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The modulation of isotropic turbulence by particles has been investigated using direct
numerical simulation (DNS). The particular focus of the present work is on the class
of dilute flows in which particle volume fractions and inter-particle collisions are
negligible. Gravitational settling is also neglected and particle motion is assumed to
be governed by drag with particle relaxation times ranging from the Kolmogorov
scale to the Eulerian time scale of the turbulence and particle mass loadings up to 1.
The velocity field was made statistically stationary by forcing the low wavenumbers
of the flow. The calculations were performed using 963 collocation points and the
Taylor-scale Reynolds number for the stationary flow was 62. The effect of particles
on the turbulence was included in the Navier–Stokes equations using the point-force
approximation in which 963 particles were used in the calculations. DNS results
show that particles increasingly dissipate fluid kinetic energy with increased loading,
with the reduction in kinetic energy being relatively independent of the particle
relaxation time. Viscous dissipation in the fluid decreases with increased loading
and is larger for particles with smaller relaxation times. Fluid energy spectra show
that there is a non-uniform distortion of the turbulence with a relative increase in
small-scale energy. The non-uniform distortion significantly affects the transport of
the dissipation rate, with the production and destruction of dissipation exhibiting
completely different behaviours. The spectrum of the fluid–particle energy exchange
rate shows that the fluid drags particles at low wavenumbers while the converse is true
at high wavenumbers for small particles. A spectral analysis shows that the increase
of the high-wavenumber portion of the fluid energy spectrum can be attributed to
transfer of the fluid–particle covariance by the fluid turbulence. This in turn explains
the relative increase of small-scale energy caused by small particles observed in the
present simulations as well as those of Squires & Eaton (1990) and Elghobashi &
Truesdell (1993).

1. Introduction
The interaction of solid particles or liquid droplets with gas-phase turbulent flows

controls the performance of many engineering devices and is important in natural

† Present address: IBM, 224, bd John Kennedy, 91105 Corbeil-Essonnes, France.
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processes as well. Examples include the combustion of pulverized coal or liquid
sprays, transport of particulate solids, gas-phase reactions controlled by particulate
catalysts, dust storms, and atmospheric dispersal of pollutants. In each of these
areas an increased understanding of the fundamental phenomena that drive the
complex interactions between the particle cloud and turbulent carrier flow is needed
to ultimately improve the design of engineering devices in which these flows occur.

Within the vast array of applications encompassed by two-phase flows, the particu-
lar interest of the present work is on the interaction with a turbulent carrier flow of a
dilute dispersed phase of particles with densities substantially larger than the carrier
flow, i.e. ρ2/ρ1 ∼ O(103) where ρ2 and ρ1 denote particle and fluid density, respectively.
For dilute flows the volume fraction of the particles, α2, is small. However, the particle
mass loading, φ = α2ρ2/ρ1, can be large enough such that momentum exchange
between particles and fluid results in a significant modulation of the turbulence,
typically referred to as two-way coupling (e.g. see Crowe, Troutt & Chung 1996).

For this class of two-phase flows the modulation of turbulence by particles is
complex and still not well understood. For example, experimental measurements in
shear flows, e.g. particle-laden jets and boundary layers, have shown that turbulence
velocity fluctuations may be either increased or decreased due to the modulation of
the flow by heavy particles (e.g. see Tsuji, Morikawa & Shiomi 1984; Modarress,
Tan & Elghobashi 1984; Shuen et al. 1985; Fleckhaus, Hishida & Maeda 1987;
Hardalupas, Taylor & Whitelaw 1989; Gore & Crowe 1989; Rogers & Eaton 1991;
Kulick, Fessler & Eaton 1994). In turbulent shear flows it is often difficult to separate
the direct modulation of the turbulence due to momentum exchange with particles
from the indirect changes occurring through modification of turbulence production
mechanisms via interactions with mean gradients. Furthermore, it is usually difficult
in experiments to isolate the effects of different parameters on measurements.

Numerical simulation offers another approach for examining the interactions be-
tween particles and turbulence and the modulation of turbulence by particles. For
particle-laden flows traditional approaches relying on solution of the Reynolds-
averaged Navier–Stokes equations require empirical input, principally the prescrip-
tion of turbulence properties along particle trajectories. For applications of one-way
coupling, i.e. no modulation of the flow, various modelling approaches have been
developed which adequately describe dispersion in simple flows, though the central
problem of prescribing Lagrangian quantities along particle trajectories remains an
open question (e.g. see Simonin, Deutsch & Minier 1993; Simonin, Deutsch & Boivin
1995). For applications of turbulence modulation by particles, turbulence quantities
such as the kinetic energy and dissipation rate are modified directly by the particles
(e.g. through the appearance of source terms in the transport equations) as well as
indirectly through changes which particles cause in turbulence dynamics (e.g. see
Squires & Eaton 1994). Thus, the empirical input required for Reynolds-averaged ap-
proaches at the present time makes it difficult to obtain a fundamental understanding
of turbulence modulation.

The most sophisticated numerical approach for examining particle–turbulence in-
teractions is direct numerical simulation (DNS). In DNS the Navier–Stokes equations
are solved without resorting to ad hoc modeling at any scale of motion. The primary
advantage for calculation of particle-laden flows is that turbulence properties along
particle trajectories are directly available. For applications of one-way coupling sev-
eral studies have examined heavy particle transport in isotropic turbulence (e.g. see
Deutsch & Simonin 1991; Squires & Eaton 1991a; Elghobashi & Truesdell 1993;
Wang & Maxey 1993).
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For two-way coupling DNS has been applied to particle-laden isotropic turbulence
and has demonstrated that the distortion of the turbulence is not uniform and
is dependent upon the particle relaxation time (e.g. see Squires & Eaton 1990;
Elghobashi & Truesdell 1993). Squires & Eaton (1990) considered particle motion in
the Stokes regime in which gravitational settling was neglected. Computations were
performed using both 323 and 643 grids at Taylor-scale Reynolds numbers of 35 in
which a steady, non-uniform body force was added to the governing equations in
order to achieve a statistically stationary flow. Particle sample sizes up to 106 were
used in the simulations. Mass loadings from zero (one-way coupling) to unity were
considered for a series of particle relaxation times varying from 0.3τk to 11τk where
τk is the Kolmogorov time scale. For a Stokes drag law without gravitational settling
it is straightforward to show that particles will globally dissipate turbulence energy.
Squires & Eaton (1990) found that the overall reduction in turbulence kinetic energy
for increasing mass loading was insensitive to the particle relaxation time. They also
showed a strong preferential concentration of particles into regions of low vorticity
and/or high strain rate (see also Wang & Maxey 1993). For cases of turbulence
modulation, Squires & Eaton (1994) attributed the non-uniform distortion of the
turbulence energy spectrum by particles to preferential concentration.

Elghobashi & Truesdell (1993) examined turbulence modulation by particles in
decaying isotropic turbulence using resolutions of 963 for the Navier–Stokes equations
and 343 particles. Particle motion in Elghobashi & Truesdell (1993) was governed by
the equation derived by Maxey & Riley (1983). They found that for the large density
ratios considered in their simulations particle motion was influenced mostly by drag
and gravity. Elghobashi & Truesdell (1993) found that the coupling between particles
and fluid resulted in an increase in small-scale energy. The relative increase in the
energy of the high-wavenumber components of the velocity field resulted in a larger
turbulence dissipation rate. They also found that the effect of gravity resulted in an
anisotropic modulation of the turbulence and an enhancement of turbulence energy
levels in the direction aligned with gravity. Furthermore, in the directions orthogonal
to the gravity vector a reverse cascade of energy from small to large scales was
observed.

