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The present study concerns a temporally developing parallel natural convection boundary
layer with Prandtl number Pr = 0.71 over an isothermally heated vertical plate.
Three-dimensional direct numerical simulations (DNS) with different initial conditions
were carried out to investigate the turbulent statistical profiles of mean velocity and
temperature up to Grδ = 7.7 × 107, where Grδ is the Grashof number based on the
boundary layer thickness δ. By virtue of DNS, we have identified a constant heat flux
layer (George & Capp, Intl J. Heat Mass Transfer, vol. 22, issue 6, 1979, pp. 813–826;
Hölling & Herwig, J. Fluid Mech., vol. 541, 2005, pp. 383–397) and a constant forcing
layer in the near-wall region. In the close vicinity of the wall (y+ < 5) a laminar-like
sublayer has developed, and the temperature profile follows the linear relation, consistent
with the studies of spatially developing flows (Tsuji & Nagano, Intl J. Heat Mass Transfer,
vol. 31, issue 8, 1988, pp. 1723–1734); whereas such a linear relation cannot be observed
for the velocity profile due to the extra buoyancy. Similar to earlier studies (Ng et al.,
J. Fluid Mech., vol. 825, 2017, pp. 550–572) we show that this buoyancy effect would
asymptotically become zero if the Grδ is sufficiently large. Further away from the wall
(y+ > 50), there is a log-law region for the mean temperature profile as reported by
Tsuji & Nagano (1988). In this region, the turbulent length scale which characterises
mixing scales linearly with the distance from the wall once Grδ is sufficiently large. By
taking the varying buoyancy into consideration with the robust mixing length model,
a modified log-law for the mean velocity profile for y+ > 50 is proposed. The effect
of the initialization is shown to persist until relatively high Grδ as a result of slow
adjustment of the buoyancy (temperature) profile. Once these differences are accounted
for, we find excellent agreement with our two DNS cases and with the spatially developing
data of Tsuji & Nagano (1988). In the limit of higher Grδ the velocity profile is
expected to become asymptotic to momentum-dominated behaviour as buoyancy becomes
increasingly weak in comparison with shear in the near-wall region.
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1. Introduction

The validity of the universal law of the wall, which describes the mean velocity
profile in turbulent wall-bounded flows, has been widely accepted among fluid mechanics
researchers since its original derivation by the pioneering works of Von Kármán (1930)
and Prandtl (1932). According to the law of the wall, the mean velocity follows a
linear relation with the wall-normal distance in the close vicinity of the wall (known as
the viscous sublayer), and a logarithmic relation with the wall-normal distance further
away from the wall (known as the log-law region). Townsend (1951, 1961, 1976),
considered the local equilibrium between energy supply and dissipation, and proposed the
groundbreaking attached eddy hypothesis which describes the energy-containing motions
for those asymptotically high Reynolds number wall-bounded flows. This hypothesis,
together with the mixing length hypothesis proposed by Prandtl (1925), provide a detailed
description and modelling of the wall turbulence behaviour in the logarithmic region for
momentum-dominated flows which was later supported by numerous studies (see, for
example, Perry & Chong 1982; Granville 1989; Hutchins & Marusic 2007; Klewicki 2010;
Marusic et al. 2013). A recent detailed review on this topic can be found in Marusic &
Monty (2019).

However, it is widely acknowledged that the vertical turbulent natural convection
boundary layer (NCBL), although bounded by the wall, does not follow the
aforementioned law of the wall since the driving mechanisms are fundamentally different:
instead of the shear stress (or, pressure gradient), the NCBL flow is driven by the buoyancy
force caused by the density difference. The presence of the buoyancy force (and thus
the coupling of the temperature field and the velocity field) greatly complicates the
investigation of vertical NCBL flows. Early attempts have been reported by George & Capp
(1979), who theoretically investigated the turbulent NCBL. In their similarity analysis,
a constant heat flux layer is successfully identified in the near-wall region; whereas the
constant local shear stress layer that is commonly found in the momentum-dominated
wall-bounded flows is absent due to the presence of the buoyancy. By asymptotically
matching the mean profiles in the buoyant sublayer, they obtained a power-law solution for
the mean profiles. Their work was later extended by Shiri & George (2008), who showed
that the velocity power-law solution by George & Capp (1979) to be inconsistent with
the momentum integral for the NCBL. Based on a similarity analysis in a differentially
heated channel, Shiri & George (2008) suggested the mean velocity profile is logarithmic
in the buoyant sublayer. Tsuji & Nagano (1988) experimentally investigated a spatially
developing NCBL up to Grδ = 1.0 × 107(Reτ ≈ 60) using hot wire measurements. Here,
Grδ is the Grashof number based on the boundary layer thickness δ and Reτ is the friction
Reynolds number based on the maximum mean velocity location. This experimental
study demonstrated the absence of the conventional law of the wall in the velocity
profile, confirming the findings suggested by George & Capp (1979). However, based
on their measurements, Tsuji & Nagano (1988) empirically showed the existence of a
conductive sublayer, where the normalized temperature profile increases linearly with the
wall-normal distance, and a log-law region, where the normalized temperature follows
a logarithmic relation to the wall-normal distance. Versteegh & Nieuwstadt (1999)
investigated the scaling behaviour of the NCBL in a differentially heated vertical channel
using direct numerical simulation (DNS). Their scaling analysis supported the power-law
near-wall mean temperature scaling proposed by George & Capp (1979) for the spatially
developing vertical NCBL, whereas the mean velocity profile is obtained in terms of a
defect law for the mean velocity gradient. Hölling & Herwig (2005) drew an analogy
between the temperature field in the NCBL and the velocity field in the forced flows,
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Law of the wall for NCBL 902 A31-3

proposed scaling laws and wall functions in the near-wall region for a spatially developing
vertical NCBL. In their analysis, the Reynolds shear stress is modelled by eddy viscosity
and a constant turbulent Prandtl number is assumed. By asymptotically matching the
temperature gradients in the overlap layer, Hölling & Herwig (2005) suggested both
velocity and temperature profiles follow a log-law. Their proposed log-law showed
reasonable agreement with the measurements of Tsuji & Nagano (1988). Ng, Chung
& Ooi (2013) appraised and compared the above scaling laws proposed by George &
Capp (1979), Shiri & George (2008), Versteegh & Nieuwstadt (1999) and Hölling &
Herwig (2005) in a differentially heated vertical channel using DNS. Based on the DNS
data, they suggested a power-law scaling for the mean temperature in the overlap region,
consistent with the scaling arguments of George & Capp (1979), Shiri & George (2008)
and Versteegh & Nieuwstadt (1999). Abedin, Tsuji & Hattori (2009) showed that their
temporally developing DNS data closely matches the experimental measurements for the
spatially developing NCBL and confirmed the observations of Tsuji & Nagano (1988).

More recently, Nakao, Hattori & Suto (2017) numerically investigated the spatially
developing NCBL up to Grδ = 5.0 × 106 using large eddy simulation and identified a
logarithmic region, similar to Tsuji & Nagano (1988), for the temperature profile. Ng
et al. (2017) investigated the NCBL in a differentially heated vertical channel using
DNS, and found that the mean temperature profile follows the same linear relation as
given by Tsuji & Nagano (1988) in the close vicinity of the wall. Such agreement in
the near-wall temperature profile between the two types of NCBL (spatially developing
NCBL and NCBL in a differentially heated channel) indicates that the flow structures of
NCBL may share the same physics in the close vicinity of the wall and a universal law
describing the near-wall behaviour may be applicable to other types of vertical NCBL, for
example, NCBL in cavities. Based on the DNS results, Ng et al. (2017) demonstrated that
conditional averaging the near-wall region on high wall shear events revealed convergence
of the velocity profile in the near-wall region towards a more typical log-law profile as Grδ

increased. Consequently, the authors suggested that the turbulent boundary layer would
have a (laminar) Prandtl–Blasius scaling in the near-wall region at low Reτ (or Grδ),
whereas a turbulent boundary layer (in the sense of Prandtl and von Kármán) would
be obtained at very high Grδ. Similar ideas are well developed for Rayleigh–Bénard
convection (see, e.g. Grossmann & Lohse 2000, 2001) where very high Grδ conditions
are thought to be required to achieve a bulk-dominated thermal convection regime.
A key difference in Rayleigh–Bénard flow is that the buoyancy vector is not aligned with
a wall-parallel flow direction. Unfortunately, the state of art data for the vertical NCBL is
lacking in the high Grδ regime for turbulent vertical NCBLs. To the authors’ knowledge,
due to both the high Grδ requirements to obtain this regime and the increased complexity
of the velocity-buoyancy coupling in the momentum, the efforts in the near-wall scaling
analysis have not yet demonstrated a universal velocity law of the wall for the vertical
NCBL.

