or inconsistent information. FOUR
already illustrates many of the basic properties of bilattices. Essentially, it extends

the classical truth set {f, t} to its power set {{f}, {t}, ∅, {f, t}}, where we can think

that each set indicates the amount of information we have in terms of truth: so,

{f} stands for false, {t} for true and, quite naturally, ∅ for lack of information or

unknown, and {f, t} for inconsistent information (for ease, we use f for {f}, t for

{t}, ⊥ for ∅ and � for {f, t}). The set of truth values {f, t,⊥,�} has two quite

intuitive and natural ‘orthogonal’ orderings, �k and �t (see Figure 1), each giving to

FOUR the structure of a complete lattice. One is the so-called knowledge ordering,

denoted �k , and is based on the subset relation, that is, if x ⊆ y then y represents

‘more information’ than x (e.g. ⊥ = ∅ ⊆ {t} = t, i.e. ⊥ �k t). The other ordering

is the so-called truth ordering, denoted �t. Here x �t y means that x is ‘at least as

false as y, and y is at least as true as x’, i.e. x ∩ {t} ⊆ y ∩ {t} and y ∩ {f} ⊆ x ∩ {f}
(e.g. ⊥ �t t).

The general notion of bilattice used in this paper is defined as follows (Fitting

2002; Ginsberg 1988). A bilattice is a structure 〈B,�t,�k〉 where B is a non-empty

set and �t and �k are both partial orderings giving B the structure of a complete

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

360 Y. Loyer and U. Straccia

�

�

�t

�k

�

�

� �

⊥

�

f t

�
�

�

�
�

�
�

�
�

�
�

�

Fig. 1. The logic FOUR.

lattice with a top and bottom element. Meet and join under �t, denoted ∧ and ∨,

correspond to extensions of classical conjunction and disjunction. On the other hand,

meet and join under �k are denoted ⊗ and ⊕. x ⊗ y corresponds to the maximal

information x and y can agree on, while x ⊕ y simply combines the information

represented by x with that represented by y. Top and bottom under �t are denoted

t and f, and top and bottom under �k are denoted � and ⊥, respectively. We will

assume that bilattices are infinitary distributive bilattices in which all distributive

laws connecting ∧,∨,⊗ and ⊕ hold. We also assume that every bilattice satisfies

the infinitary interlacing conditions, i.e. each of the lattice operations ∧,∨,⊗ and ⊕
is monotone w.r.t. both orderings. An example of interlacing condition is: x �t y

and x′ �t y
′ implies x ⊗ x′ �t y ⊗ y′. Finally, we assume that each bilattice has a

negation, i.e. an operator ¬ that reverses the �t ordering, leaves unchanged the �k

ordering, and verifies ¬¬x = x 1.

Below, we give some properties of bilattices that will be used in this study. Figure 2

illustrates intuitively some of the following lemmas.

Lemma 2.2 (Fitting 1993)

1. If x �t y �t z then x⊗ z �k y and y �k x⊕ z;

2. If x �k y �k z then x ∧ z �t y and y �t x ∨ z.

Lemma 2.3

If x �t y then x �t x⊗ y �t y and x �t x⊕ y �t y.

Proof

Straightforward using the interlacing conditions. �

Lemma 2.4

1. If x �t y then f⊗ x �t y;

2. If x �k y then f⊗ y �t x.

Proof

If x �t y then from f �t x and by Lemma 2.3, f �t f⊗ x �t x �t y. If x �k y then,

from f �t x, we have f⊗ y �t x⊗ y = x. �

1 The dual operation to negation is conflation, i.e. an operator ∼ that reverses the �k ordering, leaves
unchanged the �t ordering, and ∼∼ x = x. If a bilattice has both, they commute if ∼ ¬x = ¬ ∼ x for
all x. We will not deal with conflation in this paper.

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

Epistemic foundation of stable model semantics 361

�

�

�t

�k

�

�

� �

⊥

�

f t

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�

�

��

�

�

�

�

x zy

x⊗ z

x⊕ z

x⊗ f

y ⊗ f

x′ ⊗ f

y ⊕ f

x′

Fig. 2. Some points mentioned in Lemmas 2.2–2.7.

Lemma 2.5

If x⊕ z �t y then z �k y ⊕ f.

Proof

By Lemma 2.2, f �t x⊕ z �t y implies z �k x⊕ z �k y ⊕ f. �

Lemma 2.6

If f⊗ y �k x �k f⊕ y then x �t y.

Proof

By Lemma 2.2, f ⊗ y �k x �k f ⊕ y implies x �t (f ⊗ y) ∨ (f ⊕ y). Therefore,

x �t (f⊗ y)⊕ ((f⊗ y) ∨ y) and, thus, x �t (f⊗ y)⊕ y = y. �

Lemma 2.7

If x �k y and x �t y then x⊗ f = y ⊗ f.

Proof

By Lemma 2.4, f⊗y �t x and, thus, f⊗y �t x⊗f follows. From x �t y, f⊗x �t y⊗f
holds. Therefore, x⊗ f = y ⊗ f. �

2.2.1 Bilattice construction

Bilattices come up in natural ways. There are two general, but different, construction

methods, to build a bilattice from a lattice which are widely used. We only outline

them here in order to give an idea of their application (see also Fitting (1993) and

Ginsberg (1988)).

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

362 Y. Loyer and U. Straccia

The first bilattice construction method was proposed by Ginsberg (1988). Suppose

we have two complete distributive lattices 〈L1,�1〉 and 〈L2,�2〉. Think of L1 as a

lattice of values we use when we measure the degree of belief, while think of L2

as the lattice we use when we measure the degree of doubt. Now, we define the

structure L1 � L2 as follows. The structure is 〈L1 × L2,�t,�k〉, where

• 〈x1, x2〉 �t 〈y1, y2〉 if x1 �1 y1 and y2 �2 x2;

• 〈x1, x2〉 �k 〈y1, y2〉 if x1 �1 y1 and x2 �2 y2.

In L1 � L2 the idea is: knowledge goes up if both degree of belief and degree of

doubt go up; truth goes up if the degree of belief goes up, while the degree of

doubt goes down. It can easily be verified that L1�L2 is a bilattice. Furthermore, if

L1 = L2 = L, i.e. we are measuring belief and doubt in the same way (e.g. L = {f, t}),
then negation can be defined as ¬〈x, y〉 = 〈y, x〉, i.e. negation switches the roles of

belief and doubt. Applications of this method can be found elsewhere (Alcantâra

et al. 2002; Ginsberg 1988; Herre and Wagner 1997).

The second construction method has been sketched in Ginsberg (1988) and

addressed in more detail in Fitting (1992), and is probably the more used one.

Suppose we have a complete distributive lattice of truth values 〈L,�〉. Think of these

values as the ‘real’ values in which we are interested, but due to lack of knowledge

we are able just to ‘approximate’ the exact values. Rather than considering a pair

〈x, y〉 ∈ L×L as indicator for degree of belief and doubt, 〈x, y〉 is interpreted as the

set of elements z ∈ L such that x � z � y. That is, a pair 〈x, y〉 is interpreted as

an interval. An interval 〈x, y〉 may be seen as an approximation of an exact value.

For instance, in reasoning under uncertainty (Loyer and Straccia 2002b; Loyer and

Straccia 2003a; Loyer and Straccia 2003b), L is the unit interval [0, 1] with standard

ordering, L × L is interpreted as the set of (closed) intervals in [0, 1], and the pair

〈x, y〉 is interpreted as a lower and an upper bound of the exact value of the

certainty value. A similar interpretation is given elsewhere (Denecker et al. 1999;

Denecker et al. 2002; Denecker et al. 2003), but this time L is the set of two-valued

interpretations, and a pair 〈J−I , J+
I 〉 ∈ L × L is interpreted as a lower and upper

bound approximation of the application of a monotone (immediate consequence)

operator O:L→ L to an interpretation I .

Formally, given the lattice 〈L,�〉, the bilattice of intervals is 〈L×L,�t,�k〉, where:

• 〈x1, x2〉 �t 〈y1, y2〉 if x1 � y1 and x2 � y2;

• 〈x1, x2〉 �k 〈y1, y2〉 if x1 � y1 and y2 � x2.

The intuition of these orders is that truth increases if the interval contains greater

values, whereas the knowledge increases when the interval becomes more precise.

Negation can be defined as ¬〈x, y〉 = 〈¬y,¬x〉, where ¬ is a negation operator on

L. Note that, if L = {f, t}, and if we assign f = 〈f, f〉, t = 〈t, t〉, ⊥ = 〈f, t〉 and

� = 〈t, f〉, then we obtain a structure that is isomorphic to the bilattice FOUR.

2.3 Logic programs, interpretations, models and program knowledge completions

We recall here the definitions given in Fitting (1993). This setting is as general as

possible, so that the results proved in this paper will be widely applicable.

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

Epistemic foundation of stable model semantics 363

Classical logic programming has the set {f, t} as its truth space, but as stated by

Fitting (1993), “FOUR can be thought as the ‘home’ of ordinary logic programming

and its natural extension is to bilattices other than FOUR: the more general the

setting the more general the results”. We will also consider bilattices as the truth

space of logic programs.

2.3.1 Logic programs

Consider an alphabet of predicate symbols, of constants, of function symbols and

variable symbols. A term, t, is either a variable x, a constant c or of the form

f(t1, . . . , tn), where f is an n-ary function symbol and all ti are terms. An atom, A, is

of the form p(t1, . . . , tn), where p is an n-ary predicate symbol and all ti are terms. A

literal, l, is of the form A or ¬A, where A is an atom. A formula, ϕ, is an expression

built up from the literals and the members of a bilattice B using ∧,∨,⊗,⊕, ∃ and

∀. Note that members of the bilattice may appear in a formula, e.g. in FOUR,

(p ∧ q) ⊕ (r ⊗ f) is a formula. A rule is of the form p(x1, . . . , xn) ← ϕ(x1, . . . , xn),

where p is an n-ary predicate symbol and all xi are variables. The atom p(x1, . . . , xn)

is called the head, and the formula ϕ(x1, . . . , xn) is called the body. It is assumed that

the free variables of the body are among x1, . . . , xn. Free variables are thought of as

universally quantified. A logic program, denoted with P, is a finite set of rules. The

Herbrand universe of P is the set of ground (variable-free) terms that can be built

from the constants and function symbols occurring in P, while the Herbrand base

of P (denoted BP) is the set of ground atoms over the Herbrand universe.

Definition 2.8 (P∗)
Given a logic program P, the associated set P∗ is constructed as follows;

1. put in P∗ all ground instances of members of P (over the Herbrand base);

2. if a ground atom A is not head of any rule in P∗, then add the rule A← f to

P∗. Note that it is a standard practice in logic programming to consider such

atoms as false. We incorporate this by explicitly adding A← f to P∗;
3. replace several ground rules in P∗ having same head, A← ϕ1, A← ϕ2, . . . with

A← ϕ1 ∨ϕ2 ∨ As there could be infinitely many grounded rules with same

head, we may end with a countable disjunction, but the semantics behavior is

unproblematic.

Note that in P∗, each ground atom appears in the head of exactly one rule.

2.3.2 Interpretations

Let 〈B,�t,�k〉 be a bilattice. By interpretation of a logic program on the bilattice

we mean a mapping I from ground atoms to members of B. An interpretation I is

extended from atoms to formulae as follows:

1. for b ∈ B, I(b) = b;

2. for formulae ϕ and ϕ′, I(ϕ ∧ ϕ′) = I(ϕ) ∧ I(ϕ′), and similarly for ∨,⊗,⊕ and

¬; and

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

364 Y. Loyer and U. Straccia

3. I(∃xϕ(x)) =
∨
{I(ϕ(t)): t ground term}, and similarly for universal quantifica-

tion 2.