While the work of Squires & Eaton (1990) and Elghobashi & Truesdell (1993) has
advanced our understanding, the effect of turbulence modulation by particles is not
fully resolved. For example, in the transport equation for turbulence kinetic energy the
coupling between particles and turbulence yields an additional term which accounts
for the energy transfer imparted from the particles to the fluid. Both Squires & Eaton
(1990) and Elghobashi & Truesdell (1993) have shown that the distortion of the tur-
bulence energy spectrum is sensitive to quantities such as the particle relaxation time.
This implies that the energy transfer from particles to turbulence acts non-uniformly
across the spectrum. However, neither its overall behaviour, nor its spectral distribu-
tion, is available from previous investigations. Both the global value as well as spectral
distribution are important not only for increasing fundamental understanding but also
for development of engineering models. Relevant in this regard is the work of Baw &
Peskin (1971) who have previously considered the spectral modulation of turbulence
by particles. They showed that the effect of particles is to decrease the energy at high
wavenumbers more than that at low wavenumbers. Their analysis, however, contra-
dicts the results of both Squires & Eaton (1990) and Elghobashi & Truesdell (1993).

The objectives of the present work are to investigate turbulence modulation by
particles in isotropic turbulence. In isotropic turbulence there is no production and
therefore from a given initial condition, the flow decays over time, i.e. turbulence time
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and length scales increase. In decaying turbulence the evolution of quantities such
as the kinetic energy and dissipation rate exhibit a dependence on initial conditions.
The decay of the flow and dependence on initial conditions complicates interpretation
and analysis of both particle motion and turbulence modulation. An alternative to
simulation of decaying turbulence is calculation of flows made statistically stationary
through an addition of a body force to the Navier–Stokes equations in which the force
is added to the low-wavenumber components of the velocity field. Statistically station-
ary flows can be advanced to an equilibrium in which particle motion, and the effect
of particles on the flow, are independent of initial conditions. Time and length scale
ratios of the turbulence relative to the particles are also stationary. The forcing scheme
used in this work is that developed by Eswaran & Pope (1988), who have shown that
the small scales of the velocity field are insensitive to the energy input from the forcing.
Discussion of computation of two-way coupling in DNS is presented in §2. The point-
force approximation is used in this work to account for momentum transfer between
particles and turbulence and important issues relevant to this approach are discussed.
An overview of the simulations is also presented in §2 with evolution of statistical
quantities and the spectral analysis in §3. A summary of the work may be found in §4.

2. Simulation overview
2.1. True direct numerical simulation of two-phase flows

True direct numerical simulations of fluid flows loaded with heavy particles require
that one resolves the standard Navier–Stokes equations for the fluid:

∂u1,i

∂xi
= 0, (2.1)

∂u1,i

∂t
+ u1,k

∂u1,i

∂xk
= − 1

ρ1

∂p1

∂xi
+ ν1

∂2u1,i

∂xk∂xk
. (2.2)

The effect of the particles on the fluid is formally taken into account through the
boundary conditions on the surface of each particle,

u1,i(x, t) = wni (x, t) for all points on the particle surface, i.e. (x, t) ∈ Ωn, (2.3)

where wni is the instantaneous velocity of the surface of particle n (the n superscript is
used throughout this work to denote properties of a single particle). For rigid particles
in translation, wni is the same everywhere on Ωn and is equal to the velocity un2,i at
the centre of the particle. The subscripts 1 and 2 denote the fluid and particle phases,
respectively. Thus, in (2.1) and (2.2), u1,i is the ith component of the fluid velocity, p1

the fluid pressure, and ρ1 and ν1 the fluid density and kinematic viscosity, respectively.
Simultaneously to the solution of (2.1)–(2.3), particle trajectories are computed

using Lagrangian tracking, the force acting on the particle being computed by direct
integration of the simulated fluid stress on the particle surface:

dxn2,i
dt

= un2,i, (2.4)

ρ2

dun2,i
dt

= ρ2gi +

∫
Ωn

[
−p1δij + ν1

∂u1,i

∂xj

]
nj dω. (2.5)

The displacement of particle n is xn2,i, the particle density is ρ2. The outward pointing
normal to the surface Ωn is nj , and gi is the acceleration due to gravity. The approach
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outlined in (2.1)–(2.5) requires that the velocity field around each particle be accurately
resolved and is viable only for calculations with O(10) particles (e.g. see Unverdi &
Tryggvason 1992). In a turbulent flow with a large ensemble of particles having
diameters on the order of the Kolmogorov length scale this approach is not feasible
owing to its enormous computational cost. Thus, approximations are required in
order to account for the effect of particle momentum exchange on the flow.

2.2. Point-force approximation

Saffman (1973) showed that the perturbation in the fluid due to the presence of a
particle decays as the sum of two contributions, one as 1/r (long-range) and the other
as 1/r3 (short-range). For particles small relative to the smallest length scales of the
flow, and for particles separated by a distance L large compared to their diameter
d, the most important interactions are long-range (e.g. see Koch 1990). Neglecting
short-range interactions, e.g. particle wakes, is justifiable for particles with diameters
smaller than the Kolmogorov length scale of the flow field undisturbed by the presence
of the particle since in that case short-range perturbations are dissipated by viscosity.
The focus of this work will be on larger scales in which long-range interactions are
dominant. The Navier–Stokes equations can then be written for the fluid everywhere
in the domain with the influence of particles taken into account by Dirac distributions
of the force, fnd,i, applied to the fluid by each particle,

∂u1,i

∂xi
= 0, (2.6)

∂u1,i

∂t
+ u1,k

∂u1,i

∂xk
= − 1

ρ1

∂p1

∂xi
+ ν1

∂2u1,i

∂xk∂xk
+

1

ρ1

fc,i, (2.7)

where
1

ρ1

fc,i =
1

ρ1

fnd,i(x
n
2,i)δ(xi − xn2,i). (2.8)

The force fnd,i is the opposite of that applied to particle n by the fluid. As shown
by Gatignol (1983) and Maxey & Riley (1983), the forces acting on a particle can
be considered to arise from three contributions. The first contribution, fa, represents
the virtual force that would apply on a fluid element that coincides with the particle
position, i.e. pressure forces and viscous stresses. The second contribution, fb, arises
from the perturbation of the fluid flow due to the presence of the particle. For a rigid
sphere of diameter d in translation, this perturbation of the surrounding unsteady
non-uniform flow results in the drag, added mass, and Basset history forces. The third
contribution is gravitational settling. For spheres with density ρ2 large compared to
the fluid density ρ1, fb � fa and reduces to the drag force. The particle equation of
motion can then be written for a single particle n as

dxn2,i
dt

= un2,i, (2.9)

ρ2

dun2,i
dt

= −fnd,i + ρ2gi = − 3
4
ρ1

Cn
D

d
| vnr | vnr,i + ρ2gi = −ρ2

un2,i − ũn1,i
τnp

+ ρ2gi. (2.10)

The local drag coefficient in (2.10) is Cn
D and may be expressed in terms of the particle

Reynolds number Renp as (Clift, Grace & Weber 1978)

Cn
D =

24

Renp

[
1 + 0.15Ren

0.687

p

]
, Renp =

| vnr | d
ν1

6 800 , (2.11)
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where τnp is the particle relaxation time, or time constant, defined as

τnp =
4

3

ρ2

ρ1

Cn
D

d
|vnr | =

d2

18ν1

ρ2

ρ1

1

1 + 0.15Ren0.687

p

. (2.12)

The local instantaneous relative velocity between particle n and the surrounding
fluid is vnr,i = un2,i − ũn1,i, where ũn1,i is the fluid velocity at the position of particle
n of the flow field locally undisturbed by the presence of the particle (Gatignol
1983; Maxey & Riley 1983). The expression for the drag force as written above is
applicable to particles having diameters smaller than the Kolmogorov length scale, i.e.
d� η. If d is comparable to η, Faxén terms should be taken into account (Gatignol
1983; Maxey & Riley 1983). Gravitational settling results in the crossing trajectories
effect which strongly influences particle dispersion (Csanady 1963; Squires & Eaton
1991b). Elghobashi & Truesdell (1993) have shown that in two-way coupling gravity
complicates turbulence modulation. In the current study the parameters varied are
particle relaxation time and mass loading; the effect of gravity is not examined. Finally,
it should also be noted that for the sake of improving fundamental understanding of
two-way coupling within a manageable parameter range, the effect of shear-induced
lift has also been neglected. Shear-induced lift may influence particle motion in
certain regimes, which could in turn alter the mechanisms of turbulence modulation
considered in this work.