The present study concerns the turbulent mean velocity and temperature profiles of an
incompressible temporally developing NCBL along a vertical isothermally heated plate.
Upon proper modelling of the buoyancy force and the Reynolds stress, the buoyancy effect
is taken into consideration to empirically derive the law of the wall for both mean velocity
and temperature profiles. Again we note that the buoyancy force, acting as the driving
force in the NCBL, is relatively weak so that a large Grashof number is needed to achieve a
high Reynolds number flow. The temporal framework enables us to investigate the NCBL
at a higher Grashof number (more turbulent) in a more computationally efficient way.
By imposing periodic boundary conditions in the streamwise and spanwise directions,
the domain size and the number of finite volume grids are greatly reduced, resulting in

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

62
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.621
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a cheaper computational cost. Further validation and benefits of the temporal framework
can be seen in Kozul, Chung & Monty (2016). The temporal framework is also adapted
to a number of flows that are generally thought spatially developing, for example, Abedin,
Tsuji & Hattori (2010) for a turbulent forced convection flow, Kozul et al. (2016) for an
unsteady Rayleigh layer and Ke et al. (2019) for a linear stability study of the NCBL flow.

The paper is organized as follows. Firstly, the mathematical description of the problem
and the numerical method are given in § 2. The flow visualization and the preliminaries
are shown in § 3. In § 4 the time history of the wall characteristics of the DNS are shown.
In § 5 the mean profiles of the velocity and temperature in the close vicinity of the wall
are derived theoretically and the role that the buoyancy plays in this region is discussed.
Based on the force balance, § 6 proposes a modified logarithmic law for the mean velocity
profile by empirically modelling the buoyancy force in § 6.1 and the Reynolds stress in
§ 6.2. Finally, § 7 briefly summarizes the findings of the present study.

2. Numerical method

The governing equations for the boundary layer flow considered here are the
three-dimensional Navier–Stokes and the conservation equations of mass and thermal
energy. By employing the Boussinesq approximation, the incompressible form of the
equations is obtained, which, in their dimensional form, reads

∂ui

∂xi
= 0, (2.1a)

∂ui

∂t
+ ∂uiuj

∂xj
= − 1

ρ

∂p
∂xi

+ ν
∂2ui

∂xj
2

+ gβθδi1, (2.1b)

∂θ

∂t
+ ∂ujθ

∂xj
= κ

∂2θ

∂xj
2
, (2.1c)

where ν is the kinematic viscosity, κ is the thermal diffusivity, ρ is the density of the
fluid, g is the gravitational acceleration pointing to the negative x direction, β represents
the thermal expansion coefficient and θ = T − T∞ is the temperature difference between
the local temperature T and the ambient temperature T∞. The Prandtl number, defined
as the ratio of the kinematic viscosity to the thermal diffusivity, is given by

Pr ≡ ν/κ = 0.71, (2.2)

for the problem under consideration. Here we follow the Einstein notation and the
subscripts i, j = 1, 2, 3 denote the x, y, z axes which point in the streamwise, wall-normal
and spanwise directions, respectively, so that u1, u2, u3 = u, v, w. The temperature
field (2.1c) is fully coupled to the velocity field through the buoyancy forcing term in
the momentum equation (2.1b), where the Kronecker delta δi1 = 1 when i = 1 and δi1 = 0
otherwise.

The laminar analytical solution to the flow system (2.1) along an (doubly infinite)
isothermal wall for Pr /= 1, given by Illingworth (1950) and Schetz & Eichhorn (1962),
can be expressed in the dimensional form

θ̄ (η) = θwerfc(η), (2.3a)

ū(η, t) = 4gβθwt
1 − Pr

[
i2erfc(η) − i2erfc

(
η√
Pr

)]
, (2.3b)
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Lx

Ly

Lz

g
g

θw θw

δ(t)

δ(x)
(a) (b)

FIGURE 1. A systematic sketch (not to scale) of (a) the temporally evolving NCBL (present
study), in contrast to (b) the canonical spatially developing NCBL in experiments (e.g. Tsuji &
Nagano 1988).

where θw = Tw − T∞ is the temperature difference between the isothermal wall and the
ambient, η = y/2

√
κt is a similarity parameter, erf(η) is the error function of η, erfc(η) =

1 − erf(η) is the complementary error function and inerfc(η) is the nth integral of the
complementary error function. The local (instantaneous) Grashof number Grδ and the
boundary layer thickness δ are defined as

Grδ ≡ gβθwδ3

ν2
, δ ≡

∫ ∞

0

ū
ūm

dy. (2.4a,b)

Here, ¯(·) represents the mean (spatial average) quantities, obtained by taking the ensemble
average in the homogeneous (x–z) plane (instead of in time, since the NCBL is unsteady)
and ūm is the maximum mean streamwise velocity. It should be noted that from (2.3) the
flow system depends upon η, the wall-normal coordinate scaled by diffusion time so that a
streamwise and spanwise invariant parallel flow is obtained. Consequently, the boundary
layer thickness and thus the Grashof number in (2.4) are essentially functions of time
only, i.e. δ(t) and Grδ(t). A sketch of the computational domain is shown in figure 1(a).
In the present study, we compare our temporally developing flow (see figure 1a) with a
spatially developing NCBL (see figure 1b) by matching the boundary layer thickness δ
(and therefore Grδ), as reported by Abedin et al. (2009). It is convenient to introduce the
intrinsic length and velocity scales, given by

Ls = κ2/3/(gβθw)1/3, Us = (κgβθw)1/3, (2.5a,b)

to describe the numerical set-up and results. Since the isothermal wall is unbounded in the
homogeneous (x–z) plane and has no natural length scale, these intrinsic scales provide a
flow regime independent normalization. In § 3 we revert to wall units for normalization of
flow characteristics in the turbulent regime.

A uniform grid spacing is applied to the homogeneous directions (x and z) whilst the
grid in the wall-normal direction is stretched with a maximum stretching rate of 3.56 %.
Since the unsteady boundary layer is constantly evolving, the grid resolution in wall units
Δ+ is also changing with time. The detailed ‘worst case’ grid sizes are listed in table 1
when the smallest wall unit and smallest Kolmogorov scale ηk occur. To minimize the
effect of the far-field boundary condition, the simulation is halted when the boundary
layer thickness δ reaches 1/3 of the wall-normal domain size Ly . Such criteria are also
used by Kozul et al. (2016) for a DNS study of a temporally evolving Rayleigh layer.
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Case Coordinate Size L Grids N Mesh type Δ
ηk
min Δ

ηk
max Δ+

min Δ+
max γmax

DNS-A x Lx = 1035Ls Nx = 1024 Uniform 2.56 2.56 4.36 4.36 —
y Ly = 1035Ls Ny = 512 Stretched 0.47 6.26 0.81 10.8 3.56 %
z Lz = 2070Ls Nz = 2048 Uniform 2.56 2.56 4.36 4.36 —

DNS-B x Lx = 1035Ls Nx = 1024 Uniform 2.25 2.25 4.06 4.06 —
y Ly = 1035Ls Ny = 512 Stretched 0.42 5.5 0.75 9.98 3.56 %
z Lz = 1035Ls Nz = 1024 Uniform 2.25 2.25 4.06 4.06 —

TABLE 1. Grid sizes of the simulations. The grid size in Kolmogorov scale, Δηk ; the grid size
in wall units, Δ+, where the subscript min represents the smallest grid (first grid adjacent to the
wall) and max represents the largest grid (far field); γmax denotes the maximum stretching rate
of the grid.

In order to initiate transition to turbulence, the analytical thermal field (2.3a) is
augmented with temperature perturbations that decay towards the far field. In the present
study, the streamwise temperature perturbation is given by

θ ′
x = θ̄ (y)Ax

7∑
r=0

sin
(

2r 2πx

Lx

)
, (2.6)

where Ax = 10−3 is the amplitude and r is an integer specifying the components of the
streamwise sinusoidal perturbation. For three-dimensional simulations, the superposition
of a spanwise perturbation is necessary to trigger the three-dimensional transition
mechanism (Nakao et al. 2017; Ke et al. 2019). To ensure the turbulent statistics for the
temporally developing NCBL are indeed initial condition-invariant, two different spanwise
(three-dimensional) perturbations are superposed on the flow

θ ′
z = θ̄ (y)Az sin

(
2πnzz

Lz

)
, for DNS-A, (2.7a)

θ ′
0 = A0[RAND(0, 1) − 0.5], for DNS-B, (2.7b)

respectively. Here, Az = 10−3 is the amplitude of the discrete spanwise mode and nz is an
integer specifying the spanwise perturbation mode for DNS-A; while RAND(0,1) denotes
a random number generator which generates statistically uniformly distributed random
numbers between 0 and 1 and A0 = 10−6 is the amplitude of the random (broadband)
background noise for DNS-B. In the present study, nz = 23 is chosen since it was observed
empirically to be the most amplified spanwise mode in preliminary tests. The NCBL is
initialized using the laminar analytical solution (2.3) at Grδ = 3000. Details of the initial
conditions are summarized in table 2.

