
The Use of Portable Oxygen Concentrators in
Low-Resource Settings: A Systematic Review

Craig D. Nowadly, MD;1 Daniel J. Portillo, PhD;2 Maxwell L. Davis, RRT-NPS;3 R. Lyle Hood,

PhD;2,4 Robert A. De Lorenzo, MD4

Abstract
Introduction: Portable oxygen concentrators (POCs) are medical devices that use physical
means to separate oxygen from the atmosphere to produce concentrated, medical-grade gas.
Providing oxygen to low-resources environments, such as austere locations, military combat
zones, rural Emergency Medical Services (EMS), and during disasters, becomes expensive
and logistically intensive. Recent advances in separation technology have promoted the
development of POC systems ruggedized for austere use. This review provides a compre-
hensive summary of the available data regarding POCs in these challenge environments.
Methods: PubMed, Google Scholar, and the Defense Technical Information Center were
searched from inception to November 2021. Articles addressing the use of POCs in low-
resource settings were selected. Three authors were independently involved in the search,
review, and synthesis of the articles. Evidence was graded using Oxford Centre for
Evidence-Based Medicine guidelines.
Results: The initial search identified 349 articles, of which 40 articles were included in the
review. A total of 724 study subjects were associated with the included articles. There were
no Level I systematic reviews or randomized controlled trials.
Discussion:Generally, POCs are a low-cost, light-weight tool that may fill gaps in austere,
military, veterinary, EMS, and disaster medicine. They are cost-effective in low-resource
areas, such as rural and high-altitude hospitals in developing nations, despite relatively high
capital costs associated with initial equipment purchase. Implementation of POC in low-
resource locations is limited primarily on access to electricity but can otherwise operate for
thousands of hours without maintenance. They provide a unique advantage in combat oper-
ations as there is no risk of explosive if oxygen tanks are struck by high-velocity projectiles.
Despite their deployment throughout the battlespace, there were no manuscripts identified
during the review involving the efficacy of POCs for combat casualties or clinical outcomes
in combat. Veterinary medicine and animal studies have provided the most robust data on
the physiological effectiveness of POCs. The success of POCs during the coronavirus dis-
ease 2019 (COVID-19) pandemic highlights the potential for POCs during future mass-
casualty events. There is emerging technology available that combines a larger oxygen con-
centrator with a compressor system capable of refilling small oxygen cylinders, which could
transform the delivery of oxygen in austere environments if ruggedized and miniaturized.
Future clinical research is needed to quantify the clinical efficacy of POCs in low-resource
settings.
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Introduction
Oxygen is amedical resource critical to treatment of hypoxemia in all
medical environments, including emergency departments, operating
rooms, intensive care units (ICUs), and in the field with Emergency
Medical Services (EMS). Oxygen is designated as an essential medi-
cine by the World Health Organization (WHO; Geneva,
Switzerland) and the average hospital consumes approximately
350,000L of oxygen per hospital bed annually.1,2 In high-resource
areas, hospitals and emergency medical agencies employ complex
logistics networks and expensive equipment to meet this demand.
Distribution and use of oxygen outside of hospitals are largely reliant
upon oxygen gas cylinders. Oxygen cylinders contain highly com-
pressed oxygen and can provide high minute flow of gas.
However, they are heavy and contain a limited volume. The typical
oxygen cylinder available in the prehospital setting is theM-15 tank,
also known as the D-cylinder, which contains approximately 425L
under 3,000psi of pressure.3 At a flow rate of 4L/minute, an M-15
tank provides gas for 106 minutes and at 15L/minute, only for 28
minutes. In high-resource settings, this rate of consumption is
inconvenient but can be logistically maintained.4 Trained personnel
are able to refill oxygen cylinders from either a large and extremely
heavy supply cylinder or some other refillable source of oxygen such
as a large, insulated tank of liquified oxygen.3