For a flow containing Np particles, the fluid velocity ũn1,i required in (2.10) is
that locally undisturbed by the presence of particle n, but taking into account the
disturbances created by all other (Np − 1) particles in the flow. This in turn requires
that to determine the motion of each particle, a total of Np flow fields is required. Only
in the limit of one-way coupling is ũn1,i identical to that in a single-phase turbulent
flow.

2.3. Effective direct numerical simulation of two-phase flows

One approach to obtaining the locally undisturbed fluid velocities ũn1,i would be to
resolve the flow field u1,i influenced by the entire ensemble of particles and then
subtract the local perturbation induced by the particle presence. Considering Stokes
flows in the dilute regime, i.e. inter-particle separations large with respect to the
particle diameter, Saffman (1973) showed that u1,i is the sum of ũn1,i and the local
perturbation, the so-called Stokeslet,

u1,i = ũn1,i +
3d

4r

[
vnr,i + vnr,j

rirj

r2

]
with r =| x− xn2 |, r = x− xn

2 . (2.13)

To obtain the locally undisturbed velocity field for each particle, ũn1,i, an iteration
procedure could be developed using (2.13). For a flow with a large number of
particles, however, the computational cost becomes prohibitively large.

For practical purposes with a large sample of particles Np, and for intermediate
particle Reynolds numbers, it is necessary to assume that for each particle, the locally
undisturbed fluid velocity field ũn1,i can be approximated by u1,i. Therefore, the coupling
force fnd,i may be expressed as

fnd,i = ρ2

un2,i − ũn1,i
τnp

≈ ρ2

un2,i − u1,i

τnp
. (2.14)

An estimate of the error made in simulations in which the approximation (2.14) is
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employed can be obtained using (2.13). Defining ∆un1,i as the error, (2.13) shows that

∆un1,i = ũn1,i − u1,i = −3d

4r

[
vnr,i + vnr,j

rirj

r2

]
. (2.15)

In actual computations, the distance r between particle n and the grid nodes (where
the locally undisturbed fluid velocity, ũn1,i, is approximated by that from the DNS, u1,i)
is of the order of the mesh size. Thus, on average, the relative error resulting from the
use of (2.14) is O(d/∆x) and, in addition to the restriction d� η imposed by the point-
force approximation and neglect of the Faxén contributions in the particle equation
of motion, the condition imposed by the approximation of the locally undisturbed
velocity ũn1,i by u1,i requires that d� ∆x. These constraints are compatible since in a
DNS calculation, η is of the order of ∆x.

2.4. Direct numerical simulation of isotropic turbulence

The method used to obtain the fluid velocity is based on the direct numerical
simulation technique developed by Rogallo (1981) in which dependent variables are
expanded in Fourier series and the flow is represented in a cubic domain of volume
L3
box = (2π)3 with periodic boundary conditions. Exact integration of the viscous

terms is performed using an integrating factor and the nonlinear terms are calculated
in physical space. The discretized equations are time advanced using a second-order
Runge–Kutta scheme. The reader is referred to Rogallo (1981) for further details on
the method.

The method is applied to computation of homogeneous isotropic turbulence.
Isotropic turbulence is non-stationary since in the absence of a production mech-
anism turbulence decays. As discussed in §1, the continual evolution of turbulence
quantities complicates analysis and interpretation of decaying turbulence. Lack of a
statistically stationary flow in particle-laden turbulence is even more complex since
the ratio of the particle relaxation time to fluid time scales changes as the flow evolves.
To alleviate these complications, a spatially non-uniform, time-dependent body force
(or acceleration) was added to the low-wavenumber components of the velocity field
to maintain a statistically stationary flow.

The large scales were forced using the scheme developed by Eswaran & Pope (1988)
and Yeung & Pope (1989) and is based on an Uhlenbeck–Ornstein stochastic process
that determines an acceleration for each of the three velocity components and for
each non-nul wavenumber mode within a shell in spectral space of radius KF . The
complex-valued body force is added to the momentum equations at each time step.
The evolution of one component of the body force f at time level n + 1 is obtained
via

fn+1 = fn(1− dt/TF ) + e(2σ2dt/TF )1/2, (2.16)

where e is a random number taken from a Gaussian distribution of zero mean and
unit variance. The characteristic time of the process, TF , and the forcing variance, σ,
were equal to 1.4 and 0.033, respectively. A simple modification of the forcing was
adopted in this study since the Uhlenbeck–Ornstein process assumes that the time
step dt remains small with respect to the characteristic time of the energetic turbulent
structures, i.e. with respect to the Eulerian time scale τe (defined using the Eulerian
fluid velocity and longitudinal integral length scale, Le). It is also assumed that the
time step dt remains large with respect to the small-scale motion, characterized by
the Kolmogorov time scale τk , which ensures that the forcing is independent of
small-scale motions (Eswaran & Pope 1988). Therefore, the forcing acceleration was
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ν1 q2
1 ε1 Lef/L

e
g Lef/Lbox Reλ kmaxη τe τε τt1 τλ τk

0.015 7.00 5.70 1.98 0.148 62 1.26 0.43 1.23 0.35 0.32 0.051

Table 1. Flow field parameters

maintained constant over 2τk with a ratio τe/τk ≈ 10. This small modification of the
forcing scheme requires longer averaging periods in order to ensure isotropy of the
turbulence.

For the simulations reported in this paper the turbulence was resolved using 963

collocation points with a forcing radius KF equal to 8. This resolution provides
an adequate separation between the forced modes and small scales and a large
enough Reynolds number to obtain a separation between the peak of the energy and
dissipation spectra (Yeung & Pope 1989; Boivin 1996). The maximum wavenumber
of the simulation kmax is

√
2/3N with N the number of grid points in each direction

(Rogallo 1981). As shown by several investigators, values of kmaxη greater than one
ensure accurate resolution of small statistics as well as accurate interpolation of fluid
velocities (e.g. see Eswaran & Pope 1988; Balachandar & Maxey 1989). The Courant
number of the computations was 0.5 in order to minimize time-stepping errors and
ensure accurate resolution of the small scales (see Eswaran & Pope 1988 and Yeung
& Pope 1988 for further discussion).

Table 1 summarizes the main characteristics of the reference fluid flow, i.e. without
influence of the particles on the turbulence, that was obtained following a time
development required for the flow to become independent of its initial conditions.
The statistics were accumulated over a period of roughly 7τe. In table 1, q2

1 and ε1
are the fluid kinetic energy and dissipation rate, respectively, and are used to form
the Eulerian time macro-scale, τε = q2

1/ε1. The Reynolds number, Reλ, is based on the
Taylor micro-scale λ, defined as

q2
1 = 1

2
〈u′1,iu′1,i〉1 = 3

2
〈u′21 〉1, λ =

(
15ν1〈u′21 〉1

ε1

)1/2

, Reλ = λ
(〈u′21 〉1)1/2

ν1

(2.17)

(the ′ superscript denotes a fluctuating quantity obtained by subtraction of the mean).
The kinetic energy and dissipation rate are related to the energy spectrum as

q2
1 =

∫ ∞
0

E(k)dk, ε1 =

∫ ∞
0

D(k)dk = 2ν1

∫ ∞
0

k2E(k)dk. (2.18)

The Lagrangian integral time scale shown in table 1, τt1, is obtained from integration of
the Lagrangian autocorrelation. The Kolmogorov time scale is denoted τk = (ν1/ε1)

1/2.
Averages of turbulence quantities obtained over the computational volume are de-
noted 〈·〉1. With a ratio Lef/Lbox around 0.15, the computational domain contains an
adequate sample of energy-containing eddies to avoid problems due to imposition of
periodic boundary conditions (Yeung & Pope 1989). Moreover, the ratio of the longi-
tudinal length scale, Lef , to the transverse length scale, Leg , is close to 2, in agreement
with isotropic relations. Finally, also shown in the table is τλ, the time scale represen-
tative of the Taylor length scale λ. It is formally defined with the time scale relation
at wavenumber k = 1/λ valid in the inertial subrange, τλ = (λ2/ε1)

1/3 (Hinze 1975).
The energy spectrum for the reference flow is plotted in figure 1. The energy at low

wavenumbers differs from that measured in the grid-turbulence experiment of Comte-
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Figure 1. Normalized turbulence energy and dissipation spectra of the reference fluid field, φ = 0.
, DNS; ×, Comte-Bellot & Corrsin (1971).

