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This paper presents closed analytical solutions for the pressure and velocity fields of flows
in two-dimensional porous media. The flow field is modelled through a potential function
which allows the use of the Laplace equation to describe the pressure field. The boundary
conditions of the porous medium are tailored to represent general cases encountered in
transpiration cooling applications. These include mixed Neumann and Dirichlet boundary
conditions to represent a pressurised plenum driving a coolant mass flux, and impermeable
sections where the plenum is attached to a non-porous substructure. The external pressure
boundary is modelled as an arbitrary function representing a flow around the porous
domain, and the wall thickness of the porous domain can take any arbitrary distribution.
General solutions in Cartesian coordinates and cylindrical coordinates are provided
describing the entire porous domain of a flat plate or curved geometry, respectively. In
addition, special simplified solutions are provided for regions of particular interest, such
as the interface of external flow and porous medium. The obtained solutions are verified
through a comparison to a numerical simulation of two test cases, a rectangular flat plate
geometry and 90◦ section of a cylindrical case.

Key words: porous media, general fluid mechanics

1. Introduction

This work is focused on the description of flow fields in porous media which occur in
many applications, such as groundwater and oil flows, industrial filtering processes or
in transpiration cooling (van Foreest et al. 2020). The emphasis of the current work is
on transpiration cooling applications, but could be applied to any analogous porous flow
problem. Transpiration cooling is defined as the passing of a relatively cool fluid through
a porous medium in order to protect it from a high enthalpy external flow (Rubesin 1954).
This type of active cooling approach is envisioned for future hypersonic vehicles, such as
re-entry capsules, space planes or scramjet powered wave riders (Esser et al. 2015). All of
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those vehicles travel through the atmosphere at very high speeds of several kilometres
per second. This leads to a strong compression shock in front of them in which the
large kinetic energy is partially transferred into internal energy of the surrounding gas
(Anderson 2006). The resulting post-shock flow field leads to an extreme surface heat flux
that needs to be mitigated in order to ensure survival of the vehicle. The aforementioned
cooling technique of transpiration through a porous external skin of the vehicle can reduce
heat fluxes significantly to make them manageable for existing materials (Boehrk, Piol &
Kuhn 2010; Liu et al. 2010).

The external flow field around the porous wall can exhibit large lateral gradients in
surface heat flux and pressure. This is exacerbated for a slender vehicle when the leading
edge radius becomes small, as the surface pressure and heat transfer become concentrated
on the stagnation point and the downstream flow field will approximate the post-shock state
after an oblique shock wave (Lees 1956). This situation requires a spatial distribution of
transpired coolant that is higher at the stagnation point and falls off toward the downstream
region (Hermann, McGilvray & Naved 2020). Designed distributed blowing is further
complicated through the changing external surface pressure, which will impose an internal
flow pattern in the porous medium. In addition, changing wall thickness and impermeable
sections can be present in the design of the porous surface. Thinner wall sections are used
to drive more coolant mass flux in regions where significant blowing is required and a
large external surface pressure is acting on the vehicle. As the plenum side of the porous
medium has to be connected to the internal structure of the vehicle, some regions behind
the porous surface will be impermeable to coolant (Boehrk & Beyermann 2010). All these
factors lead to a complicated flow field inside the porous domain. To aid the design and
evaluation process of appropriate porous structures, an analytical description of the flow
field is highly useful. The derivation and validation of such a formulation is the topic this
work.