Providing oxygen to low-resources environments, such as aus-
tere locations, military combat zones, rural EMS, and during disas-
ters, becomes burdensome, expensive, or logistically intensive.
Portable oxygen concentrator (POC) technology promises to
transform the availability of supplemental oxygen in low-resource
settings.5 Unlike bulky liquid oxygen systems, chemical oxygen
generators, or reliance upon a large network of oxygen cylinders,
POCs can provide a nearly limitless supply of oxygen by concen-
trating oxygen from ambient air. Capable of delivering moderate
flows of gas, POCs can bring supplemental oxygen to austere
and isolated locations or where modern supply chains fall short.
Furthermore, POCs provide unique advantages in some specific
environments, such as military combat, where compressed oxygen
poses an explosive risk if struck by high-speed projectiles.6

Although oxygen concentrators have been in production since
the 1980s, advances over the last two decades have miniaturized
and ruggedized the technology. Due in part to improvements
for the out-patient treatment of chronic obstructive pulmonary dis-
ease (COPD) in high-resource settings, concentrators are now
lightweight, low-cost, and can provide flow rates up to 10L/
minute.7,8 As is often the case with new technologies, however,
POCs overcome important disadvantages while introducing new
issues and caveats. In this systematic review, the pertinent literature
regarding the use of POCs in low-resource settings will be analyzed
and technical information relevant to the use of POCs in these
clinical settings will be highlighted. Emphasis will be placed on
the use of POCs in austere, military, veterinary, and EMS settings
as there is a paucity of literature discussing the use of POCs in these
settings.

Methods
Systematic review of the available literature was performed for
reports, articles, and abstracts related to the use of POCs in
low-resources conditions, such as military, EMS, or austere envi-
ronments. The 2020 Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines were followed
(checklist available as Supplementary Material; available online
only).9 All human and animal studies, case series, case reports,

or reviews were considered for inclusion in this review. Data were
abstracted systematically from a query of PubMed (National
Center for Biotechnology Information, National Institutes of
Health; Bethesda, Maryland USA); Google Scholar (Google
Inc.; Mountain View, California USA); and Defense Technical
Information Center (Fort Belvoir, Virginia USA) from inception
to November 2021. A gray literature search was also performed
using Google. Studies published in a language other than
English without available translation or articles not specifically
addressing the use of POCs in conditions outside high-resource
settings, such as data evaluating domestic use of POCs for
COPD, chemical oxygen generation systems, or non-portable oxy-
gen generation systems, were excluded. If government reports and
peer-reviewed manuscripts contained the same experimental data,
the government report was excluded.

The final search strategy included free-text words (TW) and
controlled vocabulary terms using medical subject headings
(MeSH) for these topics, their synonyms, abbreviations, and alter-
nate spellings. The final search string was: (“Portable Oxygen
Concentrator” [TW]) AND (“austere” [TW] OR “emergency
medical services” [MeSH] OR “resuscitation” [MeSH] OR
“trauma” [TW] OR “military” [TW] OR “ventilator, mechanical”
[MeSH]). References in each selected publication were also care-
fully screened for any additional reports having relevance. All refer-
ences are cited in appropriate context. Three authors (CDN,
MLD, andDJP) were independently involved in the search process
and in the review of the identified articles. Data were collected from
included articles by the same three authors and were inserted into a
spreadsheet accessible to all authors (Google Inc.; Mountain View,
California USA).

Due to limited available clinical data, no specific outcome mea-
sures were assessed. Articles with clinical data were subsequently
graded using the 2011 Oxford Centre for Evidence-Based
Medicine (OCEBM;University of Oxford; Oxford, England) levels
of evidence by a single author (CDN).10 These levels were defined as:
Level I= properly powered and conducted randomized clinical trial,
systematic review, or meta-analysis; Level II = well-designed con-
trolled trial without randomization, prospective comparative cohort,
outcomes research; Level III = case-control studies, retrospective
cohort studies; Level IV = case series with or without intervention,
cross-sectional studies; and Level V = opinion of authorities, case
reports, non-clinical studies, veterinary and animal studies. Due to
the low number of clinical data and large number of Level V reports,
bias was not formally assessed.

