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Dynamic models in which agents’ behavior depends on expectations of future prices or
other endogenous variables can have steady states that are stationary equilibria for a wide
variety of expectations rules, including rational expectations. When there are multiple
steady states, stability is a criterion for selecting among them as predictions of long-run
outcomes. The purpose of this paper is to study how sensitive stability is to certain details
of the expectations rules, in a simple OLG model with constant government debt that is
financed through seigniorage. We compare simple recursive learning rules, learning rules
with vanishing gain, and OLS learning, and also relate these to expectational stability. One
finding is that two adaptive expectation rules that differ only in whether they use current
information can have opposite stability properties.
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1. INTRODUCTION

One usually assumes in formal macroeconomic modeling that expectations are
rational. If this hypothesis is to be thought of as a long-run property of the outcome
of some learning and updating process [Lucas (1978), Grandmont (1988), Sargent
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90 TIMOTHY VAN ZANDT AND MARTIN LETTAU

(1993)], then one should also describe the way the agents form their forecasts
and eventually reach a rational expectations equilibrium. Rational expectations
and adaptive learning can thus be viewed as complementary approaches: rational
expectations allows one to identify the steady states, cycles, or other patterns that
might be collectively learnable in the long run, and then adaptive learning allows
one to test their stability and learnability.

There has thus developed a large literature on stability in macroeconomic mod-
els of adaptive learning [see, e.g., Guesnerie and Woodford (1991), Grandmont
(1998), and Evans and Honkapohja (2000)]. It is now well understood that stability
properties of learning processes are sensitive to the rule uses by agents to form
expectations.1 This paper explores this sensitivity further by comparing various
adaptive learning rules in the context of a single discrete-time macroeconomic
model.

The model is one of inflation with constant government debt financed through
seigniorage, as in Sargent and Wallace (1981), Marcet and Sargent (1989), Arifovic
(1995).2 It is a simple model with a single state variable (inflation πt ), yet it is not
trivial because its reduced form is πt = W (π e

t+1, π
e
t ); that is, the realized inflation

factor depends on expectations for two periods.3 It features both a low-inflation
(π L ) and a high-inflation (π H ) steady state, whose stability we compare for the
different learning rules.

The value of this exercise is threefold:

(i) Pedagogically, the exercise clarifies the differences between learning rules; in particu-
lar, we shed light on the stability of OLS learning in Marcet and Sargent (1989). Such
a comparison is not as clear in the other learning literature because papers typically
differ in both the underlying macroeconomic model and the type of learning.

(ii) Methodologically, we find that stability can depend crucially on whether agents use
current information to form expectations. As in a large class of temporary equilibrium
models, a Walrasian mechanism clears markets in each period. The current-period
price, necessarily known to agents at the time of trading, can affect demand both
through current terms of trade and through expectations. This combination of effects
may lead to multiple within-period Walrasian equilibria that would not exist if ex-
pectations were fixed. Thus, a common simplifying assumption is that agents ignore
current information when forming expectations. Yet, this assumption is not innocuous.

(iii) Substantively, we further characterize stability of the steady states in this macroeco-
nomic model of hyperinflation, which is of intrinsic interest. The gist of our results
is that π L tends to be stable and π H unstable (as in previous literature) when not too
much weight is placed on current information; otherwise the stability properties may
be reversed.

Our findings can be understood through the following examples. Suppose that,
in period t , agents form expectations π e

t+1 of the inflation factor in the next period
as a weighted average of the previous inflation expectations π e

t and of an observed
inflation factor—either πt−1 (lagged information) or πt (current information). That
is, either π e

t+1 = απt−1 + (1 − α)π e
t or π e

t+1 = απt + (1 − α)π e
t . The coefficient α

is constant over time, and hence we call these “constant-gain” expectations rules.
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The two rules differ only in the timing of the observed inflation used to update
expectations, but they lead to different stability properties:

Constant-gain expectations rules

Information π L π H

Lagged Stable (∼) Unstable
Current Unstable (∼) Stable

(All results hold for sufficiently low government debt; results marked by ∼ hold
only for some overlapping values of the other parameters.)

We consider also the “diminishing-gain” case, in which the weight α on new
information decreases to zero over time. Not surprisingly, stability does not depend
on the lag of the information and is the same as in the constant-gain case with lagged
information:

Diminishing-gain expectations rules

Information π L π H

Lagged Stable Unstable
Current Stable Unstable

By applying and extending results from Evans and Honkapohja (2000a), we also
show that stability in the diminishing-gain case is characterized by expectational
stability. Expectational stability has been used most extensively in stochastic mod-
els, but Evans and Honkapohja (2000a) contains results for deterministic models;
we apply these directly to the case of current information. With lagged informa-
tion, the resulting second-order system cannot be transformed to their framework;
hence we provide a new proof.

A much-studied learning rule is OLS learning. Consider first the OLS estimate
of π̄ for the linear model πs = π̄ + εs . This estimate is just the unweighted average
of past inflation factors, which is an example of a diminishing-gain expectations
rule; thus, the timing of information does not affect stability. In Marcet and Sargent
(1989), agents instead calculate π e

t+1 as the OLS estimate of π̄ for the linear model
ps = π̄ ps−1 + εs , using price data up through period t − 1 (lagged information).
We show that, with this rule, the timing of information does affect the stability of
π H but not the stability of π L :

OLS estimates for ps = π̄ ps−1 + εs

Information π L π H

Lagged Stable Unstable
Current Stable Stable
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92 TIMOTHY VAN ZANDT AND MARTIN LETTAU

These results can be understood as follows. The homoskedasticity assumption
implicit in OLS means that, in the linear regression ps = π̄ ps−1 + εs , the εs have the
same variance. Dividing this equation by ps−1, we obtain (a) πs = π̄ + εs/ps−1.
This resembles the equation (b) πs = π̄ + εs , whose OLS estimates correspond
to diminishing-gain expectations rules. However, the errors εs/ps−1 in (a) are
no longer homoskedastic; instead, around the high-inflation steady state π H in
which prices are rising, the variance of recent errors is lower than the variance of
older errors. This is why the OLS regression puts more weight on recent inflation
factors in a neighborhood of π H and the stability of π H is qualitatively the same
as for constant-gain expectations rules. In contrast, around the steady state π L—
which is close to unity and in which prices are nearly constant—the errors have
approximately the same variance, and stability is the same as for diminishing-gain
expectations rules.

Thus, using the OLS estimate for ps = π̄ ps−1 + εs with lagged data, Marcet
and Sargent (1989) conclude that π H is unstable. If they had instead assumed that
agents used current information, they would have found that π H was stable. If then
they had changed to the OLS estimates of the linear model πs = π̄ + εs , whose
implicit assumptions on errors are perhaps more plausible (and which does not
suffer from nonstationarity of the variables), they would have found again that π H

was unstable.
The purpose of this paper is not to advocate any one of these learning rules, but

rather to compare and understand them. The exercise illustrates that stability can
depend on seemingly minor details of the learning rule and hence that it is hard to
draw strong conclusions about equilibrium selection via a purely theoretical study
of adaptive learning. However, such exercises are useful and can be coupled with
empirical or experimental tests, such as Marimon and Sunder (1993).

2. MODEL

The underlying economic model is one of inflation with financing of a government
debt by seigniorage. Time is discrete, with periods t ∈ {0, 1, . . .}. The expression
“for all t” means “for all t ∈ {0, 1, . . .},” and expressions such as “πt → π̂” mean
“limt→∞ πt = π̂ .” R+ denotes [0, ∞) and R++ denotes (0, ∞).

For all t, pt ∈ R++ is the period-t price level, πt+1 := pt+1/pt is the period-
(t + 1) inflation factor, and mt is the period-t money supply. There is an initial
money supply of m−1, which is augmented in each period t by ptδ to finance a
constant real deficit δ > 0. Hence, for all t, mt = mt−1 + ptδ.

The period-(t + 1) inflation factor expected in period t is denoted π e
t+1; it is a

function—called the “expectations rule”—of the history up through and including
period t . Although we study rational expectations in Section 4, elsewhere the
expectations rules are adaptive in the sense that they are history dependent and
are not necessarily correct in equilibrium. They also have the flavor of predicting
inflation from past inflation because the inflation factor expected in any period is
in the convex hull of previous realized and expected inflation factors.4
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The period-t demand for real money balances depends on expected inflation
and is denoted S(π e

t+1), where S : R++ → R+; the nominal demand is pt S(π e
t+1).

We impose the following assumption on S.

Assumption 1.

(i) There exists πa ∈ (1, ∞) such that S(π) = 0 if and only if π ≥ πa .
(ii) S is continuous everywhere and is continuously differentiable on (0, πa).

(iii) S′(π) < 0 for π ∈ (0, πa) and S′(πa) := limπ↑πa S′(π) < 0.
(iv) limπ↓0 S(π) > δ.

Remark 1. For instance, S might be derived from an overlapping generations
model in which (a) the only form of savings is to hold money and (b) it is impossible
to borrow against earnings in old age. Then, π e

t+1 is the expected price of period-
(t + 1) consumption relative to period-t consumption; πa is the relative price at
which each generation prefers to consume its endowment; and S is equal to the
younger generation’s Walrasian net supply of period-t consumption, until the no-
borrowing constraint is binding. This is illustrated in Figure 1. The assumption
πa > 1 holds, for example, if the utility function is monotone and symmetric and
the endowment in youth is greater than the endowment in old age. That S is strictly
decreasing up to πa holds if consumption in youth and old age are gross substitutes.
Assumption 1 is not consistent with the exponential real-balances demand curve
S(π) = ce−aπ introduced by Cagan (1956), for which the demand for real money
balances is always strictly positive.

