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Self-Organizing Maps (SOM) have been used for patterning and visualizing ten environmental parameters and phytoplank-
ton biomass in a mactrotidal (.10 m) Gyeonggi Bay and artificial Shihwa Lake during 1986–2004. SOM segregated study
areas into four groups and ten subgroups. Two strikingly alternative states are frequently observed: the first is a diverse
non-eutrophic state designated by three groups (SOM 1–3), and the second is a eutrophic state (SOM 4: Shihwa Lake
and Upper Gyeonggi Bay; summer season) characterized by enhanced nutrients (3 mg l21 dissolved inorganic nitrogen,
0.1 mg l21 PO4) that act as a signal and response to that signal as algal blooms (24 mg chlorophyll-a l21). Bloom potential
in response to nitrification is affiliated with high temperature (r ¼ 0.26), low salinity (r ¼ 20.40) and suspended solids (r ¼
–0.27). Moreover, strong stratification in the Shihwa Lake has accelerated harmful algal blooms and hypoxia. The
non-eutrophic states (SOM 1–3) are characterized by macro-tidal estuaries exhibiting a tolerance to pollution with nitrogen-
containing nutrients and retarding any tendency toward stratification. SOM 1 (winter) is more distinct from SOM 4 due to
higher suspended solids (.50 mg l21) caused by resuspension that induces light limitation and low chlorophyll-a (,5 mg l21).
In addition, eutrophication-induced shifts in phytoplankton communities are noticed during all the seasons in Gyeonggi Bay.
Overall, SOM showed high performance for visualization and abstraction of ecological data and could serve as an efficient
ecological map that can specify blooming regions and provide a comprehensive view on the eutrophication process in a macro-
tidal estuary.
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I N T R O D U C T I O N

Plankton models are developed to understand how global
change, the result of natural and anthropogenically induced
climate change, will impact on the structure and function of
the planktonic marine ecosystem. Marine planktonic model-
ling remains enigmatic because it is generated from the non-
linear combination of biotic (physiological responses and
predator –prey interactions) and abiotic (temperature, pH,
light, nutrient supply, contaminant exposure, etc.) ecosystem
forcing and has various plankton functional types including
phytoplankton, for example, and its diverse groups such as
diatoms, cocoolithophorids, nitrogen fixers, picoplankton,
phytoflagellates and dinoflagellates (Totterdell et al., 1993)
with their different emergent properties. Anderson (2005)
recently identified a number of problems with the plankton
functional types modelling including poorly understood

ecology, the difficulty of aggregating diversity within func-
tional groups into meaningful state variables, the sensitivity
of outputs to parameters choice and the representation of
external physical and chemical environment. So, we need to
understand the ecology of plankton well enough to do the
model and also need to formulate and test a greater variety
of models; perhaps it is time to think beyond the traditional
planktonic ecosystem model and look to a different model
(Franks, 2009).

Traditional conventional multivariate methods (i.e. cluster
analysis (CA), discriminate analysis (DA), principal com-
ponent analysis (PCA), factor analysis (FA), absolute principal
component score multiple linear regression (APCS-MLR),
factor analysis-multiple regression (FA-MR), etc.) are some-
what limiting for revealing the non-linear and complex
dynamic nature that is frequently associated with analysing
and synthesizing ecological data because they generally
apply for linear data and are less flexible for data handling
(e.g. noise and uncertainty) (Chon, 2011; Su et al., 2011). In
recent years, artificial neural network (ANN) techniques
have become popular in ecological modelling by virtue of
their powerful performance. There are two types of ANNs
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according to the learning algorithms: supervised ANNs are
used for data estimation (e.g. prediction and environmental
community causality relationships) based on a priori knowl-
edge and unsupervised ANNs are used when deriving infor-
mation from data (e.g. ordination and classification) without
previous knowledge (Kohonen, 1982). The Self-Organizing
Map (SOM), based on an unsupervised neural network
(Kohonen, 1982, 2001), appears to be an effective method
for feature extraction and classification. It maps high-
dimensional input data onto a low dimensional (usually
2-d) space while preserving the topological relationships
between the input data. As a pattern recognition and classifi-
cation tool, the SOM finds widespread use across a number of
disciplines (Kaski et al., 1998; Oja et al., 2002). The SOM has
also been applied in oceanography by Ainsworth (1999) and
Ainsworth & Jones (1999) for chlorophyll estimates from sat-
ellite data, by Silulwane et al. (2001) and Richardson et al.
(2002) to identify ocean chlorophyll profiles, by Hardman-
Mountford et al. (2003) to relate satellite altimeter data with
the recruitment of the Namibian sardine, by Ultsch & Roske
(2002) to predict sea level, and by Richardson et al. (2003)
and Risien et al. (2004) to extract sea surface temperature
(SST) and wind patterns from satellite data. Nevertheless,
for oceanographers unfamiliar with neural network tech-
niques, the SOM remains a ‘black box’ with associated scepti-
cism. In this paper, the SOM is applied for visualization and
abstraction of the complexity of environmental–phytoplank-
ton relationships in the macrotidal Gyeonggi Bay, Korea.

