
Math. Struct. in Comp. Science (2019), vol. 29, pp. 127–168. c© Cambridge University Press 2017

doi:10.1017/S0960129517000214 First published online 10 November 2017

Reasoning about knowledge and messages in

asynchronous multi-agent systems

SOPHIA KNIGHT†, BASTIEN MAUBERT‡ and FRANÇOIS

SCHWARZENTRUBER§

†Uppsala University, Sweden

E-mail: sophia.knight@gmail.com
‡Università degli Studi di Napoli Federico II, Italy

E-mail: bastien.maubert@gmail.com
§ENS Rennes/IRISA, France

E-mail: francois.schwarzentruber@ens-rennes.fr

Received 7 May 2016; revised 25 August 2017

We propose a variant of public announcement logic for asynchronous systems. To capture

asynchrony, we introduce two different modal operators for sending and receiving messages.

The natural approach to defining the semantics leads to a circular definition, but we describe

two restricted cases in which we solve this problem. The first case requires the Kripke model

representing the initial epistemic situation to be a finite tree, and the second one only allows

announcements from the existential fragment. After establishing some validities, we study

the model checking problem and the satisfiability problem in cases where the semantics is

well-defined, and we provide several complexity results.

1. Introduction

Asynchrony plays a central role in distributed systems such as robotic rescue teams, smart

cities, autonomous vehicles, etc. In such systems, there may be an unpredictable delay

between sending and receiving messages, and there is not always access to a centralized

clock. Recently, with the proliferation of multi-agent systems (MAS), where independent

agents interact, communicate, and make decisions under imperfect information, modelling

the evolution of knowledge as informative events occur has become increasingly important

for both verification and design. For instance, it is often crucial to know whether an agent

has received some information, so it would be highly desirable to be able to analyse

messages such as ‘agent a knows that agent b received message m,’ i.e., we want to

model

messages with epistemic content, (1)

and because we are considering automated systems where agents do not lie, make

logical mistakes, or have inaccurate factual information (for instance autonomous vehicles

communicating about their position), we also make the classic assumption that

messages are true when they are sent. (2)

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

S. Knight, B. Maubert and F. Schwarzentruber 128

Public Announcement Logic (PAL) (Plaza 2007) is one of the first and most influential

proposals for modelling the relationship between knowledge and announcements. In PAL,

true announcements are made to a group of agents. This logic later led to the powerful

and much studied dynamic epistemic logic (DEL) (van Ditmarsch et al. 2007), which can

describe more complex forms of communication, such as semi-private announcements,

private announcements and much more. However, both these logics assume synchronicity:

In PAL messages are immediately received by all agents at the same time, as soon as

they are sent and in DEL agents may perceive events differently, but events immediately

change the epistemic state of agents as soon as they occur. In asynchronous settings,

however, messages are not delivered instantly, and agents may receive them at different

points in time, making PAL intrinsically unfit for reasoning about such settings. This

fact becomes even more evident when we consider that in PAL, every announcement

immediately leads to common knowledge, while common knowledge is not achievable in

asynchronous systems (Halpern and Moses 1990; Moses and Tuttle 1988). The only work

we know of considering how DEL can capture asynchrony is (Dégremont et al. 2011),

but in this logic an agent can only consider possible ‘future’ events if they do not change

her epistemic state. This is related to the principle of inertia (Braüner et al. 2016; van

Lambalgen 2010), which states that in absence of any observation, one assumes that

nothing has happened. This assumption is natural in contexts, where agents believe that

they can observe all events at the time of their occurrence. In asynchronous systems

however, agents should know that even when they do not observe anything, or when they

do not receive any messages, it is possible that messages are being sent and received by

other agents. Therefore the inertia principle does not apply in our setting, and agents

should be able to

imagine possible pending messages. (3)

Our aim is to propose a logic in the spirit of PAL for reasoning about (1) epistemic

messages in asynchronous systems, (2) that are true at the time of announcement and

where (3) agents can imagine messages that have been sent but not yet received.

Because this is an ambitious endeavour, we make a few assumptions to start as simply

as possible:
Broadcasts: all messages are sent to every agent

External source: messages are emitted by an external, omniscient source

FIFO: messages are received in the order they are sent.
The first assumption comes from PAL, and is natural in the context of smart cities for

instance, where autonomous vehicles broadcast their current position or direction. The

second one is a choice made to simplify the syntax by not having to model the origin of

announcements, as in PAL. Announcements from an external, omniscient source can in

some cases be used to model messages broadcast by agents within the system, in particular,

an omniscient outside agent broadcasting that agent a knows ϕ is in many situations

equivalent to agent a broadcasting ϕ to the other agents within the system. This captures

the fact that in order for an agent within the system to make a true announcement, she

should know that the announcement is true before she broadcasts it. Thus upon receiving

an announcement made by agent a, another agent learns both the announcement and

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

Reasoning about knowledge and messages in asynchronous multi-agent systems 129

new announcementchannel

FIFO for agent a

FIFO for agent b

FIFO for agent c

Fig. 1. Agent architecture.

the fact that a knows it, modelled within the framework where announcements come

from an external source by the announcement of Kaψ (Ka being the classic knowledge

operator of epistemic logics, see for instance Fagin et al. (2004)). However, depending on

assumptions about the agents’ epistemic and reasoning capacities, this way of modelling

agents’ announcements may not be completely faithful to the real situation. We discuss

this issue briefly in the future work section.

Concerning the last assumption, FIFO is a simple but classic scheme of communication

in asynchronous systems (see for instance Brand and Zafiropulo (1983); Chambart and

Schnoebelen (2008); Yu and Gouda (1982)).

Figure 1 depicts the architecture of such a system with three autonomous agents

receiving messages from a public channel and reading them when they are ready to

process them. To represent the fact that agents read messages in the order they were sent,

we provide each one with a private FIFO channel. Each copy receives the same messages

from the public channel, in the order in which they are announced, but the moment at

which these messages are read differs from one agent to another.

In PAL, messages are received at the same time they are sent, and thus the announcement

operator combines both sending and receiving. In contrast, in our setting, messages are

not received immediately and they may be received at different times by different agents.

The syntax reflects this aspect by providing both a sending operator, which adds new

messages to the public channel, and a receiving operator for each agent, which allows her

to read the first message in her FIFO queue that she has not read yet. Thus, in our logic,

we provide the following modal constructions:

— 〈ψ〉ϕ, which means ‘ψ is currently true, and after its announcement, ϕ holds;’

— ©aϕ, which means ‘after agent a reads the next announcement, ϕ holds;’

— Kaϕ, which means ‘agent a knows that ϕ holds.’

Interestingly, the natural semantics for this logic presents a challenging problem of

circular definition: In order to define the truth of epistemic formulas, we classically

quantify over the set of all states that the agent considers possible, where states include

the current content of the public channel and pointers to the last message read by each

agent. But some states are not consistent and must not be considered: intuitively a state

is consistent if the announcements it contains were true at the time they were made.

Therefore, defining consistent states requires defining the truth of formulas, and vice

versa. PAL presents a similar circularity, as the definition of the update of a model by

an announcement and the definition of the truth values are mutually dependent, thus

this phenomenon is not inherent to the asynchronous setting. However, only asynchrony

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

S. Knight, B. Maubert and F. Schwarzentruber 130

makes it a problem. Indeed in PAL a simple definition by mutual induction is possible. In

an asynchronous setting, however, agents do not know what or how many messages other

agents have received; in particular, an agent may consider it possible that some formula

has been announced that is bigger than all those that have actually been announced,

which makes a mutual induction impossible for lack of a decreasing quantity. This

circularity problem is inherent in the asynchronous setting, and is independent from the

assumptions of broadcasts, external source and FIFO described above. It only depends

on the assumptions that announcements can talk about knowledge (1), that they must be

true (2) and that agents can imagine pending messages (3).

We partially solve the issue by defining three restricted cases in which we manage

to avoid circularity. The first one requires the Kripke model representing the initial

epistemic situation to be a finite tree; the second one only allows announcements from

the existential fragment of our logic, and the third one makes the assumption that only a

bounded number of announcements can be made during each time unit (a strong form

of non-Zeno assumption), and that agents have access to a global clock. In the second

case, the semantics is defined thanks to an application of the Knaster–Tarski fixed point

theorem (Tarski 1955).

We then discuss some properties of our logics, compare them to PAL, and establish

some validities that hold whenever the semantics is well-defined; we also study the model

checking problem for our logic and establish the following complexity results:

Restrictions Complexity of model checking

Propositional announcements Pspace -complete

Finite tree initial models in Pspace

Announcements from the existential fragment in Exptime , Pspace -hard

Finally, we study the satisfiability problem in the case of propositional announcements,

and we establish that it is NExptime -complete.

The paper is organized as follows. In Section 2, we recall (synchronous) PAL. In

Section 3, we present our logic, and discuss the circularity problem that arises from the

definition of the semantics, and present an example to illustrate the logic. In Section 4,

we exhibit cases where it can be solved. We then present some properties in Section 5

(a comparison with PAL and some validities), we study the model checking problem in

Section 6 and the satisfiability problem in Section 7. Finally, we discuss related work in

Section 8 and future work in Section 9.

This paper is an extended version of Knight et al. (2015). Section 7 is completely new

material. The other sections are based on the older version of this paper but include more

details, improvements and clarifications.

2. Background: Public Announcement Logic

In this section, we recall PAL (Plaza 2007), the classic logic for synchronous public

announcements. Let AP be a countable infinite set of atomic propositions, and let Ag be

a finite set of agents.

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

Reasoning about knowledge and messages in asynchronous multi-agent systems 131

(a) w : pu : ¬p v : pa a, b
w : p v : p

a, b
(b)

Fig. 2. A Kripke model and an updated Kripke model.

Definition 2.1. The syntax of PAL is given by the following grammar:

ϕ ::= p | (ϕ ∧ ϕ) | ¬ϕ | Kaϕ | 〈ϕ〉
PAL
ϕ,

where p ranges over AP and a ranges over Ag .

The intuitive meaning of the last two operators is the following: Kaϕ means that agent a

knows ϕ, and 〈ψ〉
PAL
ϕ means that ψ is true and after ψ has been publicly announced and

publicly received by all the agents (meaning that all agents know that each agent received

the message), ϕ holds. We define the following usual abbreviations: ⊥:= p∧¬p, � := ¬ ⊥,

ϕ ∨ ϕ′ := ¬(¬ϕ ∧ ¬ϕ′) and the dual of the knowledge modality, K̂aϕ := ¬Ka¬ϕ, which

reads as ‘agent a considers it possible that ϕ holds.’

The semantics of PAL relies on classic Kripke models and the possible worlds semantics,

widely used in logics of knowledge (Fagin et al. 2004).

Definition 2.2. A Kripke model is a tuple M = (W, {→a}a∈Ag ,Π), where:

— W is a non-empty finite set of worlds,

— for each a ∈ Ag , →a ⊆ W ×W is an accessibility relation for agent a,

— Π : W −→ 2AP is a valuation on worlds.

A pointed model (M, w) is a model M with a specified world w. For the sake of

generality, we allow arbitrary relations and not only equivalence relations as traditional

in epistemic logic (Fagin et al. 2004; van Ditmarsch et al. 2007).†

Example 2.1. Let us consider the Kripke model of Figure 2a, where w, u and v are

worlds, a and b are agents and p is an atomic proposition. The arrows represent the

agents’ accessibility relations. At world w, agent a considers u and v possible, and agent

b considers only world v possible. Now assume that p is announced in (M, w). This is

possible, as p holds in w. As a result of this announcement, all agents know that p holds,

and thus the resulting epistemic situation is obtained by removing all worlds, where p

does not hold, i.e., u. This updated model is represented in Figure 2b.

The update of a Kripke model by an announcement and the semantics of PAL are defined

by mutual induction.

Definition 2.3. The update of a Kripke model M with an announcement ψ is the Kripke

model Mψ = (Wψ, {→ψ
a }a∈Ag ,Π

ψ), where

— Wψ = {u ∈ W | M, u |= ψ};
— →ψ

a = →a ∩ (Wψ ×Wψ) for all agents a;

— Πψ is the function Π restricted to Wψ ,

† This allows for alternative semantics of knowledge such as S4 (Hintikka 1962), S4.2 (Lenzen 1978),

S4.3 (van der Hoek 1990), S4.4 (Kutschera 1976), KD45 for beliefs (Fagin et al. 2004), etc.

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

S. Knight, B. Maubert and F. Schwarzentruber 132

and the truth condition relation M, w |= ϕ (read as ϕ is true in M, w) is defined as

M, w |= p ifp ∈ Π(w)

M, w |= (ϕ1 ∧ ϕ2)ifM, w |= ϕ1 and M, w |= ϕ2

M, w |= ¬ϕ ifM, w �|= ϕ

M, w |= Kaϕ iffor all u such that w →a u, M, u |= ϕ

M, w |= 〈ψ〉
PAL
ϕ ifM, w |= ψ and Mψ, w |= ϕ.

Observe that the definition by structural induction on ϕ is sound: defining the semantics

of 〈ψ〉
PAL
ϕ requires having defined the update of a Kripke model by announcement ψ,

which only requires having defined the semantics of ψ, a subformula of ϕ.

Example 2.2. Let M be the model of Figure 2a. We have M, w |= 〈p〉
PAL
Kap. Indeed, the

announcement p is true, that is M, w |= p, and Mp, w |= Kap. Note that Mp is the model

of Figure 2b.

The model-checking problem of PAL is P -complete (the membership in P is established

in Benthem (2011) and P-hardness in Schnoebelen (2002)‡) and the satisfiability problem

for PAL is Pspace -complete (Lutz 2006). A tableau proof system for PAL is provided in

Baltag et al. (2008).

3. Asynchronous broadcast logic

In this section, we present our framework for reasoning about asynchronous epistemic

announcements in a public channel. As in Section 2, AP is a countable infinite set of

atomic propositions, and Ag is a finite set of agents. For pedagogical reasons, we first

introduce models, then the syntax and finally the semantics of our logic, even though by

doing so we need to refer to the language before we formally define it.

3.1. Models

Agents start with an initial state of knowledge of the world, which is modelled by an initial

pointed epistemic model, or Kripke model. Then true announcements are made by some

external entity, and sent in the public channel. The whole sequence of announcements that

have been made up to the present moment is modelled as a sequence of formulas from

our logic, whose syntax we introduce later in Section 3.2. Agents read these messages

independently, possibly at different times, but in FIFO order. To represent which messages

each agent has already read, and thus which ones remain to be read, we simply map each

agent to the number of announcements she has read. Such a mapping is called a cut.

3.1.1. Initial Kripke model. An initial model is given as a Kripke model M =

(W, {→a}a∈Ag ,Π), as defined in Definition 2.2. It represents the initial knowledge of

agents before any announcements are made, and it corresponds to the notion of initial

‡ Epistemic logic is an extension of the fragment of CTL with only the next operators AX and EX, proven to

be P-hard.