The family of all interpretations is denoted by I(B). The truth and knowledge

orderings are extended from B to I(B) as follows:

• I1 �t I2 iff I1(A) �t I2(A), for every ground atom A; and

• I1 �k I2 iff I1(A) �k I2(A), for every ground atom A.

Given two interpretations I, J , we define (I ∧ J)(ϕ) = I(ϕ) ∧ J(ϕ), and similarly for

the other operations. With If and It we denote the bottom and top interpretations

under �t (they map any atom into f and t, respectively). With I⊥ and I� we denote

the bottom and top interpretations under �k (they map any atom into ⊥ and �,

respectively). It is easy to see that the space of interpretations 〈I(B),�t,�k〉 is an

infinitary interlaced and distributive bilattice as well.

2.3.3 Classical setting

Note that in a classical logic program the body is a conjunction of literals. Therefore,

if A← ϕ ∈ P∗, then ϕ = ϕ1∨ . . .∨ϕn and ϕi = Li1 ∧ . . .∧Lin . Furthermore, a classical

total interpretation is an interpretation over FOUR such that an atom is mapped

into either f or t. A partial classical interpretation is a classical interpretation where

the truth of some atom may be left unspecified. This is the same as saying that

the interpretation maps all atoms into either f, t or ⊥. For a set of literals X, with

¬.X we indicate the set {¬L:L ∈ X}, where for any atom A, ¬¬A is replaced with

A. Then, a classical interpretation (total or partial) can also be represented as a

consistent set of literals, i.e. I ⊆ BP ∪ ¬.BP and for all atoms A, {A,¬A}
⊆ I . Of

course, the opposite is also true, i.e. a consistent set of literals can straightforwardly

be turned into an interpretation over FOUR.

2.3.4 Models

An interpretation I is a model of a logic program P, denoted by I |= P, if and

only if for each rule A← ϕ in P∗, I(ϕ) �t I(A). With mod(P) we identify the set of

models of P.

From all models of a logic program P, Fitting (1993; 2002) identifies a subset,

which obeys the so-called Clark-completion procedure (1978). Essentially, we replace

in P∗ each occurrence of← with↔: an interpretation I is a Clark-completion model,

cl-model for short, of a logic program P, denoted by I |=cl P, if and only if for each

rule A← ϕ in P∗, I(A) = I(ϕ). With modcl(P) we identify the set of cl-models of P.

Of course modcl(P) ⊆ mod(P) holds.

2 The bilattice is complete w.r.t. �t, so existential and universal quantification are well-defined.

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

Epistemic foundation of stable model semantics 365

�

�

�t

�k

�

�

� �

⊥

�

f t

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�

�

�

�

�

α ¬α

α⊗¬α

α⊕¬α

α⊗ t

α⊕ t

�
�

�
��

�
�

�
�

��

�
�

�
�

�
��

M

Fig. 3. Models and cl-models.

Example 2.9

Consider the following logic program

P = {(A← ¬A), (A← α)},

where α is a value of a bilattice such that α �t ¬α and A is a ground atom. Then

P∗ is

P∗ = {A← ¬A ∨ α}.
Consider Figure 3. The set of models of P, mod(P), is the set of interpretations

assigning to A a value in the area (M-area in Figure 3) delimited by the extremal

points, α⊗ ¬α, α⊕ ¬α, α⊕ t, t and α⊗ t. The �k-least element I of mod(P) is such

that I(A) = α⊗ t.

The set of cl-models of P, modcl(P), is the set of interpretations assigning to A a

value on the vertical line, in between the extremal points α⊗¬α and α⊕¬α and are

all truth minimal. The �k-least element I ′ of modcl(P) is such that I ′(A) = α ⊗ ¬α.
Note that I is not a cl-model of P and, thus, modcl(P) ⊂ mod(P).

Clark-completion models also have an alternative characterisation.

Definition 2.10 (general reduct)

Let P and I be a logic program and an interpretation, respectively. The general

reduct of P w.r.t. I , denoted P[I] is the program obtained from P∗ in which each

(ground) rule A← ϕ ∈ P∗ is replaced with A← I(ϕ).

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

366 Y. Loyer and U. Straccia

Note that any model J of P[I] is such that for all rules A← ϕ ∈ P∗, I(ϕ) �t J(A).

But, in P∗ each ground atom appears in the head of exactly one rule. Therefore, it

is easily verified that any �t-minimal model J of P[I] is such that J(A) = I(ϕ) and

there can be just one such model, i.e. J = min�t
{J ′: J ′ |= P[I]}.

We have the following theorem, which allows us to express the cl-models of a

logic program in terms of its models.

Theorem 2.11

Let P and I be a logic program and an interpretation, respectively. Then I |=cl P
iff I = min�t

{J: J |= P[I]}.

Proof

I |=cl P iff for all A ← ϕ ∈ P∗, I(A) = I(ϕ) holds iff (as noted above) I =

min�t
{J: J |= P[I]}. �

The above theorem establishes that Clark-completion models are fixed-points of the

operator ΓP:I(B)→ I(B), defined as

ΓP(I) = min
�t

{J: J |= P[I]} , (2)

i.e. I |=cl P iff I = ΓP(I).

2.3.5 Program knowledge completions

Finally, given an interpretation I , we introduce the notion of program knowledge

completion, or simply, k-completion with I , denoted P⊕ I . The program k-completion

of P with I , is the program obtained by replacing any rule of the form A← ϕ ∈ P
by A← ϕ⊕ I(A). The idea is to enforce any model J of P⊕ I to contain at least the

knowledge determined by P and I . Note that J |= P⊕ I does not imply J |= P. For

instance, given P = {A← A⊗¬A} and I = J = If, then P⊕I = {A← (A⊗¬A)⊕f}
and J |= P⊕ I , while J
|= P.

2.3.6 Additional remarks

Note that the use of the negation, ¬, in literals has to be understood as classical

negation. The expression not L (where L is a literal) appearing quite often as

syntactical construct in logic programs, indicating ‘L is not provable’, is not part of

our language. This choice is intentional, as we want to stress that in this study CWA

will be considered as an additional source of (or carrier of) falsehood in an abstract

sense and will be considered as a ‘cumulative’ information source with the classical

semantics (Kripke-Kleene semantics). In this sense, our approach is an attempt to

relate the stable model semantics of logic programs to a standard model-theoretic

account of rules, relying on standard logical means as the notion of interpretation

and knowledge ordering.

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

Epistemic foundation of stable model semantics 367

2.4 Semantics of logic programs

In logic programming, usually the semantics of a program P is determined by

selecting a particular interpretation, or a set of interpretations, of P in the set of

models of P. We consider three semantics, which are probably the most popular and

widely studied semantics for logic programs with negation, namely Kripke-Kleene

semantics, well-founded semantics and stable model semantics, in increasing order of

knowledge.

2.4.1 Kripke-Kleene semantics

Kripke-Kleene semantics (Fitting 1985) has a simple, intuitive and epistemic char-

acterization, as it corresponds to the least cl-model of a logic program under the

knowledge order �k . Kripke-Kleene semantics is essentially a generalization of

the least model characterization of classical programs without negation over the

truth space {f, t} (Emden and Kowalski 1976; Lloyd 1987) to logic programs with

classical negation evaluated over bilattices under Clark’s program completion. More

formally:

Definition 2.12 (Kripke-Kleene semantics)

The Kripke-Kleene model of a logic program P is the �k-least cl-model of P, i.e.

KK(P) = min
�k

({I: I |=cl P}). (3)

For instance, by referring to Example 2.9, the value of A w.r.t. the Kripke-Kleene

semantics of P is KK(P)(A) = α⊗¬α.
Note that by Theorem 2.11 and by Equation (2) we have also

KK(P) = lfp�k
(ΓP). (4)

Kripke-Kleene semantics also has an alternative, and better known, fixed-point

characterization, which relies on the well-known ΦP immediate consequence oper-

ator. ΦP is a generalization of the Van Emden-Kowalski’s immediate consequence

operator TP (Emden and Kowalski 1976; Lloyd 1987) to bilattices under Clark’s

program completion. Interesting properties of ΦP are that (i) ΦP relies on the

classical evaluation of negation, i.e. the evaluation of a negative literal ¬A is given

by the negation of the evaluation of A; and (ii) ΦP is monotone with respect to the

knowledge ordering and, thus, has a �k-least fixed-point, which coincides with the

Kripke-Kleene semantics of P. Formally,

Definition 2.13 (immediate consequence operator ΦP)

Consider a logic program P. The immediate consequence operator ΦP:I(B)→ I(B)

is defined as follows. For I ∈ I(B), ΦP(I) is the interpretation, which for any ground

atom A such that A← ϕ occurs in P∗, satisfies ΦP(I)(A) = I(ϕ).

It can easily be shown that

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

368 Y. Loyer and U. Straccia

Theorem 2.14 (Fitting 1993)

In the space of interpretations, the operator ΦP is monotone under �k , the set

of fixed-points of ΦP is a complete lattice under �k and, thus, ΦP has a �k-least

fixed-point. Furthermore, I is a cl-model of a program P iff I is a fixed-point of

ΦP. Therefore, the Kripke-Kleene model of P coincides with ΦP’s least fixed-point

under �k .

For instance, by referring to Example 2.9, the set of fixed-points of ΦP coincides

with the set of interpretations assigning to A a value on the vertical line, in between

the extremal points α⊗¬α and α⊕¬α.
The above theorem relates the model theoretic and epistemic characterization of

the Kripke-Kleene semantics to a least fixed-point characterization. By relying on

ΦP we also know how to effectively compute KK(P) as given by the Knaster-Tarski

Theorem 2.1.

Note that from Theorem 2.11 and equation (2), it follows immediately that

Corollary 2.15

Let P and I be a logic program and an interpretation, respectively. Then ΦP(I) =

ΓP(I).

Proof

Let I ′ = ΓP(I) = min�t
({J: J |= P[I]}). Then we have that for any ground atom A,

ΓP(I)(A) = I ′(A) = I(ϕ) = ΦP(I)(A), i.e. ΦP(I) = ΓP(I). �

As a consequence, all definitions and properties given in this paper in terms of ΦP
and/or cl-models may be given in terms of ΓP and/or models as well. As ΦP is a

well-known operator, for ease of presentation we will continue use it.

We conclude this section with the following simple lemma, which will be used

later in the paper.

Lemma 2.16

Let P be a logic program and let J and I be interpretations. Then ΦP⊕I (J) =

ΦP(J)⊕ I . In particular, J |=cl P⊕ I iff J = ΦP(J)⊕ I .

2.4.2 Stable model and well-founded semantics

A commonly accepted approach towards provide a stronger semantics or a semantics

that is more informative to logic programs than the Kripke-Kleene semantics,

consists in relying on CWA to complete the available knowledge. Of the various

approaches to the management of negation in logic programming, the stable model

semantics approach, introduced by Gelfond and Lifschitz (1988) with respect to the

classical two valued truth space {f, t} has become one of the most widely studied

and most commonly accepted proposal. Informally, a set of ground atoms I is a

stable model of a classical logic program P if I = I ′, where I ′ is computed according

to the so-called Gelfond-Lifschitz transformation:

1. substitute (fix) in P∗ the negative literals by their evaluation with respect to I .

Let PI be the resulting positive program, called reduct of P w.r.t. I;

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

Epistemic foundation of stable model semantics 369

2. let I ′ be the minimal Herbrand (truth-minimal) model of PI .

This approach defines a whole family of models and it has been shown (Przymusinski

1990c) that the minimal one according to the knowledge ordering corresponds to the

well-founded semantics (van Gelder et al. 1991).