The entire Gyeonggi Bay is a useful site for comparative
estuarine science because it comprises two connected, but dis-
tinct subsystems: Gyeonggi Bay (GB) and Shihwa Lake (SL).
GB is a shallow macrotidal and well-mixed estuary limiting
the accumulation of oraganic matter; but unpredictable
inputs from Han River discharge can maintain nutrient avail-
ability. SL, on the other hand, is the artificial saltwater lake
constructed from 1986 to 1994 and suffered from severe
eutrophication, anoxia as well as environmental disaster
(Han & Park, 1999). By the late 1980s to mid-1990s, the
entire GB is heavily impacted by eutrophication, caused by
nutrient input from the densely populated and industrialized
catchment area, resulting in an increase in phytoplankton
biomass and primary production including alternations to
species distributions, composition and phenology (annual
bloom dynamics) (Park & Park, 2000; Yang et al., 2008).
However, in the past (1980s), GB’s phytoplankton seasonality
followed a single spring diatom bloom that was triggered by
increasing daily irradiance and atmospheric heat input that
stratifies the water column after winter mixing brings nutri-
ents to the surface (Choi & Shim, 1986c). In contrast, recently
(2000s), GB’s waters present diverse seasonal patterns with
large variability from diatom (siliceous) blooming during
winter to non-diatom blooming during summer related to
complex interactions among physical, chemical and biological
processes (Yang et al., 2008). In general, phytoplankton sea-
sonality at the estuaries is driven by more than a few climatic
factors (Cloern & Jassby, 2008). This is a fundamental ecologi-
cal distinction from the open marine and terrestrial biomes. It
confirms Longhurst’s (1995) insightful conclusion about the
unpredictability of oceanographic processes along the
margins of the oceans, where it is exceedingly difficult to gen-
eralize the processes which determine seasonality of plankton
production. Hence, coastal ecosystem models are tools that
offer an explicit framework for integration of the knowledge

gained as well as detailed investigation of the underlying
dynamics and the reason for it, into a management approach.

The purpose of this study is to apply SOM as a modelling
approach to pattern, classification, clustering and visualization
of ten main environmental parameters (temperature, salinity,
pH, DO, SS, COD, NO3, NO2, NH4 and PO4) and phytoplank-
ton biomass (chlorophyll-a) on the GB and SL during 1986–
2004. We also discuss the underlying mechanisms of phyto-
plankton blooms and the eutrophication impacts on phyto-
plankton community structure based on present and past
surveys.

M A T E R I A L S A N D M E T H O D S

Study area

gyeonggi bay

The GB (Figure 1) has a number of features that typify shallow
and coastal plain estuaries, including: (1) morphology charac-
terized by a broad shallow channel of 10–20 m depth flanked
by tidal flats .3 km width (Choi & Shim, 1986a); (2) macro-
tidal (tidal amplitude .10 m) bay specialized by semi-diurnal
strong tidal currents (1.2–2.3 and 0.9–1.9 ms21 during spring
and neap tides, respectively) and strong winter monsoon
(3.77 ms21) sweeps over the bay to introduce vertical
mixing causing the resuspension of the bottom sediment
(KMA, 2010); (3) wet summer season represented by huge
Han River discharge (55 × 106 m3d21) induces higher com-
pensation depth that is inversely related with turbidity, and
light favourable for phytoplankton blooms (Park et al.,
2000); alternatively (4) huge turbidity by winter mixing resus-
pended sediment particles and upward flux of nutrients in
spite of low river discharge responsible for tychopelagic plank-
ton (Choi & Shim, 1986c). Despite huge Han River flow, symp-
toms of stratification in lower GB are quite absent due to a
well-mixed water body, except the Han River estuarine region
during summer where vertical gradients of salinity stratification
(salinity difference .5 psu) have often been observed (NFRDI,
2008; Park et al., 2000). No hypoxia has been reported.

shihwa lake

The reclamation of an intertidal flat created Shihwa Lake (SL)
in Gyeonggi province on the western coast of Korea during
December 1986 to January 1994. The lake is enclosed by
12.7 km of sea dike and has a surface area of 42.3 km2,
water storage capacity of 332 million tons with a management
water level at –1.0 m, a maximum depth of 18 m, and a total
seawater flux of 380 million tons per year (MOMAF, 2006).
The artificial saline lake was expected to transform into a
freshwater one to be used for irrigation purposes and,
however, the drainage structure of the lake does not allow
the entrapment of Yellow Sea water to be fully replaced by
freshwater from its hinterland, which led to the project
failure. Furthermore, the severe deterioration of lake-water
quality in the mid-1990s prompted evaluations of environ-
ment impact (Park et al., 2003a; Yoo et al., 2009) and eutro-
phication, consequently, progressed rapidly brought about
by the untreated sewage and wastewater flowing in from the
Shihwa adjacent area (Kim et al., 2004). The main tributaries
of the lake consist of nine streams: four waterways traversing
the industrial area, i.e. the Okgu, Gunga, Jeongwang, and
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Siheung streams, and the Singil, Ansan, Banweol, Dongwha,
and Samwha streams, with the last three passing through
the Shihwa constructed wetland (Oh et al., 2010).