Given the period-(t − 1) history, the period-t market-clearing condition for pt

is that the supply of and demand for money be equal:

pt S
(
π e

t+1

) = mt−1 + ptδ. (1)

FIGURE 1. An illustration of Assumption 1. In an OLG model with two-period households,
the inflation factor represents the terms of trade between consumption tomorrow and today,
and the demand for real money balances by youth is equal to their net supply of consumption,
if positive. The wavy line (solid and dashed) might be the unconstrained net supply by youth
as a function of relative prices, and the solid line is the actual supply curve S given that
households cannot borrow.
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The period-(t − 1) history determines mt−1 and affects π e
t+1. The expectations π e

t+1
may also depend on pt : Inherent in this temporary equilibrium model, in which
a Walrasian mechanism clears markets, is that agents know pt when trading in
period t .

DEFINITION 1. An equilibrium is a price path {pt }∞t=0 that, together with its
associated money supply path {mt }∞t=0, satisfies equation (1) for all t . An equilib-
rium is stationary if there is a π̂ ∈ R++ such that πt = π e

t = π̂ for all t ≥ 1; π̂ is
then called the steady-state inflation factor.

We can characterize the equilibria in terms of expected and realized inflation
factors. For each t ≥ 1, combining the equilibrium conditions

pt−1S
(
π e

t

) = mt−1 and pt S
(
π e

t+1

) = mt−1 + ptδ

yields πt = W (π e
t+1, π

e
t ), where

W
(
π e

t+1, π
e
t

)
:= S

(
π e

t

)
S
(
π e

t+1

) − δ

is defined for π e
t+1 such that S(π e

t+1) > δ. With a few more steps,5 we can thus
show the following.

PROPOSITION 1. A price path {pt }∞t=0 ∈ R∞
++ is an equilibrium if and only if

p0[S(π e
1 ) − δ] = m−1 and, for t ≥ 1, πt = W (π e

t+1, π
e
t ).

A necessary condition for π̂ to be a steady state is that π̂ = W (π̂, π̂). We consider
only classes of expectations rules for which this is also a sufficient condition. We
now identify two steady states—one low (π L ) and one high (π H )—which will be
the focus of our stability analysis. In the OLG model described in Remark 1, π L

Pareto dominates π H .
These two steady states depend on δ (though we usually denote them simply by

π L and π H ) and are identified as follows. Rewrite the steady-state condition as
π̂ [S(π̂) − δ] = S(π̂). If we allowed δ = 0, this condition would require that either
π̂ = 1 or S(π̂) = 0. The S(π̂) = 0 case would correspond to an autarkic equilibrium
in which money had no value. The inflation factor would not be well defined, but
we could think of it as being πa because if π is close to πa , then S(π) is close
to 0 and the economy is approximately in autarky. We use the implicit function
theorem to find steady states π L and π H that are close to 1 and πa , respectively,
for δ close to 0.

PROPOSITION 2. There exist δ̂ > 0 as well as continuously differentiable func-
tions π L(·) and π H (·) defined on [0, δ̂) such that

(i) π L(δ) and π H (δ) are steady-state inflation factors for δ ∈ (0, δ̂);
(ii) π L(0) = 1 and π H (0) = πa;

(iii) dπ L/dδ > 0 and dπ H /dδ < 0 for δ ∈ [0, δ̂).
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Proof. We may rewrite π = W (π, π) as

f (π, δ) := S(π) − S(π)/π − δ = 0.

Then, f (1, 0) = 0 and f (πa, 0) = 0. Observe that

∂ f
∂π

= S′(π) − S′(π)/π + S(π)/π2,

∂ f
∂π

(1, 0) = S(1) > 0,

∂ f
∂π

(πa, 0) = S′(πa)(1 − 1/πa) < 0.

We apply the implicit function theorem at (1, 0) and at (πa, 0). Thus, there is a
neighborhood U of 0 and there are continuously differentiable functions π L and
π H defined on U that satisfy the three properties in the proposition, where the
signs of the derivatives depend also on ∂ f/∂δ = −1.6

Remark 2. Throughout this paper, we will denote the first derivatives of W by
W1 := ∂W/∂π e

t+1 and W2 := ∂W/∂π e
t ; these are

W1
(
π e

t+1, π
e
t

) = − S
(
π e

t

)
S′(π e

t+1

)
[
S
(
π e

t+1

) − δ
]2 > 0,

W2
(
π e

t+1, π
e
t

) = S′(π e
t

)
S
(
π e

t+1

) − δ
< 0.

For a steady state π̂ , we can use W (π̂, π̂) = π̂ to obtain

W1(π̂, π̂) = −π̂2S′(π̂)/S(π̂),

W2(π̂, π̂) = π̂ S′(π̂)/S(π̂) = −W1/π̂ . (2)

Because S′(πa) < 0 and S(πa) = 0,

lim
δ↓0

W1(π
H , π H ) = − lim

δ↓0
W2(π

H , π H ) = ∞.

On the other hand,

−∞ < lim
δ↓0

W2(π
L , π L) < 0 < lim

δ↓0
W1(π

L , π L) < ∞.

3. STABILITY

In subsequent sections, we study the stability of the steady states π L and π H for
various expectations rules. In each case, we are able to obtain a reduced-form
model in which there is an endogenous variable θt (which typically is πt or π e

t )
and a law of motion (difference equation) {gt }∞t=k characterizing the equilibrium
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paths such that {θ1, . . . , θk} are exogenous parameters (initial conditions) and,
for t ≥ k, θt+1 = gt (θt , θt−1, . . . , θt−k+1). We then use fairly standard definitions
of stability and instability, which we restate here because of the variety of minor
variations in the literature.

DEFINITION 2. A steady state θ̂ is stable if

(a) for any neighborhood U1 of θ̂ there is a neighborhood U2 ⊂ U1 such that, if each of
the initial conditions is in U2, then the equilibrium path never leaves U1; and

(b) there is a neighborhood U of θ̂ such that, if each of the initial conditions is in U, then
the equilibrium path converges to θ̂ .

This is usually called “local stability” in economics and “asymptotic stability” in
mathematics. We refer to the two subconditions as “stability(a)” and “stability(b)”,
respectively. The usual interpretation of stability is robustness with respect to small
perturbations.

DEFINITION 3. A steady state θ̂ is unstable if there is a neighborhood U1 of
θ̂ such that every neighborhood U2 ⊂ U1 contains an open set of initial conditions
for which the equilibrium path leaves U1.

The “open set” qualification is not standard in such a definition; however, as long
as the difference equation is continuous, the existence of any such initial conditions
implies the existence of an open set of such initial conditions. Otherwise, this is
a standard definition in mathematics. In economics, this is often called “local
instability.”

In most cases the reduced form we obtain is autonomous, and we are able to use
standard characterizations of stability and instability. Suppose that gt = g for all t
and that g is a first-order difference equation; if it is of higher order, then we first
rewrite it as a higher-dimensional first-order equation in the usual way. A sufficient
condition for stability is that the modulus of each eigenvalue of the Jacobian of g
is less than 1. A sufficient condition for instability is that the modulus of one of
these eigenvalues is greater than 1.

Remark 3. Our state variables are πt and π e
t . In most cases, we derive a reduced-

form system that involves only {π e
t }∞t=1. We study the reduced form because, for

π̂ ∈ R++, (π̂ , π̂) is an (un)stable steady state for the system with state variables
πt and π e

t if π̂ is an (un)stable steady state of the reduced-form system. A steady
state of the reduced form corresponds to a steady state of the full system because
we study expectations rules in which π e

t is constant if and only if πt is con-
stant. Instability in the reduced form trivially implies instability of the full system.
Stability(a) and stability(b) in the reduced form imply the same for the state vari-
able πt because W is continuous.

Remark 4. The conditions we derive for stability or instability of steady states
are in terms of δ, S, and the expectations rule. These conditions are the easiest to
state and interpret when δ = 0, and can then be extended (by continuity) to δ in
a neighborhood of 0. Thus, each of the results in this section holds only for δ in
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some neighborhood of 0.7 For conciseness, we use the notation “for δ ≈ 0, . . .” or
“if δ ≈ 0, then . . .” to mean “there is δ̄ > 0 such that if δ ∈ (0, δ̄), then . . .”. If the
ellipsis “. . .” includes an expression such as “ f (δ) ≈ k,” then, for any ε > 0, δ̄ can
be chosen so that | f (δ) − k| < ε if δ ∈ (0, δ̄).

4. RATIONAL EXPECTATIONS

A price path {pt }∞t=0 is said to be a rational expectations equilibrium (REE) if
and only if it is an equilibrium for the history-independent expectations rule
π e

t+1 = πt+1. The equilibrium condition πt = W (π e
t+1, π

e
t ) can then be written

S(πt+1) = S(πt )/πt + δ. (3)

On a suitable domain for πt , we can rewrite (3) as πt+1 = �(πt ), where

�(π) := S−1[S(π)/π + δ]. (4)

An inflation path {πt+1}∞t=0 is then a REE inflation path if and only if S(π1) > δ

and πt+1 = �(πt ) for t ≥ 1.8

Our reduced form under RE is thus the difference equation πt+1 = �(πt ). We
apply the usual definition of stability, but its interpretation is no longer “robustness
to small perturbations” (which are inconsistent with rational expectations) but
rather “indeterminacy”: Stability means that, for each neighborhood of the steady
state, there is an open set of equilibria (parameterized by π1) for which the path of
inflation factors does not leave this neighborhood and converges to the steady state.