While the perturbations are usually introduced to both the velocity and thermal fields
spontaneously (broadband) for experiments (Cheesewright 1968; Tsuji & Nagano 1988)
and large eddy simulation (Nakao et al. 2017), controlled perturbations (single field,
discrete modes) are often used in DNS to investigate the transition–turbulent behaviour
(Sayadi, Hamman & Moin 2013; Zhao, Lei & Patterson 2017). It should be noted that in
the present study there is no velocity perturbation fed to the flow field as the velocity field
will directly respond to the temperature perturbation through the buoyancy forcing term
in (2.1b) while satisfying continuity (2.1a). A similar technique is used by a number of
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Law of the wall for NCBL 902 A31-7

Case Ax Spanwise perturbation Initial temperature field Initial Grδ

DNS-A 10−3 (2.7a), with Az = 10−3, nz = 23 θ(x, y, z) = θ̄ ( y) + θ ′
x + θ ′

z 3000
DNS-B 10−3 (2.7b), with A0 = 10−6 θ(x, y, z) = θ̄ ( y) + θ ′

x + θ ′
0 3000

TABLE 2. Initial conditions for the simulation.

numerical NCBL studies (Janssen & Armfield 1996; Zhao, Lei & Patterson 2013; Zhao
et al. 2017; Ke et al. 2019).

Periodic boundary conditions are imposed on the streamwise (x) and spanwise (z)
boundaries to simulate the unbounded homogeneous plane. The velocity must vanish on
the non-slip isothermal wall,

u = v = w = 0, θ = θw, at y = 0. (2.8)

In the far field, the temperature decays to the quiescent condition with the flow remaining
shear free,

∂u
∂y

= θ = v = w = 0, at y = Ly. (2.9)

With the boundary conditions (2.8) and (2.9), the flow system (2.1) is then numerically
solved based on the settings in tables 1 and 2. For the details of the numerical method,
readers are referred to Williamson, Armfield & Kirkpatrick (2012) and Ke et al. (2019).

3. Preliminaries

In the present study, we have employed two DNS (DNS-A and DNS-B) to ensure that
the fully turbulent regime of the NCBL is independent of initialization. The different
initializations of the spanwise perturbation, however, lead to different laminar–turbulent
transition pathways for the NCBL, as demonstrated by figure 2. In DNS-A, the nonlinear
interactions between the larger amplitude spanwise modes and the streamwise modes
lead to an earlier three-dimensional transition, and the transition behaviour, shown in
figure 2(a–d), is similar to that reported in spatially developing boundary layers (Fujii
et al. 1970); whereas in DNS-B, the smaller initial background amplitude A0 delays the
transition so that the nonlinear interaction where energy is transferred between streamwise
and spanwise modes occurs at a much higher Grδ (or time t) than in DNS-A. Here, δm is
the distance from the wall at which the maximum mean streamwise velocity is located.
In DNS-B, the accumulated momentum in the laminar regime undergoes transition via
the ejection of the sprout-like convective rolls with the most unstable streamwise mode
(Ke et al. 2019), as shown in figure 2(e, f ). The detached convective rolls then begin
to break into smaller scale structures, as depicted in figure 2(g), and finally attain the
turbulent regime shown in figure 2(h). We conjecture that DNS-A represents a more
‘natural transition’ because of its similarity to previous experimental studies and that
DNS-B as an example of a flow which undergoes a substantially different transition
pathway. Nevertheless, despite the weakly three-dimensional transition for DNS-B, we
will see later in § 6.4 that the velocity and temperature profiles proposed here are initial
condition independent once the wall shear and wall heat flux are identified. The exact
transition mechanism for DNS-B, however, is beyond the scope of the present study; we
refer the interested readers to Ke et al. (2018, 2019).
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902 A31-8 J. Ke and others

Figure 3 illustrates the flow field visualization of the turbulent NCBL flow for DNS-A
at Grδ = 7.7 × 107. Due to the presence of the wall, a boundary layer has developed in
the near-wall region whereas the outer bulk flow shows a plume-like structure. The fine
structures in figure 3(a) and the magnified view of the temperature and velocity contours
in the near-wall region, given in figure 3(b,c), indicate that the flow is turbulent with a
large range of scales of motion. Similar turbulent structure is also observed in DNS-B, as
shown in figure 2(h).

By the end of simulation, DNS-A has reached Grδ = 7.7 × 107 (Reτ = 147.99);
while DNS-B has achieved Grδ = 7.6 × 107 (Reτ = 120.32). Here, the friction Reynolds
number is given by

Reτ = δmuτ

ν
, (3.1)

where uτ is the friction velocity given by the wall shear stress τw,

uτ =
√

τw/ρ, τw = ρν
∂ ū
∂y

∣∣∣∣
y=0

. (3.2a,b)

The viscous length scale, lτ , is therefore given by

lτ = ν

uτ

. (3.3)

The mean temperature and velocity profiles for the turbulent NCBL are fully described
by the Reynolds averaged equations, where spatially averaging in homogeneous plane
(x–z) is denoted by ¯(·). In wall units, the spatially averaged equations read

lτ
uτ

2

∂(u+uτ )

∂(t+lτ /uτ )
= ∂2u+

∂y+2 − ∂(u′v′)+

∂y+ + Riw − Riτ θ+, (3.4a)

lτ
uτ θτ

∂(θ+θτ )

∂(t+lτ /uτ )
= 1

Pr
∂2θ+

∂ y+2 − ∂(v′θ ′)+

∂y+ , (3.4b)

where

Riw ≡ gβlτ θw

uτ
2

= gβνθw

u3
τ

, Riτ ≡ gβlτ θτ

uτ
2

= gβνqw

u4
τ

, (3.5a,b)

are the friction Richardson number based on wall temperature difference and friction
temperature, respectively, u+ and θ+ are the mean temperature and velocity in wall units,
defined as

u+ = ū
uτ

, θ+ = θw − θ̄

θτ

, (3.6a,b)

and (u′v′)+ and (v′θ ′)+ are the Reynolds shear stress and the turbulent heat flux in wall
units, given by

(u′v′)+ = u′v′

uτ
2
, (v′θ ′)+ = − v′θ ′

uτ θτ

. (3.7a,b)

The friction temperature θτ is given by the wall heat flux qw and the friction
velocity uτ ,

θτ = qw

ρCpuτ

, qw = −ρCpκ
∂θ̄

∂y

∣∣∣∣
y=0

, (3.8a,b)
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FIGURE 2. Visualization of the midspan temperature field for the laminar–turbulent
transition of DNS-A (a–d) and DNS-B (e–h); (a) at t = 154.32Ls/Us, Grδ = 1.1 × 106,
with δ = 81.24Ls and δm = 8.78Ls; (b) at t = 168.04Ls/Us, Grδ = 1.6 × 106, with δ =
93.51Ls and δm = 18.79Ls; (c) at t = 245.19Ls/Us, Grδ = 3.2 × 106, with δ = 116.82Ls

and δm = 13.62Ls; (d) at t = 558.97Ls/Us, Grδ = 6.4 × 107, with δ = 317.84Ls and
δm = 29.98Ls; (e) at t = 154.32Ls/Us, Grδ = 8.9 × 105, with δ = 76.61Ls and δm =
76.46Ls; ( f ) at t = 168.04Ls/Us, Grδ = 7.1 × 106, with δ = 152.66Ls and δm = 11.32Ls;
(g) at t = 245.19Ls/Us, Grδ = 3.6 × 106, with δ = 122.47Ls and δm = 10.44Ls; (h) at t =
558.97Ls/Us, Grδ = 7.6 × 107, with δ = 336.52Ls and δm = 29.96Ls.

where Cp is the specific heat capacity of the fluid. Note the continuity equation (2.1a)
vanishes as the derivatives in the homogeneous direction ∂ ¯(·)/∂x and ∂ ¯(·)/∂z and the
mean wall-normal velocity v̄ are all zero due to the parallel nature of the flow. From (3.4),
a force balance and an energy balance can be obtained by integrating once with respect to
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FIGURE 3. Visualization of the midspan flow field for DNS-A at Grδ = 7.7 × 107.
(a) Temperature contours; (b) magnified temperature contours of the red box in panel (a);
(c) magnified streamwise velocity contour of the red box in panel (a); dash-dotted line shows
the maximum mean streamwise velocity location δm = 34.25Ls.

the wall-normal distance y+,

∫ y+

0

lτ
uτ

2

∂(u+uτ )

∂(t+lτ /uτ )
dy+ = ∂u+

∂y+

∣∣∣∣y+

0
− (u′v′)+|y+

0 +
∫ y+

0
(Riw − Riτ θ+) dy+, (3.9a)

∫ y+

0

lτ
uτ θτ

∂(θ+θτ )

∂(t+lτ /uτ )
dy+ = 1

Pr
∂θ+

∂y+

∣∣∣∣y+

0
− (v′θ ′)+|y+

0 . (3.9b)