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

Reasoning about knowledge and messages in asynchronous multi-agent systems 133

knowledge in (Raynal 2013), p. 5. In practice, (M, w) is directly provided by the modeller

or inferred from what agents perceive (Balbiani et al. 2013; Gasquet et al. 2015).

3.1.2. Announcements. We consider that, in a given scenario, not every formula may be

announced, but rather that there is a certain set of relevant announcements. Furthermore,

we allow the number of times an announcement can be made to be bounded. To

represent this, we define the notion of announcement protocols (Asynchronous Broadcast

Logic (ABL) is the language defined in Section 3.2).

Definition 3.1. An announcement protocol is a multiset of formulas in ABL, where the

multiplicity of an element ψ is either an integer or ∞.

Example 3.1. The reader may imagine a card game where it is only possible to announce

‘agent a has a heart card’ once and ‘agent a does not know whether agent b has a heart

card or not’ twice. We let the proposition ♥a mean ‘agent a has a heart card,’ and define

the announcement protocol to be {{♥a , K̂a♥b ∧ K̂a¬♥b , K̂a♥b ∧ K̂a¬♥b}}.

Given an announcement protocol A, we denote by Seq(A) the set of finite sequences

σ = [ϕ1, . . . , ϕk] such that the multiset {{ϕ1, . . . , ϕk}} is a submultiset of A. We define the

size of a sequence σ as |σ| :=
∑k

i=1 |ϕi|. For σ, σ′ ∈ Seq(A), we write σ � σ′ if σ is a prefix

of σ′. The sequence σ|k is the prefix of σ of length k. Given a formula ϕ and a sequence

of formulas σ, ϕ::σ (resp. σ::ϕ) is the sequence obtained by adding ϕ at the beginning

(resp. at the end) of σ.

3.1.3. States. We now define the set of possible states of the models in which the formulas

of our logic will be evaluated.

Definition 3.2. Let M be an initial model and A an announcement protocol. We define

the set of possible states SM,A as follows:

SM,A = {(w, σ, c) | w ∈ W,σ ∈ Seq(A) and c : Ag −→ {0, . . . , |σ|}} .

The first element of a state represents the world the system is in. The second element

is the list of messages that have already been announced. The last element, c, is called

a cut, and for each a ∈ Ag , c(a) is the number of announcements of σ that agent a has

received so far. Given two cuts c and c′, we write c < c′ if for all a, c(a) � c′(a) and there

exists b such that c(b) < c′(b): in other words, c < c′ if all agents have received at least as

many messages in c′ as in c, and at least one agent received strictly more messages in c′.

Typical elements of SM,A are denoted S , S ′, etc.

Example 3.2. Consider the state S = (w, [ϕ,ψ, χ], c), where c(a) = 2 and c(b) = 1. S

represents the situation where in initial world w, the sequence [ϕ,ψ, χ] of formulas has

been announced, agent a has received ϕ and ψ, and agent b has only received ϕ. Only

χ remains in the queue of a and has not been read yet, and only ψ and χ remain in the

queue of b. We represent S as follows:

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

S. Knight, B. Maubert and F. Schwarzentruber 134

w
a :
b :

ϕ ψ χ

and we may also write S = (w, [ϕ,ψ, χ], a �→ 2
b �→ 1).

Example 3.3. Consider the state S = (w, ε, 0), where ε denotes the empty sequence of

formulas and 0 is the function that assigns 0 to all agents. S represents an initial world

w in which no announcement has been made (and therefore no announcement has been

received either). It can be represented as follows:

w
a :
b : no

mes
sa

ge
s

Example 3.4. State S = (w, [ϕ, χ], 0), which represents the situation where in initial world

w, ϕ and χ have successively been announced, but neither agent a or agent b received any

announcement yet. We depict it as follows:

w
a :
b :

ϕ χ

3.1.4. Consistent states. Definition 3.2 allows for all combinations of worlds, sequences of

announcements allowed by the announcement protocol, and cuts. This definition is an over-

approximation of the set of states we want to consider: indeed, because announcements

must be true, some of the states in S are inconsistent. For example, suppose that w is a

world in M where p does not hold. Because only true announcements can be made, p

cannot be announced in world w, and thus the state (w, [p], 0) is inconsistent.

Example 3.5. Let us consider the following initial model, where w, u, v and z are worlds,

a and b are agents and p is a proposition. The arrows represent the agents’ accessibility

relations, before any announcements have been made. So at world w, agent a considers u

and v possible, and agent b considers world z possible.

w : p

u : ¬p v : p z : p

a
a

b

Now assuming that the announcement protocol A contains p, ϕ and ψ, a partial

depiction of the asynchronous model M ⊗ A is below. We depict the states w, u, v, and

z where no announcement has been made, as well as copies of u where two different

sequences of announcements have been made, and received in one state by agent b and

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

Reasoning about knowledge and messages in asynchronous multi-agent systems 135

in a different state by agent a. Of course, the entire model M⊗A is infinite so we do not

depict all the states here.

w
a :
b : no

mes
sa

ge
s

u
a :
b : no

mes
sa

ge
s

v
a :
b : no

mes
sa

ge
s

z
a :
b : no

mes
sa

ge
s

u
a :
b :

p ϕ

u
a :
b :

ψ
. . .

a a b a b

State
u

a :
b :

p ϕ

is not consistent because p has been announced even though p is not

true in u. This notion of inconsistency is the source of the circularity problem, as we

discuss in Section 3.4. For now, we define the relations that capture which states an agent

considers possible before removal of inconsistent ones.

3.1.5. Pre-accessibility relation and asynchronous pre-model. We now define, for each

agent, a pre-accessibility relation that does not yet take consistency into account, but

is only based on the agents’ accessibility relations in the initial model, and the messages

it has already read.

Definition 3.3. The pre-accessibility relation for agent a, written Ra, is defined as follows:

given S = (w, σ, c) and S ′ = (w′, σ′, c′), we have SRaS
′ if:

1. w →a w
′, and

2. σ|c(a) = σ′|c′(a).

The first clause simply says that for S ′ to be considered possible by a when in S , world w′

must be considered possible by a from w. The second clause says that agent a is aware of,

and only aware of, messages that she has received: therefore she can only consider possible

states where she has received exactly the same messages. Then, because the principle of

inertia does not apply to the asynchronous setting, she can imagine any possible sequence

of pending announcements, as long as it is compatible with the announcement protocol.

Also, as she has no information about what messages the other agents have received, c′(b)

can be anything if b �= a: agent a considers it possible that b received more, or fewer,

messages than she actually has. Note that the second clause also implies c(a) = c′(a).

Given an initial model M and an announcement protocol A, we define the asynchronous

pre-model M ⊗ A := (SM,A, {Ra}a∈Ag), where SM,A is the set of possible states, and for

a ∈ Ag , Ra is the pre-accessibility relation for agent a.

3.2. Language

We now introduce the syntax of our logic, which we call Asynchronous Broadcast Logic,

or ABL for short. Note that we do not use the term ‘public announcement’ in the name

of our logic as it has a strong synchronous connotation: public announcements are often

thought of as becoming common knowledge the moment they are made.

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

S. Knight, B. Maubert and F. Schwarzentruber 136

Definition 3.4 (Syntax). The set of ABL-formulas is given by the following grammar:

ϕ ::= p | (ϕ ∧ ϕ) | ¬ϕ | Kaϕ | 〈ϕ〉ϕ | ©a ϕ,

where p ranges over AP and a ranges over Ag .

The intuitive meaning of the last three operators is the following: Kaϕ means that agent a

knows ϕ, 〈ψ〉ϕ means that ψ is true and after ψ has been put on the public channel, ϕ

holds, and ©aϕ means that agent a has a pending message, and after she has received

and read it, ϕ holds. We define the dual of the announcement operator: [ψ]ϕ := ¬〈ψ〉¬ϕ,

meaning that if ψ is true, then ϕ holds after its announcement. |ϕ| is the length of ϕ, and

we denote by propositional formula a formula that uses no modalities, i.e., containts no

occurrences of Ka, 〈ϕ〉, or ©a.

In (synchronous) PAL (see Definition 2.1), the operator 〈ψ〉
PAL

captures both the

broadcast and the reception of an announcement ψ, because in the synchronous setting,

sending and reception occur simultaneously. In our asynchronous setting, not only can

sending and reception occur at different times, but also different agents may receive the

same message at different times. Therefore, we capture the broadcast of a formula ψ

with operator 〈ψ〉, while agent a’s reception of a broadcasted formula is captured by the

operator ©a.

3.3. Truth conditions

For the rest of the section, we fix an initial model M and an announcement protocol A.

As discussed in Section 3.1.4, some possible states from Definition 3.2 are inconsistent,

because they contain announcements that were not true at the time they were announced.

Also, because agents should not consider inconsistent states possible, we described how

defining consistency is necessary to define the semantics of the knowledge operator,

which in turn is necessary to define the consistency of states that contain epistemic

announcements, hence a circularity problem.

We describe in Figure 3, the definition of consistency (represented with symbol �) as

well as truth conditions for our logic. This definition is circular, and therefore the semantics

as presented here is not well-founded, although it conveys the intended meaning of our

operators. In the next section, we will describe restricted cases in which we can provide a

semantics that is well-defined.

The intuitive meaning of (w, σ, c) |= � is that the state (w, σ, c) is consistent, that is,

all announcements in σ were true when they were made. The first clause is obvious: the

initial state where no announcement has been made is consistent. The second clause gives

two possibilities for a state to be consistent. Either there was an earlier consistent state

(w, σ, c′) in which some agents received some already announced formulas, increasing the

cut from c′ to c, or a new, true announcement ψ has been made from an earlier consistent

state, extending the history from σ′ to σ′::ψ.

For the formulas, the first three clauses are straightforward. The fourth clause says that

agent a knows ϕ if ϕ holds in all consistent states that she considers possible. The fifth

clause says that 〈ψ〉ϕ holds in a state S if ψ can be announced (it is true in S), and ϕ

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

Reasoning about knowledge and messages in asynchronous multi-agent systems 137

Truth conditions for consistency:

(0) |= (always)
(w, σ, c) |= if there is c < c s.t. (w, σ, c) |= , or

σ = σ ::ψ, (w, σ , c) ∈ SM,A,
(w, σ , c) |= and (w, σ , c) |= ψ

Truth conditions for formulas:

(w, σ, c) |= p if p ∈ Π(w)
(w, σ, c) |= (ϕ1 ∧ ϕ2) if (w, σ, c) |= ϕ1 and (w, σ, c) |= ϕ2

(w, σ, c) |= ¬ϕ if (w, σ, c) = ϕ
(w, σ, c) |= Kaϕ if for all S s.t. (w, σ, c)RaS and S |= , S |= ϕ
(w, σ, c) |= ψ ϕ if σ::ψ ∈ Seq(A), (w, σ, c) |= ψ and (w, σ::ψ, c) |= ϕ
(w, σ, c) |= aϕ if c(a) < |σ| and (w, σ, c+a) |= ϕ

where c+a(b) =
c(b) if b = a
c(b) + 1 if b = a

Fig. 3. Consistency and semantics.

holds in the state obtained by adding ψ to the public channel. The last clause says that

©aϕ holds if agent a has at least one unread announcement in the channel, and ϕ holds

after she reads the first unread message.

3.4. Circularity

By observing the truth conditions for consistency and for formulas in Figure 3, one can see

that defining whether a state is consistent requires one to define whether an announcement

can be made, and this requires the semantics of our logic to be defined. But to define

the semantics of the knowledge operators, we need to define which consistent states are

considered possible by the agent, which requires us to define which states are consistent,

hence the circularity.

Let us consider the following example, where Ag = {a}. Let the initial model be M =

(W,→a,Π) where W = {w}, →a = {(w,w)} and Π(w) = �, and let the announcement pro-

tocol be A = {{Kap}}. According to Figure 3, we have: (w, [Kap], 0) |= � iff (w, ε, 0) |= Kap.

But, as (w, ε, 0)Ra(w, [Kap], 0), the definition of the truth value of (w, ε, 0) |= Kap depends

on the truth value of (w, [Kap], 0) |= �. To sum up, the definition of (w, [Kap], 0) |= �
depends on itself.

The circularity problem depends on assumptions (1), (2) and (3) from the introduction:

— Announcements can be epistemic

— Announcements are true

— Agents can imagine pending messages

If one of these assumptions is dropped, the circularity problem is easily solved: if

announcements do not need to be true, then all states are consistent; if announcements

are only propositional formulas, consistency of a state (w, σ, c) can be trivially checked by

evaluating all propositional formulas in σ in the world w. The last point is only a little

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

S. Knight, B. Maubert and F. Schwarzentruber 138

bit less obvious: if agents cannot imagine pending annoucements, then the definition of

the pre-accessibility relation Ra for agent a (see Definition 3.3) is that (w, σ, c)Ra(w
′, σ′, c′)

if w →a w
′, c(a) = c′(a) and σ|c(a) = σ′: the only sequence of announcements that she

considers possible is the one she has already received. In that case, the length of the

sequence of announcements |σ| together with the size of the formula to evaluate can be

used to define truth conditions for consistency and for formulas by induction. Indeed,

evaluating a formula Kaϕ in a state (w, σ, c) only requires evaluating the consistency of

states (w′, σ′, c′) such that |σ′| � |σ|, which in turn only requires evaluating formulas ψ ∈ σ

in states (w′, σ′′, c′), where σ′′ is a strict prefix of σ.

We also note that it is possible to solve the circularity problem by only constraining

the last assumption instead of completely dropping it. Indeed, under a bounded non-

Zeno behaviour assumption (only a bounded finite number of discrete events occur in

a finite time), and assuming a global clock that is common knowledge, the imagination

of the agents is sufficiently constrained to solve the circularity problem rather easily (see

Appendix B).

In relation with the above discussion, we point out that the circularity problem does

not depend on the following assumptions:

— Announcements are broadcast

— Announcements are made by an external source

— Announcements are received in FIFO order.

In Section 4, we will describe several restricted settings in which we manage to overcome

this problem. But first, we present a small example to better understand the intuitions

behind our logic.

3.5. Example

We consider two agents Ag = {B,C}, where B stands for Bonnie and C for Clyde. Bonnie

and Clyde go to rob a bank, and Bonnie stays in the car, while Clyde goes to the vault.

At noon, Bonnie notices that Clyde left the paper with the secret code to open the vault

in the car. She uses her smartphone to broadcast the code on their chat group. But Clyde

has also realized that he forgot the paper, and before he receives Bonnie’s message, he

sends a message saying that he does not know the code.

In the following, let p represent the fact that the secret code is 0000, and q the fact that

the vault is open. The situation at noon is represented by the following initial pointed

Kripke model (M, w):

u : p, q w : p,¬q v : ¬p,¬qB C

B, C B, C B, C

In the initial world w, Bonnie knows p, i.e., she knows the code, but Clyde does not. On

the other hand, Clyde knows that q is not true, i.e., he knows that the vault is closed, but

Bonnie does not (Clyde could have memorized the code before leaving the car, and thus

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

Reasoning about knowledge and messages in asynchronous multi-agent systems 139

he might have opened the vault). In fact, we observe that initially Bonnie knows that ‘the

vault is open if, and only if, Clyde knows the code’ or, in epistemic logic, KB(q ↔ KCp).