PROPOSITION 3. For all δ ∈ (0, δ̂), π H (δ) is stable and π L(δ) is unstable with
respect to RE dynamics.

Proof. We show that �′(π L) > 1 and 0 < �′(π H ) < 1 when δ = 0, and hence
(by continuity) when δ ≈ 0. Differentiate (3) to find �′(·):

S′(πt+1) dπt+1 =
[

S′(πt )

πt
− S(πt )

π2
t

]
dπt

�′(πt ) = 1

S′(πt+1)

[
1

πt
− S(πt )

S′(πt )

1

π2
t

]
.

Then �′(1) = 1 − S(1)/S′(1) > 1 and �′(πa) = 1/πa < 1.

5. CONSTANT-GAIN ADAPTIVE EXPECTATIONS

5.1. Overview

In this section, we consider constant-gain expectations rules, in which inflation
expectations π e

t+1 are recursively updated each period t by combining (e.g., aver-
aging) the previous expected inflation factor π e

t and an observed inflation factor
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π i
t using a time-invariant rule. We say that information is lagged if π i

t = πt−1 and
that it is current if π i

t = πt . 9

A principal example is the averaging rule

π e
t+1 = απ i

t + (1 − α)π e
t ,

where α ∈ (0, 1]. More generally, we consider rules of the form π e
t+1 = ψ(π i

t , π
e
t ),

where ψ : R2
++ → R++ is assumed to be continuously differentiable, to put pos-

itive weight on new information, and to leave expectations unmodified if the
observed inflation equals the previously expected inflation. Denoting the first
derivatives of ψ by ψπ i := ∂ψ/∂π i and ψπ e := ∂ψ/∂π e, this assumption can be
stated as follows.

Assumption 2.

(i) For all π ∈ R++, ψ(π, π) = π ;
(ii) ψ is continuously differentiable;

(iii) there is a K ∈ (0, 1) such that 1 − K < ψπ i (π, π) ≤ 1 for all π ∈ R++.

An implication of part (i) is that ψπ i (π, π) + ψπ e(π, π) = 1; hence, part (iii)
implies that 0 ≤ ψπ e(π, π) < K .

5.2. Lagged Information

We begin with the case of lagged information: π e
t+1 = ψ(πt−1, π

e
t ). Given initial

conditions π e
1 and π e

2 such that S(π e
1 ) > δ and S(π e

2 ) > δ, {π e
t }∞t=1 and {πt }∞t=1 are

equilibrium expected and realized inflation paths if and only if

πt−1 = W
(
π e

t , π e
t−1

)
and π e

t+1 = ψ
(
πt−1, π

e
t

)
for t ≥ 2. Combining these two equations, {π e

t }∞t=1 is an equilibrium expected
inflation path if and only if S(π e

1 ) > δ, S(π e
2 ) > δ, and

π e
t+1 = ψ

[
W

(
π e

t , π e
t−1

)
, π e

t

]
(5)

for t ≥ 2.

PROPOSITION 4. Assume π e
t+1 = ψ(πt−1, π

e
t ) for t ≥ 2, where ψ satisfies As-

sumption 2 and π e
1 and π e

2 are initial conditions. Then, π H is unstable for δ ≈ 0.
Furthermore, π L is stable for δ ≈ 0 if

− S(1)

S′(1)
> ψπ i (1, 1), (6)

whereas π L is unstable for δ ≈ 0 if this inequality is reversed.

Proof. See Appendix A.
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Thus, π L is unstable when the supply function is sufficiently steep. A steeper S
implies that agents decrease their savings more—and hence current inflation is
higher—if they expect inflation to be high.

5.3. Current Information

When the expectations rule uses lagged information, there is a single Walrasian
equilibrium within each period. This has nothing to do with the assumption that
S is downward sloping. Recall that π e

t+1 represents the expected terms of trade
between period-t and period-(t + 1) consumption. When these terms are fixed,
so is the real demand S(π e

t+1) for money by households. The real supply by the
government is always fixed at δ, and the nominal supply mt−1 going into the period
is also fixed. The market-clearing price pt is simply that which makes the nominal
value of the net real demand for money, pt [S(π e

t+1) − δ], equal to the nominal
supply, mt−1.

If households instead use current-period information to update their inflation
expectations, then a higher price for current consumption raises inflation expec-
tations and hence makes current consumption seem less dear compared to tomor-
row’s consumption. Hence, demand for current consumption rises and real demand
for money falls when pt rises. The effect this has on the nominal demand for money
is ambiguous, since the nominal value of a fixed quantity of real demand rises.
There can be multiple prices at which the nominal demand and nominal supply of
money are equal.10

Specifically, suppose instead that π e
t+1 = ψ(πt , π

e
t ). Then, the equilibrium con-

dition πt = W (π e
t+1, π

e
t ) can be written as

f
(
πt , π

e
t

)
:= W

[
ψ

(
πt , π

e
t

)
, π e

t

] − πt = 0.

Let ϕ(π e
t ) be the set of equilibrium inflation factors, given π e

t . Given the initial
condition π e

1 , {π e
t }∞t=1 and {πt }∞t=1 are equilibrium expected and realized infla-

tion paths if and only if πt ∈ ϕ(π e
t ) and π e

t+1 = ψ(πt , π
e
t ) for t ≥ 1. Combining

these two conditions, we obtain a reduced-form condition π e
t+1 ∈ ψ[ϕ(π e

t ), π e
t ]

for the evolution of π e
t , but it is not a conventional difference equation because

π e
t �→→ ψ[ϕ(π e

t ), π e
t ] is a correspondence rather than a function. If we define an

equilibrium selection F , where F(π e
t ) ∈ ϕ(π e

t ), then we obtain a standard dif-
ference equation π e

t+1 = ψ[F(π e
t ), π e

t ] and thus we can define (in)stability in the
usual way. If the equilibrium selection picks out the equilibrium point farthest
from π e

t , then stability means that there is a neighborhood of the steady state such
that, for every initial condition in this neighborhood and every equilibrium path
with this initial condition, the inflation factor converges to the steady state. This
is rarely satisfied when multiplicity is truly a problem. For example, if there are
multiple equilibria at the steady state, then a path starting in the “steady state”
can immediately jump away from it. Stability is more likely to be obtained if the
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equilibrium selection, in a neighborhood of each steady state, instead picks out an
equilibrium that is closest to the steady state. Stability then means roughly that
there is a neighborhood of the steady state such that, for every initial condition in
this neighborhood, there is some equilibrium path with this initial condition that
converges to the steady state.

We adopt the latter approach by defining an equilibrium selection F that is
obtained, in a neighborhood of each steady state, by applying the implicit function
theorem to f (πt , π

e
t ) = 0. The instability results so derived are robust in the sense

that, if π is an unstable steady state for such a selection, then it is also unstable—or
perhaps not even a steady state—for other selections. On the other hand, one could
take issue with stability if one has given reasons to assume a different selection.
This caveat is discussed further following Proposition 5.

PROPOSITION 5. Assume π e
t+1 = ψ(πt , π

e
t ) for t ≥ 1, where ψ satisfies As-

sumption 2 and π e
1 is an initial condition. Then π H is stable for δ ≈ 0. Furthermore,

if

− S(1)

S′(1)
<

2ψπ i (1, 1)

2 − ψπ i (1, 1)
, (7)

then π L is unstable for δ ≈ 0. If the inequality (7) is reversed, then π L is stable
for δ ≈ 0.

Proof. See Appendix A.

Thus, π H is stable when expectations are conditioned on current information
but is unstable when conditioned on lagged information. The stability of π L can
also change. If π L is stable when information is current, it remains stable when
information is lagged; however, if

ψπ i (1, 1) < − S(1)

S′(1)
<

2ψπ i (1, 1)

2 − ψπ i (1, 1)
,

then, for δ ≈ 0, π L is unstable when information is current but is stable when
information is lagged.

Van Zandt and Lettau (2001, Sect. 6) show that the implicit equilibrium selection
on which this section is based is tatônnement unstable and that, when S is affine,
there may be another equilibrium selection that is tatônnement stable and for which
π H is not a steady state.11 If one requires tatônnement stability as a refinement, then
π H is eliminated, just as in the lagged-information case. However, the reasons are
completely different. The tatônnement argument says that π H is not even a steady
state because of a refinement on the static within-period Walrasian equilibria. If
this is the justification for ruling out π H rather than dynamic stability, then this
argument should be made explicitly. Note that stability of π L cannot be restored
under current information by invoking this refinement.
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6. EXPECTATIONAL STABILITY AND SLOW UPDATING

We examine recursive time-independent rules that put low weight on the last
observation and time-dependent rules for which the weight on the last observation
diminishes to zero.

6.1. Updating with Constant but Low Weight on New Information

Recall the expectations rules π e
t+1 = ψ(π i

t , π
e
t ) studied in Section 5. Intuitively, if

little weight is placed on the last observation (ψπ i is small), then stability should
not depend on whether lagged or current information is used. For the low-inflation
steady state π L , this is easy to see from Propositions 4 and 5: When ψπ i ≈ 0, the
inequality in equation (6) holds and the inequality in equation (7) is reversed; hence
π L is stable whether information is lagged or current. However, Proposition 5 does
not tell us whether π H is unstable when information is current but little weight
is placed on new information. This proposition states that π H is stable for δ ≈ 0
when information is current; the meaning of this result is that, for fixed ψ , there is
a δ̄ > 0 such that π H is stable for δ < δ̄. An inspection of the proof of Proposition 5
reveals it is also true that, for fixed δ > 0, there is an ᾱ such that π H is unstable if
ψπ i (π H , π H ) < ᾱ.