The extension of the notions of stable model and well-founded semantics to the

context of bilattices is due to Fitting (1993). He proposes a generalization of the

Gelfond-Lifschitz transformation to bilattices by means of the binary immediate

consequence operator ΨP. Similarly to that of the Gelfond-Lifschitz transformation,

the basic principle of ΨP is to separate the roles of positive and negative information.

Informally, ΨP accepts two input interpretations over a bilattice, the first is used to

assign meanings to positive literals, while the second is used to assign meanings to

negative literals. ΨP is monotone in both arguments in the knowledge ordering �k .

But, with respect to the truth ordering �t, ΨP is monotone in the first argument,

while it is antitone in the second argument (indeed, as the truth of a positive literal

increases, the truth of its negation decreases). Computationally, Fitting follows the

idea of the Gelfond-Lifschitz transformation shown above: the idea is to fix an

interpretation for negative information and to compute the �t-least model of the

resulting positive program. To this end, Fitting 1993 additionally introduced the Ψ′P
operator, which for a given interpretation I of negative literals, computes the �t-

least model, Ψ′P(I) = lfp�t
(λx.ΨP(x, I)). The fixed-points of Ψ′P are the stable

models, while the least fixed-point of Ψ′P under �k is the well-founded semantics

of P.

Formally, let I and J be two interpretations in the bilattice 〈I(B),�t,�k〉. The

notion of pseudo-interpretation I � J over the bilattice is defined as follows (I gives

meaning to positive literals, while J gives meaning to negative literals): for a pure

ground atom A:

(I � J)(A) = I(A)

(I � J)(¬A) = ¬J(A).

Pseudo-interpretations are extended to non-literals in the obvious way. We can now

define ΨP as follows.

Definition 2.17 (immediate consequence operator ΨP)

The immediate consequence operator ΨP:I(B)×I(B)→ I(B) is defined as follows.

For I, J ∈ I(B), ΨP(I, J) is the interpretation, which for any ground atom A such

that A← ϕ occurs in P∗, satisfies ΨP(I, J)(A) = (I � J)(ϕ).

Note that ΦP is a special case of ΨP, as from construction ΦP(I) = ΨP(I, I). The

following theorem can be shown.

Theorem 2.18 (Fitting 1993)

In the space of interpretations the operator ΨP is monotone in both arguments

under �k , and under the ordering �t it is monotone in its first argument and

antitone in its second argument.

We are ready now to define the Ψ′P operator.

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

370 Y. Loyer and U. Straccia

Definition 2.19 (stability operator Ψ′P)

The stability operator of ΨP is the single input operator Ψ′P given by: Ψ′P(I) is the

�t-least fixed-point of the operator λx.ΨP(x, I), i.e. Ψ′P(I) = lfp�t
(λx.ΨP(x, I)).

By Theorem 2.18, Ψ′P is well defined and can be computed in the usual way: let

I be an interpretation. Consider the following sequence: for i � 0,

vI0 = If,

vIi+1 = ΨP(vIi , I).

Then the vIi sequence is monotone non-decreasing under �t and converges to Ψ′P(I).

In the following, with vIi we will always indicate the i-th iteration of the computation

of Ψ′P(I).

The following theorem holds.

Theorem 2.20 (Fitting 1993)

The operator Ψ′P is monotone in the �k ordering, and antitone in the �t ordering.

Furthermore, every fixed-point of Ψ′P is also a fixed-point of ΦP, i.e. a cl-model

of P.

Finally, following Fitting’s formulation,

Definition 2.21 (stable model)

A stable model for a logic program P is a fixed-point of Ψ′P. With stable(P) we

indicate the set of stable models of P.

Note that it can be seen immediately from the definition of Ψ′P that

Ψ′P(I) = min
�t

(mod(P I)) 3

and, thus,

I ∈ stable(P) iff I = min
�t

(mod(PI)). (5)

By Theorem 2.20 and the Knaster-Tarski Theorem 2.1, the set of fixed-points of Ψ′P,

i.e. the set of stable models of P, is a complete lattice under �k and, thus, Ψ′P has a

�k-least fixed-point, which is denoted WF(P). WF(P) is known as the well-founded

model of P and, by definition, coincides with the �k-least stable model, i.e.

WF(P) = min
�k

({I: I stable model of P}). (6)

The characterization of the well-founded model in terms of least fixed-point of Ψ′P
also gives us a way to effectively compute it.

It is interesting to note, that for classical logic programs the original definition

of well-founded semantics is based on the well-known notion of unfounded set (van

Gelder et al. 1991). The underlying principle of the notion of unfounded sets is to

identify the set of atoms that can safely be assumed false if the current information

about a logic program is given by an interpretation I . Indeed, given a classical

interpretation I and a classical logic program P, a set of ground atoms X ⊆ BP is

3 As PI is positive, it has a unique truth-minimal model.

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

Epistemic foundation of stable model semantics 371

an unfounded set (i.e., the atoms in X can be assumed as false) for P w.r.t. I iff for

each atom A ∈ X,

1. if A← ϕ ∈ P∗ (note that ϕ = ϕ1 ∨ . . . ∨ ϕn and ϕi = Li1 ∧ . . . ∧ Lin), then ϕi is

false either w.r.t. I or w.r.t. ¬.X, for all 1 � i � n.

A well-known property of unfounded sets is that the union of two unfounded sets of

P w.r.t. I is an unfounded set as well and, thus, there is a unique greatest unfounded

set for P w.r.t. I , denoted by UP(I).

Now, consider the usual immediate consequence operator TP, where for any

ground atom A,

TP(I)(A) = t iff ∃A← ϕ ∈ P∗ s.t. I(ϕ) = t,

and consider the well-founded operator (van Gelder et al., 1991) over classical

interpretations I

WP(I) = TP(I) ∪ ¬.UP(I). (7)

WP(I) can be rewritten as WP(I) = TP(I) ⊕ ¬.UP(I), by assuming ⊕ = ∪,⊗ = ∩
in the lattice 〈2BP∪¬.BP ,⊆〉 (the partial order ⊆ corresponds to the knowledge order

�k). Then,

• the well-founded semantics is defined to be the �k-least fixed-point of WP in

van Gelder et al. (1991), and

• it is shown in Leone (1997) that the set of total stable models of P coincides

with the set of total fixed-points of WP.

In particular, this formulation reveals that the greatest unfounded set, ¬.UP(I), is

the additional “false default knowledge”, which is introduced by CWA into the

usual semantics of logic programs given by TP. However, WP does not allow partial

stable models to be identified. Indeed, there are fixed-points of WP(I) that are partial

interpretations, which are not stable models.

We conclude the preliminary part of the paper with the following result that

adds to Fitting’s analysis that stable models are incomparable with each other with

respect to the truth order �t.

Theorem 2.22

Let I and J be two stable models such that I
= J . Then I
�t J and J
�t I .

Proof

Assume to the contrary that either I �t J or J �t I holds. Without loss of generality,

assume I �t J . By Theorem 2.20, Ψ′P is antitone in the �t ordering. Therefore, from

I �t J it follows that J = Ψ′P(J) �t Ψ′P(I) = I holds and, thus, I = J , a contradiction

to the hypothesis. �

3 Stable model semantics revisited

In the following, by relying on CWA as a source of falsehood for knowledge

completion, we provide epistemic and fixed-point based, characterizations of the

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

372 Y. Loyer and U. Straccia

well-founded and stable model semantics over bilattices that are alternative to the

one provided by Fitting (1993). We proceed in three steps.

(i) In the next section, we introduce the notion of support, denoted sP(I), with respect

to a logic program P and an interpretation I . The support is a generalization of the

notion of greatest unfounded set (which determines the atoms that can be assumed

to be false) w.r.t. I from classical logic programming to bilattices. Intuitively, we

regard CWA as an additional source of information for falsehood to be used to

complete I . The support sP(I) of P w.r.t. I determines in a principled way the

amount, or degree, of falsehood provided by CWA to the atom’s truth that can be

added to current knowledge I about the program P. It turns out that for classical

logic programs the support coincides with the negation of the greatest unfounded

set, i.e. sP(I) = ¬.UP(I).

(ii) Any model I of P containing its support, i.e. such that sP(I) �k I , tells us that

the additional source of falsehood provided by CWA cannot contribute improving

our knowledge about the program P. We call such models supported models of

P; this will be discussed in Section 3.2. Supported models can be characterized as

fixed-points of the operator

Π̃P(I) = ΦP(I)⊕ sP(I) ,

which is very similar to the WP operator in Equation (7), but generalized to

bilattices. As expected, it can be shown that the �k-least supported model is the

well-founded model of P. Unfortunately, while for classical logic programs and total

interpretations, supported models characterize total stable models (in fact, they

coincides with the fixed-points of WP), this is not true in the general case of

interpretations over bilattices.

Therefore, we further refine the class of supported models, by introducing the class

of models deductively closed under support k-completion. This class requires supported

models to satisfy some minimality condition with respect to the knowledge order �k .

Indeed, such a model I has to be deductively closed according to the Kripke-Kleene

semantics of the program k-completed with its support, i.e.

I = KK(P⊕ sP(I)) (8)

or, equivalently

I = min
�k

(modcl(P⊕ sP(I)). (9)

(iii) We will show that any such interpretation I is a stable model of P and vice-

versa, i.e. I ∈ stable(P) iff I = min�k
(modcl(P ⊕ sP(I)), which is quite suggestive.

Note that until now, stable models (over bilattices) have been characterized as by

equation (5). Equation (9) above shows thus that stable models can be characterized

as those models that contain their support and are deductively closed under the

Kripke-Kleene semantics. As such, we can identify the support (unfounded set, in

classical terms) as the added-value (in terms of knowledge), which is brought into

by the stable model semantics with respect to the standard Kripke-Kleene semantics

of P.

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

Epistemic foundation of stable model semantics 373

Table 1. Models, Kripke-Kleene, well-founded and stable models of P

Ii |=cl P p q r KK(P) WF(P) stable models

I1 ⊥ ⊥ ⊥ •
I2 ⊥ t f

I3 f ⊥ ⊥ • •
I4 f f t •
I5 f t f •
I6 f � � •
I7 t t f

I8 � t f

I9 � � �

Finally, stable models can thus be defined in terms of fixed-points of the operator

KK(P⊕sP(·)), which relies on a, though intuitive, program transformation P⊕sP(·).
We further introduce a new operator Φ′P, which we show to have the property that

Φ′P(I) = KK(P⊕ sP(I)). This operator clearly shows that a model is a stable model

iff it contains exactly the knowledge obtained by activating the rules over its support,

without any other extra knowledge. An important property of Φ′P is that it does

depend on ΦP only. This may be important in the classical logic programming case

where P ⊕ sP(·) is not easy to define (as ⊕ does not belong to the language of

classical logic programs). As a consequence, no program transformation is required,

which completes our analysis.

We will rely on the following running example to illustrate the concepts that will

be introduced in the next sections.

Example 3.1 (running example)

Consider the following logic program P with the following rules.

p← p

q ← ¬r
r ← ¬q ∧ ¬p

In Table 1 we report the cl-models Ii, the Kripke-Kleene, the well-founded and the

stable models of P, marked by bullets. Note that according to Theorem 2.22, stable

models cannot be compared with each other under �t, while under the knowledge

order, I3 is the least informative model (i.e. the well-founded model), while I6 is the

most informative one (I4 and I5 are incomparable under �k).

3.1 Support

The main notion we introduce here is that of support of a logic program P with

respect to a given interpretation I . If I represents what we already know about

an intended model of P, the support represents the �k-greatest amount/degree

of falsehood provided by CWA that can be joined to I in order to complete I .