The two-dimensional flows in porous media have been extensively studied using
potential flow theory in e.g. Sherwood & Stone (2001), Ding & Wang (2018), Warrick,
Broadbridge & Lomen (1992) and Nguyen & Raudkivi (1983), which allows for
closed analytical descriptions of the potential and streamfunctions, respectively. The
resulting mathematical boundary value problem can then be applied to the respective
cases to determine a function for the pressure and velocity fields. For homogeneous
Dirichlet (pressure) or Neumann (velocity) boundary condition problems, the solution
is straightforward. Mixed Dirichlet–Neumann boundary conditions, however, pose more
challenging to solve analytically, as the usually employed orthogonality conditions fail. In
this case, a different mathematical approach is required, e.g. an iterative scheme, such as
shown in Read (2000). The current work contributes to the existing literature by building
on the method developed in Read (2007) and extends the mixed Neumann–Dirichlet
problem to a generalised case by accounting for an additional external boundary condition
of arbitrary shape. In this work, these formulations will be derived both for Cartesian
and cylindrical coordinate systems, which are appropriate for flows in flat plates and
curved geometries, respectively. The current work provides engineering level tools using
pressure as boundary conditions which are useful as a first-order design step. The pressure
boundary condition on the external flow side can be extracted from various sources, such as
computational fluid dynamics simulations or semi-empirical correlations. This procedure
is valid if the injected mass flux is small compared to the mass flux of the external flow
and hence does not significantly alter the external flow field. Please note that the analysis
provided in this work does not include higher-order effects, e.g. slip, transpiration and
resistance coefficients, occurring at the external flow interface as described in Beavers
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& Joseph (1967), Carraro et al. (2013), Lācis et al. (2020) and Rife & di Mare (2019).
The pressure and velocity fields derived in this work can be used as a boundary condition
in combination with a numerical simulation of the external flow field and an appropriate
interface model.

2. Potential flow description of porous domain

The fundamental laws describing a steady state incompressible flow in a homogeneous
isotropic porous medium are Darcy’s law,

u = −KD

μ
∇p, (2.1)

and the incompressible continuity equation,

∇ · u = 0, (2.2)

with the velocity vector u, the pressure p, the dynamic viscosity μ and the permeability
KD (Nield & Bejan 2012). A scalar potential function Φ can be defined by

u = ∇Φ. (2.3)

Under the assumption of a homogeneous and isotropic porous medium, (2.3) relates to the
pressure field through (2.1) as

p = − μ

KD
Φ, (2.4)

and relates to the velocity field in Cartesian coordinates through (2.3) by

vx = ∂Φ

∂x
, vy = ∂Φ

∂y
, (2.5a,b)

with the velocity in the horizontal (x) direction vx, and the velocity in the vertical (y)
direction vy. In cylindrical coordinates, the respective velocities are

vθ = 1
r

∂Φ

∂θ
, vr = ∂Φ

∂r
, (2.6a,b)

with the velocity in the angular (θ ) direction vθ , and the velocity in the radial (r) direction
vr. Combining (2.2) and (2.3) yields Laplace’s equation

∇2Φ = 0. (2.7)

In addition, a corresponding streamfunction Ψ is defined through the Cauchy–Riemann
equations in Cartesian coordinates,

∂Φ

∂x
= ∂Ψ

∂y
and

∂Φ

∂y
= −∂Ψ

∂x
, (2.8a,b)

and in cylindrical coordinates,

1
r

∂Φ

∂θ
= ∂Ψ

∂r
and

∂Φ

∂r
= −1

r
∂Ψ

∂θ
. (2.9a,b)

3. Solution of Laplace’s equation

This section details the mathematical derivation of the solutions to (2.7) for the two
investigated cases of Cartesian and cylindrical coordinate systems.
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Figure 1. Sketch of mathematical domain in Cartesian coordinates. White areas denote porous material,
while shaded areas denote impermeable material.

3.1. Cartesian coordinates
The general solution of (2.7) in Cartesian coordinates can be obtained through a separation
of variables and yields

Φ(x, y) = a + by + (α cos(λx) + β sin(λx))(δ cosh(λy) + γ sinh(λy)), (3.1)

with the constants a, b, α, β, δ, γ and λ which have to be determined from specific
boundary conditions. The porous domain, sketched in figure 1, starts at x = y = 0 in
the left bottom corner, and has a width of d and a height of t. Boundaries 1 and 2 are
vertical and represent the end of the porous domain in the horizontal direction. Boundary
3 represents the interface to an external flow field where an arbitrary pressure distribution
pe(x) can be present. Boundary 4 is on the plenum side and can have any arbitrary
thickness distribution bi(x). Any plenum pressure distribution pi(x) is possible, and this
side can have a number of impermeable segments along this boundary (figure 1 only shows
a single one for clarity). These boundary conditions can be represented mathematically as
follows: the left and right boundary conditions are represented as impermeable conditions

Boundary 1:
∂Φ

∂x
(0, y) = 0, (3.2)

Boundary 2:
∂Φ

∂x
(d, y) = 0, (3.3)

which can also be interpreted as a symmetrical boundary. The interface to the external
flow field has the pressure boundary condition

Boundary 3: Φ(x, t) = Φe(x) = −KD

μ
pe(x). (3.4)

The plenum boundary is a mixed case of Dirichlet and Neumann boundary conditions. At
permeable locations, the flow in the porous medium is driven by a pressure pi(x) which can
vary along the horizontal axis. At impermeable locations, no flow can cross the boundary
bi(x). This is mathematically described as

Boundary 4: Φ(x, bi(x)) = Φi(x) = −KD

μ
pi(x) for permeable locations,

Ψ (x, bi(x)) = Ψi = const. for impermeable locations.

