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A distribution of the electric potentials around a charged absorbing particle in a
drifting weakly ionised collisional plasma with negative ions is calculated in the
linear hydrodynamic approach. Coulomb-like asymptote of the electric potential
around the absorbing particle deforms under the action of the negative ions’ flow
and exhibits a valley profile along the flow behind the particle. The presence of the
flowing negative ions can be conducive to string formation in the dust structures at
relatively large pressures.

Key words: dusty plasmas, plasma flows, complex plasmas

1. Introduction
The interactions between charged macroscopic dust particles immersed in a plasma

defines the properties of a strongly coupled complex plasma. Often, the complex
plasma is subjected to an external electric field (for example, in the plasma sheath, in
the positive column etc.) and becomes anisotropic. The anisotropic interaction between
the solid particles in a plasma is exhibited in the formation of inhomogeneous
dust structures such as string-like structures (Ivlev et al. 2008, 2011; Mitic et al.
2013). The interaction caused by ion flow perturbations is non-reciprocal and can be
responsible for heating and instabilities in the dusty plasma (see Melzer 2001; Ivlev
et al. 2015). When a negatively charged particle is placed in a flow of positive ions,
an excess of positive charge is formed downstream of the particle due to the ion
focusing (see Melandsø & Goree 1995; Lampe et al. 2000; Lapenta 2000).

In the collisionless case, the anisotropic potential decays at large distances as 1/r3,
where r is the distance from the particle (see Montgomery, Joyce & Sugihara 1968;
Kompaneets, Morfill & Ivlev 2016). Collisions of the ions with neutrals change
the asymptote and give a slower decaying component ∼1/r2 at distances larger
than an ion mean free path length (Stenflo, Yu & Shukla 1973; Kompaneets et al.
2007, 2016). In a weakly ionised collision-dominated flowing plasma containing
electrons and positive ions as mobile charges, the long-range potential around an
absorbing charged particle consists of a dipole-like component and an isotropic
Coulomb-like one caused by absorption, which is usually dominant (see Chaudhuri,
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Khrapak & Morfill 2007; Filippov et al. 2007; Chaudhuri, Khrapak & Morfill 2010).
The Coulomb-like potential is a field of the ambipolar diffusion on the dust grain. It is
isotropic in a uniform plasma with constant ion mobility (the case of a field-dependent
mobility has been considered by Zobnin (2018)).

The situation drastically changes in the presence of negative ions in the plasma.
The anisotropic part of the potential around the negatively charged absorbing particle
decreases with distance as 1/r in the presence of the negative ion flow, as will be
derived below.

2. Theory
Let us consider a small negatively charged absorbing particle in a weakly ionised

quasi-neutral collisional plasma containing electrons, single charged positive ions and
single charged negative ions, under the action of a uniform external electric field E.
We assume that both kinds of ions have the same temperature Ti (drifting velocities
are sub-thermal), while the temperature of the electrons Te may be differ. Assuming
that the drift–diffusion approach is valid at the distances of interest and neglecting
ionisation and space recombination processes we can write the flow continuity
equations for unperturbed densities of the electrons, negative and positive ions as

∇(zαnαE− (kBTα/e)∇nα)= 0, (2.1)

where the index α denotes ‘e’, ‘−’ or ‘+’ for the electrons, negative ions and positive
ions, respectively, zα is the charge number, ze = z− = −1 for the electrons and the
negative ions and z+ = 1 for the positive ions, kB is the Boltzmann constant, e is the
elementary charge. The total electric field can be split into the uniform external field
and an additional potential distribution ϕ(r) staying finite at infinite distances.