Field data
Our database was built up based on the environmental data
collected from environment research reports which were
released by several institutions (Korea Ocean Research and
Development Institute (KORDI), Ministry of Construction
and Transportation (MOCT), Ministry of Land Transport
and Maritime Affairs (MLTM), Centre for Coastal
Environments of Yellow Sea (CCEYS), Korea Water
Resources Corporation (K-water), Korea Electric Power
Corporation (KEPCO), Incheon Free Economic Zone
(IFEZ), Ocean Science and Technology Institute Inha
University (OSTI), Sudokwon Landfill Site Management
Corp (SLC) and Korea Aggregates Association Incheon
Brance (KAA)) over 19 years (1986–2004). These surveys
were conducted at surface waters in the study area
(Figure 1). We would consider particularly ten physico-
chemical parameters (temperature, salinity, pH, dissolved
oxygen, suspended sediment, chemical oxygen demand,
ammonium, nitrate, nitrite and phosphate) and chlorophyll
concentrations. Temperature and salinity were measured

using CTD, STD or T-S bridge. Dissolved oxygen (DO) con-
centration was measured using a DO meter (YSI), CTD or
Winkler method and pH was measured using CTD or pH
meter. Suspended sediment (SS) and chemical oxygen
demand (COD) were determined by gravimetric analysis
using the glass fibre filter and dichromate reflux methods,
respectively. Nutrient concentration and chlorophyll-a were
determined using the methods of Parsons et al. (1984). For
clustering and organizing of the study area using SOM, we
used about 800 study stations, which included 10 parameters
from 1986–2004. Note that, during 1986–1994, our data sets
contain some missing values and the SOM is a good method to
recover them. The idea is as simple as to use the centre of each
subclass to estimate the missing values of a value of a given
observation. The virtue of the SOM regarding this problem
is twofold: first, it is a non-parametric regression procedure
that does not suppose any underlying models of the data
set; and secondly it uses the information from similar obser-
vations to refine the positions of subclasses’ centres and
hence gives better estimation (Latif & Mercier, 2010).
However, we used continuous ten years (1995–2004) data
for temperature, salinity and chlorophyll-a, for the analysis
on the long-term variation of phytoplankton dynamics
which ignored the spatial variability at surface water of the
entire bay.

Fig. 1. Map showing the study area and geographical distribution of study stations. Dotted circle represents ‘Upper Gyeonggi Bay’ regions.

som for environment factors and phytoplankton in estuary 3

https://doi.org/10.1017/S0025315412000616 Published online by Cambridge University Press

https://doi.org/10.1017/S0025315412000616


Self-Organizing Map (SOM)
In order to extract the structure of the high-dimensional data
formed by the sample units (site-year), a method based on
ANNs using an unsupervised algorithm called SOM
(Kohonen, 2001) has been used. SOMs are different from
other artificial neural networks in the sense that they use a
neighbourhood function to preserve the topological properties
of the input space (Kohonen, 2001). This makes SOMs useful
for visualizing low-dimensional views of high-dimensional
data akin to multidimensional scaling.

The SOM consists of two layers: input and output layers con-
nected by connection intensities (weights). The input layer gets
information from data matrix, while the output layer visualizes
the computational results. When an input vector x is sent
through the network, each neuron k of the network computes
the distance between the weight vector w and the input vector
x. The output layer consists of D output neurons, which are
usually arranged into a two-dimensional grid for better visual-
ization. There are no strict rules regarding the choice of the
number of output neurons (Park et al., 2007). In this study,
we used 10 environmental parameters as input units and 200
(20 × 10) neurons as the number of output neurons for a hex-
agonal lattice. The optimum map size was chosen based on
minimum values of quantization and topographic errors
(Kiviluoto, 1996; Kohonen, 2001), and ecological knowledge
about the study area. SOM can be interpreted as a non-linear
projection of the high-dimensional input data onto an output
array of units. The best arrangement for the output layer is a
hexagonal lattice, as it does not favour horizontal and vertical
directions as much as rectangular arrays (Kohonen, 2001).
Among all the D output neurons, the best matching unit
(BMU) with minimum distance between the weight and input
vectors is the winner. For the BMU and its neighbourhood
neurons, the weight vectors w are updated using the SOM learn-
ing rule. As a result, the network is trained to classify the input
vectors according to the weight vectors that are closest to them.

A detailed description of the SOM algorithm has already
been given by Kohonen (2001) for the theory and Park et al.
(2003b, 2004) for ecological application. The learning
process of the SOM was carried out using the SOM Toolbox
(Alhoniemi et al., 2000) developed by the Laboratory of
Information and Computer Science in the Helsinki
University of Technology (http://www.cis.hut.fi/projects/
somtoolbox/) in Matlab environments (The Mathworks,
2001), and we adopted the initialization and training
methods suggested by the authors of the SOM Toolbox that
allow the algorithm to be optimized (Vesanto et al., 1999).