The initial state at noon is
w B :

C : no
mess

ag
es

. In our scenario, first p is announced by

Bonnie, and then ¬KCp is announced by Clyde. The actual state becomes
w B :

C :

p ¬KCp

.

Intuitively, since only true announcements are made, we see that ¬KCp can only be

announced before Clyde receives the announcement of p. We would like to verify whether,

after Bonnie receives both announcements but Clyde receives neither (the signal inside

the bank is weak), that is in state
w B :

C :

p ¬KCp

, Bonnie knows ¬q, i.e., does she know that

the vault is not open, and what does she know about Clyde’s knowledge. In fact, we can

prove that the following holds:

(w, ε, 0) |= 〈p〉〈¬KCp〉 ©B ©B(KB¬q ∧ ¬KBKCp ∧ ¬KB¬KCp) (4)

The meaning is that, after both announcements have been made and received by Bonnie

but not by Clyde,

— Bonnie knows that the vault is not open: intuitively, because Clyde told her he did not

have the code, and thus could not have opened it (recall that q represents the situation

at noon, i.e., before Bonnie announced p). In state
w B :

C :

p ¬KCp

, all consistent possible

states for B are of the form (w, σ, c) for some σ and c: they share the same world w in

which q does not hold. Indeed, Bonnie initially considers world u possible, but states

with world u and announcement ¬KCp are not consistent. Therefore, Bonnie knows

¬q.
— Bonnie does not know whether Clyde knows the code (because she does not know

whether Clyde received her message).

In state
w B :

C :

p ¬KCp

, Bonnie considers state
w B :

C :

p ¬KCp

as possible, and in this state

Clyde knows p. But Bonnie also considers possible state
w B :

C :

p ¬KCp

, in which Clyde

considers state
v B :

C : no
mess

ag
es

possible, and thus does not know p.

We note that this example highlights the differences between asynchronous broadcast

logic and (synchronous) PAL. Since sending and receiving occur at the same time in

PAL, we can informally translate the asynchronous broadcast formula 〈p〉〈¬KCp〉 ©B

©B(KB¬q∧¬KBKCp∧¬KB¬KCp) to the PAL formula 〈p〉
PAL

〈¬KCp〉
PAL

(KB¬q∧¬KBKCp∧
¬KB¬KCp). Assuming the same initial Kripke model and state w, we first notice that

in PAL any formula of the form 〈p〉
PAL

〈¬KCp〉
PAL
ϕ is false because after a proposition

p is announced, KCp holds in any circumstances, so that ¬KCp cannot be announced.

We can try to simulate the state, where Bonnie has received both announcements but

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

S. Knight, B. Maubert and F. Schwarzentruber 140

Clyde received neither by using private announcements, made to Bonnie but not to

Clyde. Consider the trivial translation of our ABL formula into a formula with private

announcements:

〈p〉B〈¬KCp〉B(KB¬q ∧ ¬KBKCp ∧ ¬KB¬KCp),

where 〈ϕ〉B means that ϕ is sent to B and not to C . In all versions of PAL with any

variant of synchronous private or semi-private announcement (e.g. Baltag and Moss

2004; Baltag et al. 1998; Gerbrandy and Groeneveld 1997; ?), this formula is still false in

(M, w): because Bonnie receives ¬KCp immediately when it is sent, Clyde cannot receive

p between the announcement of ¬KCp and its reception by Bonnie, so that Bonnie knows

that Clyde does not know p. Thus, this example shows that there is no obvious translation

from asynchronous broadcast logic to a variant of DEL, and that asynchronous broadcast

logic is indeed quite different from DEL.

The proof of (4) can be found in Appendix A. Note that here, we anticipate the fact

that we are in one of the cases, where we can solve the circularity problem: indeed, all

announcements are in the existential fragment of our language (see Section 4.2).

4. Solving the circularity problem

In this section, we show how we solve the circularity problem identified in the last section

for several restricted cases.

4.1. When the initial model is a finite tree

If we assume in the initial model M = (W, {→a}a∈Ag ,Π) the relation
⋃
a →a forms a finite

tree over W , then the circularity problem can be avoided. In this case, we can define a

well-founded order on tuples of the form (w, σ, c, ϕ), where ϕ is either a formula in ABL

or �, the idea being that a tuple (w, σ, c, ϕ) means ‘w, σ, c |= ϕ’.

Definition 4.1. The order ≺ is defined as follows:

(w, σ, c, ϕ) ≺ (w′, σ′, c′, ϕ′) if either
1 w is a descendent of w′ in M,
2 or w = w′ and |σ| + |ϕ| < |σ′| + |ϕ′|,
3 or w = w′, |σ| + |ϕ| = |σ′| + |ϕ′| and c < c′,

where |�| = 1.

It is clear that ≺ is a well-founded order, and with this order Figure 3 forms a

well-founded inductive definition of consistency and semantics of our language.

We detail the non-trivial cases. For the second clause of Figure 3, observe that by

Point 3 of Definition 4.1, if c′ < c then (w, σ, c′,�) ≺ (w, σ, c,�), and for all w, σ′, c and

ψ, by Point 2 of Definition 4.1, we have (w, σ′, c, ψ) ≺ (w, σ′::ψ, c,�).

For the clause for Kaϕ of Figure 3, by Point 1 of Definition 4.1 we have that for all

ϕ, σ, σ′, c, c′, if w′ is a child of w then (w′, σ′, c′, ϕ) ≺ (w, σ, c, Kiϕ).

Finally, for the clause for 〈ψ〉ϕ of Figure 3, by Point 2 of Definition 4.1 we have that

(w, σ::ψ, c, ϕ) ≺ (w, σ, c, 〈ψ〉ϕ) for all w, σ, c, ϕ and ψ (note that |〈ψ〉ϕ| = 1 + |ψ| + |ϕ|).

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

Reasoning about knowledge and messages in asynchronous multi-agent systems 141

Example 4.1. Suppose that we have only one agent a. Let us consider initial model M:

w : p

u : ¬p v : p

a a

In this model, p holds in the actual world w, but agent a does not know it. Assume

that p can be announced at least once (p ∈ A). We show that, as expected, after p is

announced and agent a receives this announcement, agent a knows that p holds. Formally,

we prove that, in M ⊗ A, we have (w, ε, 0) |= 〈p〉 ©a Kap. To do so, we in fact show

that (w, [p], a �→ 1) |= Kap, from which it follows that (w, [p], 0) |= ©aKap, hence the

desired result. By Definition 3.3 for pre-accessibility relations, every state S such that

(w, [p], a �→ 1)RaS is of the form S = (w′, p::σ, a �→ 1), where w′ ∈ {u, v} and σ is a

sequence of announcements. We must show that every such state either is inconsistent or

satisfies p.

First, for w′ = u. According to the clause for p in Figure 3, we have that (u, ε, 0) �|= p,

and by the second clause in Figure 3 it follows that (u, [p], 0) �|= �, from which it also

follows also that (u, [p], a �→ 1) �|= � and (u, p::σ, a �→ 1) �|= �, for any σ.

Now, for w′ = v, by the first clause for p in Figure 3, it follows that for all states of

the form S = (v, p::σ, a �→ 1), S |= p, so that finally every state related to (w, [p], a �→ 1) is

either inconsistent or verifies p. Note that we could also prove that S is consistent.

In practice, this setting can be used as an approximation scheme: taking the tree

unfolding of models and cutting them at level � amounts to assuming that agents cannot

reason about deeper nesting of knowledge. This approach is similar to the well known

idea of bounded rationality (Jones 1999), where it is assumed that due to computational

limits, agents have only approximate, bounded information about other agents’ knowledge,

which is represented by allowing only finite-length paths in the Kripke model. We point

out, however, that this method of approximation is only appropriate in certain settings.

One issue is that it does not allow the accurate representation of transitive accessibility

relations, where the leaves of an initial model of any depth � may be reached just by

evaluating a formula with one knowledge operator. This setting calls for more work to

clarify what the finite tree restriction really captures.

4.2. Announcing existential formulas

Now, we again allow the initial model to be arbitrary. In particular, we may use one of

the common models of knowledge, for example an initial model whose underlying frame

is KD45 (relations are serial, transitive and Euclidean) or S5 (relations are equivalence

relations); see Fagin et al. (2004). However, we restrict the announcement protocol to the

existential fragment of our logic, generated by the following rule:

ϕ ::= p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | K̂aϕ | ©a ϕ | 〈ϕ〉ϕ

where p ranges over AP and a ranges over Ag . Formulas of the existential fragment are

called existential formulas. If an announcement protocol contains only existential formulas,

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

S. Knight, B. Maubert and F. Schwarzentruber 142

f(Γ) = Γ ∪ (w, σ, c, p) | p ∈ Π(w)
∪ (w, σ, c,¬p) | p Π(w)
∪ (w, σ, c, (ϕ ∧ ψ)) | (w, σ, c, ϕ) ∈ Γ and (w, σ, c, ψ) ∈ Γ

∪ (w, σ, c, (ϕ ∨ ψ)) | ((w, σ, c, ϕ) ∈ Γ or (w, σ, c, ψ) ∈ Γ

∪ (w, σ, c, K̂aϕ) | there exists (w , σ , c) s.t. (w, σ, c)Ra(w , σ , c),
(w , σ , c ,) ∈ Γ and (w , σ , c , ϕ) ∈ Γ

∪ (0,) | w ∈ W

∪ (w, σ, c,) | there is c < c s.t. (w, σ, c ,) ∈ Γ

∪ (w, σ, c,) | (w, σ , c,) ∈ Γ and (w, σ , c, ψ) ∈ Γ,
where σ = σ :: ψ

∪ (w, σ, c, aϕ) | c(i) < |σ| and (w, σ, c+a, ϕ) ∈ Γ

∪ (w, σ, c, ψ ϕ) | σ::ψ ∈ Seq(A), (w, σ, c, ψ) ∈ Γ and (w, σ::ψ, c, ϕ) ∈ Γ

Fig. 4. Function f that applies one step of the truth conditions.

we call it an existential announcement protocol. For instance, the announcement protocol

in Example 3.1 is existential.

Here, we tackle the circularity problem by defining consistency and truth conditions

separately. We first define as a fixed point the semantics of existential announcements in

A, together with consistency. In a second step, we define the semantics of the full logic

with existential announcements as described in Figure 3, using the fixed point to evaluate

consistency.

We fix an initial model M = (W, {→a}a∈Ag ,Π) and an existential announcement

protocol A. Let B be the set of all pairs (S, ϕ) such that S is a state of M ⊗ A and ϕ

is either a formula in A or �, the symbol for consistency. Observe that (P(B),⊆) forms

a complete lattice. We now consider the function f : P(B) → P(B) defined in Figure 4.

Function f takes a set Γ of truth pairs (pairs (S, ϕ) such that S |= ϕ), and extends it with

the new truth pairs that can be inferred from Γ by applying each of the rules in Figure 3

once. For instance, if (w, σ, c) |= ϕ and (w, σ, c) |= ψ, then (w, σ, c) |= (ϕ ∧ ψ). That is, if

(w, σ, c, ϕ) and (w, σ, c, ψ) are in Γ, then (w, σ, c, (ϕ∧ψ)) is in f(Γ), which explains line 3 of

Figure 4. Every other line of Figure 4 similarly follows from one of the truth conditions.

Now, as we restrict to existential formulas, it is easy to see that f is monotone, that

is, if Γ1 ⊆ Γ2 then f(Γ1) ⊆ f(Γ2). By the Knaster–Tarski theorem (Tarski 1955), f has a

least fixed point Γ∗ :=
⋃
n∈N f

n(�).

We can now define the truth condition for consistency as: S |= � if (S,�) ∈ Γ∗, and

use Figure 3 to define the semantics of the language with existential announcements.

Remark 4.1. If announcements of the form Kaϕ were allowed, we would have to add{
(w, σ, c, Kaϕ) | for all (w′, σ′, c′) such that (w, σ, c)Ra(w

′, σ′, c′),

either (w′, σ′, c′,�) �∈ Γ or (w′, σ′, c′, ϕ) ∈ Γ

}

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

Reasoning about knowledge and messages in asynchronous multi-agent systems 143

to the definition of f in Figure 4. But then, if (w, σ, c)Ra(w
′, σ′, c′) we would have:

— (w, σ, c, Kap) ∈ f(�);

— (w, σ, c, Kap) /∈ f({(w′, σ′, c′,�), (w′, σ′, c′,¬p)})
It would thus no longer hold that f(Γ1) ⊆ f(Γ2) whenever Γ1 ⊆ Γ2. As f is clearly not a

decreasing function either, we would not be able to apply the Knaster–Tarski theorem.

Remark 4.2. The Knaster–Tarski theorem is often used to define the denotational

semantics of programming languages (Winskel 1993) in the same spirit as what we

do here to define consistency.

5. Semantic properties

In this section, we establish some semantic properties of our logic. First, we compare it

with PAL, explaining why ABL is not a conservative extension of PAL when we have at

least two agents. Then, we establish some validities of ABL that show how the correctly

defined semantics captures the intuitions we have about asynchrony.

For the rest of the section, we assume that we have a class of initial models and a

class of announcement protocols for which the circularity problem can be solved and

the semantics defined as in Figure 3 (for example, arbitrary initial models and positive

announcements), and we discuss some validities of our logic.

5.1. Difference from PAL

We discuss the difference between the semantics of our logic and those of PAL. In PAL,

every time an announcement is made, the Kripke model is updated by removing possible

worlds where the announcement is not true (see Definition 2.3). This amounts to using the

new information to delete epistemic alternatives that are no longer considered possible:

since announcements are true, a world where an announcement is not true is not a

possible world. In our case, epistemic alternatives cannot be deleted at the time of the

announcement, since announcements are not received immediately by the agents, and in

general agents can even have an unbounded number of pending announcements to read.

Instead, this pruning is performed directly in the semantics of the knowledge operator,

by eliminating all possible states that are not consistent: the pruning is not performed at

the moment of the announcement, but is delayed until a knowledge operator is evaluated.

Thus, the update operation in PAL and the consistency check in our logic play the

same role. This is also reflected in the circularity problem, which stems from a mutual

dependence between the definition of the semantics and, in the case of PAL, that of the

update, and in the case of our logic, that of consistency.

We also note that if there are at least two agents, our logic is not a conservative extension

of PAL. An intuitive way of seeing this is that in PAL, an announcement immediately

becomes common knowledge, while in our setting asynchrony makes common knowledge

unachievable. One may be tempted to define a translation tr from PAL to ABL, where

all cases of the inductive definition are trivial, except that of the announcement operator

which is

— tr(〈ψ〉
PAL
ϕ) := 〈tr(ψ)〉 ©a1

· · · ©an tr(ϕ), where Ag = {a1, . . . , an}.