Given the boundary conditions at the wall, the integrated terms read

∂u+

∂y+

∣∣∣∣y+

0
= ∂u+

∂y+ − 1, (3.10a)

(u′v′)+|y+
0 = (u′v′)+, (3.10b)

1
Pr

∂θ+

∂y+

∣∣∣∣y+

0
= 1

Pr
∂θ+

∂y+ − 1, (3.10c)

(v′θ ′)+|y+
0 = (v′θ ′)+, (3.10d)
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the balance equations (3.9) are therefore reduced to

∫ y+

0

lτ
uτ

2

∂(u+uτ )

∂(t+lτ /uτ )
dy+ = ∂u+

∂y+ − (u′v′)+ +
∫ y+

0
(Riw − Riτ θ+) dy+ − 1, (3.11a)∫ y+

0

lτ
uτ θτ

∂(θ+θτ )

∂(t+lτ /uτ )
dy+ = 1

Pr
∂θ+

∂y+ − (v′θ ′)+ − 1. (3.11b)

The individual contribution to the balance equations (3.11) are shown in figure 4. From
figure 4(a), a constant heat flux region, where the molecular diffusion and turbulent heat
flux balances the wall heat flux

q+ ≡ 1
Pr

∂θ+

∂y+ − (v′θ ′)+ ∼ 1, (3.12)

is found for y+ < 150 at Grδ = 7.7 × 107. This is consistent with the existing literature
(George & Capp 1979; Hölling & Herwig 2005; Wells & Worster 2008) where a constant
heat flux layer is identified in the near-wall region for the turbulent spatially developing
NCBL. Our results in figure 4(b) also show that an equilibrium is reached by the wall shear
and the driving forces (buoyancy force and shear stress), where

F+ ≡ ∂u+

∂y+ − (u′v′)+ +
∫ y+

0
(Riw − Riτ θ+) dy+ ∼ 1, (3.13)

so that a constant forcing region (F+ independent of y+) is obtained. In the present study,
we define the limit of the constant forcing region as the point where F+ exceeds the wall
shear stress τ+

w by 10 %, i.e. F+ = 1.1. For Grδ = 7.7 × 107 (DNS-A), this gives a constant
forcing region up to y+ = 150 (which is approximately y = δm). At lower Grδ, as indicated
by figure 4(c), this constant forcing region extends to y+ = 60(y = 0.6δm) for Grδ = 2.1 ×
107 (DNS-A); y+ = 70 (y = 0.6δm) for Grδ = 4.1 × 107 (DNS-A); and y+ = 100 (y =
0.8δm) for Grδ = 7.6 × 107 (DNS-B).

In the constant flux (and constant forcing) region, the right-hand sides of (3.11a)
and (3.11b) both sum to zero, indicating the temporal evolution of the momentum and
temperature (left-hand sides) are indeed negligible, and thus there exists a slowly varying
near-wall region. With this in mind, the temporal evolution of the flow in the near-wall
region can be ignored and for the purposes of developing mean profiles, a steady flow is
assumed at each time instant.

4. Wall characteristics

Figure 5 depicts the development of the heat transfer of the NCBL in terms of Nusselt
number Nuδ and the wall shear stress (normalized by the boundary layer thickness δ) with
Grδ (which grows with time t only). Here, the Nusselt number and the normalized wall
shear are given by

Nuδ ≡ δqw

ρCpκθw
, τ ∗

w = τw/ρgβθwδ. (4.1a,b)
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FIGURE 4. The near-wall statistics: (a) heat flux balance at Grδ = 7.7 × 107 (DNS-A); (b) force
balance at Grδ = 7.7 × 107 (DNS-A); (c) force balances at Grδ = 2.1 × 107 (DNS-A), Grδ =
4.1 × 107 (DNS-A) and Grδ = 7.6 × 107 (DNS-B), with molecular shear ∂u+/∂y+ (dash-dotted
lines), Reynolds shear stress −u′v′ (dashed lines), buoyancy force

∫ y+
0 (Riw − Riτ θ+) dy+

(dotted lines) and total force F+ (solid lines); vertical dashed lines indicate the location when
F+ = 1.1 at corresponding Grδ .

At low Grδ, the Nusselt number and the normalized wall shear stress are Grδ

independent, giving

Nuδ = 1.71√
π

= 0.965, τ ∗
w = 0.302, (4.2a,b)

according to the analytical solution (2.3) in the laminar conductive regime (e.g. Ke et al.
2019). At approximately Grδ = 106, the spatially developing flows (Cheesewright 1968;
Tsuji & Nagano 1988; Nakao et al. 2017) undergo transition to turbulence. In this regime,
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FIGURE 5. Temporal development of the wall characteristics: (a) Nusselt number; (b) wall shear
stress; (c) the friction Reynolds number. The grey diamond symbols represent the data points
shown in figure 2 for DNS-B.

the wall shear stress and the Nusselt number are found to follow the empirical formula,

Nuδ = 0.107Gr1/3
δ , τ ∗

w = 1.01Gr−8/35.7
δ ≈ 1.01Gr−2/9

δ . (4.3a,b)

However, the temporally developing NCBL at Grδ ∼ 106 is not yet turbulent for the present
study. For case DNS-B, two ‘reversed’ Grashof number regions, in which the Grδ gradually
reduces, can be observed at Grδ ∼ 106 and Grδ ∼ 7 × 106. These unusual reverses in Gr
are found to be closely related to the pathway of the laminar–turbulent transition (the
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aforementioned detachment of the convective rolls in figure 2) as Grδ is given by the
shape of the velocity profile in the laminar–turbulent transition process (Ke et al. 2018).
Nevertheless, at Grδ > 107 the Nusselt number for the temporal cases start to share a
similar exponential correlation as the empirical formula for the spatially developing NCBL
with a different constant, such that

Nuδ = KqGr1/3
δ , (4.4)

where Kq = 0.098 for case DNS-A, while DNS-B has Kq = 0.085 for 1.0 × 107 < Grδ <

5.0 × 107 but appears to converge to Kq = 0.098 over 5.0 × 107 < Grδ < 7.6 × 107. In a
more recent study, Ng et al. (2017) obtained the empirical scaling

Nuδ ∼ Gr0.37
δ , (4.5)

by conditionally averaging on high wall shear events in their DNS of natural convection in
a vertical differentially heated slot. The authors show that their empirical scaling relation
given in (4.5) is consistent with the 1/2-power-law scaling with a logarithmic correction in
homogeneous Rayleigh–Bènard convection, where the boundary layer is dominated by the
bulk thermal convection (ultimate regime when Grδ is asymptotically high) in the sense
of Grossmann & Lohse (2000, 2011). The difference between (4.4) and (4.5) is somewhat
subtle in the current Grδ range of Nuδ results shown in figure 5 (up to Grδ ∼ 7.7 × 107

for DNS-A and Grδ ∼ 7.6 × 107 for DNS-B). The temporal nature of our DNS means
turbulence shows up in the instantaneous Nuδ which makes detecting small changes in
the Nuδ–Grδ scaling without a large Grδ range difficult. Using empirical relationships for
forced boundary layers, Wells & Worster (2008) showed that at very high Grδ the spatially
developing vertical NCBL may attain a Nuδ ∼ Gr1/2

δ scaling which for the present flow is
estimated above Grδ ∼ O(1010). In the current Grδ range, we do not yet see evidence for
Nuδ ∼ Gr1/2

δ in our Nuδ results shown in figure 5(a).
Similar behaviour can also be found in the wall shear stress: the temporal cases start to

follow the empirical exponential correlation with larger constants at Grδ > 107,

τ ∗
w = Kτ Gr−8/35.7

δ ≈ Kτ Gr−2/9
δ , (4.6)

where Kτ = 1.52 for case DNS-A and Kτ = 1.33 for case DNS-B. Notably, the temporal
DNS of Abedin et al. (2009) also indicates a larger constant for wall shear than the
empirical correlation. Since the wall characteristics of the temporally developing NCBL
exhibit similar scaling relations to the turbulent spatially developing NCBL at Grδ > 107,
we therefore refer to this regime as the turbulent regime for the temporally developing
NCBL. The collapse of the wall characteristics in the turbulent regime indicate the NCBL
obtained in DNS-A and DNS-B are, in some sense, initial condition-invariant: although
the flow in DNS-B undergoes a weakly three-dimensional transition due to the difference
in the initial condition, it still shares common features that can also observed in DNS-A in
the turbulent regime – with a different constant. This can also be seen in figure 5(c) where
the Reτ for DNS-B is approaching the Reτ in DNS-A as the Grδ increases. For clarity
we present the results of DNS-A in the following sections unless otherwise specified.
A detailed comparison of DNS-A and DNS-B will be given in § 6.4.
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5. Profiles in the laminar-like sublayer

The mean temperature gradient in the slowly time-varying region can be obtained by
integrating (3.4b) such that