To test for the difference of environmental parameters
including chlorophyll-a, one-way analysis of variance
(ANOVA) was applied and Tukey’s post-hoc test for multiple
comparisons among means to detect differences using SPSS
for Windows version 12.0.1 (SPSS Inc, Chicago, III) was fol-
lowed. Differences are significant at 95% (P , 0.05). In
order to quantitatively analyse and confirm the relationships
between chlorophyll-a and environmental parameters in
each group, the Pearson’s correlation analysis was applied.

R E S U L T S

Figure 2A, B illustrates the temporal variation of temperature
and salinity during 1995–2004. Water temperature ranged

from 0.0 to 300C (mean 15.60C) with lower values during
winter and maximum values in summer (Figure 2A). Salinity
variation was a reverse trend of temperature. Salinity ranged
from 7.1 to 33.2 psu (mean 27.7 psu) with lower values
during the summer wet season and a higher value in winter
(Figure 2B). The lower values of salinity (,10 psu) were par-
ticularly recorded in August 1995, July 1996 and July 1997 at
the SL region because of untreated sewage and waste water
inputs from the watersheds and limited physical mixing
during the stratified periods (1994–1999). The characteristics
of the lake water quality slightly changes after 1999, the
period when seawater dilution was allowed to improve the
deteriorated water quality. Moreover, the salinity of the
stations located at the upper bay and at near the tributaries
was lower than those of middle and lower bays due to the
freshwater input from rivers (spatial data not shown).

In this study, chlorophyll-a concentration ranged from 0.7
to 210.7 (mean 18.3) mgl21 (Figure 2C). High chlorophyll-a
concentration (.10 mgl21) was recorded during the
summer season (i.e. July 1996, August 1996, August 1998)
in the upper GB, Incheon harbour and vicinity of SL (spatial
data not shown). The phytoplankton biomass increased
about twofold from the mid-1990s to the mid-2000s and phy-
toplankton blooms were often detected in all areas of the bay
through the seasons. In addition, winter blooms (.110 mgl21

in December of 1997) were recorded because of the increase in
abundance of Thalassiosira nordenskioeldii Cleve. The peak of

Fig. 2. The temporal variation of temperature (A), salinity (B) and
chlorophyll-a concentration (C) during the last decade (1995–2004) in
Gyeonggi Bay.
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phytoplankton biomass also frequently occurred during
spring and autumn over the past decade.

Model result
After learning the process of the SOM with environmental
parameters, the study stations were divided into four large
groups with ten different subgroups at different linkage dis-
tances according to the hierarchical cluster analysis with
Ward’s linkage method (Figure 3A, B). The study stations,

as results of SOM and cluster analysis, first were divided
according to seasonal characteristics. The group 1, which
was located at the upper part on the map, was characterized
as winter, whereas groups 3 and 4 located at the lower part
were characterized as summer. The group 2 showed the inter-
mediate characteristics between group 1 and groups 3 and 4,
characterized as spring and autumn. Each group was subdi-
vided into 2 and 3 sub-groups according to the characteristics
of environmental parameters. Figure 4 A–D shows the repre-
sentative location for each SOM group in the geographical

Fig. 3. Classification of study stations on the Self-Organizing Maps (SOM) map trained with environmental parameters and subgroup in each large group (A), and
a dendrogram of hierarchical cluster analysis using Ward linkage method with Euclidean distance showing relations among groups defined in the SOM map (B).

Fig. 4. Geographical distribution of study stations based on the trained Self-Organizing Maps in each group and subgroup (A, Group 1; B, Group 2; C, Group 3;
D, Group 4).
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map of the GB and SL. SOM group 1 (winter) encompassed
sites from the enormous GB and SL regions with 2 sub-groups
based on site-specific environmental values. All sites from
group 2 (spring and autumn) belonged to the upper-middle
GB and SL stations, and were partitioned into 2 sub-groups.
Finally, group 3 (summer) also corresponded to large GB
and SL regions, whereas group 4 (summer) was strictly
located at upper GB, inside and outside of SL with 3 sub-
groups. It is remarkable that most of the sub-group sites
during summer were still overlapped by others due to site-
specific environmental values and coastal hydrological
processes.

Estimated values of each parameter in the trained SOM
map are visualized in grey scale in Figure 5. Dark areas on
the map represent high values of each parameter while
light areas represent low values. Each environmental par-
ameter shows significantly different distribution patterns
among different groups on the SOM map (one-way
ANOVA, P , 0.05) (Figure 6). Temperature was low in
group 1 (winter) and high in groups 3 and 4 (summer). In
contrast, the salinity showed a different pattern, with high
in group 1 (winter: 34) and low in group 4 (summer: 18).
Group 2 (spring and autumn) and group 3 (summer)
showed somewhat similar salinity gradient. In case of pH,
group 2 showed slightly higher concentrations than other
groups. Dissolved oxygen concentration and suspended
sediment concentration were the highest in group 1
(winter), while chemical oxygen demand and nutrient con-
centrations were the highest in group 4 (summer). Nutrient
and COD profiles divided into two parts among the four
SOM groups. The SOM group 4 was characterized by the
highest nutrients and COD, whereas the remaining SOM
groups (1 – 3) were designated by lower nutrients and COD.