Bellot & Corrsin (1971). The experimental values are the measurements using a 2 in.
grid at a location where Reλ = 65, close to Reλ = 62 of the reference flow in the DNS.
The energy at high wavenumbers follows remarkably well the experimental data,
which, considering the comprehensive study of Eswaran & Pope (1988), illustrates
that the forcing does not adversely affect the small-scale motion (see Boivin 1996 for
further discussion).

2.5. Numerical implementation of the coupling force

Properties of the particle cloud were obtained by solving (2.9) and (2.10) for a large
ensemble of particles. A second-order Runge–Kutta scheme was used for advance-
ment of the particle velocity and displacement. Interpolation of fluid velocities to
particle positions was performed using third-order Lagrange polynomials. Numerical
experiments have shown that the scheme is accurate for interpolation of quantities
such as the fluid velocity (e.g. see Yeung & Pope 1988; Balachandar & Maxey 1989;
Boivin 1996).

Two schemes to incorporate the coupling force in the fluid momentum equations
were considered. This process is a projection of the coupling force, defined at the
particle position, onto the grid. The first scheme, the so-called Particle-in-Cell (PIC)
method, represents the coupling force fc,i as proportional to the accumulation of forces
f nd,i (equation (2.14)) induced by each particle n surrounding a node P (with volume

V = (Lbox/N)3) on which the fluid velocity is calculated (e.g. see Crowe 1982):

Vf
P (x,y,z)
c,i = α

∑
n in V

fnd,i, (2.19)

where α is a constant of proportionality to be defined. In the second scheme, rather
than a summation of f nd,i around a node P , the force exerted by each particle on the
fluid is projected onto the grid

Vf
P (x,y,z)
c,i = α

∑
n in V

proj(fnd,i, P (x, y, z)). (2.20)

The weights in the projection operation in (2.20) can be based on the cell volumes
as in Squires & Eaton (1990) or on the distances between particle n and the eight
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Figure 2. Turbulence energy spectrum from one realization of a statistically stationary flow at zero
mass loading: , spectrum before interpolation; , after interpolation on to a mesh shifted
half a grid cell; , after interpolation on to 963 random particle locations and projection back
on to the grid using the PIC method (2.19); , after interpolation on to 963 random particle
locations and projection back on to the grid using linear projection (2.20).

nearest grid nodes as employed by Elghobashi & Truesdell (1993). Both approaches
yield similar results (Boivin 1996); therefore, only the results in which the weights
are based on cell volumes are presented below. The reader is referred to the recent
works by Sundaram & Collins (1996) and Maxey, Patel & Wang (1997) for further
discussion of other options for implementation of the coupling force.

The two schemes (2.19) and (2.20) were tested using an instantaneous fluid velocity
field which was interpolated to 963 random particle locations within the computational
box using third-order Lagrange polynomials. Fluid velocities obtained from the
interpolation step were then projected back onto the grid using (2.19) and (2.20).
Figure 2 shows the energy spectra of the fluid velocities resulting from this procedure.
The second method (2.20) recovers much more of the kinetic energy following the
interpolation and projection steps as compared with the PIC scheme, e.g. a decrease
in the initial kinetic energy of only 2% using (2.20) compared to a reduction of 38%
when using (2.19). The figure also shows that the high-wavenumber end of the energy
spectrum is more accurately recovered using (2.20) compared to the PIC scheme. Also
shown in figure 2 is the energy spectrum of the fluid velocities following interpolation
of the initial field onto a mesh shifted by half a grid cell (dotted curve in the
figure). This curve shows that there is a relatively small filtering of high-wavenumber
components of the velocity field due to interpolation. Comparison of this spectrum
with those obtained following the projection steps shows the error resulting from
the projection schemes. It is also important to note that another factor influencing
the errors resulting from interpolation and projection is the particle sample size. A
smaller ensemble of particles will result in a larger error in both the interpolation
and projection steps. The simulations presented in §3 were performed using the same
number of particles, 963, as in the tests outlined in figure 2.

The constant of proportionality α in (2.19) and (2.20) depends on the nature of
the particles, i.e. actual particles in which each particle in the simulation represents
a physical particle, or stochastic particles in which each particle represents the effect
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(τF12)Stokes 0.069 0.260 0.696
d/ηφ=0 0.11 0.21 0.35
Rep(φ = 0) 0.38 0.84 1.52
τF12(φ = 0) 0.064 0.230 0.580
τF12/τk(φ = 0) 1.26 4.49 11.38
τe/τ

F
12(φ = 0) 6.68 1.88 0.74

Table 2. Particle characteristics at zero mass loading.

of several. Squires & Eaton (1990) and Elghobashi & Truesdell (1993) considered
stochastic particles. In that case, it means that for a given particle relaxation time
and mass loading, the influence of the particles on the fluid motion is assumed to be
independent of the average distance L between particles. This is fully legitimate when
L is small with respect to the smallest fluid length scale, the Kolmogorov scale η. For
actual particles α = πd3/6, i.e. the volume of a single particle, while for stochastic
particles α = α2/Np where α2 is the volume fraction of the dispersed phase. For actual
particles the volume fraction α2 is determined from the total number of particles in
the simulation, α2 = Npπd

3/6/L3
box, while for stochastic particles, α2 is set arbitrarily

through the specification of the mass loading φ = α2ρ2/ρ1. It should be noted that the
condition L� η required for correspondence between stochastic and actual particles
is not met in the previous calculations of two-way coupling by Squires & Eaton
(1990) and Elghobashi & Truesdell (1993), nor in the present simulations. Thus, the
particle relaxation time should be considered a parameter of the simulation, along
with the number density, which is determined based on numerical considerations as
shown in figure 2. The mass loading is then changed by varying the material density
of the particles.

2.6. Particle parameters and simulation validation

The particle parameters are summarized in table 2. The Stokes relaxation time is
denoted (τF12)Stokes, τ

F
12 is the particle relaxation time obtained from an ensemble

and time average over all particles with the same material properties. Simulations
were performed for three particle relaxation times and a series of mass loadings φ
varying from zero (one-way coupling) to unity. Since corrections are incorporated
for nonlinear drag via CD , the particle diameter d and density relative to the fluid,
ρ2/ρ1 (or, equivalently, the relaxation time and density ratio) must be specified. The
particle relaxation times were chosen roughly equal to the Kolmogorov, Taylor, and
Eulerian integral time scales, τk,φ=0, τλ,φ=0 and τe,φ=0, of the reference flow at zero mass
loading. The corresponding diameter variation yields particle Reynolds numbers up
to approximately 1.5 for the largest particles.

As discussed in §2.3, the fluid velocity locally undisturbed by the particle presence
is approximated in the DNS by the fluid velocity perturbed by all particles. While
this is an approximation required in order to simulate two-way coupling with many
particles, interpolation of fluid velocities to particle positions and projection of the
coupling force onto the grid smooths the disturbance created by a particle on its own
motion. Higher-order-accurate interpolation will also, in general, decrease the weight
in the interpolation of the velocity disturbance created by a particle. In addition,
the influence of the disturbance created by any particle on self-induced motion is
lessened by increasing the sample size. Using a linear projection to the eight nearest
grid points surrounding the particle implies that each grid node incorporates the
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disturbance from approximately 8〈p〉 particles where 〈p〉 is the average number of
particles per cell. Thus, on average, 1/8/〈p〉 of the velocity disturbance interpolated
back to the particle is created by the particle itself, the complement to 1 results from
perturbations created by other particles.