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

S. Knight, B. Maubert and F. Schwarzentruber 144

In the single-agent case, the translation tr yields a conservative extension of PAL, but it

is not the case when there are at least two agents. One may think that ‘after the synchronous

public announcement of ψ, ϕ holds’ is the same thing as ‘after the asynchronous broadcast

of ψ and its reception by all agents, ϕ holds.’ But we show that this is not the case.

In PAL, if p is announced, then p immediately becomes common knowledge, which we

recall, means that all agents know p, they all know that they all know p, they all know

that they all know that they all know p, and so on. On the other hand, in asynchronous

systems common knowledge cannot be reached (Halpern and Moses 1990; Moses and

Tuttle 1988), and our logic illustrates this phenomenon. Even finite approximations of

common knowledge fail to hold in our logic. For instance, while [p]PALKaKbp is a validity

of PAL, its translation [p] ©a ©bKaKbp is not valid.

Proposition 5.1. There exist M, an announcement protocol A and a consistent state

S ∈ M ⊗ A such that M ⊗ A, S �|= [p] ©a ©bKaKbp.

Proof. The idea is the following: after announcing p, and after all agents have received

the message p, a does not know whether agent b has received p or not. Therefore, a does

not know that b knows p. Let us consider the following initial model M:

w : p u : ¬p
a, b

a, b a, b

The actual world is w. Since p holds in w, it can be announced. Let A = {{p}}. We

prove that M ⊗ A, (w, ε, 0) �|= [p] ©a ©bKaKbp. To see this, observe that after p has been

announced and received by agent a and agent b (i.e., after evaluation of the first three

operators of the formula), we reach state S = (w, [p], a �→ 1
b �→ 1). But in M⊗A, we have (we

only represent a part of M ⊗ A, which is infinite):

u
a :
b :

p

w
a :
b :

p

u
a :
b : no

mess
ag

esa b

Indeed in state S = (w, [p], a �→ 1
b �→ 1) agent a considers it possible that agent b did not

receive announcement p, and thus she considers state S ′ = (w, [p], a �→ 1
b �→ 0) possible. In S ′,

because b received no announcement, and in the initial model we have w →b u, agent

b considers it possible that the actual world is u and nothing has been announced, i.e.

she considers state S ′′ = (u, ε, 0) possible. Because p does not hold in S ′′, we have that

S �|= KaKbp, which concludes the proof.

5.2. Validities

We say that a formula ϕ is valid if for every initial model M and every announcement

protocol A in the classes considered, and for every consistent state S ∈ M ⊗ A, we have

M ⊗ A, S |= ϕ. We write |= ϕ to express that ϕ is valid. In the following proposition,

we establish some validities that provide insights into our framework and show how our

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

Reasoning about knowledge and messages in asynchronous multi-agent systems 145

definitions correctly capture some natural properties that intuitively should hold in the

asynchronous framework we consider.

Proposition 5.2. For every ϕ ∈ ABL and propositional formula ψ, we have that:

1. |= ©a ©b ϕ ↔ ©b ©a ϕ

2. |= ©a� → (©aϕ ↔ ¬ ©a ¬ϕ)

3. |= ¬ ©a � → [ψ] ©a Kaψ

4. |= ¬ ©a � → [ψ] ©a Ka(¬ ©b � → Kbψ)

Proof. We prove the first validity and the other three are left to the reader.

Suppose that we have M ⊗ A, (w, σ, c) |= ©a ©b ϕ. By Figure 3, this means that

c(1) < |σ| and M ⊗ A, (w, σ, c+a) |= ©bϕ, and the latter implies that c+a(b) < |σ| and

M ⊗ A, (w, σ,
(
c+a

)+b
) |= ϕ. Now, because

(
c+a

)+b
=

(
c+b

)+a
, we obtain that M ⊗

A, (w, σ, c+b) |= ©aϕ, and therefore M ⊗ A, (w, σ, c) |= ©b ©a ϕ. The proof for the other

direction is symmetric.

Let us comment on these validities. The first one says that it is possible to permute the

order of agents that receive next announcements in their respective queues. The second

one says that if an agent has an announcement to read, then reading it is a deterministic

operation. The third one says that if an agent has no pending announcement and some

propositional formula is announced, then after reading his next pending announcement,

the agent will know that formula. Intuitively, this is because the truth value of a

propositional formula does not change, and the agents know this. The last validity

illustrates the fact that in our framework, the behaviour of the public channel is common

knowledge. Indeed it says that if, in a situation where agent a has read all the announced

messages, a propositional formula ψ is announced and agent a reads it, then agent a

knows that if agent b has read all the announced messages (and in particular the last one,

which is ψ), then agent b also knows ψ. In some sense, it means that initially agent a

knows that agent b will receive the same messages as herself. In the last two validities,

we restrict to propositional formulas in order to avoid Moore’s paradox (van Ditmarsch

et al. 2007).

We also establish the following proposition, which says that if all the ©a operators

in a formula ϕ are under the scope of a knowledge operator, then its truth value is

left unchanged by the announcement of any formula ψ. Indeed, the knowledge operator

considers all possibilities for the content of the agent’s channel, so that the possibility that

ψ is in the channel is considered, whether ψ was actually announced or not.

In the following, in addition to the assumption that models and announcement protocols

are restricted to classes for which the semantics is defined, we consider announcement

protocols in which each announcement can be made infinitely many times. We call such

protocols free protocols.

Proposition 5.3. Let ϕ be a formula in ABL, in which every ©a is under the scope of

some Kb, and let A∞ be a free protocol. For every initial model M and consistent state

S = (w, σ, c) ∈ M ⊗ A∞, for every ψ ∈ A∞, we have M ⊗ A∞, S |= 〈ψ〉ϕ ↔ ψ ∧ ϕ.

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

S. Knight, B. Maubert and F. Schwarzentruber 146

This result follows immediately from the following lemma:

Lemma 5.1. Let ϕ be a formula in ABL, in which every ©a is under the scope of some

Kb, and let A∞ be a free protocol. For every initial model M and for every consistent

state (w, σ, c) ∈ M ⊗ A∞, for every ψ ∈ A∞ such that (w, σ::ψ, c) is consistent, we have

M ⊗ A∞, (w, σ::ψ, c) |= ϕ iff M ⊗ A∞, (w, σ, c) |= ϕ.

Proof. By induction on ϕ. The Boolean cases are trivial.

Case ϕ = Kaϕ
′: Since (w, σ, c) is a state, c(a) � |σ|. It is then easy to check that

{S | (w, σ::ψ, c)RaS} = {S | (w, σ, c)RaS}, and the result follows.

Case ϕ = 〈ψ′〉ϕ′: If ψ′ /∈ A∞, the formula ϕ trivially does not hold in both states.

Otherwise, because ψ′ has infinite multiplicity in A∞, σ::ψ′ ∈ Seq(A∞). We therefore have

(w, σ::ψ, c) |= 〈ψ′〉ϕ′ iff (w, σ::ψ, c) |= ψ′ and (w, σ::ψ::ψ′, c) |= ϕ′.

Assume that (w, σ::ψ, c) |= 〈ψ′〉ϕ′, we prove that (w, σ, c) |= 〈ψ′〉ϕ′. We have that

(w, σ::ψ, c) |= ψ′ (hence (w, σ::ψ::ψ′, c) is consistent) and (w, σ::ψ::ψ′, c) |= ϕ′. Because

ψ′ is a subformula of ϕ, each ©a in it is in the scope of some Kb; we can thus apply

the induction hypothesis for (w, σ::ψ, c) |= ψ′, obtaining that (w, σ, c) |= ψ′. By induction

hypothesis on (w, σ::ψ::ψ′, c) |= ϕ′, we get first that (w, σ::ψ, c) |= ϕ′, then (w, σ, c) |= ϕ′

and finally (w, σ::ψ′, c) |= ϕ′ (observe that (w, σ::ψ′, c) is consistent since (w, σ, c) |= ψ′).

We have proved that (w, σ, c) |= 〈ψ′〉ϕ′.

The other direction is treated the same way.

Finally, the case ϕ = ©aϕ
′ is not possible as ©a is not under the scope of any Kb.

6. Model checking

Here, we address the model checking problem when A is a finite multiset, that is, when

the support set of A is finite and the multiplicity of each element is an integer. More

precisely, we consider the following decision problem:

— input: an initial pointed model (M, w), a finite multiset of formulas A (where

multiplicities are written in unary), a formula ϕ0;

— output: yes if M ⊗ A, (w, ε, 0) |= ϕ0, no otherwise.

In practice, model checking is used to check a scenario described by A and ϕ0 from a

given initial situation (M, w).

6.1. Propositional announcements

In this section, we suppose that formulas in A are propositional. Note that in this case

(which is a particular case of existential announcements) the circularity problem does

not exist, as consistency of a state (w, σ, c) can be trivially checked by verifying that all

propositional formulas in σ hold in world w of the initial model, according to the classic

semantics of propositional logic.

We consider the model checking problem for ABL where inputs (M, w,A, ϕ0) are such

that A only contains propositional formulas. We call this problem the model checking

problem for propositional protocols.

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

Reasoning about knowledge and messages in asynchronous multi-agent systems 147

function mc(M,A, w, σ, c, ϕ)
match ϕ do

case p: return p ∈ V (w);
case : return checkconsistency(M,A, w, σ, c () ∗)
case ¬ψ: return not mc(M,A, w, σ, c, ψ);
case (ψ1 ∧ ψ2): return mc(M,A, w, σ, c, ψ1) and mc(M,A, w, σ, c, ψ2);
case Kaψ :

for (u, σ , c) such that w →a u, σ ∈ Seq(A) and c is a cut on σ do
if σ [1..c(a)] = σ[1..c (a)] and mc(M,A, u, σ , c ,) then

if not mc(M,A, u, σ , c , ψ) then
return false

return true
case ψ χ :

if σ::ψ ∈ Seq(A) and mc(M,A, w, σ, c, ψ) then
return mc(M,A, w, σ::ψ, c, χ);

else
return false;

case aψ: return c(a) < |σ| and mc(M,A, w, σ, c+a, ψ)

Fig. 5. Model checking algorithm.

Theorem 6.1. The model checking problem for propositional protocols is in Pspace .

Proof. Figure 5 presents an algorithm that takes a pointed model (M, w), a finite

multiset A, a sequence σ ∈ Seq(A), a cut c on σ and a formula ϕ as an input. To check

the consistency of a state (w, σ, c), we call checkconsistency(M,A, w, σ, c), which verifies

that every (propositional) formula ψ occurring in σ evaluates to true with the valuation

Π(w).

It is easily proven by induction that, for all ψ, the following property P (ϕ) holds:

M,A, (w, σ, c) |= ϕ iff mc(M,A, w, σ, c, ϕ) returns true.

This establishes the correctness of the algorithm. We now analyze its complexity.

First, observe that because A is finite and each element has finite multiplicity, we have

that Seq(A) only contains sequences of length linear in |A| (recall that multiplicities are

written in unary). It is therefore easy to see that the consistency check (∗�) is done in

polynomial time in the size of the input and thus requires a polynomial amount of space.

Now, the number of nested calls of mc is bounded by the size of the formula to check,

and each call requires a polynomial amount of memory for storing local variables, so that

the algorithm runs in polynomial space.

Theorem 6.2. The model-checking problem for propositional protocols is Pspace -hard.

Proof. See Appendix C.

6.2. Finite tree initial model

In this section, we restrict the set of inputs M,A, w, ϕ0 of the model checking problem to

those where the initial pointed models (M, w) are finite trees rooted in w.

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

S. Knight, B. Maubert and F. Schwarzentruber 148

Theorem 6.3. The model-checking problem when we restrict initial models to finite trees

is in Pspace .

Proof. We consider the algorithm of Figure 5 again but now the consistency checking

(∗�) consists of calling the following procedure:

function checkconsistency(M,A, w, σ, c)
if c = 0

return true

else
for c′ < c do

if mc(M,A, w, σ, c′,�) then

return true

return mc(M,A, w, σ′, c,�) and mc(M,A, w, σ′, c, ψ) where σ = σ′::ψ

Soundness and completeness are proven by induction on inputs using the order ≺
defined in Section 4.1.

Concerning the complexity, the argument given in the proof of Theorem 6.1 no longer

holds. In order to bound the number of nested calls of mc, we have to remark that from

a call of mc to a sub-call of mc:

1. either we change the current world w in the initial model for a successor u in the finite

tree;

2. or the quantity |σ| + |ϕ| +
∑

a∈Ag c(a) is strictly decreasing, where |ϕ| is the length of

ϕ and if σ = [ϕ1, . . . , ϕk] then |σ| =
∑k

i=1 |ϕi|.

Now, the number of times (1) occurs is bounded by the depth depth(M, w) of the finite

tree M, w. As each ϕ is either a subformula of the input formula ϕ0 or a subformula of a

formula in A, |ϕ| � |ϕ0| + |A| where |A| :=
∑

ψ∈A |ψ|, and where each single formula ψ is

counted as many times as it occurs in the multiset A. Furthermore, |σ| � |A| and c(a) � |A|.
Thus, the quantity |σ| + |ϕ| +

∑
a∈Ag c(a) is bounded by (|Ag | +2)|A| + |ϕ0|. Therefore, the

number of nested calls to mc is bounded by depth(M, w) × ((|Ag | + 2)|A| + |ϕ0|). So the

algorithm requires a polynomial amount of memory in the size of the input (recall that

the multiplicity of A is encoded in unary).

6.3. Existential announcements

In this subsection, we design an exponential-time algorithm for the model checking

problem in the case of existential announcements.

Given an input M,A, w, ϕ0, the algorithm first computes the least fixed point Γ∗ of the

function f defined in Section 4.2. Because the number of possible sequences in Seq(A) is

exponential in |A|, the set B of pairs (S, ϕ), where S ∈ M ⊗ A and ϕ ∈ A ∪ {�} is of

size exponential in the size of the input, and therefore computing the fixed point requires

exponential time in the size of the input. This gives us the semantics of consistency for

states of M ⊗ A.

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

Reasoning about knowledge and messages in asynchronous multi-agent systems 149

Then, to evaluate ϕ0, we use the procedure mc of Figure 5, where line (∗�), which

checks the consistency of a state (w, σ, c), is replaced by checking whether (w, σ, c,�) ∈ Γ∗.

The algorithm mc also requires exponential time. To sum up:

Theorem 6.4. The model-checking problem for existential announcements is in Exptime.

7. Satisfiability for propositional announcements

In this section, we address the satisfiability problem when A is a finite multiset of

propositional formulas, that is, when the support set of A is finite, the multiplicity of

each element is an integer and formulas in A are propositional. More precisely, we say

that a formula ϕ0 is A-satisfiable if there exists an initial pointed model (M, w) such that

M ⊗ A, (w, ε, 0) |= ϕ0. We consider the following decision problem:

— input: a finite multiset of propositional formulas A (where multiplicities are written

in unary), a formula ϕ0;

— output: yes if ϕ0 is A-satisfiable, no otherwise.