C ∼ 1
Pr

∂θ+

∂ y+ − (v′θ ′)+, (5.1)

where C is a constant resulting from performing the integration. In the close vicinity of the
wall, (5.1) can be further simplified provided the turbulent transport (v′θ ′)+ in this region
is negligible, so that

θ+ ∼ CPry+ + D, (5.2)

is obtained after integrating (5.1) along the wall-normal direction. Here, D is also a
constant resulting from performing the integration. Employing the boundary condition at
y+ = 0, θ+ = 0 and (1/Pr)(∂θ+/∂y+) = q+

w , the near-wall temperature profile is obtained
as

θ+ = Pry+. (5.3)

This suggests that the mean temperature follows a linear relation in the close vicinity
of the wall for the temporally developing NCBL, as reported by several NCBL studies
(Tsuji & Nagano 1988; Hölling & Herwig 2005; Ng et al. 2017). Similarly, by assuming
a slowly varying flow and neglecting the Reynolds shear stress in this region, the mean
velocity profile is dominated by the buoyancy force in the region and can be obtained by
integrating (3.4a) twice in the wall-normal direction, giving

u+ ∼
∫∫

−(Riw − Riτ θ+) dy+ dy+. (5.4)

The temperature coupling term, θ+, in (5.4) is then replaced by the linear relation (5.3).
After applying the boundary conditions at the wall (y+ = 0), i.e. u+ = 0 and ∂u+/∂y+ =
τ+

w , gives

u+ = y+ − 1
2

Riw y+2 + Pr
6

Riτ y+3
, (5.5)

in the near-wall region. Unlike the mean temperature profile, the mean velocity profile for
the NCBL does not feature a linear region, as is commonly found in the viscous sublayer
for the momentum-dominated flows. This is due to the presence of the extra buoyancy
terms. The coefficients Riw and Riτ clearly indicate the Grδ-dependency of the mean
streamwise velocity profile. Such modification of the mean profile takes a similar form to
the pressure gradient effect described by Nickels (2004) for wall bounded flows subjected
to large pressure gradients. The existence of two Richardson numbers is a result of the
two temperature scales in the problem: Riw represents the bulk temperature difference
θw = Tw − T∞ which provides the driving force for buoyancy and Riτ indicates a wall heat
flux quantity θτ which scales the near-wall temperature gradients. A similar analysis can
also be seen in Hölling & Herwig (2005), where they have used the temperature gradients
to identify the characteristic velocity, so that the buoyancy dependency is absorbed into
the normalized coordinates. The near-wall mean profiles obtained here, given in (5.3) and
(5.5), are consistent with the result Tsuji & Nagano (1988) obtained using a Taylor series
expansion and the solution by Wells & Worster (2008) for spatially developing NCBLs.

Figure 6 shows the near-wall mean temperature and velocity profiles in wall units
from the DNS data. The mean temperature θ+, according to figure 6(a), shows a linear
relationship in the near-wall region, as described by (5.3) for y+ < 5. However, according

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

62
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.621


902 A31-16 J. Ke and others

0 5 10

1

2

3

4

5

6

7

0 5 10

2

4

6

8

10

Pry+

y+ y+

y+

u+θ+

DNS-A, Grδ = 2.1 × 107

Increase Grδ

DNS-A, Grδ = 4.1 × 107

DNS-A, Grδ = 7.7 × 107

EXP., Grδ = 1.6 × 106

EXP., Grδ = 1.0 × 107

(a) (b)

FIGURE 6. (a) Mean temperature profiles for the turbulent NCBL at different Grδ; (b) mean
velocity profiles for the turbulent NCBL at different Grδ; the markers represents the experimental
measurements of Tsuji & Nagano (1988) for a spatially developing NCBL with Pr = 0.71.

to figure 6(b), the viscous sublayer that is commonly found in the momentum-dominated
flows in which region the linear relation

u+ = y+, (5.6)

holds does not exist in the NCBL, as predicted by (5.5). A similar observation is also
made by Tsuji & Nagano (1988) for a spatially developing NCBL, and Ng et al. (2017)
for a differentially heated NCBL channel flow. From (5.5), the absence of the linear
velocity profile (5.6) for the NCBL in the near-wall region is essentially due to the
extra buoyancy, which can be seen in figure 7 where the buoyancy contribution to the
mean velocity profile is shown in wall units. From figure 7, it is clear that the buoyancy
contribution is negative and gradually approaches to zero as the flow reaches higher Grδ.
The physical interpretation is rather simple: as the flow progressively achieves higher Grδ

in the turbulent regime, the friction velocity uτ is gradually growing in magnitude due to
the increase in the wall shear stress τw. According to (4.4) and (4.6), the friction velocity
uτ and the wall heat flux qw in the turbulent regime follow the scaling relation

uτ = K1/2
τ (gβθwν)1/3Gr1/18

δ , (5.7a)

qw = Kq(gβ)1/3θ 4/3
w ρCpκν−2/3. (5.7b)

It can be seen the wall heat flux qw in the turbulent regime is a constant (independent
of Grδ), suggesting the friction Richardson numbers depend solely on the friction velocity
(or, the wall shear), such that

Riw ∼ 1
u3

τ

∼ Gr−1/6
δ , Riτ ∼ 1

u4
τ

∼ Gr−2/9
δ . (5.8a,b)
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FIGURE 7. Buoyancy contribution to the mean velocity profile in wall units.

The buoyancy contribution thus asymptotically approaches zero,

− 1
2

Riw y+2 + Pr
6

Riτ y+3 ∼ 0, (5.9)

at some large uτ (or, identically, large Grδ). Figure 8 depicts the development of the friction
Richardson numbers. It can be seen that both Riw and Riτ qualitatively agree with the
empirical correlation (5.8a,b) in the turbulent regime.

Further justification can be obtained by restarting the NCBL DNS-A in the turbulent
regime, but having the temperature field uncoupled from the velocity field. The uncoupling
of the temperature field is achieved by removing the buoyancy forcing term θδi1 from the
governing equation (2.1b) so that the temperature now acts as a passive scalar and the flow
is completely dominated by the momentum. One may consider the uncoupled flow as a
planar jet flow adjacent to the wall with an initial velocity profile taken from that of a
turbulent NCBL. Figure 9 shows the comparison of the near-wall mean velocity profiles
of the two flows. The near-wall mean velocity profile of the turbulent NCBL, according
to figure 9, has an excellent agreement with (5.5) for y+ < 5, beyond which point the
turbulent transport becomes non-negligible; whereas the uncoupled case quickly recovers
and matches the linear relation (5.6) for y+ < 5 since the buoyancy effect is absent. This
can be seen from the inset of figure 9, where the ratio u+/y+ at y+ = 5 increases from
93.5 % (which is given by the NCBL profile as initial condition) to 98.6 % at t+ = 7.1 and
remains around 99 % subsequently.

6. The logarithmic region

Further away from the wall, a logarithmic region, where

θ+ = Prt

Kv

ln( y+) + Bθ , (6.1)

can be found for the mean temperature profile for y+ > 50 in figure 10(a). Here, Prt
is the turbulent Prandtl number, Kv is the von Kármán constant and Bθ is a universal
constant. Similar observations of the near-wall temperature structures are also made
by the experimental measurements of a spatially developing turbulent NCBL (Tsuji &
Nagano 1988), where they identified the logarithmic region to be 30 < y+ < 200 for
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FIGURE 8. Development of the friction Richardson numbers with Grδ: (a) Riw; (b) Riτ .
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FIGURE 9. Comparison of the near-wall mean velocity profile of the NCBL and the temperature
field uncoupled flow; the uncoupled flow uses the NCBL at Grδ = 4.72 × 107 as an initial
condition (t+ = 0). Inset shows the temporal development of u+/y+ at y+ ∼ 5 for the uncoupled
flow.

Grashof number up to Grδ = 1 × 107 and the constant to be Prt/Kv = 1.45. However,
we have adopted the same constants as Yaglom (1979) and Ng et al. (2017) for better
agreement with our numerically generated data, i.e. Prt = 0.85 and Kv = 0.41. According
to the spatially developing experiment by Tsuji & Nagano (1988), the constant Bθ appears
to depend on, and vary with Grδ; whereas from figure 10(a), it can be seen that the
temperature profiles agree well with (6.1) in the logarithmic region with the constant
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FIGURE 10. (a) Mean temperature profiles for the turbulent NCBL at different Grδ . (b) Mean
velocity profiles for the turbulent NCBL at different Grδ; with Kv = 0.41, Prt = 0.85, Bθ = 7.5
and Bu = 5. The markers represents the experimental measurements of Tsuji & Nagano (1988)
for a spatially developing NCBL with Pr = 0.71.

Bθ = 7.5, regardless of the value of Grδ. However, it should be noted that the data from
Tsuji & Nagano (1988) are at relatively low Grδ when compared with the current study.