Results
The initial search identified 349 articles. The references of all cited
literature were reviewed during which an additional 18 articles were
identified. These records were screened for eligibility after 19
duplicates were removed, and 283 were excluded from review of
title and abstract contents. Of the remaining 66 publications, 26
addressed issues outside the scope of this systematic review. The
remaining 40 articles were included in the review (Figure 1).
Literature obtained included human and animal studies, case stud-
ies, technical reports, white papers, graduate thesis, and review
articles. A total of 724 study subjects were associated with the
included articles. There were no Level I systematic reviews or ran-
domized controlled trials. The search identified three Level II
studies involving cost analysis and two Level II studies involving
41 humans. Furthermore, there were two Level III studies and
three Level IV studies. There were 30 Level V reports and pertinent
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articles. The included articles were further sub-divided into five
categories based on their primary content: Austere, Military,
EMS, Veterinary, or Equipment/Technical (Table 1). No evi-
dence-based guidelines or protocols regarding the use of POCs
were identified.

Discussion
Portable Oxygen Concentrator Technology
Existing methods for generating medical grade oxygen depend on
physicochemical processes where oxygen is either created through
chemical reaction or extracted from existing gas mixtures. While
chemical reactions can reliably generate oxygen, they are usually
limited, inefficient, or rely upon strongly exothermic reactions.11,12

By contrast, POCs do not generate oxygen but instead concentrate
oxygen that is freely available in ambient air (∼78% nitrogen and
∼21% oxygen). They compress air through a molecular sieve, usu-
ally of a zeolite composition, which selectively absorbs nitrogen.
The remaining nitrogen-free air is highly concentrated oxygen
(>95%) and argon (<5%), which can be routed directly to a patient
or a storage tank for consumption.13 Most POCs incorporate a
sieve-flushing process which returns the filtered nitrogen to the
ambient air, clearing the sieve for recurring filtering. With a

constant power supply andminor maintenance, POCs can produce
oxygen continuously for thousands of hours.14

There are two main modes of POC operation: continuous and
pulsed dose. During the continuous mode, a POC provides steady
oxygen flow, typically at concentrations greater than 90%.
Although dependent upon the model and manufacturer, most
POCs provide continuous flow rates between 1-5L/minute.
However, some larger, non-mobile models can provide flow rates
up to 10L/minute.8 Pulsed dose flow, by contrast, delivers a “pulse”
of low-volume, highly concentrated oxygen in sync with the
patient’s respiratory cycle. This timing allows the oxygen pulse
to reach a patient’s alveoli during inspiration, using ambient air
to fill respiratory dead space. Pulsed dose mode, in theory, maxi-
mizes the oxygen delivered to alveoli per inspiration.

Despite the efficiency of pulsed dose oxygen delivery, there is
controversy regarding the definitive clinical outcomes of pulsed
dose mode.15–17 Although pulsed dose mode often provides a lower
fraction of inspired oxygen (FiO2) per breath, it may result in a
higher partial pressure of oxygen (PaO2) by more efficiently utiliz-
ing the oxygen that is produced by a POC.15,16 Furthermore, there
is no universally accepted conversion factor between continuous
and pulsed dose modes, although manufacturers have provided

Nowadly © 2022 Prehospital and Disaster Medicine

Figure 1. PRISMA Flow Diagram of Publications Reporting on Topics Specific to Use of POCs in Low-Resources Settings.
Abbreviations: POC, portable oxygen concentrator; PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-
Analyses.
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conversions for individual POCs.18 One notable study compared
the impact of continuous and pulsed dosemodes in healthy subjects
in simulated high-altitude settings.18 At an altitude of 14,000 feet,
hypoxia was corrected in all patients using a minimum of 2L/
minute of continuous flow.However, due to the impacts of gas laws
at altitude and changes in subject tidal volumes, in order to over-
come hypoxia, the manufacturer suggested equivalent pulsed dose
settings had to be increased by 6%-37% in each subject.15

The environment of many low-resource locations may impact
POC performance despite their intended performance range.