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

374 Y. Loyer and U. Straccia

Falsehood is always represented in terms of an interpretation, which we call a safe

interpretation. The main principle underlying safe interpretations can be explained as

follows. For ease, let us consider FOUR. Consider an interpretation I , which is our

current knowledge about P. Let us assume that the interpretation J , with J �k If,

indicates which atoms may be assumed as f. For any ground atom A, J(A) is the

default ‘false’ information provided by J to the atom A. The completion of I with J

is the interpretation I⊕J . In order to accept this completion, we have to ensure that

the assumed false knowledge about A, J(A), is entailed by P w.r.t. the completed

interpretation I ⊕ J , i.e. for A ← ϕ ∈ P∗, J(A) �k (I ⊕ J)(ϕ) should hold. That is,

after completing the current knowledge I about P with the ‘falsehood’ assumption

J , the inferred information about A, (I ⊕ J)(ϕ), should increase. Formally:

Definition 3.2 (safe interpretation)

Let P and I be a logic program and an interpretation, respectively. An interpretation

J is safe w.r.t. P and I iff:

1. J �k If;

2. J �k ΦP(I ⊕ J).

As anticipated, safe interpretations have an interesting reading once we restrict our

attention to the classical framework of logic programming: indeed, the concept of

safe interpretation reduces to that of unfounded set.

Theorem 3.3

Let P and I be a classical logic program and a classical interpretation, respectively.

Let X be a subset of BP. Then X is an unfounded set of P w.r.t. I iff ¬.X �k

ΦP(I ⊕¬.X) 4, i.e. ¬.X is safe w.r.t. P and I .

Proof

Assume ¬A ∈ ¬.X (i.e. ¬.X(¬A) = t) and, thus, A ∈ X (i.e. X(A) = f). Therefore,

by definition of unfounded sets, if A ← ϕ ∈ P∗, where ϕ = ϕ1 ∨ . . . ∨ ϕn and

ϕi = Li1 ∧ . . .∧Lin , then either I(ϕi) = f or ¬.X(ϕi) = f. Therefore, (I ∪¬.X)(ϕ) = f,

i.e. (I⊕¬.X)(ϕ) = f. But then, by definition of ΦP, we have that ΦP(I⊕¬.X)(A) = f,

i.e. ΦP(I ⊕ ¬.X)(¬A) = t. Therefore, ¬.X �k ΦP(I ⊕ ¬.X). The other direction can

be shown similarly. �

The following example illustrates the concept.

Example 3.4 (running example cont.)

Let us consider I2. I2 dictates that p is unknown, q is true and that r is false.

4 Note that this condition can be rewritten as ¬.X ⊆ ΦP(I ∪ ¬.X).

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

Epistemic foundation of stable model semantics 375

Consider the interpretations Ji defined as follows:

Ji p q r

J1 ⊥ ⊥ ⊥
J2 f ⊥ ⊥
J3 ⊥ ⊥ f

J4 f ⊥ f

It is easy to verify that Ji �k If and Ji �k ΦP(I2 ⊕ Ji). Therefore, all the Jis are

safe. The �k-least safe interpretation is J1, while the �k-greatest safe interpretation

is J4 = J1 ⊕ J2 ⊕ J3. J4 dictates that under I2, we can ‘safely’ assume that both p

and r are false. Note that if we join J4 to I2 we obtain the stable model I5, where

I2 �k I5. Thus, J4 improves the knowledge expressed by I2.

It might be asked why we do not consider q false as well. In fact, if we consider p, q

and r false, after joining to I and applying ΦP, q becomes true, which is knowledge-

incompatible with q’s previous knowledge status (q is false). So, q’s falsehood is not

preserved.

We also consider another example on a more general bilattice allowing the

management of uncertainty.

Example 3.5

Let us consider the lattice 〈L,�〉, where L is the unit interval [0, 1] and � is

the natural linear order �. The negation operator on L considered is defined as

¬x = 1 − x. We further build the bilattice of intervals 〈[0, 1]× [0, 1],�t,�k〉 in the

standard way. An interval 〈x, y〉 may be understood as an approximation of the

certainty of an atom.

Let us note that for x, x′, y, y′ ∈ L,

• 〈x, y〉 ∧ 〈x′, y′〉 = 〈min(x, x′),min(y, y′)〉;
• 〈x, y〉 ∨ 〈x′, y′〉 = 〈max(x, x′),max(y, y′)〉;
• 〈x, y〉 ⊗ 〈x′, y′〉 = 〈min(x, x′),max(y, y′)〉;
• 〈x, y〉 ⊕ 〈x′, y′〉 = 〈max(x, x′),min(y, y′)〉; and

• ¬〈x, y〉 = 〈1− y, 1− x〉.

Consider the logic program P with rules

A← A ∧ C

B ← B ∨ ¬C
C ← C ∨ D

D ← [0.7, 0.7]

The fourth rule asserts that the truth value of D is exactly 0.7. Then using the third

rule, we will infer that the value of C is given by the disjunction of 0.7 and the value

of C itself which is initially unknown, i.e. between 0 and 1, thus our knowledge about

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

376 Y. Loyer and U. Straccia

C is that its value is at least 0.7, i.e. [0.7;1]. Activating the second rule with that

knowledge, then the value of B is given by the disjunction of the value of ¬C , that

is at most 0.3, i.e. [0;0.3], and the value of B itself that is unknown, thus B remains

unknown. Similarly, the first rule does not provide any knowledge about the value

of A. That knowledge corresponds to the Kripke-Kleene model I of P, obtained

by iterating ΦP starting with I⊥ : I(A) = [0; 1], I(B) = [0; 1], I(C) = [0.7; 1] and

I(D) = [0.7; 0.7].

Relying on CWA, we should be able to provide a more precise characterization of

A, B and C . It can be verified that it may be safely assumed that A is false ([0; 0])

and that the truth of B and C is at most 0.3 and 0.7, respectively, which combined

with I determines a more precise interpretation where A is false, B is at most 0.3,

C is 0.7 and D is 0.7, respectively, as highlighted in the following table. Consider

interpretations I, J1, J2, J
′.

A B C D

I [0; 1] [0; 1] [0.7; 1] [0.7; 0.7]

J1 [0; 0] [0; 1] [0; 0.8] [0; 0.7]

J2 [0; 1] [0; 0.3] [0; 0.7] [0; 1]

J ′ [0; 0] [0; 0.3] [0; 0.7] [0; 0.7]

I ⊕ J ′ [0; 0] [0.0; 0.3] [0.7; 0.7] [0.7; 0.7]

Both J1 and J2 are safe w.r.t. P and I . It is easy to see that J ′ = J1 ⊕ J2 is the �k-

greatest safe interpretation. Interestingly, note how J ′ provides to I some additional

information on the values of A, B and C , respectively.

Of all possible safe interpretations w.r.t. P and I , we are interested in the maximal

one under �k , which is unique. The �k-greatest safe interpretation will be called the

support provided by CWA to P w.r.t. I .

Definition 3.6 (support)

Let P and I be a logic program and an interpretation, respectively. The support

provided by CWA to P w.r.t. I , or simply support of P w.r.t. I , denoted sP(I), is the

�k-greatest safe interpretation w.r.t. P and I , and is given by

sP(I) =
⊕
{J: J is safe w.r.t. P and I}.

It is easy to show that support is a well-defined concept. Consider X = {J: J is safe

w.r.t. P and I}. As the bilattice is a complete lattice under �k , lub�k
(X) = ⊕J∈XJ

and, thus, by definition sP(I) = lub�k
(X). Now consider J ∈ X. Therefore J �k sP(I).

But J is safe, so J �k If and J �k ΦP(I ⊕ J) �k ΦP(I ⊕ sP(I)) (by �k-monotonicity

of ΦP). As a consequence, both If and ΦP(I ⊕ sP(I)) are upper bounds of X. But

sP(I) is the least upper bound of X and, thus, sP(I) �k If and sP(I) �k ΦP(I⊕sP(I))

follows. That is, sP(I) is safe and the �k-greatest safe interpretation w.r.t. P and I .

It follows immediately from Theorem 3.3 that, in the classical setting, the notion

of greatest unfounded set is captured by the notion of support, i.e. the support tells

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

Epistemic foundation of stable model semantics 377

Table 2. Running example cont.: support of P w.r.t. Ii

Ii sP(Ii) stable

Ii |=cl P p q r p q r UP(Ii) KK(P) WF(P) models

I1 ⊥ ⊥ ⊥ f ⊥ ⊥ {p} •
I2 ⊥ t f f ⊥ f {p, r}
I3 f ⊥ ⊥ f ⊥ ⊥ {p} • •
I4 f f t f f ⊥ {p, q} •
I5 f t f f ⊥ f {p, r} •
I6 f � � f f f {p, q, r} •
I7 t t f f ⊥ f {p, r}
I8 � t f f ⊥ f {p, r}
I9 � � � f f f {p, q, r}

us which atoms may be safely assumed to be false, given a classical interpretation I

and a classical logic program P. Therefore, the notion of support extends the notion

of greatest unfounded sets from the classical setting to bilattices.

Corollary 3.7

Let P and I be a classical logic program and a classical interpretation, respectively.

Then sP(I) = ¬.UP(I).

Example 3.8 (running example cont.)

Table 2 extends Table 1 also by including the supports sP(Ii). Note that, according

to Corollary 3.7, sP(Ii) = ¬.UP(Ii).

Having defined the support model-theoretically, we next show how the support

can effectively be computed as the iterated fixed-point of a function, σI
P, that depends

on ΦP only. Intuitively, the iterated computation weakens If, i.e. CWA, until we

arrive to the �k-greatest safe interpretation, i.e. the support.

Definition 3.9 (support function)

Let P and I be a logic program and an interpretation, respectively. The support

function, denoted σI
P, w.r.t. P and I is the function mapping interpretations into

interpretations defined as follows: for any interpretation J ,

σI
P(J) = If ⊗ ΦP(I ⊕ J).

It is easy to verify that σI
P is monotone w.r.t. �k . The following theorem determines

how to compute the support.

Theorem 3.10

Let P and I be a logic program and an interpretation, respectively. Consider the

iterated sequence of interpretations FI
i defined as follows: for any i � 0,

FI
0 = If,

FI
i+1 = σI

P(FI
i).

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

378 Y. Loyer and U. Straccia

The sequence FI
i is

1. monotone non-increasing under �k and, thus, reaches a fixed-point FI
λ , for a

limit ordinal λ; and

2. is monotone non-decreasing under �t.

Furthermore, sP(I) = FI
λ holds.

Proof

The proof is by induction. Concerning Point 1., FI
1 �k F

I
0 ; for all successor ordinal i,

as σI
P is monotone under �k , if F

I
i+1 �k F

I
i then FI

i+2 �k F
I
i+1; and for all limit ordinal

λ, if i < λ then FI
λ =

⊗
i<λ F

I
i �k F

I
i . Thus the sequence is monotone non-increasing

under �k . Therefore, the sequence has a fixed-point at the limit, say FI
λ .

Concerning Point 2., FI
0 �t F

I
1 ; for all successor ordinal i, from FI

i+1 �k FI
i , by

Lemma 2.4, we have FI
i = FI

i ⊗ If �t F
I
i+1; and similarly, for all limit ordinal λ, if

i < λ, we have FI
λ �k F

I
i , and by Lemma 2.4, FI

i = FI
i ⊗ If �t F

I
λ .

Let us show that FI
λ is safe and �k-greatest. FI

λ = σI
P(FI

λ) = If ⊗ ΦP(I ⊕ FI
λ).