The mean velocity profiles, however, as shown in figure 10(b), demonstrate a strong Grδ

dependency. From figure 10(b), the conventional log-law region, given by

u+ = 1
Kv

ln( y+) + Bu, (6.2)

cannot be observed for the NCBL even at Grδ = 7.7 × 107. Here, Bu = 5 is a constant for
the results presented. The difference between the velocity profiles and the conventional
log-law (6.2) becomes more significant with increasing Grδ as the velocity profiles grow
in magnitude and do not exhibit a log-law region in the classical sense. Note the maximum
velocity u+

m is also increasing with Grδ (or Reτ ) since the characteristic velocity uτ does
not contain any buoyancy information. A direct consequence is that the difference here
(between the velocity profiles and the conventional log-law) is somewhat different from
the overshoot of the conventional log-law in the sense of Nickels (2004) and Chan et al.
(2015) due to low Reτ effects. The above observation is consistent with previously reported
behaviour (Tsuji & Nagano 1988; Ng et al. 2017). The absence of the conventional log-law
for the velocity profile is not surprising as (6.2) does not take the buoyancy effect into
account. We hereby propose a modified velocity profile prediction for the NCBL in the
conventionally thought log-law region (where the flow varies slowly in time in the sense
of figure 4 and the temperature has a log-law profile, 50 < y+ < 150 for our results at
Grδ = 7.7 × 107) by taking the buoyancy effect into consideration. The mean velocity

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

62
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.621


902 A31-20 J. Ke and others

profile in this region is obtained by integrating the velocity gradient, which can be solved
from (3.11a) given the temporal derivative is zero. However, the Reynolds stress and the
buoyancy force in (3.11a) are not yet analytically known and thus require appropriate
modelling.

6.1. Buoyancy force approximation
The buoyancy force F+

b is fully described by the temperature profile θ+ as follows:

F+
b ≡

∫ y+

0
(Riw − Riτ θ+) dy+ = Riw y+ − Riτ

∫ y+

0
θ+ dy+, (6.3)

since Riw and Riτ are both constants at a given Grδ. In the present study, the buoyancy
force given in (6.3) is approximated by two approaches to simplify the analysis.

6.1.1. Log-law approximation
From figure 10(a), the temperature profile follows the log-law relation (6.1). Upon

integration of (6.3) with respect to y+ after the substitution of (6.1), the buoyancy force in
the temperature log-law region can therefore be approximated by

F+
b = C1 y+ + Riτ K1 − Riτ

Prt

Kv

ln (y+)y+, (6.4)

where the proportionality coefficient C1 is given by

C1 = Riw − Riτ

(
Bθ − Prt

Kv

)
(6.5)

and K1 is an unknown constant from integration. A similar approximation for the buoyancy
force has also been applied by Wei (2019) to approximate the Reynolds shear stress in the
differentially heated vertical channel NCBL flows. Empirically, by fitting (6.4) with the
DNS data at y+ = 50 (see figure 11), we have found

K1 = 150, (6.6)

is a constant for the Grδ range presented in the turbulent regime. As shown in figure 11,
the integral constant K1 sets the magnitude (vertical shift) of the buoyancy force when
multiplied by Riτ in (6.4) at different Grδ. Our results suggest that K1 does not have
Grδ dependency since the temperature profiles in DNS-A are self-similar: we will show
later in § 6.4 that for the non-self-similar temperature profiles in DNS-B and the spatially
developing measurements of Tsuji & Nagano (1988) K1 gradually approach to the constant
obtained here by DNS-A as the flow achieves higher Grδ.

6.1.2. Linear approximation
The approximation of the buoyancy force (6.3) can be further simplified due to the

fact that the θ+ is changing only slightly in the temperature log-law region (y+ > 50).
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FIGURE 11. Comparison of the approximations of the buoyancy force at Grδ = 2.1 ×
107, Grδ = 4.1 × 107 and Grδ = 7.7 × 107; lines show the DNS data; circle markers show the
approximations by (6.4) with K1 = 150; square markers show the approximations by (6.7).

By treating θ+ as a constant in the temperature log-law region, (6.3) becomes

F+
b = C2 y+ + A2, (6.7)

where C2 is a proportionality coefficient given by

C2 = Riw − RiτΘ+ (6.8)

and the intercept A2 is given by

A2 = K2Riτ , (6.9)

where K2 is an unknown constant representing the difference between the linear
approximation (6.7) and the nonlinear growth of the buoyancy force before the log-law
region. Empirically, by matching the DNS data with (6.7) at y+ = 50 we have found

K2 = 280, (6.10)

for the data shown. Here, Θ+ is the mean value of θ+ in the region. In the present study,
Θ+ = 16 is used (see the temperature profiles in figure 10). Similar to K1, the constants
K2, Bθ and Θ+ obtained here appear universal in our Grδ range due to the self-similar
temperature profiles in DNS-A. Evidently, when multiplied by Riτ , the constant K2
also accounts for the Grδ dependency (see figure 11). The buoyancy force modelled by
the linear relation (6.7) therefore depends solely on the wall characteristics since the
proportionality coefficient C2 and the intercept A2 varies with Riw and Riτ only.

Figure 11 shows the comparison of the approximation of the buoyancy force given by
(6.4) and (6.7) with the DNS data at different Grδ. According to figure 11, the buoyancy
force F+

b decreases with increasing Grδ due to the increasing friction velocity uτ . Both
(6.4) and (6.7) show good agreement with the DNS data in the temperature log-law region
y+ > 50. The agreement between the approximations and the actual DNS data improves
with increasing Grδ.
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6.2. Reynolds stress approximation
In conventional momentum-dominated wall-bounded flows, the local momentum transfer
by the Reynolds shear stress is frequently modelled by the Prandtl mixing length model
(Prandtl 1925),

− (u′v′)+ = l+m
2
(

∂u+

∂y+

)2

, (6.11)

where l+m is the mixing length. The presence of the wall, according to Townsend (1976),
imposes a turbulent length scale on the velocity field so that the main eddies of the flow
are, in a sense, ‘attached’ to the wall. In other words, the turbulent length scale of the large
eddies (Townsend 1961),

L ≡ k3/2

ε
, (6.12)

is expected to scale with the wall-normal distance y+. Here, k and ε are the turbulent
kinetic energy and the turbulent kinetic energy dissipation rate, respectively, defined by

k = 1
2

ui
′2, ε = ν

(
∂ui

′

∂xj

)2

. (6.13a,b)

Consequently, the mixing length is also expected to vary linearly with y+ owing to the fact
that the mixing length l+m is proportional to L in the log-law region for y+ > 50 (see, for
example, Townsend 1961; Pope 2000, pp. 288–290), such that

L+ = L
lτ

∝ l+m ∝ y+, (6.14)

and the mixing length can be described by

l+m = Dy+, (6.15)

where the proportionality coefficient D is known as the von Kármán constant Kv in the
conventional momentum-dominated flows.

Since the NCBL is also bounded by the wall, it is convenient to assume the Reynolds
shear stress shares a similar behaviour to the momentum-dominated flows and can be
modelled by (6.11) and (6.15). The validity of applying (6.15) to the NCBL may be justified
by examining the turbulent length scale L. As depicted in figure 12, the turbulent length
scale L follows a linear relation with y+ at sufficiently high Grδ (or, Reτ ) in the turbulent
regime in the range 10 < y+ < 100, indicating a mixing length l+m proportional to y+ as
given in (6.15). However, it should be noted that the coefficient D in (6.15) for NCBL
remains unknown and may have a Grδ dependency. In the present study, the coefficient D
is obtained empirically by rearranging (6.11),

D =
[ −(u′v′)+

(∂u+/∂y+)2 y+2

]1/2

. (6.16)

According to figure 13, it can be seen that the ratio −(u′v′)+/(∂u+/∂y+)2 scales well with
y+2 in the temperature log-law region for y+ > 50 (see inset), and the coefficient D, with
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FIGURE 12. The turbulent length scale in wall unit L+ against the wall-normal distance y+ for
DNS-A at Grδ = 2.1 × 107, Grδ = 4.1 × 107 and Grδ = 7.7 × 107; and for DNS-B at Grδ =
7.6 × 107.
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D

FIGURE 13. Proportionality coefficient D at different Grδ: black dotted, Grδ = 2.1 × 107;
blue dashed, Grδ = 4.1 × 107; red solid, Grδ = 7.7 × 107. Inset shows the ratio D2 y+2 =
−(u′v′)+/(∂u+/∂y+)2.

this more sensitive measure (6.16), shows minimal Grδ-dependency in our Grδ range. Here,
we choose

D = 0.3, (6.17)

for the following analysis. It should be noted that the negative values of −(u′v′)+ are
prohibited by the nature of the mixing length model (6.11), we therefore shall only focus on
the region where −(u′v′)+ is positive (up to y+ ∼ 90 for Grδ = 7.7 × 107) in the present
study.