The phytoplankton biomass also showed significant differ-
ence (one-way ANOVA, P , 0.05) among groups (Figure 7).
The highest chlorophyll-a concentration was detected in
group 4 (summer). These stations belonging in group 4
were considerably influenced by massive nutrient inputs in
summer. The chlorophyll-a concentrations in group 2
(spring and autumn seasons) were a little higher than in
other groups (groups 1 and 3), though there is no significant
difference among these three SOM groups.

Correlations between phytoplankton biomass of each group
and environmental parameters were examined by Pearson’s
correlations analysis (Table 1). In SOM groups 1 and 2, phyto-
plankton biomass was significantly correlated with salinity
(r¼20.27) and temperature (r¼20.22), respectively. In
SOM groups 3 and 4, chlorophyll-a concentration was posi-
tively correlated with temperature and DO (r¼ 0.24, r ¼
0.26, respectively), and negatively correlated with salinity
(r¼ –0.28, r ¼ –0.40, respectively). This weak relationship
between phytoplankton, and temperature and salinity, reveals
it to have a pronounced eurythermal and euryhaline nature.
Phytoplankton biomass showed insignificant relationships
with nutrients in SOM groups 3 and 4 (summer). In addition,
phytoplankton biomass was negatively correlated with sus-
pended solids (r¼20.27) in SOM group 4.

D I S C U S S I O N

The SOM techniques
The non-linearity and complexity of variables involved in water
quality have led many researchers to use the ANN model to
simulate these variables due to the ability of such models to
handle complex, non-linear relationships (Richardson et al.,
2002, 2003; Park et al., 2003b, 2004; Song et al., 2007). In this
particular study, SOMs demonstrated their effectiveness for
assessing four seasonal patterns from multidimensional environ-
mental time-series data during 1986–2004 (Figure 3). Park et al.
(2004) compared the SOM and PCA, and found that SOM
grouping was more relevant to ecology, revealing different
effects of pollution states, and impact of spatial and temporal
variations in environment. For example, the SOM, by explaining
total variance in the data, was able to describe more directly the
discriminatory power of input variables in mapping, while PCA
explained less than 30% of the total variance in the data (Park
et al., 2004). One of the most significant characteristics and con-
tributions of using SOM is that the results obtained by SOM can
be visualized from its topology map (Figure 5). Once the SOM
has converged, it stores the most relevant information about
the process in its topology map and allows all such information
to be displayed, something that is not possible with the standard

Fig. 5. Visualization of environmental parameters calculated in the trained Self-Organizing Maps (SOM) in grey scale. The values were calculated during the
learning process (A, temperature; B, salinity; C, pH; D, dissolved oxygen; E, suspended sediment; F, chemical oxygen demand; G, ammonia; H, nitrate; I,
nitrate; J, phosphate). The blue, turquoise, yellow and red lines represent SOM groups 1, 2, 3 and 4, respectively. See online publication.
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output from cluster analysis or multidimensional scaling
(Richardson et al., 2002). Figures 3 and 5 present the SOM top-
ology maps, which have 20 × 10 grids (neurons) with each
neuron representing a cluster of similar input patterns; in
fact, results are more robust with large data sets because the
SOM can learn from more data. The SOM could be used on
data sets with thousands of profiles: these would be more diffi-
cult to analyse with PCA, cluster analysis or multidimensional
scaling (Richardson et al., 2002). For ordination on a simple

output space, SOM had the advantage over PCA, independent
component analysis and multidimensional scaling, of visualiz-
ing the distance compression on the projected space (Ultsch
& Morchen, 2006). This interesting property was used to
define our 4 SOM groups. Another advantage was to cluster
and ordinate in a single analysis, which is not possible with clas-
sical multivariate analysis like DCA.

A limitation of the SOM technique is that it is not under-
pinned by a rigorous statistical framework, as is PCA. Thus,

Fig. 6. The characteristics of environmental parameters in each group defined on the Self-Organizing Maps SOM map. Error bars indicate the standard error of
each variable. Different alphabets (a,b,c,d) on the bars display significant differences (P , 0.05) between groups based on Tukey’s multiple comparison test (Temp,
temperature; Sal, salinity; DO, dissolved oxygen; SS, suspended sediment; COD, chemical oxygen demand); shared alphabets between groups indicate no
significant difference.
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the SOM provides no significance level for the patterns and
does not give the proportion of variance explained by the pat-
terns. Therefore, additional analysis (e.g. post hoc permutation
and randomization tests) have to be computed as we did in
this study. A perceived difficulty in using SOM to identify pat-
terns is that the number of patterns chosen is arbitrary, as the
researcher chooses the dimensions for the output maps.
Moreover, as Bowden et al. (2005 a, b) pointed out, there
are several disadvantages with this approach, including the
increase of computational complexity and memory require-
ments, difficulty in learning, increase of the complexity of
the model and consequently, a difficulty in understanding
the model as well as increasing noise due to inclusion of spur-
ious input variables.