Therefore, FI
λ �k If and FI

λ �k ΦP(I ⊕ FI
λ), so FI

λ is safe w.r.t. P and I .

Consider any X safe w.r.t. P and I . We show by induction on i that X �k F
I
i and,

thus, at the limit X �k F
I
λ , so FI

λ is �k-greatest.

(i) Case i = 0. By definition, X �k If = FI
0 .

(ii) Induction step: suppose X �k FI
i . Since X is safe, we have X �k X ⊗ X �k

If ⊗ ΦP(I ⊕ X). By induction, using the monotonicity of σI
P w.r.t. �k , X �k

If ⊗ ΦP(I ⊕ FI
i) = FI

i+1.

(iii) Transfinite induction: given an ordinal limit λ, suppose X �k FI
i holds for all

i < λ. Using the fact that the space of interpretations 〈I(B),�t,�k〉 is an infinitary

interlaced bilattice, we have X �k

⊗
i<λ F

I
i = FI

λ , which concludes the proof. �

In the following, with FI
i we indicate the ith iteration of the computation of the

support of P w.r.t. I , according to Theorem 3.10.

Note that by construction

sP(I) = If ⊗ ΦP(I ⊕ sP(I)), (10)

which establishes also that the support is deductively closed in terms of falsehood.

In fact, even if we add all that we know about the atom’s falsehood to the current

interpretation I , we know no more about the atom’s falsehood than we knew before.

Interestingly, for a classical logic program P and a classical interpretation I , by

Corollary 3.7, the above method gives us a simple top-down method to compute the

negation of the greatest unfounded set, ¬.UP(I), as the limit of the sequence:

FI
0 = ¬.BP,

FI
i+1 = ¬.BP ∩ ΦP(I ∪ FI

i).

The support sP(I) can be seen as an operator over the space of interpretations. The

following theorem asserts that the support is monotone w.r.t. �k .

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

Epistemic foundation of stable model semantics 379

Theorem 3.11

Let P be a logic program. The support operator sP is monotone w.r.t. �k .

Proof

Consider two interpretations I and J , where I �k J . Consider the two sequences

FI
i and FJ

i . We show by induction on i that FI
i �k FJ

i and, thus, at the limit

sP(I) �k sP(J).

(i) Case i = 0. By definition, FI
0 = If �k If = FJ

0 .

(ii) Induction step: suppose FI
i �k FJ

i . By monotonicity under �k of ΦP and the

induction hypothesis, FI
i+1 = If ⊗ ΦP(I ⊕ FI

i) �k If ⊗ ΦP(J ⊕ FJ
i) = FJ

i+1, which

concludes. �

The next corollary follows directly from Lemma 2.4.

Corollary 3.12

Let P be a logic program and consider two interpretations I and J such that I �k J .

Then sP(J) �t sP(I).

3.2 Models based on the support

Of all possible models of a program P, we are especially interested in those models

I that already integrate their own support, i.e. that could not be completed by CWA.

Definition 3.13 (supported model)

Consider a logic program P. An interpretation I is a supported model of P iff

I |=cl P and sP(I) �k I .

If we consider the definition of support in the classical setting, then supported models

are classical models of classical logic programs such that ¬.UP(I) ⊆ I , i.e. the false

atoms provided by the greatest unfounded set are already false in the interpretation

I . Therefore, CWA does not further contribute improving I ’s knowledge about the

program P.

Example 3.14 (running example cont.)

Table 3 extends Table 2 by also including supported models. Note that while both

I8 and I9 are models of P including their support, they are not stable models. Note

also that sP(I8) = sP(I5) and sP(I9) = sP(I6). That is, I8 and I9, which are not stable

models, have the same support of some stable model.

Supported models have interesting properties, as stated below.

Theorem 3.15

Let P and I be a logic program and an interpretation, respectively. The following

statements are equivalent:

1. I is a supported model of P;

2. I = ΦP(I)⊕ sP(I);

3. I |=cl P⊕ sP(I);

4. I = ΦP(I ⊕ sP(I)).

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

380 Y. Loyer and U. Straccia

Table 3. Running example cont.: supported models of P

Ii sP(Ii) stable supported
Ii |=cl P p q r p q r UP(Ii) KK(P) WF(P) models models

I1 ⊥ ⊥ ⊥ f ⊥ ⊥ {p} •
I2 ⊥ t f f ⊥ f {p, r}
I3 f ⊥ ⊥ f ⊥ ⊥ {p} • • •
I4 f f t f f ⊥ {p, q} • •
I5 f t f f ⊥ f {p, r} • •
I6 f � � f f f {p, q, r} • •
I7 t t f f ⊥ f {p, r}
I8 � t f f ⊥ f {p, r} •
I9 � � � f f f {p, q, r} •

Proof

Assume Point 1. holds, i.e. I |=cl P and sP(I) �k I . Then, I = ΦP(I) = ΦP(I)⊕sP(I),

so Point 2. holds.

Assume Point 2. holds. Then, by Lemma 2.16, I = ΦP(I) ⊕ sP(I) = ΦP⊕sP(I)(I),

i.e. I |=cl P⊕ sP(I), so Point 3. holds.

Assume Point 3. holds. So, sP(I) �k I and from the safeness of sP(I), it follows that

sP(I) �k ΦP(I ⊕ sP(I)) = ΦP(I) and, thus, I = ΦP⊕sP(I)(I) = ΦP(I)⊕ sP(I) = ΦP(I).

Therefore, ΦP(I ⊕ sP(I)) = ΦP(I) = I , so Point 4. holds.

Finally, assume Point 4. holds. From the safeness of sP(I), it follows that sP(I) �k

ΦP(I ⊕ sP(I)) = I . Therefore, I = ΦP(I ⊕ sP(I)) = ΦP(I) and, thus I is a supported

model of P. So, Point 1. holds, which concludes the proof. �

The above theorem states the same concept in different ways: supported models

contain the amount of knowledge expressed by the program and their support.

From a fixed-point characterization point of view, from Theorem 3.15 it follows

that the set of supported models can be identified by the fixed-points of the �k-

monotone operators ΠP and Π̃P defined by

ΠP(I) = ΦP(I ⊕ sP(I)), (11)

Π̃P(I) = ΦP(I)⊕ sP(I). (12)

It follows immediately that

Theorem 3.16

Let P be a logic program. Then Π̃P (ΠP) is monotone under �k . Furthermore, an

interpretation I is a supported model iff I = Π̃P(I) (I = ΠP(I)) and, thus, relying on

the Knaster-Tarski fixed-point theorem (Theorem 2.1), the set of supported models

is a complete lattice under �k .

Note that ΠP has been defined first in (Loyer and Straccia, 2003c) without

recognizing that it characterizes supported models. However, it has been shown

in (Loyer and Straccia, 2003c) that the least fixed-point under �k coincides with the

well-founded semantics, i.e. in our context, the �k-least supported model of P is the

well-founded semantics of P.

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

Epistemic foundation of stable model semantics 381

Theorem 3.17 (Loyer and Straccia 2003c)

Consider a logic program P. Then WF(P) = lfp�k
(ΠP) (WF(P) = lfp�k

(Π̃P)) and

stable models are fixed-points of ΠP (Π̃P).

Example 3.18 (running example cont.)

Consider Table 3. Note that stable models are supported models, i.e. fixed-points of

Π̃P (ΠP), and that the �k-least supported model coincides with the well-founded

model. Additionally, I8 and I9 are fixed-points of Π̃P (ΠP) and not stable models.

Thus, stable models are a proper subset of supported models.

Note that the above theorem is not surprising considering that the Π̃P operator is

quite similar to the WP operator defined in Equation (7) for classical logic programs

and interpretations. The above theorem essentially extends the relationship to general

logic programs interpreted over bilattices. But, while for classical logical programs

and total interpretations, Π̃P(I) characterizes stable total models (as, Π̃P = WP),

this is not true in the general case of interpretations over bilattices (e.g., see Table 3).

As highlighted in Examples 3.14 and 3.18, supported models are not specific

enough to completely identify stable models: we must further refine the notion of

supported models. Example 3.14 gives us a hint. For instance, consider the supported

model I8. As already noted, the support (in classical terms, the greatest unfounded

set) of I8 coincides with that of I5, but for this support, i.e. sP(I5), I5 is the �k-least

informative cl-model, i.e. I5 �k I8. Similarly, for support sP(I6), I6 is the �k-least

informative cl-model, i.e. I6 �k I9. It appears clearly that some supported models

contain knowledge that cannot be inferred from the program or from CWA. This

may suggest partitioning supported models into sets of cl-models with a given

support and then taking the least informative one to avoid that the supported

models contain unexpected extra knowledge.

Formally, for a given interpretation I , we will consider the class of all models of

P ⊕ sP(I), i.e. interpretations which contain the knowledge entailed by P and the

support sP(I), and then take the �k-least model. If this �k-least model is I itself

then I is a supported model of P deductively closed under support k-completion.

Definition 3.19 (model deductively closed under support k-completion)

Let P and I be a logic program and an interpretation, respectively. Then I is a model

deductively closed under support k-completion of P iff I = min�k
(modcl(P⊕ sP(I))).

Note that by Lemma 2.16,

modcl(P⊕ sP(I)) = {J: J = ΦP(J)⊕ sP(I)}. (13)

Therefore, if I is a model deductively closed under support k-completion then

I = ΦP(I) ⊕ sP(I), i.e. I |=cl P ⊕ sP(I). Therefore, by Theorem 3.15, any model

deductively closed under support k-completion is also a supported model, i.e. I |=cl P
and sP(I) �k I .

Interestingly, models deductively closed under support k-completion have also a

different, equivalent and quite suggestive characterization. In fact, from the definition

it follows immediately that

min
�k

(modcl(P⊕ sP(I))) = KK(P⊕ sP(I)).

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

382 Y. Loyer and U. Straccia

Table 4. Running example cont.: models deductively closed under support

k-completion of P.

Ii sP(Ii) stable supp. deductively
Ii |=cl P p q r p q r UP(Ii) KK(P) WF(P) models models closed models

I1 ⊥ ⊥ ⊥ f ⊥ ⊥ {p} •
I2 ⊥ t f f ⊥ f {p, r}
I3 f ⊥ ⊥ f ⊥ ⊥ {p} • • • •
I4 f f t f f ⊥ {p, q} • • •
I5 f t f f ⊥ f {p, r} • • •
I6 f � � f f f {p, q, r} • • •
I7 t t f f ⊥ f {p, r}
I8 � t f f ⊥ f {p, r} •
I9 � � � f f f {p, q, r} •

It then follows that

Theorem 3.20

Let P and I be a logic program and an interpretation, respectively. Then I is a

model deductively closed under support k-completion of P iff I = KK(P⊕ sP(I)).

That is, given an interpretation I and logic program P, among all cl-models

of P, we are looking for the �k-least cl-models deductively closed under support

k-completion, i.e. models containing only the knowledge that can be inferred from

P and from the safe part of CWA identified by its k-maximal safe interpretation.

Example 3.21 (running example cont.)

Table 4 extends Table 3, by including models deductively closed under support

k-completion. Note that now both I8 and I9 have been ruled out, as they are

not minimal with respect to a given support, i.e. I8
= min�k
(modcl(P ⊕ sP(I8))) =

min�k
(modcl(P ⊕ sP(I5))) = KK(P ⊕ sP(I5)) = I5 and I9
= KK(P ⊕ sP(I9)) =

KK(P⊕ sP(I6)) = I6.