An estimate of the approximation of the locally undisturbed fluid velocity ũn1,i in
(2.10) by u1,i, which is modified by all particles and computed in DNS, was examined
through calculation of the position and velocity of two groups of particles having the
same material properties in the same simulation. Only the particles of the first group
influenced the fluid flow. For both groups the drag force was computed with the
resolved u1,i which is, by construction, an approximation of ũn1,i for the particles of the
first group but the exact ũn1,i for the second group. Statistics from both groups such
as the particle kinetic energy, the fluid–particle velocity covariance, the fluid kinetic
energy along particle trajectories, and the fluid–particle energy exchange rate in the
fluid kinetic energy equation differed by less than 1%.

3. Results
The simulations were started from an arbitrary initial condition that was time

advanced until the rate of energy added to the flow through the forcing balanced
the dissipation. Particles were then placed randomly throughout the computational
domain with an initial velocity identical to the fluid velocity at the particle location.
Periodic boundary conditions enforced in solution of the governing equations for
the fluid ensure that the particle number density field is statistically homogeneous.
Particles were tracked for an additional development period of roughly four relaxation
times in order for the particle cloud to reach its own equilibrium condition. Only from
that point were statistics accumulated by advancing the simulations an additional
seven large-scale time periods τe. Around six eddy-turnover times were necessary to
reach a new equilibrium in which production was balanced by both viscous dissipation
in the fluid and drag. Statistics were then obtained for an additional 7τe.

3.1. Fluid-phase statistics

3.1.1. Effect of particles on turbulence statistics

The equilibrium values of the turbulence kinetic energy, q2
1 , and viscous dissipation

rate, ε1, in the fluid are shown in figures 3 and 4, respectively. In the absence of
gravitational settling small particles, d � η, will dissipate turbulence kinetic energy,
consistent with the results in figure 3. The results in both figure 3 and figure 4 are
also in good agreement with Squires & Eaton (1990). Fluid turbulence energy spectra
E(k) are shown in figure 5. For larger mass loading the energy at low wavenumbers
is diminished independent of τF12, while particles can enhance the high-wavenumber
components, the behaviour at high k depending on φ and τF12. This is consistent with
the different behaviour exhibited by q2

1 and ε1 in figures 3 and 4. For the larger
particles and increasing φ, small-scale energy reaches a minimum that occurs at lower
mass loading that decreases with τF12. Note that for τF12 = 0.064 a net production of
small-scale energy occurs at larger φ, similar to that observed by Squires & Eaton
(1990). Thus, in general, there is a similar effect on the lower wavenumbers of the
fluid turbulence by both the smaller and larger particles. At the higher wavenumbers,
the turbulence spectral density is attenuated by the larger particles, and increased
by the smaller particles. These results are contradictory to the notion that particles
attenuate, on average, structures having a time scale smaller than their relaxation
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Figure 3. Turbulence kinetic energy q2
1 . ◦ ◦, τF12 = 0.064; ×- - - -×, τF12 = 0.23; + – – +, τF12 = 0.58.
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Figure 4. Dissipation rate ε1. ◦ ◦, τF12 = 0.064; ×- - - -×, τF12 = 0.23; + – – +, τF12 = 0.58.

time, which would have lead to a strong damping of high-wavenumber modes for
particles with τF12 slightly greater than τk .

It is also interesting to consider the possibility of ‘backscatter’ of energy from small
to large scales as a response of the flow to the relative increase in turbulence energy
at small scales. In the context of this discussion, ‘backscatter’ is simply regarded as
an inverse cascade of fluid energy at a given wavenumber. Shown in figure 6 is the
evolution with respect to φ of the fluid transfer spectrum T11,1(k) (typically denoted
in single-phase turbulence as T (k)) for the smallest particles that provide the largest
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Figure 5. Turbulence kinetic energy spectrum. , φ = 0; , φ = 0.2; , φ = 0.5;

, φ = 1.0. (a) τF12 = 0.064; (b) τF12 = 0.58.
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Figure 6. Turbulence transfer spectrum T11,1(k). , φ = 0; τF12 = 0.064: , φ = 0.2;
, φ = 0.5.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

98
00

28
21

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112098002821


Turbulence modulation by particles 249

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2
0 0.2 0.4 0.6 0.8 1.0

φ

τe
/2

, τ
t 1

Figure 7. Time scales. Open symbols for the Eulerian time macro-scale τε/2; filled symbols for the
fluid Lagrangian integral time scale τt1. ◦ ◦, τF12 = 0.064; - - - - , τF12 = 0.23; 4– –4, τF12 = 0.58.
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Figure 8. Ratio of the particle relaxation time τF12 to the Kolmogorov time scale τk .◦ ◦, τF12 = 0.064; - - - - , τF12 = 0.23; 4– –4, τF12 = 0.58.

enhancement of small-scale turbulent motions. The figure shows that, regardless of
the value of φ, T11,1(k) has a form similar to that in single-phase flow with a transfer
of energy from large to small scales. The result in figure 6 is similar to that obtained
in decaying isotropic turbulence by Elghobashi & Truesdell (1993). Finally, it should
be pointed out that to completely understand how two-way coupling affects nonlinear
energy transfer in the fluid, a detailed study of triadic interactions is necessary (e.g.
see Domaradzki, Liu & Brachet 1993).

The dependence of the Eulerian time macro-scale τε and Lagrangian integral time
scale τt1 on mass loading is shown in figure 7 and offers further insight into the
effect of two-way coupling on the different behaviour exhibited by q2

1 and ε1. The
Eulerian time macro-scale increases with larger mass loading, eventually reaching a
maximum that occurs at larger φ for increasing τF12. As is clear from the figure, the
Lagrangian integral time scale exhibits a general increase with φ. Thus, assuming a
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direct proportionality between these scales, as is often done in turbulence models, is
not accurate for large mass loadings.

Shown in figure 8 is the ratio of the particle relaxation time to the Kolmogorov
time scale. The figure shows that the ratio decreases with increasing mass loading,
a consequence of the reduction in ε1. This is in turn consistent with the effect of
the larger particles on the flow being similar to that of the smaller particles as φ
increases. For example, for τF12 = 0.58 the spectrum E(k) shows a relative increase of
small-scale energy at high wavenumbers for φ = 1, similar to that observed at smaller
loadings for τF12 = 0.064 (a similar feature may be observed in the spectrum of the
fluid–particle energy exchange rate shown in figure 14). The reduction in the time
scale ratios with increasing φ complicates interpretation of whether two-way coupling
can be more accurately described using the ratio of the relaxation time to the time
scale of the large eddies, τF12/τe, or the time scale of the smallest eddies, τF12/τk . To
resolve this issue requires simulations at substantially higher Reynolds numbers than
can be achieved using DNS in order to provide a much larger separation between τe
and τk .

3.1.2. Turbulence transport equations

For statistically stationary isotropic turbulence modified by momentum exchange
with particles, the transport equations for the fluid turbulence kinetic energy and
dissipation rate are

−ε1 +Πq1
+ Fq1

= 0, (3.1)

εd1 − εd2 +Πε1 + Fε1 = 0, (3.2)

where εd1 and εd2 in (3.2) are the production by turbulent vortex stretching and viscous
destruction of dissipation, respectively; εd2 can be expressed in terms of E(k) as

εd2 = 4ν2
1

∫ ∞
0

k4E(k)dk. (3.3)

As discussed, for example, in Smith & Reynolds (1991), production by turbulent
vortex stretching, εd1, is characteristic of a spectral transfer in that it measures the
stretching of all turbulent structures. The terms Fq1

and Fε1 are the contributions from
the forcing, Πq1

is the fluid–particle energy exchange rate, and Πε1 the fluid–particle
dissipation exchange rate:

Πq1
= − φ

τF12

[
2〈q2

1〉2 − q12

]
, Πε1 = −2ν1

φ

τF12

〈
∂u′′1,i

∂xj

∂(u′′1,i − u′′2,i)
∂xj

〉
2

. (3.4)

In (3.4), q12 is the fluid–particle velocity covariance, 〈q2
1〉2 is the fluid kinetic energy

along the particle trajectory, u′′1,i and u′′2,i are the fluid and particle velocity fluctuations
measured along the particle trajectory, respectively. Note that 〈·〉2 denotes averages
over the dispersed phase.

