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The carry-on-until-one-girl proportion

MARTIN GRIFFITHS

Introduction
An imaginary society adopts the rule that every couple has children

until they have a girl (and then have no more).  What is the expected
proportion of females in the population comprising the first-generation
offspring?  Under certain assumptions, the answer to this depends on how
many couples belong to the society.  Throughout this note we will assume
the following:
1. All couples are able to produce children, and remain fertile for as long

as it takes to for a daughter to be born (we are therefore not imposing
an upper limit on the age of people in the society).

2. Only one child is born at a time (no twins, triplets, and so on).
3. On the conception of each child we have P(boy) = P(girl) .= 1

2

In addition to obtaining a general solution, we highlight several
misconceptions that can arise when students tackle such problems.

This note is related to several interesting pieces that have appeared in
the Gazette recently [1, 2, 3] in connection with ‘stopping policies’ of the
type described above.  In these articles the authors were, amongst other
things, concerned with the expected number of boys, the expected number
of girls and the ratio of these expected values in a society subject to such
policies.  One might, however, also be interested in the expected values of
the ratios or the proportions, the latter of which are dealt with here.

Some initial calculations
Suppose that the society comprises  couples.  Let  and  denote the

total number of males and females, respectively, arising as first-generation
offspring from these  couples. We then define  to be the random variable
representing the proportion of females in this offspring population.  It is
therefore the case that

n Mn Fn

n Pn

Pn =
Fn

Fn + Mn
.

Furthermore, let  denote , the expected proportion of females in the
offspring population.

pn E (Pn)

We start by considering the situation for a population comprising just
one couple. First, note that

E (M1) = 0 ×
1
2

+ 1 ×
1
22

+ 2 ×
1
23

+  … = 1

and

E (F1) = 1 ×
1
2

+ 1 ×
1
22

+ 1 ×
1
23

+  … = 1.
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Might we infer from this that the expected proportion of females arising
from one family is 50%?  Well, this would be the case if it were generally
true that, for random variables  and ,X Y

E ( X
X + Y ) =

E (X)
E (X) + E (Y).

However, this statement is false in general.  Whilst expectation is certainly a
linear operator, this property cannot be extended in general to deal with non-
linear functions of random variables in the manner shown above.

It is reasonably straightforward though to calculate .  With B and G
denoting the arrival of a boy and a girl, respectively, we see that the possible
sequences of births are given by G, BG, BBG, BBBG, BBBBG, and so on.
The probability that the  sequence occurs is equal to .  Note in fact that

 for each , and that  follows a geometric distribution given
by  for .  The expected proportion of females in the
offspring population is given by

p1

k th 1
2k

Fn = n n ∈ � M1
P (M1 = j) = 1

2j + 1 j ≥ 0

p1 = E ( 1
1 + M1

) = ∑
∞

k = 1

1
2kk

= log 2 ≈ 69%.

Students may be tempted to use the random variable

1
n

(P1 (1) + P1 (2) +  … +P1 (n)) (1)

as an estimator for , where  is a sum of
random variables, each identically and independently distributed as .  If
this was an unbiased estimator, then, since , it would be the case
that  for each . However, for , (1) is in fact a biased
estimator for , by which we mean that

pn P1 (1) + P1 (2) +  … +P1 (n) n
P1

p1 = log 2
pn = log 2 n ∈ � n ≥ 2

pn

E (P1 (1) + P1 (2) +  … +P1 (n)) ≠ pn.
That this is the case will be shown in due course.

We now calculate .  Note that the outcomes for two couples occur in
pairs, and that  no longer follows a geometric distribution for .  We
need to consider all possible outcomes, the first few of which are given
below:

p2
Mn n ≥ 2

(G)(G)
(G)(BG), (BG)(G)

(G)(BBG), (BG)(BG), (BBG)(G)
(G)(BBBG), (BG)(BBG), (BBG)(BG), (BBBG)(G)

…

There is exactly one outcome comprising two Gs, two outcomes comprising
two Gs and one B, and, in general,  outcomes consisting of two Gs and

s, each of which has a probability of  of occurring.  We
therefore have

k
k − 1 B 1

2k + 1
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p2 = E ( 2
2 + M2

)
= ∑

∞

k = 1

2k
2k + 1 (k + 1)

= ∑
∞

k = 1

1
2k − 2 ∑

∞

k = 1

1
2k + 1 (k + 1)

= ∑
∞

k = 1

1
2k − 2 ( ∑∞

k = 1

1
2kk

−
1
2)

= 2 − 2 log 2

≈ 61%.
Note that from this result we may infer that (1) is not in general an unbiased
estimator for .pn

For three couples the outcomes arise as triplets.  There is exactly one
outcome comprising three Gs, three outcomes comprising three Gs and one

B, and, in general,  outcomes consisting of three Gs and  Bs.

Therefore
( )k + 1

2
k − 1

p3 = E ( 3
3 + M3

) = ∑
∞

k = 1

3 ( )
2k + 2 (k + 2)

= 3 log 2 −
3
2

≈ 58%.

k + 1
2

Generalising
Let us suppose now that there are  couples.  A particular outcome will

comprise  girls and  boys for some non-negative integer .  We are thus
left with the task of enumerating the ways in which the  boys may be
distributed amongst the  couples. This corresponds to the number of ways
in which  may be written as an ordered sum of  non-negative integers,

which is in turn equal to . The expected proportion is thus

given by

n
n m m

m
n

m n

( )m + n − 1
m

pn = E ( n
n + Mn

) = ∑
∞

k = 1

n ( )
2k + n − 1 (k + n − 1)

.

k + n − 2
n − 1

It is in fact the case that  tends to 50% as  increases without limit,
and we provide here a heuristic explanation of this.  Suppose that there are
couples, where  is a very large positive integer, and that each has had just
their first child. Although the number of boys born will not necessarily be

pn n
n

n
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close to the number of girls born in an absolute sense, since  is large, we
would expect the proportion of girls amongst these  children to be very
close to one half.  Thus, approximately  of the couples stop having
children at this point whilst the remaining couples, of which there will be
roughly , continue in their quest for a girl.  Then, since  might still
be regarded as large, we would expect the proportion of girls amongst the
second-born children to be close to one half once more.  Thus,
approximately at least, a further  couples stop having children at this
point.  The remaining  couples have a third child, and so on.  From this
it follows that we would expect the total number of girls born to be roughly

n
n

n / 2

n / 2 n / 2

n / 4
n / 4

n
2

+
n
4

+
n
8

+  … = n,

and similarly for the number of boys born.  This gives the expected
proportion of girls born as approximately one half.

Finally, in [1, 2, 3] the authors are interested in society-wide ratios, and
hence in situations for which there are many families.  We show here that in
this case the proportion of expected values provides a good approximation
to the expected value of the proportion.  From the definition of , it is clear
that

Mn

Mn = M1 (1) + M1 (2) +  …  + M1 (n) ,
where the right-hand side is a sum of  random variables, each identically
and independently distributed as .  Then, since , it follows
that .  Therefore the proportion of expected values is given by

n
M1 E (M1) = 1

E (Mn) = n
E (Fn)

E (Fn + Mn)
=

E (Fn)
E (Fn) + E (Mn)

=
n
2n

=
1
2

.

From this and our observations above, we see that the expected value of the
proportion tends to the proportion of the expected values as  increases
without limit.

n
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