Due to Boyle’s Law, POC performance is impacted by lower
atmospheric pressures at higher altitudes. It has previously been
estimated that the output oxygen concentration decreases by
approximately 10% for each 2000m gain in elevation.13

However, this appears dependent on a variety of factors including
POCmodel, altitude, and temperature.19,20 In a prospective cohort
of ten healthy patients at an altitude of 3776m, oxygen concentra-
tors performed within three percent of the manufacturers’ reported
oxygen output.21 In laboratory testing of three POCs, oxygen con-
centrating ability was impacted by both temperature and altitude

Year, First Author Publication Type Category Evidence Level No. of Subjects

1985, Carter41 Report Equipment/Technical V —

1991, Dobson27 Cost Analysis Austere II —

1992, Dobson23 Review Austere V —

1996, Dobson26 Report Austere V —

2000, Litch13 Cost Analysis Austere II —

2001, Dobson5 Review Equipment/Technical V —

2002, Mokuolu32 Cost Analysis Austere II —

2002, Shrestha31 Retrospective Cohort Austere III 378

2004, Bouak39 Report Military V —

2007, McCormick29 Review Austere V —

2008, Enarson24 Report Austere V —

2008, Ritz30 Review EMS V —

2008, Sakaue21 Case Series Austere IV 10

2009, Howie28 Cost Analysis Austere V —

2009, Peel36 Survey Austere IV —

2010, Arnold11 Review Military V —

2010, Duke35 Review Austere V —

2010, Rodriquez42 Report Equipment/Technical V —

2012, Fahlman52 Case Series Veterinary V 39

2012, La Vincente14 Report Austere V —

2013, Fischer53 Prospective Crossover Austere II 11

2013, Gustafson43 Prospective Crossover Military V 15

2013, Masroor47 Retrospective Cohort Military III 134

2013, Williams55 Report Equipment/Technical V —

2014, Bordes44 Report Equipment/Technical V —

2015, Blakeman18 Prospective Cohort Military II 30

2015, Coutu50 Prospective Cohort Veterinary V 15

2016, Blakeman20 Report Austere V —

2016, Bunel19 Report Austere V —

2016, Burn51 Case Series Veterinary V 33

2016, d’Aranda45 Report Equipment/Technical V —

2016, Gangidine16 Report Equipment/Technical V —

2017, Rybak6 Report Equipment/Technical V —

2019, Blakeman22 Case Control Equipment/Technical V 12

2019, Chapman54 Review EMS V —

2020, Ahmed33 Report Equipment/Technical V —

2020, Cardinale46 Report Equipment/Technical V —

2020, Cungi37 Retrospective Cohort Military V 35

2021, Cheah58 Report Equipment/Technical V —

2021, Nguyen48 Case Series Military IV 12

Nowadly © 2022 Prehospital and Disaster Medicine

Table 1. Summary of Relevant Articles Included in the Systematic Review
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extremes, which is less likely with oxygen cylinders.22 One POC
was largely unaffected by altitude changes up to 6705m
(22,000ft), one had progressively decreasing oxygen concentra-
tions, and a third failed above 4876m (16,000ft). One-half of
the models tested failed after being exposed to -35°C.20 Lastly,
in areas with high humidity or wet conditions, care is needed with
rubber seals and bacterial filters as they can impact POC function
and lifespan if inappropriately exposed to moisture.13

Austere Use
Oxygen is not readily available in many regions around the world,
due to either financial ormedical logistical limitations, and contrib-
utes to significant morbidity and mortality.5,23–25 Portable oxygen
concentrators have been used in developing nations and austere
locations for over 30 years.26,27 They have become a critical com-
ponent to providing oxygen in a variety of settings, including in
both adult5 and pediatric care,28 during anesthesia and surgical pro-
cedures,29 and at extremes of both altitude and temperature.21,30

However, despite the prolonged use of POCs in austere locations,
there are limited clinical data regarding patient outcomes available
as most publications regarding austere use are cost assessments or
feasibility reports. The most robust clinical data were reported by
Shrestha, et al where a retrospective cohort of 378 patients received
either standard oxygenation or oxygenation from a POC during a
variety of surgical procedures in high altitude medical facilities in
Nepal. The authors reported no cases of hypoxia, mortality, ormor-
bidity associated with POC use.31