Relating SOM pattern to seasonal and spatial
variability in environmental parameters and
phytoplankton biomass
In Figure 4, the four SOM groups matched with the geo-
graphical distribution of the sampling sites and described
that spatial variation with site-specific physical–chemical
oceanographic parameters was the main factor for character-
izing estuarine phytoplankton distribution in GB on a large
scale. Geographical location was effectively identified with
the clusters according to the trained SOM. Noteworthy, phy-
toplankton variability may result from changes in the physical
characteristics of a system (e.g. hydrology, wind-driven resus-
pension and tidal mixing), biological interactions (e.g. reduced
grazing), or an increased organic and inorganic nutrient
loading; all these processes vary between ecosystems and
change over time within ecosystems (Rabalais et al., 2009).
Most of the sites, however, in each SOM group were located

within a distinct geographical area. The SOM 4 group
(summer), for example, located at SL and Upper GB, is a
more eutrophic state characterized by algal blooms, enhanced
nutrients, temperature, lower salinity, suspended solids and
dissolved oxygen. In contrast, the other three SOM groups
(groups 1–3), located at broad macrotidal of the GB region,
are a non-eutrophic state characterized by lower chlorophylls,
nutrients, higher salinity and suspended solids. Therefore,
these two alternative states demonstrated the SOM mapping
feasibility regarding provision of information on geographical
distribution and algal blooming pattern at the same time.

Even if most of the SOM group-subgroups could be distin-
guished from each other in topological maps (Figures 3 & 5),
some of the sub-group stations were still overlapped by others
(Figure 4). This might be explained by site-specific environ-
mental values and different coastal hydrological processes.
The SOM 4 subgroups (4I–III; summer: upper GB and SL)
showed, for example, meaningful ecological interpretations
by salinity stratification and were markedly differentiated
from well-mixed macrotidal SOM 3 (summer: lower GB).
Generally, the bulk of sea surface salinity during summer is
low by comparison with the freshwater fluxes into the
surface layer because of precipitation and rainfall resulting
in vertical salinity contrasts (,5 psu) (NFRDI, 2008).
Moreover, stratification at upper GB and SL might also
cause rapid settling of suspended particulate by forming floc-
cules at the time of mixing of freshwater with saline seawater
during downstream transport (Postma, 1967).

Efficiency of mapping was further demonstrated in the
clusters designated within the same summer season. In con-
trast to SOM 4, the SOM 3 systems generally exhibit lower
levels of chlorophyll-a and nutrients, and are also characterized
by macro-tidal activities through advection and diffusion pro-
cesses responsible for this different response. Fundamentally,
well-mixed circulation in an estuary occurs where the tidal
prism is significantly larger than river discharge, and the
tidal currents retard any tendency toward stratification of
fresh and saltwater, and this increased mixing therefore
experienced lower photosynthetic activity and chlorophyll-a
because of a reduction of the residence time of the algae in
the photic zone (Monbet, 1992). To the extent that GB
lower coastal ecosystems (SOM 3) also differ from Upper
GB and SL (SOM 4) by the presence of salinity gradients, hori-
zontally and vertically, and some other inherent physical (i.e.
tide, wind, basin geography and river flow) these attributes
operate in concert to set the sensitivity of this ecosystem
to nutrient enrichment. Neither the lower GB nor the
San Francisco Estuary (Hager & Schemel, 1996; Lucas &
Cloern, 2002) and the Delaware Bay (Sharp, 1994) have a
major problem with nutrient eutrophication, largely because
neither shows summer stratification, which makes them
unlike the Chesapeake Bay.

Fig. 7. Chlorophyll-a concentration of each group for determination of
environmental parameters. Error bars indicate the standard error. Different
alphabets (a,b,c,d) on the bars display significant differences (P , 0.05)
between groups based on Tukey’s multiple comparison test; shared alphabets
between groups indicate no significant difference.

Table 1. Correlation coefficient between the phytoplankton biomass of each group and the environmental parameter: ∗, P , 0.05; ∗∗, P , 0.01.