⎫⎬
⎭ (3.5)

Using (3.2) and (3.3) in (3.1) yields the intermediate solution

Φ(x, y) = a + by +
∞∑

n=1

(δn cosh(Ny) + γn sinh(Ny)) cos(Nx) with N = πn
d

. (3.6)

An infinite sum of solutions has been constructed, where each individual term, i.e.
for each n, fulfils (2.7). Due to the linearity of Laplace’s equation, these can be
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superimposed, which is required in the next step when accounting for the internal and
external boundary conditions. The external potential is expressed as the Fourier series

Φe(x) = A0

2
+

∞∑
n=1

An cos(Nx) with A0 = 2
d

∫ d

0
Φe(x) dx and

An = 2
d

∫ d

0
Φe(x) cos(Nx) dx. (3.7)

Using a term-by-term coefficient comparison between (3.6) and (3.7), each coefficient An
can be related to the respective coefficients δn, γn, a and b by

δn cosh(Nt) + γn sinh(Nt) = 2
d

∫ d

0
Φe(x) cos(Nx) dx, (3.8)

and

a + bt = 1
d

∫ d

0
Φe(x) dx, (3.9)

yielding the solution

Φ(x, y) = 1
d

∫ d

0
Φe(x) dx + B0( y − t)

+
∞∑

n=1

Bn(cosh(Ny) − coth(Nt) sinh(Ny)) cos(Nx)

+
∞∑

n=1

2
d

∫ d

0
Φe(x) cos(Nx) dx

sinh(Nt)
sinh(Ny) cos(Nx). (3.10)

For convenience, in the following derivation, the constants b and δn have been relabelled
as B0 and Bn, respectively. The corresponding streamfunction can be obtained via the
Cauchy–Riemann equations ((2.8a,b)) as

Ψ (x, y) = B−1 − B0x −
∞∑

n=1

Bn(sinh(Ny) − coth(Nt) cosh(Ny)) sin(Nx)

−
∞∑

n=1

2
d

∫ d

0
Φe(x) cos(Nx) dx

sinh(Nt)
cosh(Ny) sin(Nx), (3.11)

with the arbitrary constant B−1 which stems from an indefinite integral. The remaining
unknown coefficients Bn are determined from the internal boundary condition by
employing and expanding on the methodology developed in Read (2007). The boundary
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forcing function F(x) is defined as

F(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φi(x) − 1
d

∫ d

0
Φe(x) dx

−
∞∑

n=1

2
d

∫ d

0
Φe(x) cos(Nx) dx

sinh(Nt)
sinh(Nbi(x)) cos(Nx), perm.

Ψi +
∞∑

n=1

2
d

∫ d

0
Φe(x) cos(Nx) dx

sinh(Nt)
cosh(Nbi(x)) sin(Nx). imperm.

(3.12)

In addition, the coefficient function Un(x) is defined as

Un(x) =
{
(cosh(Nbi(x)) − coth(Nt) sinh(Nbi(x))) cos(Nx), permeable
−(sinh(Nbi(x)) − coth(Nt) cosh(Nbi(x))) sin(Nx), impermeable, (3.13)

with

U0(x) =
{

bi(x) − t, permeable
−x, impermeable, (3.14)

and

U−1(x) =
{

0, permeable
1, impermeable. (3.15)

These functions allow the expression of (3.5) as

F(x) =
M∑

n=−1

BnUn(x). (3.16)

Here, the Fourier series is truncated to M + 2 terms corresponding to the coefficients
Bn for n = −1, 0, 1, . . . , M. Following on from the work in Read (2007), the normal
equations of this problem are