In practice, a typical application of the satisfiability problem would be to check that a

class of systems described by a formula ϕ satisfies a property ψ. To do so, one checks

whether ϕ ∧ ¬ψ is satisfiable. If it is not, then indeed all ϕ-systems satisfy ψ. If it is

satisfiable, then the algorithm we present here (like all tableau methods) produces a

counter-example, i.e., a model (M, w) such that M ⊗ A, (w, ε, 0) |= ϕ ∧ ¬ψ, or in other

words, a ϕ-system that does not satisfy ψ.

7.1. Tableau method description

Our tableau method manipulates terms that we call tableau terms, which are of the

following kind:

— (w σ c ϕ): w is a world symbol that represents a world of the model M being

constructed, σ is a sequence of formulas in Seq(A), c is a cut for σ and ϕ is a

sub-formula of ϕ0 that should be true in M ⊗ A, (w, σ, c).
— (w →a u): w and u are two world symbols such that w →a u in the model M being

constructed.

— ⊥: Denotes an inconsistency.

A tableau rule is represented by a numerator N above a line and a finite list of

denominators D1, . . . ,Dk below this line, separated by vertical bars, representing non-

deterministic choice:

N
D1 | . . . | Dk

The numerator and the denominators are finite sets of tableau terms.

A tableau for input (A, ϕ0) is a finite tree with a set of tableau terms at each node,

whose root is

Γ0 = {(w0 ε 0 ϕ0)}.

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

S. Knight, B. Maubert and F. Schwarzentruber 150

A rule with numerator N is applicable to a node carrying a set Γ if Γ contains an instance

of N for which the rule has not yet been applied. If no rule is applicable, Γ is said to be

saturated. We call a node n an end node if the set of tableau terms Γ it carries is saturated,

or if ⊥∈ Γ. The tableau is extended the following way:

1. Choose a leaf node n carrying Γ, where n is not an end node, and choose a rule

applicable to n.

2. For each denominator Di of the rule, create one successor node for n carrying the union

of Γ with an appropriate instanciation of Di.

A branch in a tableau is a path from the root to an end node. A branch is closed if

its end node contains ⊥, otherwise it is open. A tableau is closed if all its branches are

closed, otherwise it is open. A pair (A, ϕ0) is said to be consistent if no tableau for (A, ϕ0)

is closed.

The tableau rules are described in Figure 6, in which we write (σ, c) ∼a (σ′, c′) for

σ|c(a) = σ′|c′(a).

Remark 7.1. Rule ch for choosing valuations is necessary for checking consistency of

states in rules Kaϕ and �. For this reason, rule ch is always applied in priority before

rules Kaϕ and �. In a node carrying Γ and saturated for rule ch, if w is a world symbol

in Γ, we say that σ is true in w if the valuation ν, defined by ν(p) = 1 if (w ε 0 p) ∈ Γ

and ν(p) = 0 if (w ε 0 ¬p) ∈ Γ, satisfies every formula in σ (recall that in this section

announcements are propositional).

7.2. Tableau method soundness and completeness

In this section, we prove that the tableau method is sound and complete. Note that we

will establish that every tableau is finite in the complexity analysis of the tableau method

(see Theorem 7.1).

Proposition 7.1. If (A, ϕ0) is consistent, then ϕ0 is A-satisfiable.

Proof. Suppose that (A, ϕ0) is consistent, and consider a tableau t for (A, ϕ0). By

assumption, this tableau is open, which means that it has an open branch. Consider one

such open branch, and let Γ be the set of tableau terms carried by its end node. We define

the model M = (W, {→a}a∈Ag ,Π), where

— W = {w | (w σ c ϕ) ∈ Γ for some σ, c and ϕ},
— →a = {(w, u) | (w →a u) ∈ Γ} and

— for each w ∈ W , Π(w) = {p | (w ε 0 p) ∈ Γ}.
We prove that for all (w σ c ϕ) ∈ Γ, it holds that M ⊗ A, (w, σ, c) |= ϕ. Because

(w0 ε 0 ϕ0) is in Γ0 ⊆ Γ, it follows that ϕ0 is A-satisfiable.

If ϕ = p, by saturation of rule p we have (w ε 0 p) ∈ Γ, thus p ∈ Π(w) by construction

of M, and M ⊗ A, (w, σ, c) |= p.

If ϕ = ¬p, by saturation of rule ¬p we have (w ε 0 ¬p) ∈ Γ. We cannot have

(w ε 0 p) ∈ Γ, otherwise the branch would be closed by saturation of rule ⊥. Therefore

p /∈ Π(w), and M ⊗ A, (w, σ, c) |= ¬p.

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

Reasoning about knowledge and messages in asynchronous multi-agent systems 151

(w σ c ϕ)
(w 0 p) | (w 0 ¬p) ch for all atomic propositions p appearing in ϕ0 and A

(w σ c (ϕ ∧ ψ))
(w σ c ϕ) (w σ c ψ)

∧ (w σ c ¬(ϕ ∧ ψ))
(w σ c ¬ϕ) | (w σ c ¬ψ)

¬∧

(w σ c p)
(w 0 p)

←p
(w σ c ¬p)
(w 0 ¬p)

←¬p
(w σ c ¬¬ϕ)

(w σ c ϕ)
¬¬

where p ∈ AP

(w σ c a ϕ)
(w σ c+a ϕ) a if c(a) < |σ|

(w σ c a ϕ)
⊥ a if c(a) = |σ|

(w σ c a ϕ)
(w σ c+a ¬ϕ) a if c(a) < |σ|

(w σ c ψ ϕ)
(w σ c ψ)(w σ::ψ c ϕ)

ψ
if σ::ψ ∈ Seq(A)

(w σ c ψ ϕ)
⊥ ψ

if σ::ψ Seq(A)

(w σ c ψ ϕ)
(w σ c ¬ψ) | (w σ c ψ)(w σ :: ψ c ¬ϕ)

ψ
if σ::ψ ∈ Seq(A)

(w σ c Kaϕ)(w →a u)
(u σ c ϕ)

Kaϕ
for all (σ , c) ∼a (σ, c) and σ true in u (see Remark 3)

(w σ c ¬Kaϕ)
(u σ1 c1 ¬ϕ)(w →a u) | · · · | (u σn cn ¬ϕ)(w →a u)

¬Kaϕ where (σi, ci) ∼a (σ, c)
and u is fresh

(w σ c ϕ)
⊥ if σ is not true in w

(w 0 p)(w 0 ¬p)
⊥ ⊥ for p ∈ AP

Fig. 6. Tableau rules.

For boolean connectives, the result follows by saturation of the appropriate tableau

rule, plus application of the induction hypothesis.

If ϕ = ©aϕ
′, we have that c(a) < |σ|, otherwise Γ would contain ⊥ by saturation of

rule ©a and the branch would be closed. Therefore, again by saturation of rule ©a, Γ

contains (w σ c+a ϕ′). By induction hypothesis, we get that M⊗A, (w, σ, c+a) |= ϕ′, and

thus M ⊗ A, (w, σ, c) |= ©aϕ
′.

If ϕ = ¬ ©a ϕ
′ we apply similar reasoning, except for the case c(a) = |σ| in which ϕ

trivially holds.

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

S. Knight, B. Maubert and F. Schwarzentruber 152

If ϕ = 〈ψ〉ϕ′, then σ::ψ ∈ Seq(A), otherwise the branch would be closed. It follows by

saturation of rule 〈ψ〉 that (w σ c ψ) and (w σ::ψ c ϕ′) are in Γ, and we conclude by

applying the induction hypothesis.

If ϕ = ¬〈ψ〉ϕ′, in case σ::ψ is not in Seq(A), ϕ trivially holds. Otherwise, by saturation

of rule ¬〈ψ〉, either (w σ c ¬ψ) is in Γ, or both (w σ c ψ) and (w σ::ψ c ¬ϕ′) are in

Γ. In both cases, we conclude by induction hypothesis.

If ϕ = Kaϕ
′, let (u, σ′, c′) be such that (w, σ, c)Ra(u, σ

′, c′) and M ⊗ A, (u, σ′, c′) |= �,

i.e. σ′ is true in u (see Remark 7.1). We have that w →a u, so by construction of

M, (w →a u) ∈ Γ. Also, since (w, σ, c)Ra(u, σ
′, c′) we have that (σ, c) ∼a (σ′, c′). By

saturation of rule Kaϕ we thus have that (u σ′ c′ ϕ′) ∈ Γ, and by induction hypothesis

M ⊗ A, (u, σ′, c′) |= ϕ′, which concludes.

If ϕ = ¬Kaϕ
′, by saturation of rule ¬Kaϕ there exist (σ′, c′) ∼a (σ, c) and a world symbol

u such that Γ contains (u σ′ c′ ¬ϕ) and (w →a u). It follows that (w, σ, c) →a (u, σ′, c′).

We also have that M ⊗ A, (u, σ′, c′) |= � (or in other words, σ′ is true in u), otherwise the

branch would be closed by rule �. Finally, by induction hypothesis, M⊗A, (u, σ′, c′) |= ¬ϕ′,

and thus M ⊗ A, (w, σ, c) |= ¬Kaϕ
′.

Proposition 7.2. If ϕ0 is A-satisfiable, then (A, ϕ0) is consistent.

Proof. Suppose that there is a pointed model (M0, w0) such that M0 ⊗A, (w0, ε, 0) |= ϕ0.

We must prove that every tableau for (A, ϕ0) has an open branch.

We let WΓ denote the set of world symbols appearing in a set of tableau terms Γ. Such

a set Γ is said to be interpretable if, first, it does not contain ⊥ and, second, there is an

initial model M = (W, {→a }a∈Ag ,Π) and a mapping f : WΓ → W such that:

— for each (w →a u) ∈ Γ, f(w) →a f(u) and

— for each (w σ c ϕ) ∈ Γ, M ⊗ A, (f(w), σ, c) |= � and M ⊗ A, (f(w), σ, c) |= ϕ.

We write M, f |= Γ if these two conditions are met.

Observe that Γ0 = {(w0 ε 0 ϕ0)} does not contain ⊥, and by assumption there is

a pointed model (M0, w0) such that M0 ⊗ A, (w0, ε, 0) |= ϕ0. So M0, [w0 �→ w0] |= Γ0,

and Γ0 is interpretable. We now prove that when a tableau rule is applied in a node

that carries an interpretable set of tableau terms and is not an end node, then one of its

successors carries an interpretable set. This implies that every tableau for (A, ϕ0) has a

branch whose end node carries an interpretable set; in particular, this set does not contain

⊥, so the branch is open, which concludes.

In the following, Γ is the interpretable set of tableau terms in which the rule is applied,

and M = (W, {→a }a∈Ag ,Π) and f : WΓ → W are such that M, f |= Γ.

We do not treat the case of rules for propositional logic as it is straightforward.

Rule ch for atomic proposition p, on numerator {(w σ c ϕ)}: If p ∈ Π(f(w)), then

M ⊗ A, (f(w), ε, 0) |= p, and thus M, f |= Γ ∪ {(w ε 0 p)}; otherwise M, f |= Γ ∪
{(w ε 0 ¬p)}. So one of the successors is interpretable.

Rule ©aϕ on numerator {(w σ c ©a ϕ)}: by assumption, M⊗A, (f(w), σ, c) |= ©aϕ.

Thus, according to the semantics, we necessarily have that c(a) < |σ|. So the only

successor in the tableau carries the set Γ ∪ {(w σ c+a ϕ)}. Since (w σ c ©a ϕ) ∈ Γ

and M, f |= Γ, M ⊗ A, (f(w), σ, c) |= �, and thus also M ⊗ A, (f(w), σ, c+a) |= �. Besides,

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

Reasoning about knowledge and messages in asynchronous multi-agent systems 153

because M ⊗ A, (f(w), σ, c) |= ©aϕ, we have that M ⊗ A, (f(w), σ, c+a) |= ϕ. It follows

that M, f |= Γ ∪ {(w σ c+a ϕ)}, and the successor is interpretable.

Rule ¬ ©a ϕ on numerator {(w σ c ¬ ©a ϕ)}: the application of this rule requires

that c(a) < |σ| hold. So the fact that M ⊗ A, (f(w), σ, c) |= ¬ ©a ϕ holds implies

M ⊗ A, (f(w), σ, c+a) |= ¬ϕ. The consistency aspect is treated like for rule ©aϕ, and we

obtain that M, f |= Γ ∪ {(w σ c+a ¬ϕ)}, hence the successor is interpretable.

Rule 〈ψ〉ϕ on numerator {(w σ c 〈ψ〉ϕ)}: We have that M ⊗ A, (f(w), σ, c) |= 〈ψ〉ϕ,

so σ::ψ ∈ Seq(A), which implies that it is the first version of the rule that is applied. We

also have that M ⊗ A, (f(w), σ, c) |= ψ and M ⊗ A, (f(w), σ::ψ, c) |= ϕ. From the former

and the fact that M, f |= Γ � (w σ c 〈ψ〉ϕ), we obtain that M ⊗ A, (f(w), σ::ψ, c) |= �.

It follows that M, f |= Γ ∪ {(w σ c ψ), (w σ::ψ c ϕ)}, and thus the only possible

successor is interpretable.

Rule ¬〈ψ〉ϕ on numerator {(w σ c ¬〈ψ〉ϕ)}: First, because {(w σ c ¬〈ψ〉ϕ)} ∈
Γ, we have M ⊗ A, (f(w), σ, c) |= �. Also, the application of this rule requires that

σ::ψ ∈ Seq(A). So the fact that M ⊗ A, (f(w), σ, c) |= ¬〈ψ〉ϕ holds implies that either

M⊗A, (f(w), σ, c) |= ¬ψ or M⊗A, (f(w), σ::ψ, c) |= ¬ϕ. If M⊗A, (f(w), σ, c) |= ¬ψ, we

obtain that M, f |= Γ ∪ {(w σ c ¬ψ)}, and the first successor is interpretable. Otherwise

we have both M⊗A, (f(w), σ::ψ, c) |= ¬ϕ and M⊗A, (f(w), σ, c) |= ψ. The latter implies

that M ⊗ A, (f(w), σ::ψ, c) |= �; we obtain that M, f |= Γ ∪ {(w σ::ψ c ¬ϕ)}, and the

second successor is interpretable.

Rule Kaϕ on numerator {(w σ c Kaϕ), (w →a u)}, for some (σ′, c′) ∼a (σ, c) and σ′ true

in u: First, since rule ch has the priority over rule Kaϕ, we know that Γ is saturated for

rule ch. Also, since (w →a u) ∈ Γ and tableau terms of this form can only be introduced

by rule ¬Kaϕ together with a tableau term of the form (u σ′′ c′′ ϕ′), then there is one

such tableau term in Γ. By saturation of rule ch, it follows that for each p appearing in

ϕ0 and A, either (u ε 0 p) or (u ε 0 ¬p) is in Γ. This defines a valuation ν for u

that, by assumption, makes σ′ true (see Remark 7.1). Because M, f |= Γ, we have that

Π(f(u)) agrees with ν on all atomic propositions in A. Since by assumption ν satisfies

all formulas in σ′, so does Π(f(u)), and therefore M ⊗ A, (f(u), σ′, c′) |= �. Now, since

M, f |= Γ and (w →a u) ∈ Γ, we have that f(w) →a f(u), and because (w σ c Kaϕ) ∈ Γ,

it holds that M ⊗ A, (f(w), σ, c) |= Kaϕ. Since f(w) →a f(u) and (σ, c) ∼a (σ′, c′), we have

that (f(w), σ, c)Ra(f(u), σ′, c′). As we have seen that M ⊗ A, (f(u), σ′, c′) |= �, we finally

have that M ⊗ A, (f(u), σ′, c′) |= ϕ, thus M, f |= Γ ∪ {(u σ′ c′ ϕ)}, and the successor is

interpretable.