The production of dissipation εd1 by vortex stretching is shown in figure 9. The
figure shows a large reduction with increasing φ and a weak dependence (reduction)
on τF12. The dependence on particle relaxation time appears stronger with increasing
φ. Overall, εd1 exhibits similar behaviour to that observed previously with ε1 (cf.
figure 4). The viscous destruction of dissipation εd2 exhibits an interesting behaviour
plotted in figure 10. It initially decreases with increases in loading. For the smallest
particles, εd2 attains a minimum for φ > 0.2, which seems to preclude an increase at
higher φ. The plateau in εd2 occurs at higher φ with increasing τF12. Note also that the
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Figure 9. Production of dissipation εd1. ◦ ◦, τF12 = 0.064; - - - - , τF12 = 0.23;
4– –4, τF12 = 0.58.
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Figure 10. Viscous destruction of dissipation εd2. ◦ ◦, τF12 = 0.064; - - - - , τF12 = 0.23;
4– –4, τF12 = 0.58.

plateau in εd2 occurs at the same mass loadings as that observed at high wavenumbers
in the energy spectra in figure 5.

Shown in figure 11 is the relative behaviour of εd1 and εd2, the dissipation of the
energy dissipation rate εε1 = εd1−εd2, normalized by the quantity it is usually modelled
by, −ε21/q2

1 . In single-phase flows a balance exists between εd1 and εd2 and therefore
these terms are modelled together (e.g. see Smith & Reynolds 1991). The ratio shown
in figure 11 increases with φ except at low loadings for large particles where it actually
becomes negative, indicating that the effect of the particles is to provide a source
of dissipation. The results in the figure clearly show that modulation of the flow by
particles can strongly disrupt the equilibrium between εd1 and εd2. This in turn implies
that εε1 must be modelled differently than in single-phase turbulence, with an explicit
dependence on φ and τF12 (see Squires & Eaton 1994 for further discussion).
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Figure 11. Dissipation of the energy dissipation rate, (εd1 − εd2)/(−ε21/q2
1). ◦ ◦, τF12 = 0.064;

- - - - , τF12 = 0.23; 4– –4, τF12 = 0.58.
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Figure 12. Particle dissipation normalized by fluid viscous dissipation −Πq1
/ε1,φ=0.

◦ ◦, τF12 = 0.064; - - - - , τF12 = 0.23; 4– –4, τF12 = 0.58.

3.2. Particle source term statistics

3.2.1. Fluid–particle energy exchange rate

On average, the particles are an additional dissipation of kinetic energy. The fluid–
particle energy exchange rate Πq1

is therefore negative. When normalized by ε1,φ=0,
the evolution of −Πq1

displayed in figure 12 shows that dissipation by drag increases
with particle size and mass loading. However, the figure also shows that −Πq1

/ε1,φ=0

appears to reach a plateau for larger φ. The increasingly large contribution of the
particles to the total dissipation with larger φ is shown more clearly in figure 13
where the ratio of the particle dissipation −Πq1

normalized by the total value is
shown. It should be noted that production of kinetic energy by the forcing, Fq1

,
exhibits a slight reduction with increased loading due to the fact that Fq1

measures
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Figure 13. Particle dissipation normalized by total dissipation −Πq1
/(ε1 −Πq1

). ◦ ◦, τF12 = 0.064;
- - - - , τF12 = 0.23; 4– –4, τF12 = 0.58.

the correlation between the forcing acceleration and the low-wavenumber modes of
the velocity which decrease for increasing φ.

The spectrum of the fluid–particle energy exchange rate, Πq1
(k), is shown in

figure 14. The spectra display two regions: the low-wavenumber portion of the
spectrum shows that the fluid turbulent motion transfers energy to the particles, i.e.
the particles act as a sink of kinetic energy; at higher wavenumbers the spectrum of the
energy exchange rate is positive, indicating that particles are capable of adding kinetic
energy to the turbulence. This energy ‘released’ by the particles is not immediately
dissipated by viscous effects but is in fact responsible for the relative increase of
small-scale energy previously observed in the energy spectra (cf. figure 5a). Thus, the
larger-scale motions occurring at lower wavenumbers drag the particles, while the
converse is true for the smaller-scale motions at high wavenumbers.

As shown in figure 14, the drag of the fluid by the particles is more apparent
at smaller relaxation times and for larger loadings, e.g. for τF12 = 0.58, shown in
figure 14(b), there is essentially no wavenumber range over which particles impart
kinetic energy to the fluid. The figures also show that the absolute value of the negative
portion of the spectrum increases weakly with τF12, indicating that the magnitude of Πq1

is an increasing function of τF12. This is in accordance with the results for Πq1
shown

in figure 12. For increasing φ, the region of positive Πq1
(k) increases in magnitude

and the corresponding wavenumber range also shifts towards larger scales.

3.2.2. Fluid–particle dissipation exchange rate

The source term representing the direct effect of the particles on the dissipation
rate, Πε1 , is shown in figure 15. This quantity undergoes the most striking evolution
of the turbulence quantities. For small φ it acts as a sink of dissipation, with the
exception of the smallest particles, before becoming a source of dissipation as the
loading increases. The loading ratio at which Πε1 changes from sink to source also
increases with τF12. The evolution of Πε1 can be more clearly understood from its
definition:

Πε1 =

∫ ∞
0

Πε1 (k) dk =

∫ ∞
0

2ν1k
2Πq1

(k) dk. (3.5)
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Figure 14. Spectrum of the fluid-particle energy exchange rate, Πq1(k). , φ = 0.2;
, φ = 0.5; , φ = 1.0. (a) τF12 = 0.064; (b) τF12 = 0.58.

Particles with small relaxation times drag the fluid at small scales, an effect which
increases with larger loading. The weighting of the high wavenumbers in (3.5) accen-
tuates this effect, ultimately causing Πε1 to act as a source of dissipation.

3.3. Spectral analysis

The spectral equations for the fluid turbulence, particle fluctuating velocities, and
fluid–particle covariance are obtained by manipulation of (2.7) and (2.10) (e.g. see
Baw & Peskin 1971). These equations allow one to form the appropriate two-point
correlations from which Fourier transformation can then be applied to obtain the
transport equations in spectral space.

In homogeneous isotropic turbulence, a projector can be used to pass from direc-
tional to tridimensional quantities. Its application to the spectral equations followed
by an integration over angular variables yields equations governing the fluid tur-
bulence energy spectrum, E11(k), the energy spectrum of the fluid turbulence along
the particle trajectory, E11,2(k), the fluid–particle covariance spectrum, E12(k), and the
particle energy spectrum, E22(k). For wavenumbers k greater than KF (the radius
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Figure 15. Fluid-particle dissipation exchange rate normalized by total dissipation rate
Πε1/(εd1 − εd2 +Πε1 ). ◦ ◦, τF12 = 0.064; - - - - , τF12 = 0.23; 4– –4, τF12 = 0.58.

of the spectral sphere of the forced modes) for which the forcing contribution is
identically nul these equations are

∂

∂t
E11(k) = T11,1(k)− 2ν1k

2E11(k) +Πq1
(k), (3.6)

∂

∂t
E12(k) +

[
1 + φ

τF12

+ ν1k
2

]
E12(k) = T12,1(k) + T12,2(k) +

2

τF12

[
E11,2(k) + φE22(k)

]
, (3.7)

∂

∂t
E22(k) = T22,2(k)−

1

τF12

[2E22(k)− E12(k)] , (3.8)

Πq1
(k) = − φ

τF12

[
u′1,i(k)(u1,i − u2,i)(k)

]
(3.9)

(see Baw & Peskin 1971; Boivin 1996). The integrals corresponding to the spectra are

q2
1 =

∫ ∞
0

E11(k) dk, 〈q2
1〉2 =

∫ ∞
0

E11,2(k) dk,

q2
2 =

∫ ∞
0

E22(k) dk, q12 =

∫ ∞
0

E12(k) dk.