M∑
j=−1

Bj

∫ d

0
Ui(x)Uj(x) dx =

∫ d

0
Ui(x)F(x) dx, (3.17)

which can also be represented in a matrix form as

U · b = f , (3.18)

with the matrix entries for U ,

[U]ij =
∫ d

0
Ui(x)Uj(x) dx, (3.19)

the vector entries for f ,

[f ]i =
∫ d

0
Ui(x)F(x) dx, (3.20)

and the entries of the unknown coefficients’ vector b,

[b]i = Bi. (3.21)

Equations (3.19) and (3.20) can be solved with any appropriate numerical method. In
the cases presented in § 5, the integrals have been solved using trapezoidal integration.
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Equation (3.18) can simply be solved by

b = U−1 · f , (3.22)

to yield the remaining coefficients B. Equation (3.22) is valid for a square matrix of size
M + 2 × M + 2. Alternatively, the matrix can be rectangular and of the size M + 2 × M̃,
which results in the solution

UTUb = UT · f . (3.23)

This over collocation method has been shown to work best with M̃ = 2M to 5M points
(Read 2007). For convenience, the resulting formulations for the pressure field p(x, y),
velocity components vx(x, y), vy(x, y) and the streamfunction Ψ (x, y) are given below in
terms of the original pressure boundary conditions. Pressure field

p(x, y) = 1
d

∫ d

0
pe(x) dx − μ

KD
B0( y − t)

− μ

KD

M∑
n=1

Bn(cosh(Ny) − coth(Nt) sinh(Ny)) cos(Nx)

+
M∑

n=1

2
d

∫ d

0
pe(x) cos(Nx) dx

sinh(Nt)
sinh(Ny) cos(Nx), (3.24)

velocity components

vx(x, y) = −
M∑

n=1

BnN(cosh(Ny) − coth(Nt) sinh(Ny)) sin(Nx)

+ KD

μ

M∑
n=1

N

2
d

∫ d

0
pe(x) cos(Nx) dx

sinh(Nt)
sinh(Ny) sin(Nx), (3.25)

vy(x, y) = B0 +
M∑

n=1

BnN(sinh(Ny) − coth(Nt) cosh(Ny)) cos(Nx)

− KD

μ

M∑
n=1

N

2
d

∫ d

0
pe(x) cos(Nx) dx

sinh(Nt)
cosh(Ny) cos(Nx), (3.26)

and streamfunction

Ψ (x, y) = B−1 − B0x −
M∑

n=1

Bn(sinh(Ny) − coth(Nt) cosh(Ny)) sin(Nx)

+ KD

μ

M∑
n=1

2
d

∫ d

0
pe(x) cos(Nx) dx

sinh(Nt)
cosh(Ny) sin(Nx), (3.27)

with N = (πn)/d.
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Figure 2. Sketch of the mathematical domain in cylindrical coordinates. White areas denote porous material,
shaded areas denote impermeable material and dashed lines denote symmetry.

3.2. Cylindrical coordinates
The derivation of the solution in cylindrical coordinates is analogous to the previous
section. Therefore, only the main steps will be shown. The general solution of (2.7) in
cylindrical coordinates is

Φ(θ, r) = a + b ln(r) + (α cos(λθ) + β sin(λθ))(δr−λ + γ rλ). (3.28)

The respective porous domain is shown in figure 2 and resembles an architecture which
would be found in a porous leading edge of a hypersonic vehicle (Colwell & Modlin 1992).
The porous domain extends from θ = 0 to s, where it is terminated by an impermeable
boundary in radial orientation, and the domain is symmetrical along the θ = 0 axis.
Similarly to the Cartesian case, the external boundary is given by a pressure distribution
pe(θ) at the external radius Re. The internal boundary can have an arbitrary shape Ri(θ),
and can feature permeable and impermeable sections. Theses boundary conditions can be
expressed as

Boundary 1:
∂Φ

∂θ
(0, r) = 0, (3.29)

Boundary 2:
∂Φ

∂θ
(s, r) = 0, (3.30)

Boundary 3: Φ(θ, Re) = Φe(θ) = −KD

μ
pe(θ), (3.31)

Boundary 4: Φ(θ, Ri(θ)) = Φi(θ) = −KD

μ
pi(θ) for permeable locations,

Ψ (θ, Ri(θ)) = Ψi = const. for impermeable locations.