6.3. Modified log-law
Making use of (6.11), the force balance equation (3.11a) can be rewritten as a quadratic
equation about the velocity gradient ∂u+/∂y+,

∂u+

∂y+ + l+m
2
(

∂u+

∂y+

)2

+ F+
b = τ+

w . (6.18)
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The mean velocity gradient ∂u+/∂y+ is therefore obtained as the solution to the quadratic
equation (6.18). Note for NCBL, the velocity grows in the log-law region until it reaches
its maximum and therefore a positive velocity gradient is expected,

∂u+

∂y+ = −1 + [1 + 4l+m
2
(τ+

w − F+
b )]1/2

2l+m
2 . (6.19)

When the buoyancy force F+
b is absent (for momentum-dominated flows or when buoyancy

force is negligible, i.e. Grδ ∼ ∞), (6.19) reduces to the ordinary velocity gradient equation
for the conventional velocity log-law region in the momentum-dominated flows (see,
for example, Buschmann & Gad-el Hak 2005). A similar method was also adapted by
Granville (1989) and Buschmann & Gad-el Hak (2005) when deriving the velocity log-law
region for the wall-bounded turbulent boundary layers. In their analysis a constant shear
layer, where ∂u+/∂y+ − (u′v′+) = τ+

w , is assumed, whereas in the present study the total
force in the near-wall region is a constant as shown in figure 4(b).

Owing to the fact that the molecular shear stress is negligible in this region (see also,
figure 4), (6.18) reduces to a more convenient form,

l+m
2
(

∂u+

∂y+

)2

= τ+
w − F+

b . (6.20)

With τ+
w = 1, the buoyancy force F+

b in (6.20) is then replaced by the approximations
given in § 6.1. By applying the logarithmic approximation (6.4), the velocity gradient is
obtained as

∂̂u+

∂y+ =

√
1 − C1 y+ − Riτ K1 + Riτ

Prt

Kv

ln ( y+)y+

Dy+ . (6.21)

Alternatively, by applying the linear approximation of the buoyancy force given in (6.7),
(6.20) can be reduced to

∂̃u+

∂y+ =
√

1 − C2 y+ − A2

Dy+ . (6.22)

Note when Grδ asymptotically goes to infinity, both C2 and A2 go to zero due to large
uτ and (6.22) takes the form of the conventional momentum-dominated log-law region,
i.e. ∂u+/∂y+ = 1/(Dy+). Figure 14 compares the actual velocity gradient obtained by
the DNS data with the predictions by (6.21) and (6.22). Both predictions show excellent
agreement with the DNS data in the range 50 < y+ < 90 since the buoyancy force and the
Reynolds shear stress are correctly approximated and modelled. The mean velocity profile
is therefore obtained as

u+ =
∫ y+

c

0

∂u+

∂y+ dy+ +
∫ y+

y+
c

∂u+

∂y+ dy+, (6.23)

where y+
c is the starting point of the log-law region for the velocity profile. In the present

study, it is assumed that the velocity log-law region starts at the same location as the
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FIGURE 14. The mean velocity gradient obtained from DNS-A at Grδ = 7.7 × 107 and the
predictions made by (6.21) and (6.22); with experimental measurements from Tsuji & Nagano
(1988) for a spatially developing NCBL at lower Grδ . Inset shows an enlarged view near the
modified log-law region.
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FIGURE 15. The development of the velocity magnitude u+
c (u+ at y+ = 50) against Grδ; the

red circles mark the u+
c value used for Grδ = 2.1 × 107, Grδ = 4.1 × 107 and Grδ = 7.7 × 107,

respectively.

temperature log-law region, i.e. y+
c = 50. Evidently, the first integration in (6.23) yields∫ y+

c

0

∂u+

∂y+ dy+ = u+
c , (6.24)

where u+
c is a constant given by the velocity magnitude at location y+ = y+

c . Recall that
there is a buoyancy contribution in y+ < 50, so the magnitude of u+

c is expected to depend
on the wall characteristics, i.e. uτ and θτ , and thus on Grδ, as demonstrated by figure 15.

The integrand in the second part of (6.23) can be replaced by (6.21) or (6.22).
Unfortunately, (6.21) is analytically difficult to integrate. However, we are able to integrate
(6.21) numerically to obtain the mean velocity profile, as shown in figure 16(a) along
with the DNS data. As demonstrated by figure 16(a), the predictions made by (6.21)
account for the Grδ effect (for example, the increasing magnitude of the velocity) and
exhibit excellent agreement with the DNS data for y+ > 50. However, beyond y = 0.6δm
(equivalently, y+ = 60 for Grδ = 2.1 × 107, y+ = 70 for Grδ = 4.1 × 107 and y+ = 90
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FIGURE 16. Mean velocity profiles of the turbulent NCBL in the temperature log-law region
for case DNS-A: black dotted line, the conventional log-law given by (6.2). (a) Mean velocity
profiles at different Grδ and predictions by numerically integrating (6.21) (circle markers);
(b) mean velocity profiles at different Grδ and predictions by (6.25) (circle markers) and the
modified log-law (6.29) (dash-dotted lines).

for Grδ = 7.7 × 107), the prediction by (6.21) no longer works as it is close to the velocity
maximum location δm and the Reynolds stress −(u′v′)+ becomes negative, requiring
l+m

2
< 0 in the mixing length model, and the buoyancy force F+

b becomes larger than the
wall shear stress τ+

w , indicating τ+
w − F+

b < 0 in (6.20).
On the other hand, making use of (6.22), (6.23) reduces to

u+ = u+
c +

√
1 − A2

D
ln
(

1 − √
1 − C2 y+ − A2/

√
1 − A2

1 + √
1 − C2 y+ − A2/

√
1 − A2

)
+ 2

D

√
1 − C2 y+ − A2 + E1,

(6.25)

where E1 is a parameter independent of y+ from the definite integration, given by

E1 = −
√

1 − A2

D
ln

(
1 −√

1 − C2 y+
c − A2/

√
1 − A2

1 +√
1 − C2 y+

c − A2/
√

1 − A2

)
− 2

D

√
1 − C2 y+

c − A2. (6.26)

It is worth noting that E1 varies with Grδ since the proportionality coefficient C2 and
intercept A2 depends on Grδ.

The Puiseux series expansion of (6.25) at y+ = 0 yields a modified velocity log-law,

u+ ∼ u+
c +

√
1 − A2

D
ln
(

C2 y+

4
√

1 − A2

)
+ 2

√
1 − A2

D
− C2 y+

2D
√

1 − A2
+ E2 + O(y+2

),

(6.27)

where E2 is a y+-independent parameter from the definite integration, representing the
difference between the logarithmic fit and the velocity magnitude at y+

c (for example,
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intuitively, one would expect u+ = u+
c at y+ = y+

c ),

E2 = −
√

1 − A2

D
ln
(

C2 y+
c

4
√

1 − A2

)
− 2

√
1 − A2

D
+ C2 y+

c

2D
√

1 − A2
. (6.28)

As E2 is a function of C2 and A2, it also has a Grδ-dependency. To compare with the
conventional log-law, it is convenient to rewrite (6.27) as

u+ ∼
√

1 − A2

D
ln( y+)︸ ︷︷ ︸

Logarithmic term

+
√

1 − A2

D

[
ln
(

C2

4
√

1 − A2

)
+ 2

]
− C2 y+

2D
√

1 − A2︸ ︷︷ ︸
Buoyancy effect on magnitude

+ E2 + u+
c .︸ ︷︷ ︸

Initial
condition

(6.29)

The first term in (6.29) shows the logarithmic relation between the wall-normal distance
y+ and the mean velocity u+, although the slope is adjusted by the magnitude of the
buoyancy in the log-law region. The buoyancy further affects the magnitude of the velocity
by the extra terms that contain C2 and A2, as indicated by (6.29). Finally, the Grδ-dependent
parameter E2 and u+

c indicate the velocity information at the starting point of the log-law
region. The resultant velocity prediction (6.25) and the modified log-law (6.29) are in a
similar form to the mean velocity distribution in an equilibrium layer with a linear shear
stress distribution given in Townsend (1961), where the slope of the logarithmic profile is
adjusted by the wall shear stress instead of buoyancy and the buoyancy effect in (6.29) is
replaced by the non-constant shear stress effect.

For the conventional momentum-dominated boundary layers (without buoyancy), the
buoyancy effect on the velocity magnitude vanishes due to the absence of C2 and K2, and
both u+

c and E2 become independent of Re when the flow is turbulent enough (this is due
to the fact that the velocity magnitude at the end of the viscous sublayer or buffer layer
is independent of Re in the momentum-dominated flows since flow quantities in the close
vicinity of the wall scale with the viscous scales ν and uτ ), so that they combine to give
the constant offset

Bu = u+
c + E2 ∼ 5. (6.30)

Consequently, this results in the conventional log-law given in the form of (6.2). In
contrast, from (6.29), the shape of the velocity profile is adjusted by the buoyancy force
in a complex manner, whilst the magnitude of the velocity relies on the Grδ-dependent
initial condition u+

c and E2 (or E1 in (6.25)). As depicted by figure 16(b), the modified
log-law region expands as Grδ increases and the predictions made by (6.25) and (6.29)
show relatively good collapse on the DNS data in this region.