Finally, we can note that an immediate consequence operator characterizing

models deductively closed under support k-completion can be derived immediately

from Theorem 3.20, i.e. by relying on the operator KK(P⊕ sP(·)). In the following

we present the operator Φ′P, which coincides with KK(P ⊕ sP(·)), i.e. Φ′P(I) =

KK(P ⊕ sP(I)) for any interpretation I , but does not require any, even intuitive,

program transformation like P⊕ sP(·). This may be important in the classical logic

programming case where P⊕ sP(·) is not easy to define (as ⊕ does not belong to the

language of classical logic programs). Therefore, the set of models deductively closed

under support k-completion coincides with the set of fixed-points of Φ′P, which will

be defined in terms of ΦP only.

Informally, given an interpretation I , Φ′P computes all the knowledge that can

be inferred from the rules and the support of P w.r.t. I without any other extra

knowledge. Formally,

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

Epistemic foundation of stable model semantics 383

Definition 3.22 (immediate consequence operator Φ′P)

Consider a logic program P and an interpretation I . The operator Φ′P maps

interpretations into interpretations and is defined as the limit of the sequence of

interpretations JI
i defined as follows: for any i � 0,

JI
0 = sP(I),

JI
i+1 = ΦP(JI

i)⊕ JI
i .

In the following, with JI
i we indicate the i-th iteration of the immediate con-

sequence operator Φ′P, according to Definition 3.22.

Essentially, given the current knowledge expressed by I about an intended model

of P, we compute first the support, sP(I), and then cumulate all the implicit

knowledge that can be inferred from P, by starting from the support.

It is easy to note that the sequence JI
i is monotone non-decreasing under �k

and, thus has a limit. The following theorem follows directly from Theorems 2.14

and 3.11, and from the Knaster-Tarski theorem.

Theorem 3.23

Φ′P is monotone w.r.t. �k . Therefore, Φ′P has a least (and a greatest) fixed-point

under �k .

Finally, note that

• by definition Φ′P(I) = ΦP(Φ′P(I))⊕ Φ′P(I), and thus ΦP(Φ′P(I)) �k Φ′P(I); and

• for fixed-points of Φ′P we have that I = ΦP(I)⊕ I and, thus, ΦP(I) �k I .

Before proving the last theorem of this section, we need the following lemma.

Lemma 3.24

Let P be a logic program and let I and K be interpretations. If K |=cl P ⊕ sP(I)

then Φ′P(I) �k K .

Proof

Assume K |=cl P ⊕ sP(I), i.e. by Lemma 2.16, K = ΦP⊕sP(I)(K) = ΦP(K) ⊕ sP(I).

Therefore, sP(I) �k K . We show by induction on i that JI
i �k K and, thus, at the

limit Φ′P(I) �k K .

(i) Case i = 0. By definition, JI
0 = sP(I) �k K .

(ii) Induction step: suppose JI
i �k K . Then by assumption and by induction we have

that JI
i+1 = ΦP(JI

i)⊕JI
i �k ΦP(K)⊕K = ΦP(K)⊕ΦP(K)⊕sP(I) = ΦP(K)⊕sP(I) =

K , which concludes. �

The following concluding theorem characterizes the set of models deductively

closed under support k-completion in terms of fixed-points of Φ′P.

Theorem 3.25

Let P and I be a logic program and an interpretation, respectively. Then Φ′P(I) =

KK(P⊕ sP(I)).

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

384 Y. Loyer and U. Straccia

Proof

The Kripke-Kleene model (for ease denoted K) of P⊕ sP(I) under �k , is the limit

of the sequence

K0 = I⊥ ,

Ki+1 = ΦP⊕sP(I)(Ki) .

As K |=cl P⊕ sP(I), by Lemma 3.24, Φ′P(I) �k K . Now we show that K �k Φ′P(I),

by proving by induction on i that Ki �k Φ′P(I) and, thus, at the limit K �k Φ′P(I).

(i) Case i = 0. We have K0 = I⊥ �k Φ′P(I).

(ii) Induction step: suppose Ki �k Φ′P(I). Then, by induction we have Ki+1 =

ΦP⊕sP(I)(Ki) �k ΦP⊕sP(I)(Φ
′
P(I)). As sP(I) �k Φ′P(I), by Lemma 2.16 it follows that

Ki+1 �k ΦP⊕sP(I)(Φ
′
P(I)) = ΦP(Φ′P(I))⊕ sP(I) �k ΦP(Φ′P(I))⊕Φ′P(I) = Φ′P(I), which

concludes. �

It follows immediately that

Corollary 3.26

An interpretation I is a model deductively closed under support k-completion of P
iff I is a fixed-point of Φ′P.

We will now state that the set of stable models coincides with the set of models

deductively closed under support k-completion. This statement implies that our ap-

proach leads to an epistemic characterization of the family of stable models. It also

evidences the role of CWA in logic programming. Indeed, CWA can be seen as

the additional support of falsehood to be added cumulatively to the Kripke-Kleene

semantics to define some more informative semantics: the well-founded and the

stable model semantics. Moreover, it gives a new fixed-point characterization of that

family. Our fixed-point characterization is based on ΦP only and neither requires any

program transformation nor separation of positive and negative literals/information.

The proof of the following stable model characterization theorem can be found in

the appendix.

Theorem 3.27 (stable model characterization)

Let P and I be a logic program and an interpretation, respectively. The following

statements are equivalent:

1. I is a stable model of P;

2. I is a model deductively closed under support k-completion of P,

i.e. I = min�k
(modcl(P⊕ sP(I)));

3. I = Φ′P(I);

4. I = KK(P⊕ sP(I)).

Considering a classical logic program P, a partial interpretation is a stable

model of P if and only if it is deductively closed under its greatest unfounded set

completion, i.e. if and only if it coincides with the limit of the sequence:

JI
0 = ¬.UP(I) ,

JI
i+1 = ΦP(JI

i) ∪ JI
i .

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

Epistemic foundation of stable model semantics 385

Finally, it is well-known that the least stable model of P w.r.t. �k coincides with P’s

well-founded semantics. Therefore, our approach also provides new characterizations

of the well-founded semantics of logic programs over bilattices. Together with

Theorem 3.17, we have

Corollary 3.28

Let P be a logic program. The following statements are equivalent:

1. I is the well-founded semantics of P;

2. I is the �k-least supported model of P, i.e. the �k-least fixed-point of Π̃P;

3. I is the �k-least model deductively closed under support k-completion of P,

i.e. the �k-least fixed-point of Φ′P.

Therefore, the well-founded semantics can be characterized by means of the notion

of supported models only. Additionally, we now also know why Π̃P characterizes

the well-founded model, while fails in characterizing stable models. Indeed, from

I = Π̃P(I) it follows that I is a model of P⊕ sP(I), which does not guarantee that

I is the �k-least cl-model of P⊕ sP(I) (see Example 3.21). Thus, I does not satisfy

Theorem 3.20. If I is the �k-least fixed-point of Π̃P, then I is both a cl-model of

P⊕ sP(I) and �k-least. Therefore, the �k-least supported model is always a model

deductively closed under support k-completion as well and, thus a stable model.

The following concluding example shows the various ways of computing the

well-founded semantics, according to the operators discussed in this study: Ψ′P and

Φ′P. But, rather than relying on FOUR as truth space, as we did in our running

example, we consider the bilattice of intervals over the unit [0, 1], used frequently

for reasoning under uncertainty.

Example 3.29

Let us consider the bilattice of intervals 〈[0, 1]× [0, 1],�t,�k〉 introduced in Ex-

ample 3.5. Consider the following logic program P,

A ← A ∨ B

B ← (¬C ∧ A) ∨ 〈0.3, 0.5〉
C ← ¬B ∨ 〈0.2, 0.4〉

The table below shows the computation of the Kripke-Kleene semantics of P,

KK(P), as �k-least fixed-point of ΦP.

A B C Ki

〈0, 1〉 〈0, 1〉 〈0, 1〉 K0

〈0, 1〉 〈0.3, 1〉 〈0.2, 1〉 K1

〈0.3, 1〉 〈0.3, 0.8〉 〈0.2, 0.7〉 K2

〈0.3, 1〉 〈0.3, 0.8〉 〈0.2, 0.7〉 K3 = K2 = KK(P)

Note that knowledge increases during the computation as the intervals become more

precise, i.e. Ki �k Ki+1.

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

386 Y. Loyer and U. Straccia

The following table shows us the computation of the well-founded semantics of
P, WF(P), as �k-least fixed-point of Ψ′P.

v
Wj
i

A B C A B C Wj

v
W0
0

〈0, 0〉 〈0, 0〉 〈0, 0〉 〈0, 1〉 〈0, 1〉 〈0, 1〉 W0

v
W0
1

〈0, 0〉 〈0.3, 0.5〉 〈0, 1〉

v
W0
2

〈0.3, 0.5〉 〈0.3, 0.5〉 〈0, 1〉

v
W0
3

〈0.3, 0.5〉 〈0.3, 0.5〉 〈0, 1〉

v
W1
0

〈0, 0〉 〈0, 0〉 〈0, 0〉 〈0.3, 0.5〉 〈0.3, 0.5〉 〈0, 1〉 W1

v
W1
1

〈0, 0〉 〈0.3, 0.5〉 〈0.5, 0.7〉

v
W1
2

〈0.3, 0.5〉 〈0.3, 0.5〉 〈0.5, 0.7〉

v
W1
3

〈0.3, 0.5〉 〈0.3, 0.5〉 〈0.5, 0.7〉

v
W2
0

〈0, 0〉 〈0, 0〉 〈0, 0〉 〈0.3, 0.5〉 〈0.3, 0.5〉 〈0.5, 0.7〉 W2

v
W2
1

〈0, 0〉 〈0.3, 0.5〉 〈0.5, 0.7〉

v
W2
2

〈0.3, 0.5〉 〈0.3, 0.5〉 〈0.5, 0.7〉

v
W2
3

〈0.3, 0.5〉 〈0.3, 0.5〉 〈0.5, 0.7〉

〈0.3, 0.5〉 〈0.3, 0.5〉 〈0.5, 0.7〉 W3 = W2 = WF(P)

Note that Wi �k Wi+1 and KK(P) �k WF(P), as expected. We conclude this
example by showing the computation of the well-founded semantics of P, as �k-least
fixed-point of Φ′P.

F
In
i

A B C A B C In/J
In
j

F
I0
0

〈0, 0〉 〈0, 0〉 〈0, 0〉 〈0, 1〉 〈0, 1〉 〈0, 1〉 I0

F
I0
1

〈0, 0〉 〈0, 0.5〉 〈0, 1〉

F
I0
2

〈0, 0.5〉 〈0, 0.5〉 〈0, 1〉

F
I0
3

〈0, 0.5〉 〈0, 0.5〉 〈0, 1〉

〈0, 0.5〉 〈0, 0.5〉 〈0, 1〉 J
I0
0

= sP (I0)

〈0, 0.5〉 〈0.3, 0.5〉 〈0.5, 1〉 J
I0
1

〈0.3, 0.5〉 〈0.3, 0.5〉 〈0.5, 0.7〉 J
I0
2

〈0.3, 0.5〉 〈0.3, 0.5〉 〈0.5, 0.7〉 J
I0
3

F
I1
0

〈0, 0〉 〈0, 0〉 〈0, 0〉 〈0.3, 0.5〉 〈0.3, 0.5〉 〈0.5, 0.7〉 I1

F
I2
1

〈0, 0〉 〈0, 0.5〉 〈0, 0.7〉

F
I2
2

〈0, 0.5〉 〈0, 0.5〉 〈0, 0.7〉

F
I2
3

〈0, 0.5〉 〈0, 0.5〉 〈0, 0.7〉

〈0, 0.5〉 〈0, 0.5〉 〈0, 0.7〉 J
I1
0

= sP (I1)

〈0, 0.5〉 〈0.3, 0.5〉 〈0.5, 0.7〉 J
I1
1

〈0.3, 0.5〉 〈0.3, 0.5〉 〈0.5, 0.7〉 J
I1
2

〈0.3, 0.5〉 〈0.3, 0.5〉 〈0.5, 0.7〉 J
I1
3

〈0.3, 0.5〉 〈0.3, 0.5〉 〈0.5, 0.7〉 I2 = I1 = WF(P)

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

Epistemic foundation of stable model semantics 387

Table 5. Well-founded semantics characterization: from classical logic to bilattices.