Rule ¬Kaϕ on numerator {(w σ c ¬Kaϕ)}: since M ⊗ A, (f(w), σ, c) |= ¬Kaϕ,

there exist u ∈ W , σ′ and c′ such that (f(w), σ, c)Ra(u, σ
′, c′), M ⊗ A, (u, σ′, c′) |= � and

M ⊗ A, (u, σ′, c′) |= ¬ϕ. Recall that (f(w), σ, c)Ra(u, σ
′, c′) means that f(w) →a u and

(σ, c) ∼a (σ′, c′). Clearly, M, f[u �→ u] |= {(u σ′ c′ ¬ϕ)(w →a u)}, and because u is fresh,

f[u �→ u] coincides with f on all world symbols appearing in Γ, so that M, f[u �→ u] |= Γ.

Finally, the denominator corresponding to σ′, c′ is interpretable (there are only finitely

many possible σ′ and c′, see proof of Theorem 7.1).

Rule � on numerator {(w σ c }): because Γ is interpretable, this rule cannot

be applied. Indeed, assume it is applied. Because rule ch is applied in priority, Γ is

saturated for rule ch. With reasoning similar to that followed for rule Kaϕ, we obtain

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

S. Knight, B. Maubert and F. Schwarzentruber 154

that the valuation ν defined by Γ for w coincides with Π(f(w)) on all atomic propositions

appearing in ϕ0 and A, and thus they agree on all formulas in σ. Yet on the one hand,

since (w σ c ϕ) ∈ Γ and M, f |= Γ, we have that M ⊗ A, (f(w), σ, c) |= � and thus

Π(f(w)) satisfies all formulas in σ. On the other hand, because the rule � is applied, ν

does not satisfy all formulas in σ, and we have a contradiction.

Rule ⊥ on numerator {(w ε 0 p), (w ε 0 ¬p)}: because M, f |= Γ this cannot

happen, as otherwise we would have both p ∈ Π(f(w)) and p /∈ Π(f(w)).

Theorem 7.1. The satisfiability problem for finite propositional protocols is in

NExptime .

Proof. Let A be a propositional and finite protocol and ϕ0 be the formula to check. The

algorithm to check whether ϕ0 is A-satisfiable consists of non-deterministically applying

tableau rules of Figure 6 from the initial tableau {(w ε 0 ϕ0)}.
Each world symbol w except w0 is created by rule ¬Ka with a formula ϕw, and the

number of times this rule is applied to terms with w as world symbol is linear in ϕw. These

world symbols can be ordered in a tree structure (a world symbol created by applying

rule ¬Ka in a tableau term with world symbol w is a child of w), and the modal depth of

ϕw formulas is strictly decreasing in the tree. So the number of created world symbols w

is exponential in the size of ϕ0.

In addition, recall that the number of possible sequences of announcements σ is

exponential in the size of A, and the number of possible cuts c is |A||Ag |. Therefore, the

number of different tableau terms (w σ c ψ) is exponential in |ϕ0| + |A|.
At each step, the algorithm is executing a rule that adds at least one term. As the

number of terms is exponential, the number of rule applications is exponential, and thus

the running time of the (non-deterministic) algorithm is exponential. So the satisfiability

problem when the protocol is finite and propositional is in NExptime .

We now establish the matching lower bound.

Theorem 7.2. The satisfiability problem for finite propositional protocols with at least two

agents is NExptime -hard.

Proof. See Appendix D.

8. Related work

We review several research areas related to different aspects of the present work.

8.1. Existing logics for asynchrony

As far as we know, there has not been much work on the relationship between knowledge,

announcements and asynchrony. In (Dégremont et al. 2011), asynchrony in DEL is studied,

with the notion of asynchrony being that an agent cannot tell whether an event has

occurred if her epistemic state is unchanged. This notion of asynchrony is different from

the one we consider in this work: indeed in Dégremont et al. (2011), different agents can

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

Reasoning about knowledge and messages in asynchronous multi-agent systems 155

have a different idea of how many events have occurred so far, because some events might

be completely unnoticed by some agents. So in one setting asynchrony is due to events

being completely unobserved, while in the other (the one considered in this work) it is due

to a delay between the occurrence of an event (the announcement) and its observation

(the reception).

A logic dealing with knowledge and asynchrony is also developed in (Panangaden and

Taylor 1992), but in this setting, messages do not have logical content: for example, the

logic does not allow for announcements about knowledge or about the effect of other

announcements. (Fagin et al. 1992) is concerned with knowledge in multi-agent, dynamic

systems which may be asynchronous, but does not explicitly model communication, and

in particular the effects of asynchronous sending and receiving of true announcements,

which is the focus of our work.

Recently, van Ditmarsch developed a logic of asynchronous announcements in (van

Ditmarsch 2017). The major difference between our framework and that one is our third

basic principle, that agents are able to imagine all possible pending messages. In van

Ditmarsch’s work, agents in fact do not consider any pending or future announcements

possible; they only consider a message possible after they have received it. So in our work,

an agent a has three sources of uncertainty: first, uncertainty about the state arising from

the underlying Kripke model; second ‘past uncertainty,’ that is, uncertainty about which

of the messages that a has received have already been received by other agents; and

third, ‘future uncertainty,’ uncertainty about what messages are pending in the channel

but unread by a, or which messages may be broadcast in the future. In van Ditmarsch’s

work, agents only have the first two sources of uncertainty: uncertainty arising from the

underlying Kripke model, and ‘past uncertainty.’ This means that agents may not consider

the current state possible, and may even have false knowledge. For example, if agents a

and b initially do not know true proposition p, and then p is broadcast, in van Ditmarsch’s

framework, if a has received broadcast p and b has not, b considers it impossible that a

knows p, even though a does indeed know p. Symbolically, Kap ∧ Kb¬Kap. In our logic

this is not the case: even when b has not received the broadcast of p, b considers it

possible that p has been broadcast and received by a, so the formula Kap ∧Kb¬Kap can

never hold in our models. In general, Kaϕ −→ ϕ in our logic, while this is not the case in

van Ditmarsch’s logic.

8.2. Semi-private announcements and dynamic epistemic logic

On first glance, asynchronous broadcast logic has some similarities with semi-private

announcement logic, (Baltag and Moss 2004; Baltag et al. 1998; Gerbrandy and Groeneveld

1997; ?). Logics with semi-private announcements follow the same basic idea as PAL, but

rather than announcements being received by the entire group of agents, each message

is announced to a subset of agents, while the rest of the agents know the message was

announced to that group, but do not know what the content of the message was. In the

general setting, group A receives message m and updates their knowledge accordingly,

while the agents not in group A know that A received either m or its negation, ¬m, and

update their knowledge accordingly. The identity of the group receiving each message is

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

S. Knight, B. Maubert and F. Schwarzentruber 156

common knowledge for everyone. On the surface, this logic has some similarities with

asynchronous broadcast logic: at any time, a certain group of agents has received each

message, while others have not. However, like other variants of PAL, logics of semi-

private announcements are synchronous: a message is sent and received simultaneously,

and thus common knowledge is achieved immediately by the group of agents receiving

the message. Furthermore, even the group of agents who do not receive the message

have synchronous information, since they immediately know that the other agents have

received some message. Overall, in this setting, the agents have less uncertainty about

one another’s knowledge than in the asynchronous setting. In fact, the issues of semi-

private messages and asynchrony are orthogonal; one could imagine an asynchronous

logic of semi-private announcements, where each member of group A eventually receives

announcement m, and the rest of the agents eventually receive the information that group

A has been asynchronously sent either m or ¬m.

8.3. Arbitrary public announcement logic

Arbitrary public announcement logic (APAL) (Balbiani et al. 2007) has some similarities

to our approach. In this logic, one can ask whether some formula holds after any

possible announcement ; this is not possible in our logic, but because agents can imagine

pending messages, our knowledge operator considers any possible future sequence of

announcements that follows the protocol, which is a related idea. Interestingly, the

satisfiability problem for APAL is undecidable, but decidability can be achieved by

considering a constraint similar to our restriction to existential announcements (French

and van Ditmarsch 2008; van Ditmarsch et al. submitted).

8.4. Distributed systems

The systems we consider are closely related to the notion of total order broadcast in

distributed systems (Raynal 2013, p. 154):

1. if a message is received, then it means that it has been broadcast;

2. no message is received twice;

3. if an agent received ϕ before ϕ′, they all receive ϕ before ϕ′;

4. ϕ causally precedes ϕ′ implies that no agent receives ϕ′ before ϕ;

5. if a message is broadcast, all agents will eventually receive it.

The first point holds in our system since a message (a formula) is only received if it is

in the queue, which is the list of broadcast messages. The second point holds because a

message is received when an agent’s cut is increased to include that message from the

queue, which only occurs once for each message. The third point holds because we have

FIFO channels, and thus agents all receive messages in the same order, the order in which

they are announced. The fourth point follows from the fact that in our systems we only

consider a state (w, σ::ψ, c) consistent if (w, σ, c) |= ψ, and because messages are received

in order. The fifth point is not directly modelled in our systems since we only consider

finite histories, but it is a kind of liveness constraint that we will probably be led to

consider when we extend the logic with temporal operators (see next section).

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

Reasoning about knowledge and messages in asynchronous multi-agent systems 157

More recently, (Griesmayer and Lomuscio 2013) studies the model checking of dis-

tributed systems with respect to epistemic specifications. Although this work is in a

synchronous setting, it is quite close to our approach in spirit, and shows that epistemic

issues in distributed systems have practical implications, and a logical approach to these

concerns can be fruitful.

Finally, we note that our definition of asynchronous models M ⊗ A, especially the

notion of cuts, is in the spirit of Lamport (1978).

9. Future work

This work is a first attempt to develop an epistemic logic for reasoning about asynchronous

announcements. In the future, we would like to overcome the circularity problem, and

define the semantics for the most general case (removing the finite tree and existential

conditions). Using coinduction to define the set of consistent states may be one approach

to this problem. Once we have defined the semantics for the general case, if possible,

we hope to provide a complete axiomatization and a general model-checking algorithm.

We also plan to implement the model-checking algorithms. Actually, we believe that the

model checking of our logic could be reduced to recently proposed succinct languages

for DEL (Charrier and Schwarzentruber 2015, 2017). Therefore, we could use symbolic

techniques as presented in (van Benthem et al. 2015).

Second, we would like to model more general situations of asynchronous communica-

tion. We plan to consider the case where messages are not read in FIFO order, but are

received and read in arbitrary order. We also plan to model the origin of the messages,

allowing formulas such as ‘After agent a broadcasts ϕ, ψ holds.’ In our current setting,

when the external broadcaster makes a new announcement, the only effect is to queue it

in the channel without affecting anyone’s epistemic state. However, in the case where the

agents themselves make the announcements, agent a making an announcement should

impact her knowledge: after the announcement she should know, for instance, that the

channel is not empty. She should also know that after another agent checks their channel,

that agent will know that ψ has been announced.

Third, it would be interesting to add temporal operators to our language, in order to

express properties like ‘After p is announced and agent a receives it, eventually she will

know that agent b knows p’ (assuming that agents are forced to read announcements

eventually).

Finally, we would like to model not only asynchronous broadcasts on a public channel

but also private asynchronous communications between agents in the system. In essence,

this amounts to defining a complete asynchronous version of DEL (van Ditmarsch et al.

2007).

We would like to thank Hans van Ditmarsch who hosted the three authors in Nancy and

who was the initiator of studying asynchrony in DEL. We acknowledge support from

ERC project EPS 313360.

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

S. Knight, B. Maubert and F. Schwarzentruber 158

References

Aucher, G. and Schwarzentruber, F. (2013). On the complexity of dynamic epistemic logic. In:

TARK ’13.

Balbiani, P., Baltag, A., van Ditmarsch, H.P., Herzig, A., Hoshi, T. and Lima, T.D. (2007). What

can we achieve by arbitrary announcements?: A dynamic take on Fitch’s knowability. In:

TARK ’07.

Balbiani, P., Gasquet, O. and Schwarzentruber, F. (2013). Agents that look at one another. Logic

Journal of the IGPL 21 (3) 438–467. https://doi.org/10.1093/jigpal/jzs052

Balbiani, P., van Ditmarsch, H., Herzig, A. and Lima, T.D. (2010). Tableaux for public announcement

logic. Journal of Logic and Computation 20 (1).

Baltag, A., Ditmarsch, H.P.V. and Moss, L.S. (2008). Epistemic logic and information update. In:

Adriaans, P. and van Benthem, J. (eds.) Philosophy of Information, Elsevier Science Publishers,

361–455.

Baltag, A. and Moss, L.S. (2004). Logics for epistemic programs. Synthese 139 (2) 165–224.

Baltag, A., Moss, L.S. and Solecki, S. (1998). The logic of public announcements and common

knowledge and private suspicions. In: Proceedings of the 7th Conference on Theoretical

Aspects of Rationality and Knowledge (TARK-98), Evanston, IL, USA, July 22–24, 1998, 43–

56.

Benthem, J.V. (2011). Logical Dynamics of Information and Interaction, Cambridge University Press.

Brand, D. and Zafiropulo, P. (1983). On communicating finite-state machines. Journal of the ACM

(JACM) 30 (2) 323–342.

Braüner, T., Blackburn, P. and Polyanskaya, I. (2016). Second-order false-belief tasks: Analysis

and formalization. In: Proceedings of the Logic, Language, Information, and Computation -

23rd International Workshop, WoLLIC 2016, Puebla, Mexico, August 16–19th, 2016, 125–

144.

Chambart, P. and Schnoebelen, P. (2008). Mixing lossy and perfect fifo channels. In: International

Conference on Concurrency Theory, Springer, 340–355.

Charrier, T. and Schwarzentruber, F. (2015). Arbitrary public announcement logic with

mental programs. In: Proceedings of the 2015 International Conference on Autonomous

Agents and Multiagent Systems, AAMAS 2015, Istanbul, Turkey, May 4–8, 2015, 1471–1479.

http://dl.acm.org/citation.cfm?id=2773340

Charrier, T. and Schwarzentruber, F. (2017). Arbitrary public announcement logic with mental

programs. In: Proceedings of the 2017 International Conference on Autonomous Agents and

Multiagent Systems, AAMAS 2017 (to appear).

Corradini, F., Berardini, M.R.D. and Vogler, W. (2003). Relating fairness and timing in process

algebras. In: Proceedings of the CONCUR ’03.

Dégremont, C., Löwe, B. and Witzel, A. (2011). The synchronicity of dynamic epistemic logic. In:

Proceedings of the TARK ’11.