6.4. Comparison with DNS-B and spatially developing NCBL
Direct application of (6.29) with the constants obtained from DNS-A (K1 = 150, K2 =
280,Θ+ = 16 and Bθ = 7.5) to DNS-B does not show such a good agreement as DNS-A.
This is because the temperature profile of DNS-B, as shown in figure 17, has not yet
reached fully developed conditions and demonstrates a Grδ dependence – the temperature
distribution and the resultant buoyancy force in DNS-B are not yet self-similar. The Grδ

dependence here is a proxy for development time. The Grδ (or time t) taken for DNS-A and
DNS-B to reach self-similar conditions are quite different due to the difference in initial
conditions. The logarithmic fit (6.1) for the temperature profile of DNS-B suggests the
constant Bθ and the average temperature in the log-law region Θ+ are both Grδ dependent
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Log-law for
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FIGURE 17. The mean temperature profiles for the turbulent NCBL at different Grδ for DNS-B.

Dataset Grδ Prt/Kv Bθ Θ+ K1 K2 u+
c

DNS-B 2.6 × 107 2.07 10 18 235 335 13.67
DNS-B 5.5 × 107 2.07 8.7 17.5 190 330 14.51
DNS-B 7.6 × 107 2.07 8.3 17 165 305 14.87
DNS-A Universal 2.07 7.5 16 150 280 figure 15
Exp. 1.0 × 107 1.45 6.8 12 120 250 10.02
Exp. 1.6 × 106 1.45 6 11 80 60 7.87

TABLE 3. Grashof number dependent constants used in the modified log-law (6.29) for DNS-B
and the experimental measurements from Tsuji & Nagano (1988).

(values are listed in table 3). The absence of the self-similar temperature profile in DNS-B
implies that the constants associated with buoyancy force in (6.4) and (6.7) must be
modified. This can be achieved by replacing the universal constants in DNS-A with the
local values listed in table 3 when modelling the buoyancy force in (6.4) and (6.7). It
appears a reasonable approach as the buoyancy force Fb is essentially determined by the
local temperature profile. We show in figure 18 that once these constants are modified,
the prediction shows excellent agreement with DNS-B in the log-law region (y+ > 50).
The length of the log-law region increases as the flow achieves a higher Grδ in DNS-B. At
Grδ = 7.6 × 107, the log-law region extends up to y+ = 70 as the Reynolds shear stress
−u′v′ becomes negative at y+ = 70 (see, e.g. figure 4).

Similar to DNS-B, the experimental measurements by Tsuji & Nagano (1988) also show
a strong Grδ dependence (see, e.g. figure 10a). By empirically adjusting constants for the
local temperature profile (see table 3), predictions made by the modified log-law show
qualitative agreement with the experimental measurements, as shown in figure 19. Note
that y+

c = 30 is used for the experiment data as Tsuji & Nagano (1988) have identified
the starting point for the temperature log-law region at y+ = 30. At Grδ = 1.6 × 106, the
modified log-law region does not seem to exist as the NCBL is at a relatively low Grδ, and
the velocity maximum (at y+ ∼ 35) is located very close to y+

c = 30. At Grδ = 1.0 × 107,
the modified log-law region starts to appear and the prediction made by (6.29) agrees
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+

1 −Kv
ln( y+) + Bu

(a) (b)

FIGURE 18. The application of the modified log-law to DNS-B using local constants:
(a) buoyancy force at different Grδ and predictions by (6.4) (circle markers) and (6.7) (square
markers); (b) mean velocity profiles at different Grδ and predictions by (6.25) (circle markers)
and the modified log-law (6.29) (dash-dotted lines); black dotted line shows the conventional
log-law given by (6.2).

100 101 102

5

10

15
1 −Kv

ln( y+) + Bu

y+

u+

Exp., Grδ = 1.0 × 107

Exp., Grδ = 1.6 × 106

FIGURE 19. The application of the modified log-law to the spatially developing NCBL
measured by Tsuji & Nagano (1988); predictions made by numerically integrating (6.21) are
shown in triangle symbols; predictions made by the modified log-law (6.29) are shown in
dash-dotted lines; the vertical dashed lines show the start of the log-law region (black), the
maximum velocity location at Grδ = 1.6 × 106 (blue) and the maximum velocity location at
Grδ = 1.0 × 107 (red).

with the experimental measurements in the range 30 < y+ < 40. The short log-law region
may be due to the fact that the Grδ is not sufficiently high (recall figure 10, the constant
Bθ in (6.1) still depends on Grδ for the measurements by Tsuji & Nagano 1988) and the
starting point of the log-law region at y+

c = 30 is located close to the velocity maximum at
y+ ∼ 60. Nevertheless, according to table 3, it can be seen that all the local constants are
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Assumptions F+
b (u′v′)+ D ∂u+/∂y+ u+

(6.1) (6.4) (6.11) 0.3 (6.19) (6.23), obtained numerically
(6.1) and ν ∼ 0 (6.4) (6.11) 0.3 (6.21) (6.23), obtained numerically
(6.1), ν ∼ 0, θ+ ∼ Θ+ (6.7) (6.11) 0.3 (6.22) (6.25)
(6.1), ν ∼ 0, θ+ ∼ Θ+, (6.7) (6.11) 0.3 (6.22) Modified log-law, (6.29)
Puiseux series expansion

TABLE 4. Assumptions and modelling of the forces in the log-law region and the resultant
velocity predictions.

approaching the universal values obtained in DNS-A with increasing Grδ for both DNS-B
and the experimental measurements.

7. Concluding remarks

In the present study, the law of the wall has been investigated for the mean temperature
and velocity profiles of a parallel temporally developing NCBL. The dependence of the
turbulent statistics on the initial conditions are also investigated using two DNS. Although
the two DNS undergo different laminar–turbulent transition mechanisms, they still share
the same Grδ scaling relationship for Nuδ and τw. By the end of the simulation, we
have achieved Grδ = 7.7 × 107 which corresponds to Reτ = 148 for case DNS-A and
Grδ = 7.6 × 107 which corresponds to Reτ = 120 for case DNS-B. Based on the DNS
data, we have identified a constant flux layer in the near-wall region, similar to the
observations in spatially developing NCBLs (George & Capp 1979; Hölling & Herwig
2005). A constant forcing layer which coincides with the constant flux layer was also
identified for the first time using DNS. In this region, the Reynolds shear stress, molecular
shear stress and the buoyancy force balances the shear stress on the wall. The two constant
layers indicate the boundary layer is varying very slowly (i.e. the temporal evolution
is negligible) in the near-wall region. In the close vicinity of the wall (y+ < 5), the
temperature profile expressed in wall units follows a linear relationship; whereas the
velocity profile is modified by buoyancy forcing parallel to the wall, and only becomes
asymptotic to a linear profile at very high Grδ, consistent with Ng et al. (2017). Further
away from the wall, a logarithmic region is found for the temperature profile for y+ > 50.
According to the DNS data, the conventional log-law for the velocity profile does not
hold for the NCBL as it does not account for the buoyancy. To predict the mean velocity
profile in this region, we propose a modified log-law by taking the buoyancy force into
consideration with varying levels of approximation. Such a log-law contributes towards
a thorough understanding of the near-wall scaling, which provides useful information for
the development of near-wall turbulence models and wall functions for buoyancy driven
boundary layers (e.g. Kiš & Herwig 2012). The buoyancy effect for y+ > 50 is found to
be well approximated by a linear function of y+, with the proportionality coefficient C2
and the intercept A2 being functions of Riw and Riτ . The Reynolds shear stress, however,
is modelled by the mixing length model based on the observation that the mixing length
scales linearly with distance from the wall, with l+m = Dy+.

A brief summary of the assumptions and the resultant velocity predictions proposed
by the present study are listed in table 4. With the modelling of the buoyancy force
and Reynolds shear stress, we compare the DNS results for two initializations and with
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the spatially developing data of Tsuji & Nagano (1988). Although there is some flow
dependence on the temperature profile, these differences decrease as Grδ increases. The
Grδ dependency here is a result of the initial temperature profile after transition which
may vary between studies and will reduce with time (temporally developing flow) or
distance from the leading edge (spatially developing flow). Nevertheless, the modified
log-law (6.29) appear to be both flow and Grδ independent in our study, except for u+

c
which includes a buoyancy effect from the y+ < 50 region in the flow for which we have
no model. Validated against the DNS data, we have found the modified log-law (6.29)
is able to provide the velocity prediction in the log-law region with reasonable accuracy
given the shear stress and the heat flux on the wall.
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