The flow continuity equations in the presence of a small absorbing particle are

∇(zα(nα + n̂α)(E−∇ϕ))− (kBTα/e)1(nα + n̂α)=−(Fα/bα)δ(r), (2.2)

where hats over nα denote small perturbations of the corresponding number densities,
Fe = F+ are the fluxes of electrons and positive ions on the particle (flux of the
negative ions is absent, F− = 0), bα is the mobility of the corresponding species and
δ(r) is the three-dimensional delta function, r is the radius vector from the particle
centre. The point-like sink ascribed to the delta function has been used early in a
number of papers (Chaudhuri et al. 2007; Filippov et al. 2007; Khrapak, Klumov &
Mofill 2008) for the description of the electric field around a small absorbing particle.
Neglecting the terms ∇(n̂α∇ϕ) and taking into account (2.1) we derive the linearised
equations

zα((∇n̂α ·E)− nα1ϕ)− (kBTα/e)1n̂α =−(Fα/bα)δ(r). (2.3)

Poisson’s equation is

−ε01ϕ = e(n̂+ − n̂− − n̂e − zdδ(r)), (2.4)

where ε0 is the electric constant and zd is the charge number of the particle. After the
Fourier transformation of (2.3) and (2.4) in a standard way we have

ϕ(k)=
−ezd − eJ(χ+ − χen+b+/(bene))

(2π)3/2ε0k2(1+ χ+ + χ− + χe)
, (2.5)
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where χ+= k2
D+/(k

2
+ i(k ·kE)), χ−= k2

D−/(k
2
− i(k ·kE)), χe= k2

De/(k
2
− i(k ·kE)/τ) are

the susceptibilities, J=F+ε0/(en+b+) is the dimensionless sink, kD+, kD− and kDe are
the inverse Debye radii for the positive ions, negative ions and electrons, respectively,
kE is the normalised external electric field or the gas-sound Mach number divided by
the ion mean free pass length, kE= eE/(kBT)=uν/(2v2

t ), where u is the drift velocity
vector of the positive ions, ν is the ion–neutral collision frequency, vt is the thermal
velocity and τ is the ratio of electron and ion temperatures. Dependence of the electric
potentials on the spatial coordinates is given by the inverse Fourier transformation

ϕ(r)=
1

(2π)3/2

∫
ϕ(k) exp(i(k · r)) d3k. (2.6)

The term χen+b+/(bene) in (2.5) is small with respect to the term χ+ due to the small
ratio of the ion and electron mobilities (with the exception of the case of a strongly
electronegative plasma with n−/ne ∼ be/b+) and will be omitted below.

3. Large distances asymptote
To investigate the potential profile at large distances, we assume that χ = χ+ +

χ−+χe� 1, expand (2.5) in the set on the χ negative powers and conserve terms up
to χ−1. The result is

ϕ(k) ≈
−(k4

+ (k · kE)
2)(k2
− i(k · kE)/τ)

(2π)3/2ε0k2
Dk4(k2

− i(k · kE)η)

×

(
ezd +

eJk2
D+

(k2
+ i(k · kE))

(
1−

(k4
+ (k · kE)

2)(k2
− i(k · kE)/τ)

k2
Dk2(k2

− i(k · kE)η)

))
, (3.1)

where k2
D = k2

D+ + k2
D− + k2

De is the square of the inverse Debye length λD, and
the parameter η is defined by the equation η = (k2

D+(1 + 1/τ) − k2
D−(1 − 1/τ))/k2

D.
The expression (3.1) allows for analytical Fourier transformation, but the resulting
equation appears to be too complex for analysis. So, we restrict the analysis via the
condition τ →∞. Thus, η = (k2

D+ − k2
D−)/k

2
D = (1 + 2ζ )−1, where ζ = n−/ne is the

electronegativity parameter, and the spatial potential distribution can be expressed in
the form

ϕ(r)=
e

4πε0

(
−

A
r
+ B

kE cos θ
r2k2

D
+ exp

(
−ηkEr cos2 θ

2

)
(C−H(r, θ))

r

)
, (3.2)

where kE and r are the absolute values of kE and r, respectively, θ is the angle
between E and r and A, B, C, D, E and F are the parameters

A= J(1+ ζ ), B= zd(1+ 2ζ )− J(1+ ζ )(1+ 2ζ ), C=
2Jζ (1+ ζ )

1+ 2ζ
,

H(r, θ) =
D
k2

D

(
kE

r
cos θ + ηk2

E cos2 θ

2

)
− 8Jζ 2 (1+ ζ )