Fagin, R., Halpern, J., Moses, Y. and Vardi, M. (2004). Reasoning About Knowledge, The MIT Press.

Fagin, R., Halpern, J.Y. and Vardi, M.Y. (1992). What can machines know?: On the properties of

knowledge in distributed systems. Journal of ACM 39 (2) 328–376.

French, T. and van Ditmarsch, H. P. (2008). Undecidability for arbitrary public announcement logic.

In: Proceedings of the AiML ’08.

Gasquet, O., Goranko, V. and Schwarzentruber, F. (2015). Big brother logic: Visual-epistemic

reasoning in stationary multi-agent systems. Autonomous Agents and Multi-Agent Systems 30

1–33. https://doi.org/10.1007/s10458-015-9306-4

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

Reasoning about knowledge and messages in asynchronous multi-agent systems 159

Gerbrandy, J. and Groeneveld, W. (1997). Reasoning about information change. Journal of Logic,

Language and Information 6 (2) 147–169.

Griesmayer, A. and Lomuscio, A. (2013). Model checking distributed systems against temporal-

epistemic specifications. In: Formal Techniques for Distributed Systems, Springer 130–145.

Halpern, J. Y. and Moses, Y. (1990). Knowledge and common knowledge in a distributed

environment. Journal of the ACM 37 (3) 549–587.

Hintikka, J. (1962). Knowledge and Belief: An Introduction to the Logic of the Two Notions, Vol. 4,

Cornell University Press Ithaca.

Jones, B.D. (1999). Bounded rationality. Annual Review of Political Science 2 297–321.

Knight, S., Maubert, B. and Schwarzentruber, F. (2015). Asynchronous announcements in a public

channel. In: Proceedings of the ICTAC ’15.

Kutschera, F. (1976). Einführung in die Intensionale Semantik, Grundlagen der Kommunikation und

Kognition.

Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM 21 55–565. http://doi.acm.org/10.1145/359545.359563,

doi:10.1145/359545.359563

Lenzen, W. (1978). Recent work in epistemic logic. Acta Philosophica Fennica 30 1–219.

Lutz, C. (2006). Complexity and succinctness of public announcement logic. In: Proceedings of the

AAMAS ’06.

Moses, Y. and Tuttle, M.R. (1988). Programming simultaneous actions using common knowledge.

Algorithmica 3 121–169. https://doi.org/10.1007/BF01762112

Panangaden, P. and Taylor, K. (1992). Concurrent common knowledge: Defining agreement for

asynchronous systems. Distributed Computing 6 73–93. https://doi.org/10.1007/BF02252679

Plaza, J. (2007). Logics of public communications. Synthese 158 (2).

Raynal, M. (2013). Distributed Algorithms for Message-Passing Systems, Springer.

Schnoebelen, P. (2002). The complexity of temporal logic model checking. Advances in Modal Logic

4 (393–436), 35.

Sipser, M. (1997). Introduction to the Theory of Computation, PWS Publishing Company.

Tarski, A. (1955). A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of

Mathematics 5 (2) 285–309.

van Benthem, J., van Eijck, J., Gattinger, M. and Su, K. (2015). Symbolic model checking for dynamic

epistemic logic. In: Proceedings of the Logic, Rationality, and Interaction – 5th International

Workshop, LORI 2015 Taipei, Taiwan, October 28–31, 2015, 366–378.

van der Hoek, W. (1990). Systems for knowledge and beliefs. In: Proceedings of the Logics in AI,

European Workshop, JELIA ’90, Amsterdam, The Netherlands, September 10–14, 1990, 267–281.

https://doi.org/10.1007/BFb0018447

van Ditmarsch, H. (2017). Asynchronous announcements. CoRR abs/1705.03392. http://arxiv.

org/abs/1705.03392

van Ditmarsch, H., French, T. and Hales, J. Positive announcements (submitted).

van Ditmarsch, H., van der Hoek, W. and Kooi, B.P. (2007). Dynamic Epistemic Logic, Vol. 337.

van Emde Boas, P. (1997). The convenience of tilings. Lecture Notes in Pure and Applied Mathematics.

van Lambalgen, M. (2010). Logical form as a determinant of cognitive processes. In: Proceedings of

the Logic, Language, Information and Computation, 17th International Workshop, WoLLIC 2010,

Brasilia, Brazil, July 6–9, 2010, 59–83.

Winskel, G. (1993). The Formal Semantics of Programming Languages - An Introduction, MIT Press.

Yu, Y.-T. and Gouda, M. (1982). Deadlock detection for a class of communicating finite state

machines. IEEE Transactions on Communications 30 (12) 2514–2518.

Zhang, J., Johansson, K.H., Lygeros, J. and Sastry, S. (2001). Zeno hybrid systems. International

Journal of Robust and Nonlinear Control 11 (5), 435–451.

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

S. Knight, B. Maubert and F. Schwarzentruber 160

Appendix A.

Here, we prove that, in the example of Section 3.5, we indeed have that

(w, ε, 0) |= 〈p〉〈¬KCp〉 ©B ©B(KB¬q ∧ ¬KBKCp ∧ ¬KB¬KCp)

1. (w, ε, 0) |= 〈p〉〈¬KCp〉 ©B ©B(KB¬q ∧ ¬KBKCp ∧ ¬KB¬KCp) iff (w, ε, 0) |= p, which

is clearly true, and (w, p, 0) |= 〈¬KCp〉 ©B ©B(KB¬q ∧ ¬KBKCp ∧ ¬KB¬KCp).

2. (w, p, 0) |= 〈¬KCp〉 ©B ©B(KB¬q ∧ ¬KBKCp ∧ ¬KB¬KCp) iff (w, p, 0) |= ¬KCp and

(w, p ::¬KCp, 0) |= ©B ©B (KB¬q ∧ ¬KBKCp ∧ ¬KB¬KCp).

(a) (w, p, 0) |= ¬KCp iff (w, p, 0) �|= KCp.

(b) (w, p, 0) �|= KCp iff there exists S ′ s.t. (w, p, 0)RCS
′, S ′ |= � and S ′ �|= p. We notice

that (v, ε, 0) meets the requirements for S ′, so we conclude that (w, p, 0) |= ¬KCp.

3. (w, p :: ¬KCp, 0) |= ©B ©B (KB¬q ∧ ¬KBKCp ∧ ¬KB¬KCp) iff (w, p :: ¬KCp, B �→1
C �→0) |=

©B(KB¬q ∧ ¬KBKCp ∧ ¬KB¬KCp).

4. (w, p :: ¬KCp, B �→1
C �→0) |= ©B(KB¬q ∧ ¬KBKCp ∧ ¬KB¬KCp) iff (w, p :: ¬KCp, B �→2

C �→0) |=
(KB¬q ∧ ¬KBKCp ∧ ¬KB¬KCp).

5. (w, p :: ¬KCp, B �→2
C �→0) |= (KB¬q ∧ ¬KBKCp ∧ ¬KB¬KCp) iff (w, p :: ¬KCp, B �→2

C �→0) |= KB¬q
and (w, p ::¬KCp, B �→2

C �→0) |= ¬KBKCp and (w, p ::¬KCp, B �→2
C �→0) |= ¬KB¬KCp.

6. (w, p :: ¬KCp, B �→2
C �→0) |= KB¬q iff for all S ′ s.t. (w, p :: ¬KCp, B �→2

C �→0)RBS
′, if S ′ |= � then

S ′ |= ¬q. We see that if (w, p :: ¬KCp, B �→2
C �→0)RB(w, σ, c) then w = t, because if the

initial state were s, ¬KCp would never be announceable. So indeed S ′ |= ¬q, and

(w, p ::¬KCp, B �→2
C �→0) |= KB¬q.

7. (w, p ::¬KCp, B �→2
C �→0) |= ¬KBKCp iff (w, p ::¬KCp, B �→2

C �→0) �|= KBKCp.

(a) (w, p :: ¬KCp, B �→2
C �→0) �|= KBKCp iff ∃S ′ s.t. (w, p :: ¬KCp, B �→2

C �→0)RBS
′ and S ′ |= � and

S ′ �|= KCp.

(b) S ′ �|= KCp iff ∃S ′′ s.t. S ′RCS
′′ and S ′′ |= � and S ′′ �|= p. We can choose S ′ = (w, p ::

¬KCp, B �→2
C �→0) and S ′′ = u, ε, 0 and we have that (w, p :: ¬KCp, B �→2

C �→0)RBS
′, S ′ |= �,

S ′RCS
′′, S ′′ |= � and S ′′ �|= p.

8. (w, p ::¬KCp, B �→2
C �→0) |= ¬KB¬KCp iff (w, p ::¬KCp, B �→2

C �→0) �|= KB¬KCp.

9. (w, p :: ¬KCp, B �→2
C �→0) �|= KB¬KCp iff ∃S ′ s.t. (w, p :: ¬KCp, B �→2

C �→0)RBS
′ and S ′ |= � and

S ′ �|= ¬KCp, i.e. S ′ |= KCp.

10. Thus, (w, p :: ¬KCp, B �→2
C �→0) �|= KB¬KCp iff ∃S ′ s.t. (w, p :: ¬KCp, B �→2

C �→0)RBS
′ and ∀S ′′ if

S ′RCS
′′ and S ′′ |= �, then S ′′ |= p. We can choose S ′ = (w, p :: ¬KCp, B �→2

C �→1) and

then we see that for any consistent S ′′, if S ′RS ′′ then S ′′ |= p. This shows that

(w, p ::¬KCp, B �→2
C �→0) |= ¬KB¬KCp.

Appendix B.

We consider the notion of (non-)Zeno behaviours, from the field of timed and hybrid

systems. We describe how, modulo the adoption of a form of asynchrony weaker than the

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

Reasoning about knowledge and messages in asynchronous multi-agent systems 161

one considered in this work, this notion of non-Zeno behaviour could allow us to solve

the circularity problem for the semantics of the full language, for arbitrary announcements

and initial models.

In timed and hybrid systems, a behaviour of a system is a Zeno behaviour if countably

infinitely many discrete events occur in a finite time (Corradini et al. 2003; Zhang et al.

2001). This is of course impossible in real systems, but such behaviours can occur in

models of systems due to abstraction, and many works either study how to detect such

behaviours, eliminate them, or directly consider only non-Zeno models, i.e., models that

do not present Zeno behaviours.

Similarly, let us here assume that our systems are non-Zeno: only a finite number of

discrete events (announcements/reception of formulas) occur in a finite time interval. In

fact, we make the stronger assumption that the number of messages sent during one

unit of time is bounded. Without loss of generality, we suppose that the number of

messages sent during one unit of time is at most one (otherwise, change the time unit).

We also suppose that reading a formula takes one unit of time. These assumptions are

somewhat idealistic, since the time necessary to send or read a message may be influenced

by many factors, such as the length of the message. However, it may be achievable in

some circumstances, for example by waiting after sending or receiving a message, in order

to use a uniform amount of time.

Note that in the rest of the paper, we never mentioned time in our systems. Here, we

need to for the notion of non-Zeno systems to make sense. We thus assume a global

clock, and in addition, we make the rather strong assumption that all agents have access

to this clock, and that this is common knowledge.

Fagin et al. (1992, p. 333) wrote:

Is the system synchronous? That is, is there a ‘global clock’ that every process can ‘see,’ so that

every process ‘knows the time’?

With the assumption that agents have access to a global clock, our systems are not

asynchronous according to this definition. However, we argue that this definition does

not apply here, and that even with the global clock assumption our framework remains

asynchronous in spirit. The first reason is that communication remains asynchronous: the

delay between sending of an announcement and reception by each agent is unbounded.

The second reason is that even though agents have access to a global clock and thus

know the time, they cannot talk about it and synchronize. However, knowing the time

and the fact that at most one announcement is made per time unit allows agents to

refine their pre-accessibility relation by removing all possible states that contain too many

announcements. This is enough to solve the problem of circular definition, as we detail

now.

First, we introduce the time of the global clock in the states of the models, so

that formulas are now evaluated on states of the form (w, σ, c, t), where (w, σ, c) is

as before and t is the time represented as a positive integer. Note that because we

assumed that sending of an announcement takes one time unit, we always have that

|σ| � t.

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

S. Knight, B. Maubert and F. Schwarzentruber 162

We define the satisfaction relation (w, σ, c, t) |= ϕ by induction as follows:

(w, σ, c, t) |= p if p ∈ Π(w)

(w, σ, c, t) |= (ϕ1 ∧ ϕ2) if (w, σ, c, t) |= ϕ1 and (w, σ, c, t) |= ϕ2

(w, σ, c, t) |= ¬ϕ if (w, σ, c, t) �|= ϕ

(w, σ, c, t) |= Kaϕ if for all S ′ s.t. (w, σ, c)Ra(w
′, σ′, c′), |σ′| � t

and (w′, σ′, c′, t) |= �, (w′, σ′, c′, t) |= ϕ

(w, σ, c, t) |= 〈ψ〉ϕ if σ::ψ ∈ Seq(A), (w, σ, c, t) |= ψ and (w, σ::ψ, c, t+1) |= ϕ

(w, σ, c, t) |= ©aϕ if c(a) < |σ| and (w, σ, c+a, t+ 1) |= ϕ

where c+a(b) =

{
c(b) if b �= a

c(b) + 1 if b = a

(w, ε, 0, t) |= �
(w, σ, c, t) |= � if either there is c′ < c such that (w, σ, c′, t) |= �

or σ = σ′::ψ and there is t′ < t such that

(w, σ′, c) ∈ S , (w, σ′, c, t′) |= �
and (w, σ′, c, t′) |= ψ

The definition is by induction on the lexicographical order on (t, |ϕ|). Observe that in

the last clause, where (w, ε, 0, t) |= � requires (w, σ′, c, t′) |= ψ to be defined, we have t′ < t.

Also, in the clause for the knowledge operator, we restrict the pre-accessibility relation

to those states that do not contain more messages than what can have been announced

since the beginning. These two observations suffice to see that the induction is well-

founded.

So in a sense, our strong non-Zeno assumption together with the common knowledge

of a global clock tames the effect of the agents’ power to imagine pending messages.

We already described in Section 3.4, how removing this assumption on agents’ power to

imagine solves the circularity problem. In this section, we have shown that it is enough to

forbid them to imagine too much.

Finally, we show with an example that even with common knowledge of a global clock

our framework remains asynchronous.

Example B.1. In synchronous public announcement logic, common knowledge§ of formula

p is achieved when p is announced. For example, in a two-agent system the following

formula is always true: 〈p〉
PAL
Ca,bp. In our systems, message sending and reception are

separate, and there is no common knowledge operator, but if systems with common

knowledge of a global clock were equivalent to synchronous systems, we would expect

〈p〉 ©a ©b(KaKbp ∧ KbKap) to hold always, since Ca,bp −→ KaKbp ∧ KbKap. However,

it is easy to see that this does not always hold. Consider for instance a system with

two states, u and v, where p holds at u and not at v, and u and v are equivalent for

agents a and b. It is straightforward to see that (u, ε, 0, 0) |= ¬〈p〉 ©a ©b(KaKbp∧KbKap).