Temp. Sal. DO SS Ammonia Nitrite Nitrate Phosphate

Group 1 0.08 –0.27∗∗ –0.04 –0.02 0.05 0.13 0.05 0.15∗

Group 2 –0.22∗ 0.01 –0.07 0.06 0.04 0.44∗∗ –0.18∗ 0.03
Group 3 0.24∗∗ –0.28∗∗ 0.41∗∗ 0.08 –0.08 –0.10 –0.03 0.00
Group 4 0.26∗∗ –0.40∗∗ 0.71∗∗ –0.27∗∗ –0.19∗ 0.09 –0.24∗∗ –0.28∗∗

Temp., temperature; Sal., salinity; DO, dissolved oxygen; SS, suspended sediment.
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Through the learning process of the SOM, we demon-
strated that the characteristics of the samples on a large
scale were distinctively identified in the clusters, although stat-
istical test revealed homogenized features in SOM groups 1, 2
and 3 based on nutrient and chlorophyll scenarios. In GB,
winter season (SOM 1) has distinct features over spring and
autumn (SOM 2) by its adverse hydro-regions. Note that,
GB’s winter season is characterized by high SS resulting
from resuspension of sediments through the tidal mixing
(convectional mixing being due to the heat exchange and
evaporation) and winter mixing due to the strong cold north-
west wind (Choi & Shim, 1986b). The effects of suspended
solids on phytoplankton are generally not direct; rather the
effects are mediated through the agency of light fluctuations.
Intense SS concentrations can limit light penetration and sup-
press cell growth as well. Light limitation, for example, is
expected to result in decrease in the half saturation constant
for nutrient-limited growth (Flynn, 2003), affecting the kin-
etics of resource acquisitions, and hence affecting competition
between species. Moreover, light as another ‘nutrient’ has also
been subjected to a Tilman’esque resource competition treat-
ment (e.g. Passarge et al., 2006; Caputo et al., 2008) and
light-P as a resource pair have been found not to follow stan-
dard resource-competition expectations (Passarge et al.,
2006), though given the role of P in cellular energetics
(Flynn et al., 2010) that is perhaps not unexpected. In GB,
the irradiance during winter season ranged from 1.84 mw
cm22 to 4.66 mw cm22 at the surface and is lower than
optimum irradiance (Choi & Shim, 1986b).

During GB’s winter season, diatoms are more prominent
than dinoflagellates. Turbulence can negatively influence
dinoflagellates blooming by three mechanisms: physical
damage; physiological impairment (aggregation); phototaxis;
and diel vertical migration (Smayda, 1997). In contrast,
diatoms are better adapted to intense mixing conditions as
they have low respiration to photosynthesis ratios and high
growth rates (Cushing, 1989). Given that there are dramatic
alternations of diatom species composition, Thalassiosira nor-
denskioeldii, for example, is the only dominant species during
winter blooms since 1998, while tychopelagica diatom (i.e.
Paralia sulcata) was the most dominant species during
1981–1982 (Choi & Shim, 1986c), suggesting that the
factors causing recent change in the phytoplankton commu-
nity structure in favour of T. nordenskioeldii were not exhib-
ited in the past.

Mechanisms of phytoplankton summer blooms

gyeonggi bay

GB’s summer blooms (group 4) support the phase I eutrophi-
caiton model (Cloern, 2001) emphasizing that changing nutri-
ent input acts as a signal and response to that signal as
increased phytoplankton biomass. In outside the SL region,
blooms are detected after Shihwa Lake discharge (15 million
tons day21) since 1999 (Park & Park, 2000). Summer dense
blooms (chlorophyll .7 mg m23) are usually dominant in
the nutrient-rich upwelling/eddy north-west Pacific systems
caused by the dinoflagellates and diatoms (Shanmugam
et al., 2008) and also in Chesapeake Bay (Breitburg, 1990;
Harding, 1994), Tolo Harbour, Hong Kong (30 mg l21: Xu
et al., 2010) and the Mississippi River Plume (Grimes &
Finucane, 1991).

GB’s summer blooms appeared to be more dependent on
physical processes rather than nutrients (Table 1), as indicated
by higher correlation between chlorophyll-a and environ-
mental parameters (i.e. r ¼ 0.26 SST, r ¼ 20.40 salinity, r ¼
0.71 DO and r ¼ 20.27 SS). The huge discharge of the Han
River not only delivers nutrients to the upper GB but also
determines the hydrological properties of the water column,
including high temperature, low salinity, vertical thermal stab-
ility, low turbidity as well as high light conditions. All of these
properties triggered phytoplankton growth most likely by sup-
plying proper temperature, increasing the light intensity and
retaining the algal cells in the euphotic zone. Smayda (2008)
recently concluded that bloom potential in response to nitrifi-
cation is mediated by the accompanying irradiance and flush-
ing characteristics. During 1995–2004, GB’s chlorophyll
profiles experienced a significant increasing trend of about
twofold which is consistent with the sharp increase in the
global ocean trend (4.13%) during 1998–2003 (Gregg et al.,
2005) and with the increase in dissolved inorganic nitrogen
trend in GB during the past four decades (1981–2008)
(Park & Park, 2000; NFRDI, 2008)