2

(1+ 2ζ )3
k2

E

k2
D

(
sin2 θ

2
− ηkEr cos4 θ

2

)
,

D= 4zdζ
1+ ζ
1+ 2ζ

− 4Jζ
(1+ ζ )(2+ 3ζ + 2ζ 2)

(1+ 2ζ )2
.
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Equation (3.2) is valid when both conditions

r� λD and r� kEλ
2
D/η (3.3a,b)

are satisfied.
The ion flux on the grain can be easily calculated only for a small enough spherical

grain in a collision-dominant plasma, when

li < a(−eϕs/kBT)1/2� λD, (3.4)

where a is the grain radius, ϕs is the surface potential and li is the ion free path length.
In this case

J ≈ zd, (3.5)

which is well known for the two-component plasma (see Su & Lam 1963; Khrapak
et al. 2006) and remains true in the electronegative plasma, because (3.5) is derived
neglecting space charge in Poisson’s equation. The conditions (3.4) are stronger
than necessary for validity of (2.3) because the distances of interest for dust–dust
interaction are typically greater than the ion capturing radius and the Debye length.
Calculation of the ion flux on the grain in a general case is a rather complicated task
even in a two-component plasma. However, equation (3.5) gives the upper limit of
the ion flux on the attractive particle, so J 6 zd.

The expression (3.2) contains the components proportional to the parameters A
and C, which decrease as 1/r, while other components decrease as 1/r2. The first
ones arise from the absorption and are proportional to J. In the absence of the
external field they give a Coulomb-like asymptote

ϕ ≈
A−C

r
=

eJ
4πε0r

k2
D+

k2
D

(3.6)

in accordance with Chaudhuri et al. (2007) and Khrapak et al. (2008). In the presence
of the external field, the same asymptote remains only in the direction opposite to the
field (θ =π), while in other directions the asymptote is

ϕ ≈
eJ

4πε0r
k2

D+

k2
D
(1+ 2ζ ). (3.7)

The anisotropic term decaying as 1/r appears only in the electronegative plasma and
is connected with rarefaction of the negative ion flow behind the negatively charged
particle.

Figure 1 illustrates the potential distributions ϕ(r) around the charged absorbing
particle depending on the electronegativity parameter for the ratios of J/zd = 0.1
and 1.0. The calculations were performed for a fixed normalised external field and
a finite temperature ratio τ = 100 by the numerical Fourier transformation of (2.5).
The additional potential is normalised by the value −ezdkD/(4πε0), and the levels
0.3, 0.25, 0.2, 0.15, 0.1, 0.05, 0.02, ±0.01, ±0.005, 0 are shown in the figure by the
solid lines. The levels calculated by the approximation (3.2) are shown by the dashed
lines. Note, that, according to the conditions (3.3), the approximation (3.2) for ζ = 5
and kE = kD is valid only for r� 11λD.
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FIGURE 1. Potential distribution profiles for kEλD = 1 (the external field is upwards
directed), τ =100, J/zd=0.1 and 1, the negativity parameters ζ =0, 0.5 and 5, numerically
calculated by (2.5), (2.6) (solid lines) and according to (3.2) (dashed lines).

4. Conclusions
The obtained results have a direct relation to the dusty gas discharge plasma.

Negative ions can appear in chemically active or contaminated plasmas (Amemiya
1990; Klumov, Ivlev & Morfill 2003). The presence of negative ions essentially
affects the dust component. It not only decreases the dust particle charge (Klumov
et al. 2003; Merlino & Kim 2006), but drastically changes the interaction between
grains in the drifting plasma.
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The negative ion flow produces the anisotropic interaction even in the hydrodynamic
charging mode, when the positive ion flow cannot give significant anisotropy. The
anisotropic interaction produced by a negative ion flow fosters string formation. A
slow decrease in the potential with distance allows one to expect enhanced capture
of the particle in a string with an increasing number of particles. The effect of
string formation under the action of the negative ion flow is an analogy to the lane
formation in the driven binary complex plasmas, which has been experimentally
observed by Sütterlin et al. (2009) and Du et al. (2012), because a flow of small
dust particles penetrating a cloud of big particles can be treated as the flow of
multi-charged negative ions. Of cause, a large charge number limits application of
the small perturbation approach used here.
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