1. I is the well-founded semantics of P

Classical logic {f,⊥, t} Bilattices

2.�k-least I s.t. I = WP(I) = TP(I) ∪ ¬.UP(I) I = Π̃P(I) = ΦP(I)⊕ sP(I)

3.�k-least model I s.t. ¬.UP(I) ⊆ I sP(I) �k I

Note how the knowledge about falsehood increases as our approximation to the

intended model increases, i.e. sP(Ii) �k sP(Ii+1), while the degree of truth decreases

(sP(Ii+1) �t sP(Ii)). Furthermore, note that WF(P) |=cl P and sP(WF(P)) �k

WF(P), i.e. WF(P) is a supported model of P, compliant to Corollary 3.28.

4 Conclusions

Stable model semantics has become a well-established and accepted approach to

the management of (non-monotonic) negation in logic programs. In this study we

have presented an alternative formulation to the Gelfond-Lifschitz transformation,

which has widely been used to formulate stable model semantics. Our approach is

purely based on algebraic and semantical aspects of informative monotone operators

over bilattices. In this sense, we talk about epistemological foundation of the stable

model semantics. Our considerations are based on the fact that we regard the closed

world assumption as an additional source of falsehood and identify with the support

the amount/degree of falsehood carried on by the closed world assumption. The

support is the generalization of the notion of the greatest unfounded set for classical

logic programs to the context of bilattices. The support is then used to complete the

well-known Kripke-Kleene semantics of logic programs. In particular,

1. with respect to well-founded semantics, we have generalized both the fixed-

point characterization of the well-founded semantics of van Gelder et al. (1991)

to bilattices (Point 2 in Table 5) and its model-theoretic characterization (Point

3 in Table 5, e.g., see Leone et al. (1997)).

2. concerning stable model semantics, we have shown that

I ∈ stable(P) iff I = min
�k

(modcl(P⊕ sP(I))) = KK(P⊕ sP(I)) = Φ′P(I) ,

while previously stable models have been characterized by I ∈ stable(P) iff

I = min�t
(mod(PI)).

Our result indicates that the support may be seen as the added-value to the Kripke-

Kleene semantics and evidences the role of CWA in the well-founded and stable

model semantics. It also shows that a separation of positive and negative information

is nor necessary (as required by the Gelfond-Lifschitz transform), nor is any program

transformation required.

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

388 Y. Loyer and U. Straccia

As our approach is rather general and abstracts from the underlying logical

formalism (in our case logic programs), it may be applied to other contexts as well.

A Proof of Theorem 3.27

This part is devoted to the proof of Theorem 3.27. It relies on the following

intermediary results. We start by providing lemmas to show that fixed-points of Φ′P
are stable models.

Lemma A.1

If I �t J and J �k I , then If ⊗ΨP(x, I) = If ⊗ΨP(x, J), for any interpretation x.

Proof

Using the antimonotonicity of ΨP w.r.t. �t for its second argument, we have

If �t ΨP(x, J) �t ΨP(x, I). From Lemma 2.2, we have If ⊗ΨP(x, I) �k ΨP(x, J).

Using the interlacing conditions, we have If ⊗ ΨP(x, I) �k If ⊗ ΨP(x, J). Now,

using the monotonicity of ΨP w.r.t. �k and the interlacing conditions, we have

If ⊗ΨP(x, J) �k If ⊗ΨP(x, I). It results that If ⊗ΨP(x, I) = If ⊗ΨP(x, J). �

Similarly, we have

Lemma A.2

If J �t I and J �k I , then If ⊗ΨP(I, x) = If ⊗ΨP(J, x), for any interpretation x.

Proof

Using the monotonicity of ΨP w.r.t. �t for its first argument, we have If �t

ΨP(J, x) �t ΨP(I, x). From Lemma 2.2, we have If ⊗ΨP(I, x) �k ΨP(J, x). Using

the interlacing conditions, we have If ⊗ΨP(I, x) �k If ⊗ΨP(J, x). Now, using the

monotonicity of ΨP w.r.t.�k and the interlacing conditions, we have If⊗ΨP(J, x) �k

If ⊗ΨP(I, x). It results that If ⊗ΨP(I, x) = If ⊗ΨP(J, x). �

Lemma A.3

If I = ΦP(I) then FI
i �t sP(I) �t I , for all i.

Proof

By Theorem 3.10, the sequence FI
i is monotone non-decreasing under �t and

FI
i �t sP(I). Now, we show by induction on i that FI

i �t I and, thus, at the limit

sP(I) �t I .

(i) Case i = 0. FI
0 = If �t I .

(ii) Induction step: let us assume that FI
i �t I holds. By Lemma 2.3, FI

i �t

FI
i ⊕ I �t I follows. We also have I �k FI

i ⊕ I and FI
i �k FI

i ⊕ I . It follows from

Lemma A.1 and Lemma A.2 that FI
i+1 = If ⊗ΨP(FI

i ⊕ I, FI
i ⊕ I) = If ⊗ΨP(FI

i , I).

By induction FI
i �t I , so from I = ΦP(I), FI

i+1 = If ⊗ ΨP(FI
i , I) �t ΨP(FI

i , I) �t

ΨP(I, I) = ΦP(I) = I follows. �

Lemma A.4

If I = ΦP(I) then for any i, sP(I) �k F
I
i �k v

I
i and, thus, at the limit sP(I) �k Ψ′P(I).

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

Epistemic foundation of stable model semantics 389

Proof

By Theorem 3.10, sP(I) �k FI
i , for all i. We know that vIi converges to Ψ′P(I). We

show by induction on i that FI
i �k v

I
i . Therefore, at the limit sP(I) �k Ψ′P(I).

(i) Case i = 0. FI
0 = If �k If = vI0.

(ii) Induction step: assume that FI
i �k v

I
i . By definition, FI

i+1 = If⊗ΦP(I ⊕FI
i) =

If ⊗ΨP(I ⊕ FI
i , I ⊕ FI

i). By Lemma A.3, FI
i �t I . By Lemma 2.3, FI

i �t F
I
i ⊕ I �t I

follows. We also have I �k F
I
i ⊕ I and FI

i �k F
I
i ⊕ I . It follows from Lemma A.1 and

Lemma A.2 that FI
i+1 = If⊗ΨP(FI

i ⊕ I, FI
i ⊕ I) = If⊗ΨP(FI

i , I). By the induction

hypothesis we know that FI
i �k vIi for any n. Therefore, FI

i+1 �k If ⊗ΨP(vIi , I) �k

ΨP(vIi , I) = vIi+1 follows, which concludes. �

Lemma A.5

LetP and I be a logic program and an interpretation, respectively. If I is a supported

model then sP(I) = If ⊗ I .

Proof

By Equation 10 and Theorem 3.15, sP(I) = If ⊗ ΦP(I ⊕ sP(I)) = If ⊗ I . �

Lemma A.6

If I = Φ′P(I) then we have:

1. sP(I) �t Ψ′P(I) �t I; and

2. sP(I) �k Ψ′P(I) �k I .

Proof

By Corollary 3.26 and by Lemma A.5, sP(I) = If ⊗ I and I = ΦP(I). From

Lemma A.4, sP(I) �k Ψ′P(I). By definition of Ψ′P, Ψ′P(I) = lfp�t
(λx.ΨP(x, I)). But,

I = ΦP(I) = ΨP(I, I), thus Ψ′P(I) �t I .

Now we show by induction on i, that FI
i �t v

I
i . Therefore, at the limit, sP(I) �t

Ψ′P(I) and, thus, sP(I) �t Ψ′P(I) �t I hold.

(i) Case i = 0. FI
0 = If �t If = vI0.

(ii) Induction step: let us assume that FI
i �t vIi holds. From Lemma A.3, we

have FI
i �t I and, thus, by Lemma 2.3, FI

i �t FI
i ⊕ I �t I follows. We also

have I �k FI
i ⊕ I and FI

i �k FI
i ⊕ I . Then, from Lemma A.1 and Lemma A.2,

FI
i+1 = If ⊗ ΨP(FI

i ⊕ I, FI
i ⊕ I) = If ⊗ ΨP(FI

i , I). By induction FI
i �t v

I
i , so by

Lemma 2.4 we have FI
i+1 = If ⊗ΨP(FI

i , I) �t ΨP(FI
i , I) �t ΨP(vIi , I) = vIi+1, which

concludes.

Finally, from sP(I) �t Ψ′P(I) �t I and by Lemma 2.2 we have Ψ′P(I) �k I⊕sP(I) =

I , so sP(I) �k Ψ′P(I) �k I . �

Now we are ready to show that fixed-points of Φ′P are stable models.

Theorem A.7

Every fixed-point of Φ′P is a stable model of P.

Proof

Assume I = Φ′P(I). Let us show that I = Ψ′P(I). From Lemma A.6, we know that

Ψ′P(I) �k I . Now, let us show by induction on i that JI
i �k Ψ′P(I). Therefore, at the

limit I = Φ′P(I) �k Ψ′P(I) and, thus, I = Ψ′P(I).

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

390 Y. Loyer and U. Straccia

(i) Case i = 0. JI
0 = sP(I) �k Ψ′P(I), by Lemma A.6.

(ii) Induction step: let us assume that JI
i �k Ψ′P(I) holds. By definition,

JI
i+1 = ΦP(JI

i) ⊕ JI
i . By induction JI

i �k Ψ′P(I). Therefore, JI
i+1 �k ΦP(Ψ′P(I)) ⊕

Ψ′P(I). But, by Lemma A.6, Ψ′P(I) �k I , so ΦP(Ψ′P(I)) = ΨP(Ψ′P(I), Ψ′P(I)) �k

ΨP(Ψ′P(I), I) = Ψ′P(I). Therefore, JI
i+1 �k Ψ′P(I). �

The following lemmas are needed to show the converse, i.e. that stable models are

fixed-points of Φ′P.

Lemma A.8

If I = Ψ′P(I) then we have:

1. sP(I) �k I;

2. Φ′P(I) �k I;

3. Φ′P(I) �t I .

Proof

Assume I = Ψ′P(I). By Theorem 2.20, I = ΦP(I). By Lemma A.4, sP(I) �k Ψ′P(I) =

I , which completes Point 1..

Now, we show by induction on i that, JI
i �k I and JI

i �t I and, thus, at the limit

Φ′P(I) �k I and Φ′P(I) �t I hold.

(i) Case i = 0. By Point 1., JI
0 = sP(I) �k I , while JI

0 = sP(I) �t I , by Lemma A.3.

(ii) Induction step: let us assume that JI
i �k I and JI

i �t I hold. By definition,

JI
i+1 = ΦP(JI

i)⊕ JI
i . By induction JI

i �k I , thus JI
i+1 �k ΦP(I)⊕ I = I ⊕ I = I , which

completes Point 2. From JI
i �k I , ΦP(JI

i) �k ΦP(I) = I follows. By induction we

have JI
i �t I , thus JI

i+1 �t ΦP(JI
i)⊕ I = I , which completes Point 3. �

Lemma A.9

If I = Ψ′P(I) then I �t Φ′P(I).