Gyeonggi Bay’s summer blooms were mostly dominated by
the nano-size (,20 mm) phytoplankton. During 2000–2004,
cryptomands (,5 mm) was the most dominant phytoplank-
ton species associated with co-dominant diatoms, whereas
the diatoms Skeletonema costatum and Chaetoceros spp.
were the only dominant group in the past (1981–1982)
(Choi & Shim, 1986c). Progressive changes in these phyto-
plankton species composition has coincided with the tenfold
increased N:P ratio from the Redfield ratio during 1986–
2004. A 21-years series of measurements from the western
Wadden Sea, for example, provides strong empirical evidence
that human-induced changes in nutrient (N:P) ratios can
cause changes in phytoplankton species composition
(Philippart et al., 2000), and off the coast of Germany, a four-
fold increase in the N:Si ratio coincided with decreased abun-
dance of diatoms and an increase in Haptophyceae
(Phaetocystis) blooms (Radach et al., 1990). A number of vari-
ables could contribute to changes in the phytoplankton com-
munity over time (Livingston, 2001). These include: (1) the
exact timing of nutrient delivery; (2) which nutrient (or nutri-
ents) was (were) being loaded at a given time; (3) interactions
among the various nutrients; (4) bay habitat conditions rela-
tive to the interannual drought–flood sequence; and (5) the
nutrient requirements of the species present at the time of
the nutrient loading.

shihwa lake

The proposed underlying mechanism for summer blooms
(group 4) in SL, is consistent with earlier studies (Choi
et al., 1997; Han & Park, 1999; Kim et al., 2004) which con-
cluded that huge fresh water inputs from the neighbouring
municipal and industrial complexes through six major
streams, are large enough to offset the effects of tidal and
wind stirring. As a result the water column remains stratified
at a depth range of 6–8 m, for a sufficiently long period that
phytoplankton can grow and reach higher levels (167 mg
chlorophyll-a l21 in 1996) with frequent red-tides indicating
a hypertrophic condition. In SL, extreme summer blooms
supply organic matter to bottom water and sediment
thereby generating oxygen consumption, and accordingly
strong stratification limits oxygenation of bottom waters
leading to hypoxia (Han & Park, 1999). The hypoxia
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(anoxia) in the SL is analogous to that of the Black Sea
(Sorokin, 1983; Mee, 1992; Tuncer et al., 1998) and the
Changjiang and Mississippi margins (Rabouille et al., 2008).
Hypoxia is one of the significant reasons for the unstable
benthic ecosystem in SL (Ryn et al., 1997).

Summer harmful algal blooms are frequently caused by
dinoflagellates (Prorocentrum minimum), cryptomonads and
Chrysophyceae, whereas diatoms (Cyclotella atomas,
Nitzchia sp. and Chaetoceros sp.) are dominant in autumn
and winter (Choi et al., 1997). It is important to note that
dinoflagellate blooms (i.e. Heterocapsa triquetra) are some-
times also found under ice in SL (HAN, 2011). It is well docu-
mented that the physiological flexibility of dinoflagellates in
response to changing environmental parameters (e.g. light,
temperature and salinity) as well as its ability to utilize both
inorganic and organic nitrogen, phosphorus, and carbon
nutrient sources suggest that increasing dinoflagellate
blooms are a response to increasing eutrophication (Glibert
et al., 2005; Heil et al., 2005). Note that dinoflagellate
blooms did not develop before dike construction.

C O N C L U S I O N

In the present study, the Self-Organizing Map model gave satis-
factory results for the ordination and clustering of environ-
mental parameters and phytoplankton biomass that revealed
four distinct seasonal patterns (SOM 1, winter; SOM 2, spring
and autumn; SOM 3, summer; and SOM 4, summer), belonging
to different geographical regions of the Gyeonggi Bay and
Shihwa Lake. The interpretation of the SOM algorithm
enables easy visualization of the patterns in the same form as
the large input datasets, something that is not possible with
the standard output from cluster analysis or multidimensional
scaling. In this study, efficiency of SOM mapping had been
demonstrated in the last two clusters designated with the same
summer season. The SOM 4 group restricted at Shihwa Lake
and Upper Gyeonggi Bay is a more eutrophic state characterized
by algal blooms, enhanced nutrients and temperature, and, con-
versely, the SOM 3 group located at broad lower Gyeonggi Bay
regions is a non-eutrophic state and is also characterized by
macrotidal activities through advection and diffusion processes
responsible for this different response. Therefore, the strengths
of our SOM model are the recognition of blooming regions
(SOM 4: upper GB and SL) with appropriate ecological expla-
nations (i.e. nutrient, stratification, low salinity and SS) and
their linkage to provide a comprehensive view on the eutrophi-
cation process in the macrotidal Gyeonggi Bay. So, these results
are easy to interpret and useful to environmental decision-
makers for sustainable management of estuarine ecosystems.
By using other biological and physical oceanographic factors,
SOM can offer a better resolution of the complexity of relation-
ships between variables in ecological processes. Finally, once the
description of the existing environmental parameters and of
their obvious relationship with the environmental pollution is
done, the prediction of phytoplankton blooms is demonstrated
to be necessary and therefore should be seriously considered.
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