We can also reach these conclusions by using the criterion of expectational sta-
bility, introduced by Evans (1985) and used extensively to characterize asymptotic
stability in stochastic systems with decreasing-gain learning rules [see Evans and
Honkapohja (2000b) for an overview]. In our model, a steady state is expectation-
ally (un)stable if it is an (un)stable zero of the following differential equation:

dπ e

dτ
= W

(
π e

τ , π e
τ

) − π e
τ . (8)

That is, π̂ is expectationally stable if

W1(π̂, π̂) + W2(π̂, π̂) < 1,

and it is expectationally unstable if this inequality is reversed.

PROPOSITION 6. For δ ≈ 0, π L is expectationally stable and π H is expecta-
tionally unstable.

Proof. According to Remark 3,

W1(π̂, π̂) + W2(π̂, π̂) = −π̂(π̂ − 1)S′(π̂)/S(π̂) =: �(π̂)

at a steady state π̂ . Since limδ↓0 S(π L) = S(1) > 0, we have limδ↓0 �(π L) = 0 and
hence π L is expectationally stable for δ ≈ 0. However, since limδ↓0 S(π H ) = 0, we
have limδ↓0 �(π̂) = ∞ and hence π H is expectationally unstable for δ ≈ 0.

One can think of the differential equation (8) as a fictitious continuous-time limit
of our discrete-time model when the adjustment to the expected inflation factor is
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proportional to the length of the time period and to the gap between the expected
and realized inflation factors. In this case,

π e
t+�t = π e

t + �t
[
W

(
π e

t , π e
t−�t

) − π e
t

]
,

π e
t+�t − π e

t

�t
= W

(
π e

t , π e
t−�t

) − π e
t .

(We are not deriving a true continuous-time limit of our model because we assume
that the length of the time period does not affect δ or S.) Since the length of the time
period only affects the speed of adjustment, this continuous-time equation should
be an approximation to our discrete-time model when the rate of adjustment ψπ i

is small. Thus, that π L is stable (π H is unstable) when ψπ i ≈ 0 should follow from
the fact that π L is expectationally stable (π H is expectationally unstable).

This is confirmed by deriving such a link for a more general class of mod-
els. Here, we abuse notation slightly and let W stand for an arbitrary function.
Otherwise, the dynamic system is as studied in Section 5, with state variables πt

and π e
t .

PROPOSITION 7. Let A ⊂ R be open, let W : A × A → R be continuously
differentiable, and let ψ : A × A → A satisfy Assumption 2 (restated for the
domain A). Consider the dynamic system with state variables πt and π e

t defined
by (i) πt = W (π e

t+1, π
e
t ) for t ≥ 1 and (i i) π e

t+1 = ψ(π i
t , π

e
t ). (In the case of lagged

information, π i
t = πt−1, equation (i i) holds for t ≥ 2, and π e

1 and π e
2 are ini-

tial conditions; in the case of current information, π i
t = πt , equation (i i) holds

for t ≥ 1, and π e
1 is an initial condition.) Assume that π̂ ∈ A and π̂ = W (π̂, π̂).

If π̂ is expectationally (un)stable then there is ᾱ such that π̂ is (un)stable if
ψπ i (π̂, π̂) < ᾱ.

Proof. See Appendix B.

6.2. Diminishing Gains

It is also intuitive that if π̂ is (un)stable for ψπ i close to zero, then it should be
(un)stable when the adjustment of expectations is time dependent and converges
to zero, as in the expectations rule

π e
t+1 = αtπ

i
t + (1 − αt )π

e
t ,

where π i
t is equal to either πt−1 or πt and where αt → 0. A caveat is that the

sequence {αt } should not converge so quickly that the system gets stuck at a
nonsteady state.

This is the gist of Propositions 8 and 9 below. These results are similar to the
use of expectational stability to characterize stability in stochastic systems with
diminishing updating of expectations. Evans and Honkapohja (2000a) give results
for deterministic models that we adapt to ours when π i

t = πt (Proposition 8). When
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instead π i
t = πt−1, our model does not fit their framework. Therefore, we provide

an independent proof, Proposition 9. We begin by specifying the parts of the model
and the assumptions that are common to the two propositions.

Assumption 3. Let A ⊂ R be open and let W : A × A → R be continuously
differentiable. Consider the dynamic system with state variables πt and π e

t defined
by (i) πt = W (π e

t+1, π
e
t ) for t ≥ 1 and (ii) π e

t+1 = αtπ
i
t + (1 − αt )π

e
t . (In the case

of lagged information, π i
t = πt−1, equation (ii) holds for t ≥ 2, and π e

1 and π e
2

are initial conditions; in the case of current information, π i
t = πt , equation (ii)

holds for t ≥ 1, and π e
1 is an initial condition.) Assume that 0 < αt < 1 for all

t, αt → 0, and
∑∞

t=1 αt = ∞. Define a steady state to be π̂ ∈ A such that π̂ =
W (π̂, π̂).

PROPOSITION 8. Consider Assumption 3 with current information, and let
π̂ be a steady state. Assume αt W1(π̂, π̂) �= 1 for all t . Then π̂ is stable if it is
expectationally stable. Assume also W2(π̂, π̂) �= −(1 − αt )/αt for all t . Then π̂ is
unstable if it is expectationally unstable.

Proof. See Appendix B.

PROPOSITION 9. Consider Assumption 3 with lagged information, and let π̂

be a steady state. If {αt } is weakly decreasing, then π̂ is stable if it is expectationally
stable. If W2(π̂, π̂) < 0, then π̂ is unstable if it is expectationally unstable.

Proof. See Appendix B.

7. OLS LEARNING REVISITED

Marcet and Sargent (1989) study the dynamics of this model for the case of
affine S, using an expectations rule in which π e

t+1 is the OLS estimate of π̄ for the
model

ps = π̄ ps−1 + εs, (9)

using price data only up through period t − 1. In our notation, we can write this
expectations rule, which we call “OLSpt−1 ,” as

π e
t+1 =

∑t−1

s=−1
ps ps−1∑t−1

s=−1
p2

s−1

=
∑t−1

s=−1
p2

s−1πs∑t−1

s=−1
p2

s−1

for t ≥ 0, where p−2 and p−1 are initial conditions. The authors show that π L is
stable and π H is unstable.

In this section, we consider three other variations of OLS expectations rules.
The first is the OLS estimate for the same model in equation (9), but including
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data from period t . This forecasting rule, which we refer to as “OLSpt ,” can be
written as

π e
t+1 =

∑t

s=0
ps ps−1∑t

s=0
p2

s−1

=
∑t

s=0
p2

s−1πs∑t

s=0
p2

s−1

for t ≥ 0, where p−1 is an initial condition.
An agent might instead use the OLS estimate of π̄ for the model

πs = π̄ + εs, (10)

using price data up through period t − 1 in one case and period t in the other. We
refer to these rules as “OLSπt−1 ” and “OLSπt ,” respectively. Of course, these OLS
estimates are just the means of the inflation factors in the data sets,

π e
t+1 = 1

t + 1

t−1∑
s=−1

πs,

π e
t+1 = 1

t + 1

t∑
s=0

πs,

respectively, where π−1 and/or π0 are initial conditions.

PROPOSITION 10. Each of the following stability properties holds for δ ≈ 0:

Rule | π L π H

||||O L S pt−1 | stable unstable||O L S pt | stable stable||O L Sπt−1 | stable unstable||O L Sπt | stable unstable

(Instability of π H for OLSπt−1 also assumes W1(π
H , π H ) �= t for all t .)

Proof. See Appendix C.

Here is some intuition for these results. Each of these rules can be written in the
form π e

t+1 = αtπt + (1 − αt )π
e
t or π e

t+1 = αtπt−1 + (1 − αt )π
e
t , as follows:

(OLSpt−1) : π e
t+1 = p2

t−2∑t−1

s=−1
p2

s−1

πt−1 +
∑t−2

s=−1
p2

s−1∑t−1

s=−1
p2

s−1

π e
t ,
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(OLSpt ) : π e
t+1 = p2

t−1∑t

s=0
p2

s−1

πt +
∑t−1

s=0
p2

s−1∑t

s=0
p2

s−1

π e
t ,

(OLSπt−1) : π e
t+1 = 1

t + 1
πt−1 + t

t + 1
π e

t ,

(OLSπt ) : π e
t+1 = 1

t + 1
πt + t

t + 1
π e

t .

Consider first OLSπt−1 and OLSπt , for which the αt are history-independent,
sum to ∞, and converge to 0 (this case was studied in Section 6). According to
Propositions 8 and 9, a steady state π̂ is asymptotically (un)stable if it is expecta-
tionally (un)stable. According to Proposition 6, π L is expectationally stable and
π H is not.