Studies have shown that POCs are cost effective in low-resource
areas, despite relatively high capital costs associated with initial
equipment purchase. In assessments performed over 30 years
ago, POCs were estimated to save small and large hospitals in
remote settings between 25% and 75% of the annual cost of oxygen
cylinders, respectively.27 Similarly, a hypothetical cost assessment
in Gambia showed savings of up to 90% associated with POCs,
but the savings were heavily dependent upon the cost and acces-
sibility of power generation.28 These results have been confirmed
in a retrospective cost comparison in Nepal with reported savings
in excess of 75%.13 In a Nigerian neonatal ICU, the savings were
similar with the annual cost of oxygen for a single ICU bed covering
the cost of a POC.32 It has been suggested that POC cost could
further be lowered by focusing on device development specific
for austere locations.33

In austere settings, a single POC can provide low-flow oxygena-
tion for multiple patients, especially in pediatrics. In a recommen-
dation of the use of POCs for pediatric patients, the WHO
recommended one POC for every 10-15 pediatric beds to ensure
redundancy and adequacy of oxygen supply.28 No formal recom-
mendation on the ratio of POCs to adult patients was identified
during the review. However, given adult patient size and oxygen
demand, a ratio closer to one POC to one patient is required.
The number of POCs needed at any location is likely multifacto-
rial, depending on medical setting, patient severity, available finan-
cial resources, and environmental conditions.

The POC electricity requirements may also be a challenge in
remote or harsh environments. For example, 26% of health facili-
ties in sub-Saharan report no access to electricity. In an assessment
of the use of POCs in hospitals in Gambia in 2004, POCs were
considered feasible and cost effective in only two of twelve medical
facilities due to significant limitations in access to electricity.28 The
authors concluded that the ten facilities without power would have
more reliable and lower cost oxygen delivery with continued use of

oxygen cylinders, despite complex logistics.28 Fortunately, POCs
do not have robust electrical requirements, often being powered
by mobile gasoline generators.27 However, POCs can be powered
by solar panels,34 wind turbines, and hydroelectric power.13

Although battery technology has been integrated into several
POC models, the battery life remains limited, especially in man-
packable lightweight models. It is clear that improvements in access
to reliable electricity and extended battery life will be the primary
improvements needed to drive clinical success of POCs in austere
settings.

Despite these challenges, POCs have been used in a variety of
developing nations, including Mongolia,14 Malawi,24 Egypt,26

Nepal,31 New Guinea,35 Gambia,36 and Djibouti.37 Training pro-
grams prior to equipment deployment ensure medical providers
have adequate knowledge for device operation and maintenance.26

Appropriate maintenance, such as changing filters and reloading
zeolite cartridges, can ensure adequate lifespan of equipment, often
functioning several years without failure.13,35 In an assessment of
POCs after several years of use in Malawi and Mongolia, the
majority of POCs were classified as either functioning “well”
(>85% oxygen produced; 25/51 POCs) or “adequate” (75%-85%
oxygen produced; 16/51 POCs) with some POCs operating for
over 30,000 hours without maintenance.14

Military Use
During deployed military operations, oxygen is required through-
out the medical evacuation continuity of care. Casualties’ care often
starts with low-resource, mobile, combat medics, continues
through isolated forward field hospitals, and ends with intra-
continental critical care medical evacuation flights.38 Unlike devel-
oping nations where cost may be the primary limiting factor for
oxygen cylinder logistics, the distribution of oxygen to military set-
tings has unique restraints. Military operations are often kinetic
and unpredictable with changes in location and available resources.
Additionally, compressed gas poses unique risks during combat, as
explosive decompression can occur if oxygen tanks are struck by
high-velocity projectiles.6 During care under fire and prolonged
field care, accessing electricity can be difficult. For these reasons,
the US Department of Defense (DoD; Virginia USA) and
international militaries have invested in deployed POC technology
to bridge gaps in oxygen logistics in combat and deployed
environments.20,39,40

Portable oxygen concentrators were first suggested for military
operations in the 1980s as POC technology was in its infancy.41