⎫⎬
⎭

(3.32)
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Implementing boundary conditions 1–3 yields the potential function

Φ(θ, r) = 1
s

∫ s

0
Φe(θ) dθ + B0 ln

(
r

Re

)
+

∞∑
n=1

Bn(r−N − R−2N
e rN) cos(Nθ)

+
∞∑

n=1

(
r

Re

)N

cos(Nθ)
2
s

∫ s

0
Φe(θ) cos(Nθ) dθ, (3.33)

and the streamfunction

Ψ (θ, r) = B−1 − B0θ +
∞∑

n=1

Bn(r−N + R−2N
e rN) sin(Nθ)

−
∞∑

n=1

(
r

Re

)N

sin(Nθ)
2
s

∫ s

0
Φe(θ) cos(Nθ) dθ. (3.34)

In order to account for boundary condition 4, the following functions are defined. The
forcing function

F(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φi(θ) − 1
s

∫ s

0
Φe(θ) dθ

−
∞∑

n=1

(
Ri(θ)

Re

)N

cos(Nθ)
2
s

∫ s

0
Φe(θ) cos(Nθ) dθ, perm.

Ψi +
∞∑

n=1

(
Ri(θ)

Re

)N

sin(Nθ)
2
s

∫ s

0
Φe(θ) cos(Nθ) dθ, imperm.

(3.35)

and the coefficient function

Un(θ) =
{
(Ri(θ)−N − R−2N

e Ri(θ)N) cos(Nθ), permeable,
(Ri(θ)−N + R−2N

e Ri(θ)N) sin(Nθ), impermeable,
(3.36)

with

U0(θ) =
⎧⎨
⎩

ln
(

Ri(θ)

Re

)
, permeable

−θ, impermeable,
(3.37)

and

U−1(θ) =
{

0, permeable,
1, impermeable. (3.38)

With these functions defined, the steps from (3.16) to (3.22) have to be carried out to obtain
the unknown coefficients Bn. The resulting formulations for the pressure field p(θ, r),
velocity components vθ (θ, r), vr(θ, r) and the streamfunction Ψ (θ, r) are given below
in terms of the original pressure boundary conditions. Pressure field

p(θ, r) = 1
s

∫ s

0
pe(θ) dθ − μ

KD
B0 ln

(
r

Re

)
− μ

KD

M∑
n=1

Bn(r−N − R−2N
e rN) cos(Nθ)

+
M∑

n=1

(
r

Re

)N

cos(Nθ)
2
s

∫ s

0
pe(θ) cos(Nθ) dθ, (3.39)
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velocity components

vθ (θ, r) = −
M∑

n=1

BnN(r−N−1 − R−2N
e rN−1) sin(Nθ)

+ KD

μ

M∑
n=1

rN−1

RN
e

N sin(Nθ)
2
s

∫ s

0
pe(θ) cos(Nθ) dθ, (3.40)

vr(θ, r) = B0
1
r

−
M∑

n=1

BnN(r−N−1 + R−2N
e rN−1) cos(Nθ)

− KD

μ

M∑
n=1

rN−1

RN
e

N cos(Nθ)
2
s

∫ s

0
pe(θ) cos(Nθ) dθ, (3.41)

and streamfunction

Ψ (θ, r) = B−1 − B0θ +
M∑

n=1

Bn(r−N + R−2N
e rN) sin(Nθ)

+ KD

μ

M∑
n=1

(
r

Re

)N

sin(Nθ)
2
s

∫ s

0
Φe(θ) cos(Nθ) dθ, (3.42)

with N = (πn)/s.

4. Mass injection at external boundary

For a transpiration cooling application, the most important quantity to be extracted from
these formulations is the outflow distribution at the external boundary condition. This
is the driving mass flux that leads to the cooling of the vehicle surface and is the desired
quantity in any design process of porous architectures. This outflow velocity is represented
by vy and vr and can be obtained by inserting the external boundary location y = t and
r = Re into (3.26) and (3.41), respectively. This simplifies the formulation significantly
and results in

vy(x, t) = B0 −
M∑

n=1

BnN
sinh(Nt)

cos(Nx)

− KD

μ

M∑
n=1

N coth(Nt) cos(Nx)
2
d

∫ d

0
pe(x) cos(Nx) dx, (4.1)

with N = (πn)/d for Cartesian coordinates. The resulting outflow velocity in cylindrical
coordinates is

vr(θ, Re) = B0

r
−

M∑
n=1

2BnN
rN+1 cos(Nθ) − KD

μ

M∑
n=1

N
r

cos(Nθ)
2
s

∫ s

0
pe(θ) cos(Nθ) dθ,

(4.2)

with N = (πn)/s. The derived velocities in (4.1) and (4.2) correspond to the Darcy velocity
just below the interface between porous domain and external flow. In a subsequent step,
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Figure 3. Sketch of flat plate example (a) with pressure boundary conditions (b).

these velocities could be used to account for the interface between porous domain and
external flow by using a flow resistance model (Idelchik 1986) or a more complex interface
model (Rife & di Mare 2019; Lācis et al. 2020).