Now consider OLSpt−1 and OLSpt . Since the αt are history dependent, we cannot
directly apply the results of the preceding sections. Still, there is an interesting re-
lationship between those results and the stability properties of OLSpt−1 and OLSpt .
Observe that equation (9), when divided through by ps−1, yields

πs = π̄ + εs/ps−1. (11)

Given the OLS assumption that the disturbances {εs}∞s=2 are i.i.d., the difference
between models (11) and (10) is that the former views the variance of the distur-
bances to the inflation rates as inversely proportional to the square of the previous
period’s price level. Hence, if prices are rising, OLSpt−1 and OLSpt put more weight
on recent than on older observations of inflation. If the inflation factor is above and
bounded away from 1, then αt is bounded away from 0. In particular, if πt → π̂ ≥ 1
then αt → 1 − π̂−2 =: απ̂ .12

Consider a steady state π ∈ {π L , π H }. As long as π̂ > 1, so that απ̂ > 0, intu-
itively the stability of the steady state should be the same as for the constant-gain
expectations rule

π e
t+1 = απ̂πt−1 + (1 − απ̂ )π e

t (for OLSpt−1)

π e
t+1 = απ̂πt + (1 − απ̂ )π e

t (for OLSpt ).

Since π L < π H , it follows that απ L < απ H ; hence, the implicit assumption about
the disturbances implies that OLSpt−1 and OLSpt place greater weight on recent
information around the steady state π H than around the steady state π L .

In particular, for δ ≈ 0, π H ≈ πa and απ H ≈ 1 − (πa)−2 > 0, whereas π L ≈ 1
and απ L ≈ 0. Hence, Propositions 5 and 6 suggest that π H is unstable for OLSpt−1

and stable for OLSpt , whereas π L is stable for both OLSpt−1 and OLSpt .
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8. CONCLUSION

Both active researchers in and observers of the literature on stability under adap-
tive learning in macroeconomic models are aware that changes in expectations
rules affect the stability of steady states. Such nonrobustness is a fact of life when
rationality and fulfilled expectations, whose specification is typically derived from
deductive principles, are replaced by realistic models of boundedly rational behav-
ior, the choice of which is essentially an empirical question. The indeterminacy
that arises in models of rational expectations (or, e.g., of equilibria in games)
is replaced by indeterminacy about the proper specification of expectations (or,
e.g., of reputation or learning in games). Yet the development of such models
helps us to understand how various kinds of human behavior lead to different
outcomes.

Thus, the main results of this paper (outlined in the Introduction) are not intended
to uncover a smoking gun of nonrobust models. Rather, the exercise provides
concrete examples of nonrobustness in order to help us understand what factors
affect stability. In particular, we show that the assumption that agents use lagged
rather than current information should not be made casually and should not be
justified solely by the simplification that such an assumption allows.

We also found this exercise useful for understanding the existing literature be-
cause we were able to experiment with a variety of learning rules—similar to ones
that have been used in this literature—in the context of a single simple macroeco-
nomic model. We hope that some readers also benefit in this way.

NOTES

1. See Guesnerie and Woodford (1992, Sect. 7) for an overview of different learning criteria for
selecting equilibria.

2. It is similar to the continuous-time hyperinflation model of, e.g., Cagan (1956), Sargent
and Wallace (1987), and Bruno and Fischer (1990). See Van Zandt and Lettau (2001, Sect. 10) for a
comparison of the discrete-time and continuous-time models.

3. In contrast, many general treatments of stability, such as Guesnerie and Woodford (1991, 1992),
study the reduced form xt = ϕ(xe

t+1) or xt = ϕ(xt−1, xe
t+1).

4. There are other ways to form expectations. Van Zandt and Lettau (2001) considers also, for the
case of no government debt, (a) predicting prices as an average of past prices, as in Fuchs and Laroque
(1976), Tillman (1983), and Lucas (1986); and (b) estimating a trend in inflation factors, as in Duffy
(1994).

5. Given in Van Zandt and Lettau (2001, Sect. 2).
6. S′(πa) is only the left derivative of S at πa . For the application of the implicit function theorem at

(πa, 0), we thus use the following fact: Assumption 1 implies that there is a continuously differentiable
function Ŝ that coincides with S on [0, πa] and for which Ŝ′(πa) = S′(πa). We replace S by Ŝ in order
to apply the implicit function theorem, and then observe that for, δ ≥ 0, the implicitly defined function
only takes values in the range [0, πa] where Ŝ = S.

7. This is not a mere technical simplification; for example, Bullard (1994) shows that dynamics in a
least-squares learning model similar to Marcet and Sargent (1989) (but with constant nominal deficit)
becomes quite complicated for larger values of δ.

8. This claim is stated and proved precisely in Van Zandt and Lettau (2001, Sect. 4), where the
domain of � is also defined.
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9. We first studied the basic ideas of this section via an example that is now in Van Zandt and
Lettau (2001). This example was also studied independently and contemporaneously by Virasoro
(1994).

10. With multiple goods, there can be multiple equilibria even with lagged information, and hence
current information does not introduce additional complications. This is why the literature on temporary
equilibrium with multiple goods typically assumes that agents use current information and adopts the
approach to equilibrium selection outlined later [e.g., see Grandmont (1998)]. Lagged information
arose as a simplifying assumption in single-good macroeconomic models, such as that of Marcet and
Sargent (1989).

11. We are greatly indebted to Albert Marcet for bringing this fact to our attention. The views
expressed here are those of the authors.

12. A proof of this formula for the limit is in Marcet and Sargent (1989).
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APPENDIX A: PROOFS FOR CONSTANT-GAIN
RECURSIVE EXPECTATIONS

For future reference, we note the standard conditions for stability of a second-order homo-
geneous difference equation [Gandolfo (1997, p. 58)].

LEMMA A.1. Consider a second-order difference equation xt+1 = g(xt , xt−1), where
g is continuously differentiable. Consider its linearization xt+1 = a0xt + a1xt−1 around a
steady state x̂, where a0 = ∂g/∂xt and a1 = ∂g/∂xt−1 at x̂ . The x̂ is stable if a1 > −1 and
|a0| < 1 − a1; x̂ is unstable if either inequality is reversed. (In particular, x̂ is unstable if
|a0| > 2.)

Proof of Proposition 4. As explained prior to the statement of Proposition 4, it suffices
to study the stability of steady states of the following difference equation:

π e
t+1 = ψ

[
W

(
π e

t , π e
t−1

)
, π e

t

]=: g
(
π e

t , π e
t−1

)
. (A.1)

Let gπe
t

and gπe
t−1

be the partial derivates of g. Evaluated at a steady state,

gπe
t

= ψπ i W1 + ψπe > 0,

gπe
t−1

= ψπ i W2 < 0.

Consider first the steady state π H . By Assumption 2, ψπ i is bounded away from zero;
by Remark 2, limδ↓0 W1(π

H , π H ) = ∞. Hence, for δ ≈ 0, gπe
t
> 2 and π H is unstable.

Now, consider π L . We evaluate the stability conditions in Lemma A.1 in the limit
as δ = 0; by continuity the conclusions hold for δ ≈ 0. Note from equation (2) that, at
π̂ = π L and when δ = 0, W1 = −W2. Hence, the stability conditions become ψπ i W1 < 0
and |ψπ i W1 + ψπe | < 1 + ψπ i W1. Because ψπ i W1 > 0 and 0 ≤ ψπe < 1, the second con-
dition holds. The condition ψπ i W1 < −0 is just the inequality S(1) > −S′(1)ψπ i (1, 1) in
equation (6).
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Proof of Proposition 5. The proof begins with the discussion of equilibrium selections
that precedes Proposition 5. Recall that the period-t equilibrium condition is

f (πt , π
e
t ) := W

[
ψ

(
πt , π

e
t

)
, π e

t

] − πt = 0. (A.2)

We let F be an equilibrium selection that, in a neighborhood of the steady states π L and π H ,
selects the equilibrium closest to the steady state. Then F is defined in a neighborhood of
each of these steady states by application of the implicit function theorem, when possible.
The dynamic system thus becomes πt = F(π e

t ) and π e
t+1 = ψ(πt , π

e
t ) for t ≥ 2. Combining

these, we obtain a single equation π e
t+1 = ψ[F(π e

t ), π e
t ] =: g(π e

t ) governing {π e
t }∞

t=1.
Let π̂ be a steady state and let fπ and fπe denote the partial derivatives of f . In what

follows, partial derivatives are evaluated at πt = π e
t = π̂ , and their arguments are omitted

for clarity. We thus have

fπ = W1ψπ i − 1,

fπe = W1ψπe + W2.

As long as fπ �= 0, there is a neighborhood of π̂ on which F coincides with a function
obtained by applying the implicit function theorem to f (πt , π

e
t ) = 0 at πt = π e

t = π̂ . It
follows that F is differentiable at π̂ and that F ′(π̂) = − fπe / fπ . Hence, g is differentiable
at π̂ and

g′(π̂) = F ′(π̂)ψπ i + ψπe = − W1ψπe + W2

W1ψπ i − 1
ψπ i + ψπe = − W2ψπ i + ψπe

W1ψπ i − 1
.

Into the right-hand side, we substitute the expressions (for W1 and W2) found in Remark 2,
and so obtain

g′(π̂) = π̂ S′(π̂)ψπ i + S(π̂)ψπe

π̂ 2 S′(π̂)ψπ i + S(π̂)
. (A.3)

Thus, π̂ is a stable steady state of g if |g′(π̂)| < 1 and is unstable if |g′(π̂)| > 1. If fπ = 0
and fπe �= 0, then for π e

t close to π̂ , there are no solutions to f (π, π e
t ) = 0 as close as π e

t to
π̂ ; hence π̂ is unstable.