 (3.10)

The terms T11,1, T12,1, T12,2 and T22,2 represent nonlinear energy transfer in the fluid
turbulence, transfers of the fluid–particle correlated motion by the fluid turbulence
along the particle–path, and by the particle fluctuating motion, and the transfer of
particle-particle correlated motion by the particle motion, respectively. It should be
noted that Πq1

(k) was computed according to its formal definition given above in
(3.9). For non-settling particles in homogeneous isotropic turbulence, Πq1

(k) can also
be expressed in terms of E11,2 and E12 as

Πq1
(k) = − φ

τF12

[
E11,2(k)− E12(k)

]
. (3.11)

The integral of (3.11) gives (3.4). In the solution of the equations developed below,
E11,2(k) is approximated by E11(k), corresponding to an assumption of negligible
differences in turbulence properties measured along particle trajectories compared
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Figure 16. Normalized turbulence energy and dissipation spectra, φ = 0. DNS: ;
Pao’s spectra: , α = 1.5; , α = 3.

with those on the grid. For a statistically stationary flow such as that considered in
this work, the time derivatives are zero. Closure of the system (3.6)–(3.9) then requires
models for the transfer terms.

3.3.1. Closure of the transfer terms – unloaded flows

For monophase turbulent flow, Pao (1965) proposed a form for T11,1(k) valid in the
universal equilibrium range that respects the −5/3 slope in the inertial sub-range with
a stronger damping of energy in the dissipative range. Pao (1965) assumed that the
energy flux S(k) through wavenumber k is directly proportional to E(k), the energy
density at wavenumber k. From a dimensional analysis, S(k) can be expressed as

S(k) = α−1ε
1/3
1 k5/3E(k) with T (k) = −dS(k)

dk
, (3.12)

where α is the Kolmogorov constant. For zero mass loading the fluid turbulence
spectral equation becomes for high Reynolds number turbulence

d

dk
α−1ε

1/3
1 k5/3E(k) = −2ν1k

2E(k), (3.13)

whose solution is

E(k) = αε
2/3
1 k−5/3exp(−3/2α(kη)4/3). (3.14)

Figure 16 compares the theoretical energy and dissipation spectra with those from the
simulations at zero mass loading. The theoretical result can reproduce quite correctly
the simulation results provided that α = 3, rather than the usual value of 1.5 valid
for high Reynolds number turbulence.

3.3.2. Closure of the transfer terms – loaded flows

In two-phase flows with two-way coupling, Baw & Peskin (1971) assumed that
T11,1(k) can be expressed similarly as in single-phase turbulence in which viscous
dissipation is equal to the energy transfer rate from the large scales. In an equilibrium
forced turbulence the rate of energy transfer from the large scales, via the forcing,
is dissipated by viscous effects in the fluid or by drag around the particles, i.e.
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Fq1
= ε1 − Πq1

. Thus, the energy transfer rate appropriate for a spectral analysis
of two-way coupling is the total dissipation, ε1 − Πq1

, rather than simply ε1 as in
single-phase turbulence. Therefore, we propose to replace ε1 by the energy transfer
rate for two-way coupling, ε1 − Πq1

, in the expression for S(k). The transfer term
T11,1(k) can then be written as

T11,1(k) = − d

dk
α−1(ε1 −Πq1

)1/3k5/3E11(k). (3.15)

For T12,1(k), a closure analogous to that used in single-phase turbulence is adopted.
The terms T11,1(k) and T12,1(k) are similar in that T11,1 represents the transfer of
fluid–fluid correlated motion by the fluid turbulence and T12,1 represents the transfer
of fluid–particle correlated motion by the fluid. Therefore, it is appropriate to replace
E11 in (3.15) by E12, while maintaining the same rate of energy transfer ε1 −Πq1

, i.e.

T12,1(k) = − d

dk
α−1(ε1 −Πq1

)1/3k5/3E12(k). (3.16)

Baw & Peskin (1971) assumed that, due to particle inertia, T12,1, T12,2 and T22,2 should
be very small and can be neglected. It seems rather hazardous to imagine particle
fluctuating motion similar to the fluid turbulence with a cascade of energy, etc. Thus,
the development of closure models for T12,2 and T22,2, representing nonlinear energy
transfer by the particle fluctuating motion, would require a completely different
approach than that typically proposed for T11,1. Spectral closures for T12,2 and T22,2

are not within the scope of this work and are therefore neglected.
With the approximations described above, the system of spectral equations becomes

d
[
α−1(ε1 −Πq1

)1/3k5/3E11(k)
]

dk
= −2ν1k

2E11(k)−
φ

τF12

[2E11(k)− E12(k)] , (3.17)

d
[
α−1(ε1 −Πq1

)1/3k5/3E12(k)
]

dk
= −

[
1

τF12

+ ν1k
2

]
E12(k) +

2

τF12

E11(k), (3.18)

E22(k) = 1
2
E12(k). (3.19)

3.3.3. Model without T12,1

If one neglects the transfer of the fluid–particle covariance by the fluid turbulence,
T12,1, then the only differential equation to solve is that for E11. The system (3.17)–
(3.19) in this case is identical to that obtained by Baw & Peskin (1971) with ε1 −Πq1

instead of ε1 as the rate of transfer,

d
[
α−1(ε1 −Πq1

)1/3k5/3E11(k)
]

dk
= −2ν1k

2E11(k)−
φ

τF12

[2E11(k)− E12(k)] , (3.20)

E12(k) =
2

1 + ν1k2τF12

E11(k), (3.21)

E22(k) = 1
2
E12(k). (3.22)

Using (3.21), the term due to the modulation of the turbulence by particles in the
expression (3.20) for E11 can be expressed as

− φ

τF12

[2E11(k)− E12(k)] = −2φ
ν1k

2

1 + ν1k2τF12

E11(k). (3.23)
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The right-hand side of (3.23) is negative definite, indicating that particles act as a sink
in (3.20) across the spectrum. This is in contrast, however, to the results presented
in §3 which showed that there can be an increase in the high-wavenumber components
of the fluid turbulence, e.g. for the smaller particles at higher mass loadings.

3.3.4. Model with T12,1

Inclusion of the closure model for T12,1 requires solution of (3.18). It is also
important to point out that the term accounting for the modulation of the fluid
spectrum, Πq1

(k), is changed by the inclusion of T12,1. Solving (3.7) for E12 and
substitution into (3.11) yields

Πq1
(k) = − φ

τF12

[2E11(k)− E12(k)]

= −2φ
ν1k

2

1 + ν1k2τF12

E11(k) +
φ

1 + ν1k2τF12

T12,1(k). (3.24)

The contribution in Πq1
(k) from T12,1(k) should be positive at high wavenumbers and

can therefore balance the negative contribution from E11(k). This is in turn consistent
with the change of sign in Πq1

(k) observed in figure 14. Note also that the factor in
front of T12,1 increases with φ and decreases with τF12. Moreover, the motion of larger
particles is less correlated with the fluid, which should in turn reduce the fluid–particle
covariance transfer (cf. (3.16)). Thus, inclusion of the transfer term T12,1 appears to
behave in accordance with the evolution of the small-scale motions observed in the
DNS.