5. Verification examples

This section provides two examples, representing a flat plate and a round leading edge
porous structure. The purpose of this section is to illustrate the obtained analytical results
for a real case and to verify them by comparing the results to numerical simulations.

5.1. Porous flow in flat plate domain
Figure 3 shows a sketch of the porous domain. A porous flat plate of width d = 12
mm and thickness t = 2 mm is bounded left and right by impermeable materials. The
domain features a linearly decreasing wall thickness from bi(x = 6 mm) = 0 mm to
bi(x = 12 mm) = 0.67 mm. The plenum side is separated into two chambers where a
constant pressure of 4 bar is applied from x = 0 mm to 3 mm, and a constant pressure of
1.5 bar is applied from x = 6 mm to 12 mm. The space between these domains is occupied
by an impermeable boundary. The top side of the plate is subjected to a pressure boundary
that decreases nonlinearly from 1.5 bar to 0.75 bar over the length of the plate and is
described by

pe(x) = 1.5 · 105 d
x + d

Pa. (5.1)

The porous material features a permeability of KD = 2.5 · 10−14 m2, and the fluid features
a dynamic viscosity of μ = 1.5 · 10−5 Pa · s. The resulting pressure and velocity fields
are shown in figure 4 which have been determined by evaluating (3.24)–(3.26), where the
absolute velocity is determined as

v(x, y) =
√

vx(x, y)2 + vy(x, y)2. (5.2)

The value of the computed Fourier coefficients M in this case was 80. A comprehensive
study of the error in each term for different values of M can be found in Read (2007).
The high pressure boundary between x = 0 and 3 mm on the plenum side is the main
driving feature in the pressure distribution. The behaviour between x = 0 and 2 mm
approximates a one-dimensional flow in the y-direction as the change in external pressure
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Figure 4. Pressure and velocity field in porous domain of flat plate case.
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Figure 5. Flow field along boundaries y = bi(x) and y = t. (a) Pressure and streamfunction at internal
boundary y = bi(x) and (b) velocity magnitude at external boundary y = t.

over this region is small. Significant edge effects are visible in the vicinity of the
pressure-impermeability boundary at x = 3 mm. The velocity distribution clearly shows
this boundary between different domains as peaks in the field. Both the left (x = 3
mm) and the right (x = 6 mm) boundaries are clearly visible where a large velocity
concentration is induced by a strong pressure gradient in the flow field.

The domain has been numerically simulated with the commercial multiphysics tool
COMSOL using a mesh of approximately 5000 cells. A mesh independence study was
carried out which showed that a finer mesh leads to a maximum difference of 0.5 % in the
velocity field when the mesh size is doubled. This is deemed as an acceptable accuracy and
the results discussed in the following relate to the coarser mesh. Figure 5 shows the relevant
values obtained at the internal and external boundaries. As per boundary condition 4,
the streamfunction is constant over the range of 3 to 6 mm, which represents a zero
velocity case due to the impermeable backside. The numerically and analytically obtained
pressure distributions show an excellent agreement. At sharp edges, e.g. x = 3 mm, the
Gibbs phenomenon of the Fourier series is visible, leading to slight oscillations in the
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Figure 6. Sketch of cylindrical example (a) with pressure boundary conditions (b).

vicinity of these discontinuities. Strategies to minimise this phenomenon are discussed in
Read (2007), with the best approach being over collocation or discrete least squares when
solving (3.23). A similar level of agreement is also present for the external outflow velocity.
The velocity distribution is increasing from x = 0 mm to a peak at approximately x = 1.5
mm. This peak is a result of the falling external pressure with larger x (see figure 3) while
the driving pressure distribution inside the porous material stays almost constant. Beyond
the peak, the diffusion around the edge of the plenum (p1) leads to a drop in the external
outflow velocity, as the low pressure region above the impermeable boundary (x = 3 to
6 mm) redirects a significant amount of the coolant flow into a lateral direction. Toward
the rear of the plate (x > 6 mm) the outflow velocity starts to increase again as the second
plenum (p2) leads to a coolant flow through the porous domain. The decreasing external
pressure boundary for larger x, and the thinner wall lead to a larger outflow velocity, as the
driving plenum pressure remains constant.