Consider the steady state π L for δ ≈ 0. Then, π L ≈ 1 and

g′(π L) ≈ S′(1)ψπ i + S(1)ψπe

S′(1)ψπ i + S(1)
=:

A + B
A + C

,

where A := S′(1)ψπ i , B := S(1)ψπe , and C := S(1). By assumption, ψπe < 1 and hence
B < C . One can therefore show [see Van Zandt and Lettau (2001, Sect. 5.3)] that
|(A + B)/(A + C)| > 1 if and only if −A − B > A + C ; that is,

−2S′(1)ψπ i > S(1)(1 + ψπe ). (A.4)

Thus, inequality (A.4) is a sufficient condition for instability of π L when δ = 0 and, by
continuity of the derivatives, for δ ≈ 0. Substituting ψπe = 1 − ψπ i and rearranging yields
the inequality in equation (7) of the proposition. Similarly, if this inequality (A.4) is reversed,
then π L is stable for δ ≈ 0 as long as fπ (1, 1) �= 0, that is, S(1) + S′(1)ψπ i (1, 1) �= 0. This
latter condition is implied by the reversal of inequality (A.4).
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Now consider the steady state π H . Then, π H ≈ πa and S(π H ) ≈ 0 and so g′(π H ) ≈
1/πa < 1. Hence, π H is stable for δ ≈ 0.

APPENDIX B: PROOFS FOR EXPECTATIONAL
STABILITY

Proof of Proposition 7. Consider first the case of π e
t+1 = ψ(πt−1, π

e
t ). As in the proof

of Proposition 4, π e
t is governed by the difference equation π e

t+1 = g(π e
t , π e

t−1), where
g(π e

t , π e
t−1) = ψ[W (π e

t , π e
t−1), π

e
t ]. The partial derivatives of g are gπe

t
= ψπ i W1 + ψπe and

gπe
t−1

= ψπ i W2.
W is fixed (in the macroeconomic model, this means that δ is fixed) but we vary ψπ i .

Recall that ψπ i + ψπe = 1. When ψπ i ≈ 0, we have gπe
t
≈ 1 and gπe

t−1
≈ 0. Hence, the con-

ditions for stability from Lemma A.1 become gπe
t
< 1 − gπe

t−1
. In the limit, when ψπ i = 0,

we have gπe
t
= 1 − gπe

t−1
. Hence, to check whether gπe

t
is greater or less than 1 − gπe

t−1
for ψπ i ≈ 0, we need to compare the rates of change of gπe

t
and gπe

t−1
as ψπ i increases

from 0. Specifically, the steady state is stable for ψπ i ≈ 0 if ∂gπe
t
/∂ψπ i < −∂gπe

t−1
/∂ψπ i ,

which means that W1 + W2 < 1 (since ∂gπe
t
/∂ψπ i = W1 − 1 and ∂gπe

t−1
/∂ψπ i = W2), and it

is unstable if this inequality is reversed.
Consider next the case π e

t+1 = ψ(πt , π
e
t ). Here we have an equilibrium selection problem

as discussed in Section 5.3, and we follow the approach outlined there. Our proof initially
parallels that of Proposition 4.

The period-t equilibrium condition is

f
(
πt , π

e
t

) = W
[
ψ

(
πt , π

e
t

)
, π e

t

] − πt = 0.

For a steady state π̂ , fπ (π̂, π̂) = W1ψπ i − 1; hence, for ψπ i ≈ 0, fπ (π̂, π̂) �= 0. Thus, by the
implicit function theorem, there is an equilibrium selection F(π e

t ) such that π̂ = F(π̂), F
is differentiable at π̂ , and

F ′(π̂) = − fπe (π̂, π̂)

fπ (π̂, π̂)
= − W1ψπe + W2

W1ψπ i − 1
.

The dynamic system governing π e
t in a neighborhood of π̂ is π e

t+1 = ψ[F(π e
t ), π e

t ] =: g(π e
t ).

Then,

g′(π̂) = ψπ i F ′ + ψπe = −ψπ i W1ψπe − W2ψπ i + ψπe W1ψπ i − ψπe

W1ψπ i − 1
= 1 − ψπ i + W2ψπ i

1 − ψπ i W1

and g′(π̂) > 0 for ψπ i ≈ 0. We also have g′(π̂) < 1 (hence π̂ is stable) if

1 − ψπ i + W2ψπ i < 1 − ψπ i W1

0 < ψπ i (1 − W1 − W2).
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This holds if π̂ is expectationally stable and hence 1 − W1 − W2 > 0. Similarly, if π̂ is
expectationally unstable, then g′(π̂) > 1 and π̂ is unstable.

Proof of Proposition 8. Evans and Honkapohja (2000a) study a (multidimensional)
system of the form

π e
t+1 = αt F

(
π e

t , αt

) + (1 − αt )π
e
t ,

where the sequence {αt } satisfies the assumptions of Proposition 8 and F satisfies certain
assumptions to be described shortly. Our system can be written in this form when π i

t = πt

and when F is an equilibrium selection—that is, F(π e; α) is a solution π to

f (π, π e; α) := W [απ + (1 − α)π e, π e] − π = 0

for any π e ∈ A and α ∈ [0, 1). We now explain how to apply their results.
Observe that f is continuously differentiable, even for negative α, as long as απ +

(1 − α)π e ∈ A. Hence, since A is open, for any steady state π̂ there is a neighborhood of
(π̂, π̂ , 0) in A × A × R on which f is continuously differentiable, and

fπ (π̂, π̂; 0) = −1,

fπe (π̂, π̂; 0) = W1(π̂, π̂) + W2(π̂, π̂),

fα(π̂, π̂; 0) = 0.

By the implicit function theorem, we can choose an equilibrium selection F that is contin-
uously differentiable in a neighborhood U of (π̂, 0), with

Fπe (π̂; 0) = W1(π̂, π̂) + W2(π̂, π̂),

Fα(π̂; 0) = 0.

Furthermore, we can choose F so that F(π̂, α) = π̂ for α such that (π̂, α) ∈ U .
There may be finitely many periods t such that (π̂, αt ) is not in U . For such t , we note

that

fπ (π̂, π̂ , αt ) = αt W1(π̂, π̂) − 1,

fπe (π̂, π̂; αt ) = (1 − αt )W1(π̂, π̂) + W2(π̂, π̂).

By assumption, fπ (π̂, π̂ , αt ) �= 0. Hence, we can invoke the implicit function theorem
for each of these periods to choose F so that (a) F(π̂, αt ) = π̂ , (b) F is continuously
differentiable in a neighborhood of (π̂, αt ), and (c)

Fπe (π̂, αt ) = (1 − αt )W1(π̂, π̂) + W2(π̂, π̂)

1 − αt W1(π̂, π̂)
.

Evans and Honkapohja (2000a) assume that (a) F is continuously differentiable in a
neighborhood of (π̂, 0) and (b) for all t, F(π̂, αt ) = π̂ and F is continuous in a neighborhood
of (π̂, αt ). We have shown that these conditions are satisfied.

Their Proposition 1 states that π̂ is stable(b) (see Definition 2) if Fπe (π̂; 0) < 1; since
Fπe (π̂; 0) = W1(π̂, π̂) + W2(π̂, π̂), this condition is equivalent to expectational stability.
An inspection of their proof indicates that they have also shown that π̂ is stable, rather than
merely stable(b).
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Their Proposition 2 states that π̂ is unstable if Fπe (π̂, 0) > 1 (i.e., if π̂ is expectationally
unstable) and if Fπe (π̂, αt ) �= −(1 − αt )/αt for all t . The latter condition is

(1 − αt )W1(π̂, π̂) + W2(π̂, π̂)

1 − αt W1(π̂, π̂)
�= −1 − αt

αt
,

αt (1 − αt )W1(π̂, π̂) + αt W2(π̂, π̂) �= −(1 − αt ) + αt (1 − αt )W1(π̂, π̂),

W2(π̂, π̂) �= −1 − αt

αt
,

which we assumed for the instability result.

The following lemma is used in the proof of Proposition 9, and is proved in Van Zandt
and Lettau (2001, Sect. 9).

LEMMA B.1. Suppose {αt } is a sequence in (0, 1) such that limt→∞ αt = 0 and∑∞
t=1 αt = ∞. Let K ∈ R and let ys := ∏s

t=1(1 + αt K ). Then lims→∞ ys = 0 if −1 < K < 0
and lims→∞ ys = ∞ if K > 0.

Proof of Proposition 9. Consider now the case of lagged information, π e
t+1 = αtπt−1 +

(1 − αt )π
e
t . Then {π e

t } follows the difference equation

π e
t+1 = αt W

(
π e

t , π e
t−1

) + (1 − αt )π
e
t . (B.1)

In two ways this is simpler than the case of current information: (a) We need not derive
an equilibrium selection and its differentiability properties, and (b) the function W (which
replaces F in the proof of Proposition 8) does not depend on αt . However, because W
depends on both π e

t and π e
t−1, this system does not fit the class studied by Evans and

Honkapohja (2000a).
Specifically, suppose we write equation (B.1) as a two-dimensional first-order equation:(

π e
t+1

π e
t

)
= Gt

(
π e

t

π e
t−1

)
:=

(
αt W

(
π e

t , π e
t−1

) + (1 − αt )π
e
t

π e
t

)
.