3.3.5. Numerical resolution

The solution of (3.20)–(3.22) is more easily accomplished by defining new variables:

G11(k) = 1/β1 k
5/3 E11(k), β1 = α(ε1 −Πq1

)−1/3, (3.25)

G12(k) = 1/β2 k
5/3 E12(k), β2 = α(ε1 −Πq1

)−1/3. (3.26)

The general system (3.17)–(3.19) becomes for all k greater than KF

dG11(k)

dk
= β1

[
−2ν1k

1/3 − 2
φ

τF12

k−5/3

]
G11(k) + β1

φ

τF12

k−5/3 G12(k), (3.27)

dG12(k)

dk
= β2

2

τF12

k−5/3 G11(k) + β2

[
−ν1k

1/3 − 1

τF12

k−5/3

]
G12(k). (3.28)

The system (3.27)–(3.28) can be solved numerically for both non-zero and zero values
of dG12(k)/dk, corresponding to inclusion or neglect of T12,1 in the spectral equations.
Because E11(k) and presumably E12(k) decrease more rapidly than k−5/3, conditions
on G11(k) and G12(k) are G11(∞) = G12(∞) = 0. However, these conditions are not
convenient for numerical solution. In order to facilitate comparison between the DNS
results and theoretical predictions, the spectral values at k = 4 were used to solve
(3.27)–(3.28). Note from figure 16 that k = 4 corresponds to the beginning of the
region in which there is good agreement between the DNS results and theory for zero
mass loading.

Figure 17 compares the predicted spectra, with and without the closure (3.16) for
T12,1, to the DNS results for τF12 = 0.064 and τF12 = 0.58, both at φ = 1. For τF12 = 0.064,
inclusion of T12,1 is crucial to obtaining a very good agreement between the DNS
results and model prediction. In particular, the model prediction does not roll off as
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Figure 17. Normalized turbulence energy spectrum. DNS: ×, φ = 0; +, φ = 1. Predicted: ,
φ = 0; φ = 1: , model without T12,1; , model with T12,1. (a) τF12 = 0.064; (b) τF12 = 0.58.

rapidly at high wavenumbers and also respects the relative increase of small-scale
energy observed in the DNS. For τF12 = 0.58, the system (3.20)–(3.22) (neglecting T12,1)
is in reasonable agreement with the DNS results and figure 17 shows that inclusion
of the model for T12,1 tends to over estimate E(k). As shown in the figure, however,
the smaller contribution for τF12 = 0.58 does not sufficiently damp T12,1 for the larger
particles. This implies that a more accurate model for the transfer of the fluid–particle
covariance should have an explicit dependence on τF12.

Figures 18(a) and 18(b) demonstrate the effect of T12,1 on the fluid–particle energy
exchange. Shown in the figure is the modelled and actual form of the spectrum of the
fluid–particle energy exchange rate, Πq1

(k). The contributions of the terms in (3.24) are
also shown. The figure shows that at least qualitatively the prediction (3.24), including
the transfer T12,1, can reproduce the overall behaviour in Πq1

(k). In particular, the
contribution of the transfer of fluid–particle covariance by fluid turbulence succeeds
in making Πq1

(k) positive at high wavenumbers for the small particles. The integral
value of the positive portion of Πq1

(k) is indeed inversely proportional to τF12 and the
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Figure 18. Spectrum of the fluid-particle energy exchange rate, Πq1
(k), φ = 1. ◦ ◦, DNS; equa-

tion (3.24): , E11(k) contribution; , T12,1 contribution; × ×, equation (3.24). ,
dissipation spectrum obtained from (3.24). (a) τF12 = 0.064; (b) τF12 = 0.58.

wavenumber at which the effect of the particles changes from a sink to a source of
turbulence energy also increases with τF12, in agreement with DNS results.

Figure 18 also shows that Πq1
(k) is overestimated at the lower wavenumbers. One

factor influencing the overestimation is the neglect of T12,2 in the transport equation
for E12. If it is assumed that T12,2 is analogous to nonlinear transfers in the fluid, T11,1

and T12,1, then T12,2 would be composed of two portions, negative at low wavenumbers
and positive at higher wavenumbers. In the spectral equation (3.7) for E12(k), T12,2

would then be a sink at low wavenumbers and a source at high wavenumbers. At
the large scales this would result in a reduction in E12(k) and, according to (3.11),
a decrease of Πq1

(k) at low wavenumbers. Similarly, the relative increase in Πq1
(k)

at high wavenumbers due to the contribution from T12,2 would also reduce the
discrepancy between model predictions and DNS results in figure 18.
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4. Summary and conclusions

Direct numerical simulation of the incompressible Navier–Stokes equations has
been used to investigate turbulence modulation by particles in isotropic turbulence.
The flow field was forced at the low wavenumbers to maintain a statistically stationary
condition. Three relaxation times ranging from the Kolmogorov time scale to the
Eulerian time scale of the reference fluid flow (φ = 0) and loading ratios φ ranging
from 0 to 1 comprised the particle parameter space.

For non-zero mass loading, particles increasingly dissipate fluid kinetic energy as
the loading ratio increases, with the reduction in the kinetic energy being relatively
independent of the relaxation time. Simultaneously, viscous dissipation in the fluid
decreases with increases in φ, being larger for particles with smaller relaxation times.
Furthermore, the ratio of the kinetic energy to the dissipation rate, that defines the
Eulerian time macro-scale τε, differs noticeably from that of the fluid Lagrangian
integral time scale τt1, which increases with φ. The different response of quantities
such as the kinetic energy and dissipation rate to increased loading and changes
in particle relaxation time is in turn linked to the fluid turbulence energy spectra.
DNS results show that there is a non-uniform distortion of E(k), with a relative
increase in small-scale energy. The non-uniform distortion significantly affects the
transport of ε1 since the production of dissipation εd1 and destruction of dissipation
εd2 exhibit completely different behaviours. For example, for small relaxation times
and large mass loadings, particles can be a source of dissipation, rather than a sink
as conventionally modelled.

The fluid–particle energy exchange rate, Πq1
, increases relative to the total dissi-

pation for both larger loading and relaxation time. The spectrum Πq1
(k) shows that,

while the larger eddies drag the particles, particles with small τF12 drag the fluid in-
creasingly at larger loading. Thus, particles ‘release’ to turbulent small-scale motions
part of the energy extracted from the larger scales. This phenomenon in turn explains
the switch from sink to source of the fluid–particle dissipation exchange rate Πε1 that
occurs at lower φ for small particles.

A spectral analysis shows that the increase of the high-wavenumber portion of the
fluid energy spectrum can be attributed to transfer of the fluid–particle covariance by
the fluid turbulence. A closure analogous to that employed in single-phase turbulence
was used to model transfer of the fluid–particle covariance and incorporation of this
closure improves predictions of the fluid energy spectrum more for cases in which
smaller particles modify the turbulence, as compared with modification by larger
particles (cf. figure 17). This closure was developed independently of any structural
interactions occurring between particles and turbulence, such as those arising from
preferential concentration which would be more significant for the smallest particles
(at least at low loadings). While preferential concentration is an important phenomena,
the more accurate model prediction of the fluid energy spectrum obtained for the
smaller particles would indicate an explicit accounting of this effect was not crucial
for predicting the overall spectral evolution of the fluid turbulence.

While the approach used in the present study – DNS – is appropriate for detailed
analyses of particle-turbulence interactions, there are issues relevant to two-way cou-
pling which cannot be resolved using direct simulations. The low Reynolds numbers
and limited range of scales in DNS, for example, prevent a determination of whether
two-way coupling is best described in terms of large- or small-scale variables, i.e.
in terms of τF12/τe or τF12/τk . Because of the ‘global’ distortion of the turbulence
across the entire spectrum, a description of two-way coupling in terms of small-scale
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variables may not be the most appropriate, as is conventionally assumed. Calcula-
tions at substantially higher Reynolds numbers are required in order to obtain a
wide separation between the energy-containing and dissipating scales. While DNS of
single-phase, isotropic turbulence can be performed at rather high Reynolds num-
bers, the computational constraints, e.g. adequate particle sample sizes, necessary for
accurate resolution of two-way coupling may make exceedingly difficult the use of
DNS to determine if the dominant processes in two-way coupling scale on large- or
small-scale variables.
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