5.2. Porous flow in cylindrical leading edge
Figure 6 shows a sketch of the cylindrical test case investigated in this work. The
geometry represents a possible porous leading edge architecture and is symmetrical
around θ = 0. The angular extend (s) is a quarter circle with a constant external radius of
Re = 6 mm. The porous domain ends at θ = π/2 where an impermeable boundary exists.
The internal radius is 4.5 mm except from 0.3 · π/2 to the symmetry plane (θ = 0) where
the wall thickness gradually decreases from Ri(θ = 0.3 · π/2) = 4.5 mm in a straight line
to a minimum of Ri(θ = 0) = 5.4 mm. The internal boundary is split into two plenum
chambers with constant pressures of 5 bar and 3 bar, respectively. Between θ = 0.3 · π/2
and 0.75 · π/2, an impermeable boundary prevents coolant from entering into the porous
material. The external pressure decreases from 3.65 bar at the symmetry plane to 0.05 bar
at the end of the porous boundary and is defined by

pe(θ) = 5 · 103 Pa + 3.6 · 105 · cos2(θ) Pa. (5.3)

A similar pressure distribution would be expected from a post-shock flow field around
a leading edge wedge geometry. The porous material features a permeability of KD =
2.5 · 10−14 m2, and the fluid features a dynamic viscosity of μ = 1.5 · 10−5 Pa · s.
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The value of computed Fourier coefficients M in this case was 100. The resulting pressure
and velocity fields are presented in figure 7 where the velocity shown is the absolute value
determined through

v(θ, r) =
√

vθ (θ, r)2 + vr(θ, r)2. (5.4)

Similar to the Cartesian flat plate case, the pressure distribution leads to large gradients
between the permeable and impermeable boundaries at the internal plenum side. These
then result in a strong concentration of velocity at these boundaries. In figure 8, the
internal pressure and streamfunction distributions and the external outflow velocity are
presented. The constant streamfunction at the internal boundary between the arc lengths
of 2.5 and 5.5 mm confirms the impermeable boundary, and the pressure distribution
outside of this region also correctly replicates the required constant plenum pressures.
Figure 8 also contains a numerical comparison, that relates to the result of a COMSOL
simulation using a mesh of approximately 10 000 cells. A mesh independence study was
carried out which showed that a finer mesh leads to a maximum difference of 0.2 % in the
velocity field when the mesh size is doubled. This is deemed as an acceptable accuracy
and the results discussed in the following relate to the coarser mesh. The agreement of
the pressure and velocity values at the shown boundaries is excellent with the exception
of slight oscillations at an arc length of 0 mm due to the Gibbs phenomenon. In this case,
the steep decrease of the outflow velocity away from the symmetry plane is mainly due to
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the rapidly increasing thickness of the porous domain. The rival effect of a lower pressure
for greater θ cannot compete with the influence of a thinner wall. Naturally, the outflow
velocity is lowest above the impermeable section, as this region redirects a majority of the
fluid flow laterally, which would have otherwise contributed to the radial outflow. Toward
the rear of the domain at arc lengths > 5 mm, the outflow velocity increases again due to
the much lower external pressure (see figure 6).

6. Conclusion

This work presents an analytical solution to steady state porous flows encountered in
transpiration cooling applications. The steady state incompressible porous flow field
is described through potential flow theory and a closed analytical solution is derived
for Cartesian and cylindrical coordinates. The solution allows arbitrary wall thickness
distributions, arbitrary pressure distributions and arbitrary amounts and locations of
impermeable boundaries. General solutions for the pressure and velocity fields are
presented and special solutions are provided for the external boundary outflow velocity.
This allows a direct calculation of the expected mass injection distribution of a
transpiration cooling architecture. This work allows fast and accurate calculations of flow
fields in porous media which can be used as validation tools for numerical simulations or
as a fast design tool for porous transpiration cooling architectures.
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