Let Mt be the Jacobian of Gt evaluated at the steady state (π̂, π̂):

Mt :=
(

1 − αt + αt W1 αt W2

1 0

)
, (B.2)

where W1 and W2 are evaluated at (π̂, π̂). In the proofs by Evans and Honkapohja (2000a),
it is important that Mt can be written Mt = I + αt J , where I is the identity matrix and J is
a time-invariant matrix. This is not possible here, and so, we provide our own proof.

As usual, the main arguments of the proof concern the linear approximation, and then
additional arguments show that the residual does not alter the conclusions. Denote the
residual of the linearization of W around (π̂, π̂) by r . Then,

π e
t+1 − π̂ = (1 − αt + αt W1)

(
π e

t − π̂
) + αt W2

(
π e

t−1 − π̂
) + αt r

(
π e

t , π e
t−1

)
. (B.3)

The residual r(π e
t , π e

t−1) satisfies the following Lipschitz condition: For all k > 0, there is
ε > 0 such that |r(π e

t , π e
t−1)| ≤ k(|π e

t − π̂ | + |π e
t−1 − π̂ |) if |π e

t − π̂ | < ε and |π e
t−1 − π̂ | < ε.

We will choose k below; ε is then selected accordingly and Uε denotes the ε-ball around π̂ .
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Stability. We write the difference equation (B.1) as a two-dimensional first-order dif-
ference equation, linearized and with a substitution of variables so that the steady state is
(0, 0):

θt+1 = Mtθt + Rt ,

where Mt is the Jacobian of G evaluated at (π̂, π̂),

θt :=
(

π e
t − π̂

π e
t−1 − π̂

)
and Rt =:

(
αt r

(
π e

t , π e
t−1

)
0

)
.

Let M(α) be the matrix in equation (B.2), substituting α for αt , so that we can write
Mt = M(αt ) and thereby emphasize that Mt depends on t only through αt . The first property
of M(α) that we need is the following, which will be proved below:

LEMMA B.2. There is ᾱ such that the eigenvectors of M(α) are linearly independent
and depend continuously on α for α ∈ [0, ᾱ].

For each t , let St be the matrix whose columns are the eigenvectors of Mt and let �t be
the diagonal matrix whose diagonal entries are the eigenvalues of Mt . Let τ be such that
αt ≤ ᾱ for t ≥ τ . Then for t ≥ τ , it follows from Lemma B.2 that Mt can be diagonalized
as Mt = St�t S−1

t and hence our difference equation can be written θt+1 = St�t S−1
t θt + Rt .

Multiply this equation by S−1
t+1 to obtain

S−1
t+1θt+1 = S−1

t+1 St�t S−1
t θt + S−1

t+1 Rt .

Define ζt := S−1
t θt and �t := S−1

t+1 St�t . Then ζt+1 = �tζt + S−1
t+1 Rt . If ‖·‖ denotes a norm on

R2 and a matching linear operator norm on matrices in R2×2, then

‖ζt+1‖ ≤ ‖�t‖ · ‖ζt‖ +
∥∥S−1

t+1

∥∥ · ‖Rt‖.
Since {St } converges to a nonsingular matrix, {θt } converges to (0, 0) if and only if {ζt }
does.

Ignoring momentarily the residual, we have ‖ζt+1‖ ≤ (
∏t

s=τ
‖�t‖)‖ζτ‖, and convergence

follows if we can show that limt→∞
∏t

s=τ
‖�t‖ = 0. Expectational stability implies that the

eigenvalues of Mt are less then 1 in absolute value, and hence the norm of �t is less than
1. If this were a time-invariant system, then S−1

t+1 St would be exactly equal to the identity;
hence ‖�t‖ = ‖�t‖ < 1 and convergence is obtained. In this time-variant system, the terms
S−1

t+1 St do not drop out. However, because {αt } converges, St is approximately equal to St+1

and hence S−1
t+1 St is approximately equal to the identity. On the other hand, as t → ∞, one of

the eigenvalues of Mt converges to 1 and hence ‖�t‖ and ‖�t‖ converge to 1. Convergence
of θt thus depends on how quickly ‖�t‖ converges to 1, which in turn depends delicately
on the interplay between the sequences {S−1

t+1 St } and {�t }.
We verify through brute calculation that the deviations of S−1

t+1 St from the identity do not
swamp the convergence due to the eigenvalues of Mt . For this purpose, we need ‖·‖ to be
the L1 vector norm on R2 and the associated matrix norm on R2×2. That is, ‖x‖ = |x1| + |x2|
for x ∈ R2, and ‖A‖ = max{|a11| + |a21|, |a12| + |a22|} for

A =
(

a11 a12

a21 a22

)
∈ R2×2.

We shall prove the following lemma.
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LEMMA B.3. Suppose π̂ is expectationally stable. Then there are ρ > 0 and ᾱ > 0 such
that if αt+1 ≤ αt ≤ ᾱ then ‖�t‖ ≤ 1 − ραt .

Redefine τ so that t ≥ τ ⇒ αt ≤ ᾱ for the ᾱ in both Lemmas B.2 and B.3. It follows from
Lemmas B.3 and B.1 that limt→∞

∏t
s=τ

‖�t‖ = 0.
We need to be sure this result is not disrupted by the residual. Let k and Uε be as

described in the Lipschitz condition for r . Then ‖Rt‖ < αt k‖θt‖ if π e
t , π e

t−1 ∈ Uε . Since
θt = St ζt , ‖θt‖ ≤ ‖St‖ · ‖ζt‖. Hence,

‖Rt‖ ≤ αt k‖St‖ · ‖ζt‖,∥∥S−1
t+1

∥∥ · ‖Rt‖ ≤ αt k
∥∥S−1

t+1

∥∥ · ‖St‖ · ‖ζt‖.

From Lemma B.2, both St and S−1
t converge to nonsingular matrices, so ‖St‖ and ‖S−1

t ‖
are bounded. Define K = supt k‖S−1

t+1‖ · ‖St‖. Then,

∥∥S−1
t+1

∥∥ · ‖Rt‖ ≤ αt K‖ζt‖.

Choose k small enough that K < ρ. Suppose t ≥ τ and π e
t , π e

t−1 ∈ Uε . Then,

‖ζt+1‖ ≤ [1 − αt (ρ − K )]‖ζt‖.

Note that therefore ‖ζt+1‖ < ‖ζt‖. Iterating this inequality yields

‖ζτ+s‖ ≤
{

τ+s−1∏
t=τ

[1 − αt (ρ − K )]

}
‖ζτ‖.

Since ρ − K > 0, Lemma B.1 shows that lims→∞ ζτ+s = (0, 0), and hence lims→∞ θτ+s =
(0, 0).

To conclude, we need to account for what might happen in the first τ periods. Fix any
neighborhood U ⊂ Uε of π̂ . We show that there is a neighborhood of π̂ such that, for
initial conditions in this neighborhood, π e

t , π e
t+1 ∈ U for t = 1, . . . , τ . It then follows from

the above that π e
t , π e

t+1 ∈ U for t ≥ τ and that π e
t → π̂ . [Furthermore, ‖ψτ+s‖ decreases

monotonically and so stability(a) is satisfied.] Hence, π̂ is a stable steady state.
This final step follows in the usual way from the local continuity of Gt . Specifically,

let Uτ := Uε . For t ∈ 1, . . . , τ − 1, given Ut+1, let Ut ⊂ Uε be a neighborhood of π̂ such
that G(Ut × Ut ) ⊂ Ut+1 × Ut+1; such a neighborhood exists because Gt is continuous in
a neighborhood of (π̂, π̂) and Gt (π̂, π̂) = (π̂, π̂). If π e

1 , π e
2 ∈ U1 then π e

t , π e
t+1 ∈ Ut for

t = 1, . . . , τ .
To conclude the proof for stability (and before proceeding to the proof for instability),

we provide the proof of the two lemmas.

Proof of Lemmas B.2 and B.3. We used Mathematica to compute the eigenvectors and
eigenvalues of M(α) [see Van Zandt and Lettau (2001, App. B)]. We can diagonalize
M(α) = S(α)�(α)S(α)−1, where �(α) is the diagonal matrix whose diagonal entries are
the eigenvalues of M(α) and S(α) is the matrix whose columns are the eigenvectors of
M(α). These matrices are
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�(α) =
(

h(α) 0

0 g(α)

)
, S(α) =

(
h(α) g(α)

1 1

)
,

S(α)−1 =




− 1

f (α)

g(α)

f (α)

1

f (α)
− h(α)

f (α)


,

where

f (α) =
√

(1 − α + αW1)2 + 4αW2,

g(α) = [(1 − α + αW1) + f (α)]/2,

h(α) = [(1 − α + αW1) − f (α)]/2.

Note in particular that S(α) depends continuously on α, and that S(α) is nonsingular [hence
S(α)−1 is well defined] when f (α) �= 0, which holds for α in a neighborhood of 0. This
completes the proof of Lemma B.2.

We can show [see Van Zandt and Lettau (2001, App. B)] that

�t =




h(αt )
−h(αt ) + g(αt+1)

f (αt+1)
g(αt )

−g(αt ) + g(αt+1)

f (αt+1)

h(αt )
h(αt ) − h(αt+1)

f (αt+1)
g(αt )

g(αt ) − h(αt+1)

f (αt+1)


 .

Examine ‖�t‖ for small αt (e.g., for t ≥ τ ). First, observe that

g′(α) = {−1 + W1 + (1/2) f (α)−1/2[2(−1 + α − αW1)(1 − W1) + 4W2]
}
/2,

g′(0) = {−1 + W1 + (1/2)[−2(1 − W1) + 4W2]} = W1 + W2 − 1 < 0.