Design improvements for fighter aircraft oxygenation systems
played a large role in the development of POC technology, includ-
ing zeolite sieves.11 Robust pre-clinical data have been published
confirming the effectiveness of ruggedized, compressor-driven,
military ventilators in conjunction with deployed POCs.6,42–46

By contrast, there is notable paucity of clinical data published
involving military use of POCs. A retrospective cohort of patients
treated by a Pakistani Military Mobile Surgical Team showed an
improvement by a factor of 13 in the cylinder to patient ratio after
introduction of POCs;47 however, they treated routine surgical
patients and reported no combat casualties. There were no manu-
scripts identified during the review involving the efficacy of POCs
for combat casualties or clinical outcomes in combat.

Despite these limited data, POCs have been deployed with
American, French, and Pakistani military units.6,44,45,47,48 While
often deployed with surgical teams, POCs have been integrated
into combat vehicles, aeromedical evacuation aircraft, assault ships,
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and hand-carried by combat medics.11,22 This shows that POCs
have traversed the entire battlespace, but the requirements of a
POC deployed with a large surgical team are vastly different than
one given to a special forcesmedic. For this reason, numerousmod-
els of POCs are deployed with US forces. Care by combat medics
requires oxygen to be sufficiently mobile to carry equipment in
rucks, requiring equipment to be “man-portable.”Unlike a forward
surgical team where a 30kg unit may be ideal and provide higher
oxygen flow, the DoD defines “man-portable” as equipment
weighing less than 14kg.49 This limits the size, oxygen flow, and
battery life of ruggedized POCs. The majority of man-portable
POCs currently hand-carried by US forces are limited to 3L/
minute or 96mL pulsed dose flow.6 However, the US Army has
published plans to design the next generation of mobile POCs,
including extended battery life, higher oxygen flows, and lighter
weight equipment.40 Such improved equipment, in addition to
increased clinical data involving the use of POCs in the treatment
of combat casualties, is required to solidify POC’s value on the
modern battlefield.

Austere Veterinary Use
Given the nature of veterinary care, medical evaluations and surgi-
cal procedures often occur outside or in low-resource field condi-
tions. As such, POCs provide a mobile, low-cost source of oxygen
to veterinarians who have limited access to oxygen. There is pub-
lished evidence for the use of POCs in horses,50 dogs,51 bears,
sheep, and reindeer.52 Veterinary medicine and animal studies have
provided the most robust data on the physiological effectiveness of
POCs. Multiple animal studies have reported real-time improve-
ments in oxygenation with the use of POCs, including high-
resource veterinary anesthesia settings,51 low-resource field condi-
tions,52 and in pathologic animal models of acute lung injury.43

In a notable case series of multiple species, oxygen from a POC
was delivered by nasal cannula during field anesthesia.52 Using the
pulsed dose setting, the delivered oxygen volume was adjusted to
compensate for animal respiratory rate and body size. In field con-
ditions, animals had a marked improvement in arterial blood oxy-
genation. However, this effect was not universal across species.
Bears had an improvement in PaO2 from a baseline of 73
(SD = 11) mmHg to 134 (SD= 29) mmHg after the POC was
applied. By contrast, bighorn sheep remained hypoxic after appli-
cation of a POC with a PaO2 only marginally improving from 40
(SD = 9) mmHg to 52 (SD = 11) mmHg. Furthermore, the
authors reported that approximately one-half of bighorn sheep
had a reduction in PaO2 with 16/18 animals remaining hypoxic
throughout the surgical procedure. High baseline respiratory rate,
differing nasopharynx structures, and veterinary operating condi-
tions such as outdoor temperature may impact POCs performance
in animals. These limitations should be considered for each species
prior to field deployment, such as military working dogs, non-
human primates, or mammals with atypical respiratory structures.