Proof

Assume I = Ψ′P(I). By Theorem 2.20, I = ΦP(I). By Lemma A.3 and Lemma A.8,

sP(I) �k I and sP(I) �t I , so by Lemma 2.7, sP(I) = sP(I)⊗ If = I ⊗ If.

Now, we show by induction on i, that vIi �t Φ′P(I). Therefore, at the limit,

I = Ψ′P(I) �t Φ′P(I).

(i) Case i = 0. vI0 = If �t Φ′P(I).

(ii) Induction step: let us assume that vIi �t Φ′P(I) holds. By definition and

by the induction hypothesis, vIi+1 = ΨP(vIi , I) �t ΨP(Φ′P(I), I). By Lemma A.8,

Φ′P(I) �t I . Therefore, since ΨP is antitone in the second argument under �t, v
I
i+1 �t

ΨP(Φ′P(I),Φ′P(I)) = ΦP(Φ′P(I)). It follows that vIi ⊕ vIi+1 �t ΦP(Φ′P(I)) ⊕ Φ′P(I) =

Φ′P(I). By Lemma 2.5, (by assuming, x = vIi , z = vIi+1, y = Φ′P(I)), vIi+1 �k Φ′P(I)⊕If
follows. By Lemma A.8, both Φ′P(I) �t I and Φ′P(I) �k I hold. Therefore, by

Lemma 2.7, Φ′P(I)⊗ If = I ⊗ If = sP(I). From Lemma A.4, Φ′P(I)⊗ If = sP(I) �k

vIi+1 �k Φ′P(I) ⊕ If. Therefore, by Lemma 2.6, it follows that vIi+1 �t Φ′P(I), which

concludes the proof. �

We can now prove that every stable model is indeed a fixed-point of Φ′P, which

concludes the characterization of stable models on bilattices.

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

Epistemic foundation of stable model semantics 391

Theorem A.10

Every stable model of P is a fixed-point of Φ′P.

Proof

Assume I = Ψ′P(I). By Lemma A.8, Φ′P(I) �t I , while by Lemma A.9, I �t Φ′P(I).

So I = Φ′P(I). �

Finally, Theorem 3.27 follows directly from Theorems A.7, A.10, 3.20 and Corol-

lary 3.26.

References

Alcantâra, J., Damásio, C. V. and Pereira, L. M. 2002. Paraconsistent logic programs. Proc.

of the 8th European Conference on Logics in Artificial Intelligence (JELIA-02). Number

2424 in Lecture Notes in Computer Science. Springer-Verlag, Cosenza, Italy, 345–356.

Anderson, A. R. and Belnap, N. D. 1975. Entailment – the logic of relevance and necessity.

Princeton University Press, Princeton, NJ.

Arieli, O. 2002. Paraconsistent declarative semantics for extended logic programs. Annals of

Mathematics and Artificial Intelligence 36, 4, 381–417.

Arieli, O. and Avron, A. 1996. Reasoning with logical bilattices. Journal of Logic, Language

and Information 5, 1, 25–63.

Arieli, O. and Avron, A. 1998. The value of the four values. Artificial Intelligence

Journal 102, 1, 97–141.

Avron, A. 1996. The structure of interlaced bilattices. Journal of Mathematical Structures in

Computer Science 6, 287–299.

Belnap, N. D. 1977. A useful four-valued logic. In Modern uses of multiple-valued logic,

G. Epstein and J. M. Dunn, Eds. Reidel, Dordrecht, NL, 5–37.

Blair, H. and Subrahmanian, V. S. 1989. Paraconsistent logic programming. Theoretical

Computer Science 68, 135–154.

Clark, K. 1978. Negation as failure. In Logic and data bases, H. Gallaire and J. Minker, Eds.

Plenum Press, New York, NY, 293–322.

Damásio, C. V. and Pereira, L. M. 1998. A survey of paraconsistent semantics for

logic programs. Handbook of Defeasible Reasoning and Uncertainty Management Systems,

D. Gabbay and P. Smets, Eds. Kluwer, 241–320.

Damásio, C. V. and Pereira, L. M. 2001. Antitonic logic programs. Proceedings of the 6th

European Conference on logic programming and Nonmonotonic Reasoning (LPNMR-01).

Number 2173 in Lecture Notes in Computer Science. Springer-Verlag.

Denecker, M. 1998. The well-founded semantics is the principle of inductive definition.

Logics in Artificial Intelligence, Proceedings of JELIA-98, J. Dix, L. Farinos del Cerro, and

U. Furbach, Eds. Number 1489 in Lecture Notes in Artificial Intelligence. Springer Verlag,

1–16.

Denecker, M., Bruynooghe, M. and Marek, V. 2001. Logic programming revisited: logic

programs as inductive definitions. ACM Transactions on Computational Logic (TOCL) 2, 4,

623–654.

Denecker, M., Marek, V. W. and Truszczyński, M. 1999. Approximating operators,

stable operators, well-founded fixpoints and applications in nonmonotonic reasoning. NFS-

workshop on Logic-based Artificial Intelligence, J. Minker, Ed. 1–26.

Denecker, M., Marek, V. W. and Truszczyński, M. 2002. Ultimate approximations in

nonmonotonic knowledge representation systems. Principles of Knowledge Representation

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

392 Y. Loyer and U. Straccia

and Reasoning: Proceedings of the 8th International Conference, D. Fensel, F. Giunchiglia,

D. McGuinness, and M. Williams, Eds. Morgan Kaufmann, 177–188.

Denecker, M., Marek, V. W. and Truszczyński, M. 2003. Uniform semantic treatment of

default and autoepistemic logics. Artificial Intelligence Journal 143, 79–122.

Dunn, J. M. 1976. Intuitive semantics for first-degree entailments and coupled trees.

Philosophical Studies 29, 149–168.

Dunn, J. M. 1986. Relevance logic and entailment. Handbook of Philosophical Logic, D. M.

Gabbay and F. Guenthner, Eds. Vol. 3. Reidel, Dordrecht, NL, 117–224.

Emden, M. H. V. and Kowalski, R. A. 1976. The semantics of predicate logic as a

programming language. Journal of the ACM (JACM) 23, 4, 733–742.

Fitting, M. 1985. A Kripke-Kleene-semantics for general logic programs. Journal of Logic

Programming 2, 295–312.

Fitting, M. 1991. Bilattices and the semantics of logic programming. Journal of Logic

Programming 11, 91–116.

Fitting, M. 1992. Kleene’s logic, generalized. Journal of Logic and Computation 1, 6, 797–810.

Fitting, M. C. 1993. The family of stable models. Journal of Logic Programming 17, 197–225.

Fitting, M. C. 2002. Fixpoint semantics for logic programming - a survey. Theoretical

Computer Science 21, 3, 25–51.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming.

Proceedings of the 5th International Conference on Logic Programming, R. A. Kowalski and

K. Bowen, Eds. The MIT Press, Cambridge, Massachusetts, 1070–1080.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive

databases. New Generation Computing 9, 3/4, 365–386.

Ginsberg, M. L. 1988. Multi-valued logics: a uniform approach to reasoning in artificial

intelligence. Computational Intelligence 4, 265–316.

Herre, H. and Wagner, G. 1997. Stable models are generated by a stable chain. Journal of

Logic Programming 30, 2, 165–177.

Kunen, K. 1987. Negation in logic programming. Journal of Logic Programming 4, 4, 289–308.

Leone, N., Rullo, P. and Scarcello, F. 1997. Disjunctive stable models: Unfounded sets,

fixpoint semantics, and computation. Information and Computation 135, 2, 69–112.

Levesque, H. J. 1984. A logic of implicit and explicit belief. Proc. of the 3th Nat. Conf. on

Artificial Intelligence (AAAI-84). Austin, TX, 198–202.

Levesque, H. J. 1988. Logic and the complexity of reasoning. Journal of Philosophical Logic 17,

355–389.

Lloyd, J. W. 1987. Foundations of Logic Programming. Springer, Heidelberg, RG.

Loyer, Y. and Straccia, U. 2002a. Uncertainty and partial non-uniform assumptions in

parametric deductive databases. Proc. of the 8th European Conference on Logics in Artificial

Intelligence (JELIA-02). Number 2424 in Lecture Notes in Computer Science. Springer-

Verlag, Cosenza, Italy, 271–282.

Loyer, Y. and Straccia, U. 2002b. The well-founded semantics in normal logic programs with

uncertainty. Proc. of the 6th International Symposium on Functional and Logic Programming

(FLOPS-2002). Number 2441 in Lecture Notes in Computer Science. Springer-Verlag,

Aizu, Japan, 152–166.

Loyer, Y. and Straccia, U. 2003a. The approximate well-founded semantics for logic

programs with uncertainty. 28th International Symposium on Mathematical Foundations of

Computer Science (MFCS-2003). Number 2747 in Lecture Notes in Computer Science.

Springer-Verlag, Bratislava, Slovak Republic, 541–550.

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

Epistemic foundation of stable model semantics 393

Loyer, Y. and Straccia, U. 2003b. Default knowledge in logic programs with uncertainty.

Proc. of the 19th Int. Conf. on Logic Programming (ICLP-03). Number 2916 in Lecture

Notes in Computer Science. Springer Verlag, Mumbai, India, 466–480.

Loyer, Y. and Straccia, U. 2003c. The well-founded semantics of logic programs over

bilattices: an alternative characterisation. Technical Report ISTI-2003-TR-05, Istituto di

Scienza e Tecnologie dell’Informazione, Consiglio Nazionale delle Ricerche, Pisa, Italy.

Lukasiewicz, T. 2001. Fixpoint characterizations for many-valued disjunctive logic programs

with probabilistic semantics. In Proceedings of the 6th International Conference on Logic

Programming and Nonmonotonic Reasoning (LPNMR-01). Number 2173 in Lecture Notes

in Artificial Intelligence. Springer-Verlag, 336–350.

Moore, R. C. 1984. Possible-world semantics for autoepistemic logic. Proceedings of the 1st

International Workshop on Nonmonotonic Reasoning. New Paltz, NY, 344–354.

Ng, R. and Subrahmanian, V. 1991. Stable model semantics for probabilistic deductive

databases. Proc. of the 6th Int. Sym. on Methodologies for Intelligent Systems (ISMIS-91),

Z. W. Ras and M. Zemenkova, Eds. Number 542 in Lecture Notes in Artificial Intelligence.

Springer-Verlag, 163–171.

Przymusinski, T. C. 1990a. Extended stable semantics for normal and disjunctive programs.

In Proceedings of the 7th International Conference on Logic Programming, D. H. D. Warren

and P. Szeredi, Eds. MIT Press, 459–477.

Przymusinski, T. C. 1990b. Stationary semantics for disjunctive logic programs and deductive

databases. Logic Programming, Proceedings of the 1990 North American Conference,

S. Debray and H. Hermenegildo, Eds. MIT Press, 40–59.

Przymusinski, T. C. 1990c. The well-founded semantics coincides with the three-valued stable

semantics. Fundamenta Informaticae 13, 4, 445–463.

Reiter, R. 1978. On closed world data bases. Logic and data bases, H. Gallaire and J. Minker,

Eds. Plenum Press, New York, NY, 55–76.

Reiter, R. 1980. A logic for default reasoning. Artificial Intelligence 13, 81–132.

Tarski, A. 1955. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of

Mathematics 5, 285–309.

van Gelder, A. 1989. The alternating fixpoint of logic programs with negation. Proc. of the

8th ACM SIGACT SIGMOD Sym. on Principles of Database Systems (PODS-89). 1–10.

van Gelder, A., Ross, K. A. and Schlimpf, J. S. 1991. The well-founded semantics for

general logic programs. Journal of the ACM 38, 3, 620–650.

https://doi.org/10.1017/S1471068405002619 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002619