Since g′(0) < 0 and since {αt } is decreasing, for αt small enough (t large enough),
g(αt+1) ≥ g(αt ) and hence the top-right term of �t is positive.

Second, note that

lim
α→0

f (α) = 1, lim
α→0

g(α) = 1, lim
α→0

h(α) = 0.

Therefore, for t large enough, (a) the top-left and bottom-left terms in �t are close to 0, (b)
the top-right term is positive and close to zero, and (c) the bottom-right term is close to 1.
Hence, ‖�t‖ is the sum of the terms (which are positive) in the right column:

‖�t‖ = g(αt )
−g(αt ) + g(αt+1)

f (αt+1)
+ g(αt )

g(αt ) − h(αt+1)

f (αt+1)

= g(αt )
g(αt+1) − h(αt+1)

f (αt+1)
= g(αt ).

Pick ρ such that 0 < ρ < −g′(0). Recall that g(0) = 1. Then, for t large enough, ‖�t‖ ≤
1 − ραt . This completes the proof of Lemma B.3.
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Instability. Abusing but economizing on notation, we normalize the steady state to
zero by interpreting π e

t as π e
t − π̂ . Then equation (B.3) becomes

π e
t+1 = (1 − αt + αt W1)π

e
t + αt W2π

e
t−1 + αt r

(
π e

t , π e
t−1

)
.

Choose k > 0 such that

W1 + W2 − 2k > 1 and W2 + k < 0

(possible since we assume W1 + W2 > 1 and W2 < 0). Let Uε then be as described in the
Lipschitz condition for r . If π e

t , π e
t−1 ∈ Uε then∣∣π e

t+1

∣∣ ≥ [1 + αt (W1 − 1 − k)]
∣∣π e

t

∣∣ − (αt |W2| + αt k)
∣∣π e

t−1

∣∣.
Since W2 < 0, ∣∣π e

t+1

∣∣ ≥ [1 + αt (W1 − 1 − k)]
∣∣π e

t

∣∣ + αt (W2 − k)
∣∣π e

t−1

∣∣.
Suppose |π e

t | ≥ |π e
t−1|. Since W2 − k < 0, we can replace |π e

t−1| by |π e
t |, obtaining∣∣π e

t+1

∣∣ ≥ [1 + αt (W1 + W2 − 1 − 2k)]
∣∣π e

t

∣∣ = (1 + αt K )
∣∣π e

t

∣∣, (B.4)

where K := W1 + W2 − 1 − 2k > 0. Hence |π e
t+1| > |π e

t |; by induction, it follows that in-
equality (B.4) holds until {π e

t } leaves Uε .
We now show that if π e

1 , π e
2 ∈ Uε and if |π e

2 | > |π e
1 | > 0, then the sequence {π e

t } leaves Uε .
Therefore, 0 is unstable. Suppose π e

1 and π e
2 satisfy the stated conditions. We have shown

that the sequence {|π e
t |} satisfies |π e

t+1| ≥ (1 + αt )|π e
t | until it leaves Uε . If it does not leave

Uε , we can iterate this inequality to obtain

∣∣π e
t

∣∣ ≥
∣∣π e

2

∣∣ t−1∏
s=2

(1 + αs K ).

Then Lemma B.1 shows that limt→∞ |π e
s | = ∞; hence {π e

t } must leave Uε .

APPENDIX C: PROOFS FOR OLS LEARNING

Proof of Proposition 10. For OLSπt−1 and OLSπt , see the paragraph (following the
proposition) in which these results are derived as corollaries to Propositions 8 and 9.

OLSpt−1 : Marcet and Sargent (1989) prove these stability results for the case of affine S
in their Proposition 3. Since the stability properties are obtained, in any case, by studying
a linear approximation of a difference equation, the extension to nonlinear S is trivial (we
omit the details). Note that the condition k ≤ 1 in Marcet and Sargent (1989, Proposition 3)
holds for δ ≈ 0.
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OLSpt : We presume that the reader has read the part of Section 7 that follows Propo-
sition 10. In particular, recall that (i) we can write π e

t+1 = αtπt + (1 − αt )π
e
t , where

αt := p2
t−1/

∑t
s=0 p2

s−1, and (ii) if πt → π̂ , then αt → απ̂ := 1 − π̂−2.
We can thus write the period-t equilibrium condition πt = W (π e

t+1, π
e
t ) as

f
(
πt , π

e
t ; αt

)
:= W

[
αtπt + (1 − αt )π

e
t , π e

t

] − πt = 0.

In period t, αt is a fixed parameter in this equation, and so, we can write the set of solutions as
ϕ(π e

t ; αt ). As explained in Section 5.3, there may be multiple solutions; we therefore choose
an equilibrium selection F(π e

t ; αt ) (on the domain for which ϕ has non-empty values) such
that, for a steady state π̂ ∈ {π L , π H } and α̂ := 1 − π̂−2, there is a neighborhood of (π̂, α̂) on
which F(π e

t ; αt ) is the element of ϕ(π e
t ; αt ) that is closest to π̂ . As long as fπ (π̂, π̂; α̂) �= 0,

the implicit function theorem implies that F is continuously differentiable in a neighborhood
of (π̂, α̂). Observe that fπ (π̂, π̂; α̂) = α̂W1 − 1, which is not equal to 0 for δ ≈ 0 as follows:
W1(π

L , π L) ≈ W1(1, 1) < ∞ and απ L ≈ 1 − (1)−2 = 0, so fπ (π L , π L ; απ L ) < 0; whereas
W1(π

H , π H ) ≈ ∞ and απ H ≈ 1 − (πa)−2 > 0, so fπ (π H , π H ; απ H ) > 0.
Mimicking the proof of Proposition 3 in Marcet and Sargent (1989), we write the evolu-

tion of {π e
t , αt }∞

t=1 as

π e
t+1 = αt F

(
π e

t ; αt

) + (1 − αt )π
e
t ,

αt+1 = [
1 + α−1

t F
(
π e

t ; αt

)−2]−1
.

The first equation is the OLSpt expectations rule, with πt replaced by F(π e
t ; αt ). The

second equation is obtained from

αt+1 = p2
t∑t+1

s=0
p2

s−1

=


 p2

t

p2
t

+
∑t

s=0
p2

s−1

p2
t




−1

= (
1 + α−1

t π−2
t

)−1

= (
1 + α−1

t F
(
π e

t ; αt

)−2)−1
.

We check stability of this difference equation at a steady state (π̂, α̂), where π̂ ∈ {π L , π H }
and α̂ = 1 − π̂−2. Since π̂ is a steady state, F(π̂; αt ) = π̂ for any αt , and so, ∂ F(π̂; α̂)/

∂αt = 0. It follows that

∂π e
t+1

∂αt

∣∣∣∣
πe

t =π̂ ,αt =α̂

= α̂
∂ F
∂αt

(π̂, α̂) + F(π̂, α̂) − π̂ = 0.

Hence, the eigenvalues of the linearization of these difference equations around a steady
state are ∂π e

t+1/∂π e
t and ∂αt+1/∂αt .

Since ∂ F(π̂; α̂)/∂αt = 0,

∂αt+1

∂αt

∣∣∣∣
πe

t =π̂ ,αt =α̂

= α̂−2π̂−2(1+α̂−1π̂−2)−2 = (α̂π̂+π̂−1)−2 = [(1 − π̂−2)π̂+π̂−1]−2 = π̂−2.

Thus, for any steady state π̂ > 1, we have |∂αt+1/αt | < 1.
Stability therefore hinges on the modulus of ∂π e

t+1/∂π e
t . At a steady state (π̂, α̂),

∂ F(π̂; α̂)/∂π e
t is equal to − fπe (π̂, π̂; α̂)/ fπ (π̂, π̂; α̂). Then ∂π e

t+1/∂π e
t (evaluated at
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π e
t = π̂ and αt = α̂) is just g′(π̂) from the proof of Proposition 5 [equation (A.3)] with

ψπt = α̂ and ψπe
t
= 1 − α̂:

∂π e
t+1

∂π e
t

∣∣∣∣
πe

t =π̂ ,αt =α̂

= π̂ S′(π̂)α̂ + S(π̂)(1 − α̂)

π̂ 2 S′(π̂)α̂ + S(π̂)
. (C.1)

Consider first the steady state (π L , απ L ). For δ ≈ 0, the numerator and denominator of
equation (C.1) are both positive, since S(π L) > 0 and απ L ≈ 0. Thus, |∂π e

t+1/∂π e
t | < 1 if

and only if

π L S′(π L)απ L + S(π L)(1 − απ L )
?
< (π L)2 S′(π L)απ L + S(π L),

π L S′(π L)απ L
?
< (π L)2 S′(π L)απ L + S(π L)απ L , (C.2)

−(π L − 1)π L S′(π L)
?
< S(π L),

which holds for δ ≈ 0 because π L ≈ 1 and S(1) > 0.
Now consider the steady state (π H , απ H ). For δ ≈ 0, the numerator and denominator of

the RHS of equation (C.1) are both negative because S(π H ) ≈ 0 and απ H ≈ 1 − (πa)2 > 0.
Hence, the condition for stability is the reverse of the inequality in equation (C.2). That
is, −(π H − 1)π H S′(π H ) > S(π H ), which also holds because S(π H ) ≈ 0 and π H ≈ πa > 1.
Therefore, π H is also stable.
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