EMS and Disasters
During emergency medical transport on ambulances, helicopters, or
fixed-wing aircraft, large oxygen tanks are often impractical due to
weight and space restrictions within vehicles.While providing a lim-
ited flow of gas, POCs may help bridge oxygen requirements for
EMS providers without routine access to equipment to refill oxygen
cylinders. However, there is limited literature discussing the use of
POCs in the EMS environment with no clinical outcome data iden-
tified during the review. Furthermore, there was no discussion

identified regarding routine use of POCs across an entire fleet of
ambulances or helicopters. Fixed-wing air medical evacuation is
an exception. Due largely to the use of POCs for treatment of
chronic respiratory conditions on commercial airlines, POCs have
been evaluated for use during flight.53 The Federal Aviation
Administration (FAA; Washington, DC USA) regulates POC
use on aircraft and requires POC manufacturers to comply with
flight standards. They are commonly used during fixed-wing medi-
cal evacuation and during medical escort on commercial aircraft.54

Portable oxygen concentrators may close a critical gap in oxygen
supply during mass-casualty events or pandemics.30,55 As seen dur-
ing the coronavirus disease 2019 (COVID-19) pandemic, there was
a critical shortage of oxygen in both developed and developing
nations, particularly with compressed gas cylinders.56,57 As astutely
acknowledged by Williams several years prior to the COVID-19
pandemic, in the context of POCs, “there is market demand for a
device capable of providing oxygen therapy during an emergency sit-
uation.”55 They were used around the world to provide emergency
oxygen to COVID-19 patients when oxygen cylinders or liquid oxy-
gen was not available cylinders.57 Simple engineering solutions were
developed to combine several POCs together to feed oxygen directly
to a ventilator to provide flows up to 10L/minute for hypoxic, adult
patients.58 The success of POCs during the COVID-19 pandemic
highlight the potential for POCs during futuremass-casualty events.

Future of POCs
Despite advancements in POC technology, POCs cannot fully
replace high-pressure oxygen cylinders in low-resource settings.
For example, if a patient is extremely hypoxic during intubation,
a high-pressure cylinder may be the only source of sufficient oxygen
to prevent respiratory arrest. However, POCs will continue to
become smaller, more cost efficient, and will likely provide higher
flows of oxygen. Furthermore, there is already technology available
that combines a larger oxygen concentrator with a compressor sys-
tem capable of refilling small oxygen cylinders within 60-90
minutes.59 Although proprietary adapters are required and the sys-
tem is not portable, the ability to both provide continuous flows of
oxygen and refill oxygen cylinders with one device would signifi-
cantly reduce the logistical limitations of providing oxygen in
low-resource settings. Such technology, if ruggedized and minia-
turized, could transform oxygen delivery in austere environments
and even be incorporated into alternative technologies such as
supraglottic and endotracheal devices, portable suction units,
and extracorporeal tissue preservation.60–63 The ideal POC is
one that can be carried by one individual, provide moderate to high
flows of oxygen, has a battery backup, is low cost, and can refill oxy-
gen cylinders, if required.

Limitations
This systematic review has potential limitations. The subject mat-
ter covered a wide variety of topics from diverse sources. There are
no large-scale, Level I studies regarding POCs in low-resource set-
tings and there are limited clinical data regarding patient-centered
outcomes. Also, POCs vary greatly between models with differing
oxygen flow, cost, and portability. The conclusions of this review
are limited by this variation and temporal changes in POC tech-
nology over the last three decades as the application of a POC
in a specific clinical situation will be impacted by model capability.
It is incumbent upon clinicians and medical providers to recognize
these limitations prior to deployment of POCs into low-resource
settings. Furthermore, publication bias is a concern in systematic
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reviews and it is possible adverse events, negative outcomes, or fail-
ures of POCs in low-resource settings may not have been reported
in the literature. Finally, although the search strategy incorporated
a low inclusion threshold of all published and unpublished reports,
it may have missed relevant articles.

Conclusions
Portable oxygen concentrators are a low-cost, light-weight tool to
provide medical grade oxygen for a wide variety of clinical scenarios
in low-resource settings. As such, POCs may fill gaps in austere,
military, veterinary, EMS, and disaster medicine. Despite their
widespread use, there are limited scientific data available regarding

the use of POCs in these environments. Future clinical research is
needed to quantify the efficacy of POCs in low-resource settings.
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