Furthermore, it can be shown that for any sequence of formulas ϕ1, . . . , ϕk , there exists

§ In an S5 system, common knowledge of p is the formalization of ‘everybody knows p, everybody knows that

everybody knows p, and so on.’ In particular, C{a,b}p = p ∧Kap ∧Kbp ∧KaKbp ∧KbKap ∧ ...

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

Reasoning about knowledge and messages in asynchronous multi-agent systems 163

n such that 〈ϕ1〉 . . . 〈ϕk〉(©a©b)
k(¬(KaKb)

np ∧ ¬(KbKa)
np), which strongly suggests that

common knowledge is not attainable in these systems.

Appendix C.

Theorem C.2. The model checking problem for propositional protocols is Pspace -hard.

Proof. We give a polynomial-time reduction from the quantified boolean formula (QBF)

satisfiability problem (Sipser 1997) to the model checking problem for propositional

protocols.

Reduction definition. Let ∃p1∀p2 . . . ∀p2nχ(p1, . . . , p2n) be a quantified boolean formula where

n is an integer. We define an instance (M, w0,A, ϕ0) of the model checking problem for

propositional protocols.

First, we consider fresh atomic propositions p�
i and p⊥

i for i ∈ {1, . . . , 2n}, whose intuitive

meanings are respectively ‘pi is true’ and ‘pi is false’.

1. We define the model M = (W, {→a}a∈Ag ,Π) such that:

— W = {wp�
1
, . . . , wp�

2n
, wp⊥

1
, . . . , wp⊥

2n
};

— for all a ∈ Ag , →a= W ×W ;

— Π(wα) = {α}.

2. The world w0 is wp⊥
1

(but it could be any other world in W).

3. The announcement protocol A is {¬p�
1 , . . . ,¬p�

2n,¬p⊥
1 , . . . ,¬p⊥

2n}.
Now, we define the following abbreviations:

-isdefa(pi) := (K̂ap
�
i ∧Ka¬p⊥

i) ∨ (K̂ap
⊥
i ∧Ka¬p�

i), to be read ‘pi is defined’;

-istruea(pi) := (K̂ap
�
i), to be read ‘pi is true.’

4. The formula ϕ0 is ψ1, where the sequence (ψ�)�:=1..2n+1 is defined by induction:

— Base case: ψ2n+1 := χ(istruea(p1), . . . , istruea(p2n));

— Inductive case: for all � ∈ {1, . . . , 2n},

– ψ� := K̂a(
�∧
j=1

isdefb(pj)∧
2n∧

j=�+1

¬isdefb(pj) ∧ ψ�+1) if � is odd;

– ψ� := Kb((
�∧
j=1

isdefa(pj)∧
2n∧

j=�+1

¬isdefa(pj))→ψ�+1) if � is even.

We claim that ∃p1∀p2 . . . ∀p2nχ(p1, . . . , p2n) is true if, and only if M ⊗ A, (w0, ε, 0) |= ψ1.

Reduction correctness We prove by recurrence on � the following property P (�), for all

� ∈ {1, . . . , 2n+ 1}:

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

S. Knight, B. Maubert and F. Schwarzentruber 164

For all valuations ν, for all w ∈ W such that (w, σν,�, cν,�) is consistent,

ν |=QBF Q�p� . . . ∀p2nχ(p1, . . . , p2n) iff M ⊗ A, (w, σν,�, cν,�) |= ψ�

where

—Q� = ∀ if � is even and Q� = ∃ if � is odd;

— σν,� is any sequence σ of Seq(A) such that the prefix σ|� is

[¬p¬ν(p1)
1 , . . . ,¬p¬ν(p�−1)

�−1];

— cν,1 = 0;

— if � > 1, cν,� = a �→ �− 2
b �→ �− 1 if � is even and cν,� = a �→ �− 1

b �→ �− 2 if � is odd.

The following picture shows a branch of states reached in the asynchronous model

M ⊗ A when we evaluate formula ψ1:

w1 0

w2, [¬p?
1],

a 0
b 1

w3, [¬p?
1;¬p?

2;],
a 2
b 1

...

w2n, [¬p?
1;¬p?

2; . . . ;¬p?
2n−1],

a 2n − 2
b 2n − 1

w2n+1, [¬p?
1;¬p?

2; . . . ;¬p?
2n−1¬p?

2n], a 2n
b 2n − 1

ψ1

ψ2

ψ3

ψ2n

ψ2n+1

a

b

a

a

b

where ? stands for either � or ⊥.
P (2n + 1) One can check that for all i, ν |= pi iff w, σν,2n+1, cν,2n+1 |= istruea(pi). Using

this, one can prove the base case by induction on χ:

ν |=QBF χ(p1, . . . , p2n) iff w, σν,2n+1, cν,2n+1 |= χ(istruea(p1), . . . , istruea(p2n)).

P (+ 1) ⇒ P () Suppose that P (� + 1) holds and let us prove that P (�) holds. We

consider the case when � is odd (the case when � is even is similar). Let ν be a valuation

and w a world such that (w, σν,�, cν,�) is consistent.

ν |=QBF ∃p� . . . ∀p2nχ(p1, . . . , p2n)

iff there exists v ∈ {0, 1} s.t. ν[p� := v] |=QBF ∀p�+1 . . . ∀p2nχ(p1, . . . , p2n)

iff there exists v ∈ {0, 1} s.t. for all u ∈ W , if (u, σν[p�:=v],�+1, cν[p�:=v],�+1) is consistent

then M ⊗ A, (u, σν[p�:=v],�+1, cν[p�:=v],�+1) |= ψ�+1 (by P (�+ 1))

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

Reasoning about knowledge and messages in asynchronous multi-agent systems 165

(a) 0 1 2 3

0

1

2

3

w

u
a

binary
decision

b-tree

(x1, y1, x2, y2), 1t1 , 2t2 (3, 1, 0, 2), 1 , 2
(b)

Fig. D1. A 4 × 4 tiling (k = 4) and an idea of the initial Kripke model.

iff there exists v ∈ {0, 1} and a world u ∈ W s.t. (u, σν[p�:=v],�+1, cν[p�:=v],�+1) is

consistent and M ⊗ A, (u, σν[p�:=v],�+1, cν[p�:=v],�+1) |= ψ�+1

(because the choice of the world does not matter as long as it satisfies the

announcements in σν[p�:=v],�+1, and there always are at least 2n such worlds.)

iff M ⊗ A, (w, σν,�, cν,�) |= ψ�

(because
�∧
j=1

isdefb(pj)) ∧
2n∧

j=�+1

¬isdefb(pj) in ψ� restricts the states that agent a

considers possible to those in which agent b has received either p�
� or p⊥

� .)

Conclusion By P (1), ∃p1∀p2 . . . ∀p2nχ(p1, . . . , p2n) is true iff M ⊗ A, wp⊥
1
, ε, 0 |= ψ1.

Appendix D.

Theorem D.2. The satisfiability problem when the protocol is finite and propositional and

if the number of agents is greater than 2 is NExptime -hard.

Proof. The proof follows the same idea as the proof of NExptime -hardness of the

satisfiability problem in dynamic epistemic logic (Aucher and Schwarzentruber 2013):

we prove that the satisfiability problem when the protocol is finite and propositional is

NExptime -hard by reducing a NExptime -hard tiling problem (van Emde Boas 1997)

to it. Let C be a countable and infinite set of colors. A tile type t is a 4-tuple of colors,

denoted t = (left(t), right(t), up(t), down(t)) ∈ C4. We consider the following tiling problem:

Input: a finite set T of tile types, t0 ∈ T and a natural number k written in its binary

form.

Output: yes iff there exists a function f from {0, . . . , k − 1}2 to T satisfying:

(t0) f(0, 0) = t0;

(v) for all x ∈ {0, . . . , k − 1} and y ∈ {0, . . . , k − 2}: up(f(x, y)) = down(f(x, y + 1));

(h) for all x ∈ {0, . . . , k − 2} and y ∈ {0, . . . , k − 1}: right(f(x, y)) = left(f(x+ 1, y)).

In other words, the problem is to decide whether we can tile a k × k grid with the tile

types of T , t0 being placed onto (0, 0) (Figure D1a shows a 4 × 4 tiling).

Let us consider an instance (T , t0, k) of the tiling problem, and without loss of generality,

assume that k = 2n. We define the instance of our satisfiability problem tr(T , t0, k) = 〈A, ϕ〉,
where A = {B0, . . . ,B4n−1, b0, . . . , b4n−1}, where each Bi and bi is an atomic proposition, and

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

S. Knight, B. Maubert and F. Schwarzentruber 166

∧
j<4n

(Bj ∧ bj) (D1)

K̂a

∧
�<4n

K�
b

(∧
j��

(Bj∧bj) ∧ K̂b(B�∧¬b�) ∧ K̂b(¬B�∧b�) ∧Kb((B�∧¬b�) ∨ (b�∧¬B�))∧∧
i<�

((Bi → KbBi) ∧ (¬Bi → Kb¬Bi) ∧ (bi → Kbbi) ∧ (¬bi → Kb¬bi))

)
(D2)

KaK
4n
b

(∨
t∈T

1t ∧
∨
t∈T

2t ∧
∧

{(1t → ¬1t′) ∧ (2t → ¬2t′) | t, t′ ∈ T , t �= t′}
)

(D3)

KaK
4n
b

(
(x1 = x2) ∧ (y1 = y2) →

∧
t∈T

(1t ↔ 2t)

)
(D4)

Ka(

2n∧
i=1

Ki
b(KbBi ∨Kbbi) →

∨
t∈T

K4n
b 1t) (D5)

Ka(

4n∧
i=2n+1

Ki
b(KbBi ∨Kbbi) →

∨
t∈T

K4n
b 2t) (D6)

KaK
4n
b (((x1 = 0) ∧ (y1 = 0)) → t0) (D7)

KaK
4n
b

(
(x1=x2) ∧ (y2=y1+1) →

∧
t∈T

(
1t →

∨
t′∈T ,down(t′)=up(t)

2t′

))
(D8)

KaK
4n
b

(
(x2=x1+1) ∧ (y1=y2) →

∧
t∈T

(
1t →

∨
t′∈T ,left(t′)=right(t)

2t′

))
(D9)

Fig. D2. Clauses in ϕ.

ϕ is the conjunction of formulas of Figure D2. Observe that this reduction is computable

in polynomial time in the size of (T , t0, k). We prove that (T , t0, k) is a positive instance

of the tiling problem iff ϕ is A-satisfiable.

General idea Formula ϕ enforces an encoding of two identical 2n × 2n-tilings into a single

tree (see Figure D1b). Each leaf of the tree represents both a position (x1, y1) in the first

tiling and a position (x2, y2) in the second one. Encoding two copies allows us to compare

a tile with the ones around it locally, in leaves coding for adjacent positions, and thus

without having to compare different leaves of the tree. This greatly simplifies the task of

verifying whether a tree represents a valid tiling.

The tile types of the first tiling are represented by atomic propositions 1t and the tile

types of the second tiling are represented by atomic propositions 2t′ , where t and t′ range

over T . They hold at a leaf of the tree whose coordinates correspond to (x1, y1) and

(x2, y2) when the tile type of the first tiling at coordinate (x1, y1) is t and the tile type of

the second tiling at coordinate (x2, y2) is t′.

We enforce the consistency of the binary tree: for instance, all (x1, y1, ∗, ∗)-leaves should

be tagged with the same proposition 1t. To this aim, we need to select all (x1, y1, ∗, ∗)-

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

Reasoning about knowledge and messages in asynchronous multi-agent systems 167

leaves; this is performed by an ‘arbitrary’ announcement of coordinates in the first tiling.

This announcement is imagined by agent a, reason why the tree starts in an a-child of the

initial world w (the same technique applies for selecting (∗, ∗, x2, y2)-leaves).

Encoding coordinates. The coordinates (x1, y1) and (x2, y2) of the two tilings are represen-

ted by a valuation over atomic propositions B0, . . . ,B4n−1, b0, . . . , b4n−1. More precisely, the

set X1 = {B0, . . . ,Bn−1, b0, . . . , bn−1} contains the atomic propositions encoding the binary

representation of the integer x1 as follows:

— Bi means that the ith bit of x1 is 1; bi means that the ith bit of x1 is 0;

— if Bi and bi are both true it means that the ith bit is not set yet;

— valuations where Bi and bi are both false are never considered.

Similarly, Y1 = {Bn, . . . ,B2n−1, bn, . . . , b2n−1}, X2 = {B2n, . . . ,B3n−1, b2n, . . . , b3n−1} and

Y2 = {B3n, . . . ,B4n−1, b3n, . . . , b4n−1} contain the atomic propositions encoding binary

representations of integers y1, x2 and y2, respectively. For instance, for n = 4, the

coordinates (x1, y1) = (4, 3) and (x2, y2) = (12, 2) are represented at a leaf of the tree by

the valuation (we recall that in binary notation, 4 is represented by 0100, 3 is represented

by 0011, 12 is represented by 1100 and 2 is represented by 0010):

¬B0, b0 , ¬b1,B1 , ¬B2, b2 , ¬B3, b3︸ ︷︷ ︸
4

¬B4, b4 , ¬B5, b5 , ¬b6,B6 , ¬b7,B7︸ ︷︷ ︸
3

¬b8,B8 , ¬b9,B9 , ¬B10, b10 , ¬B11, b11︸ ︷︷ ︸
12

¬B12, b12 , ¬B13, b13 , ¬b14,B14 , ¬B15, b15︸ ︷︷ ︸
2

In order to ensure constraints (v) and (h) in the definition of a tiling, we need to

compare tiles that are adjacent in a tiling. Boolean formulas encode the properties x1=x2,

x2=x1+1, y1=y2 or y2=y1+1. For instance:

(x1=x2) �
∧
i<n

(Bi↔Bi+2n)∧(bi↔bi+2n)

(x2=x1+1) �
∨
i<n

(∧
j<i

(Bj↔Bj+2n)∧(bj↔bj+2n)∧bi ∧ Bi+2n∧
∧
i<j<n

(Bj+2n∧bj)

)

Announcements with A, we can announce bit values of coordinates in the first or second

tiling and Formula D1 ensures that all formulas in A are true and hence can be successfully

announced.

Tree structure Formula D2 ensures that there exists an a-successor u such that the

epistemic model pointed at u is bisimilar up to modal depth 4n to a binary tree (with

b-relation between nodes) whose leaves’ valuations represent all possible pairs of positions

(x1, y1, x2, y2) ∈ {0, . . . , 2n − 1}4. Subformula
∧
j>�(Bj ∧ bj) means that at level �, the j-bits

for j > � are not set yet. Informally, a leaf corresponds to a pair of one cell in the

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

S. Knight, B. Maubert and F. Schwarzentruber 168

first tiling and one cell in the second tiling. In Formula D2, modality K̂a imposes the

existence of a new world which is the root of the tree (the root is not the initial world

directly because we use agent a to imagine possible announcements). This modality K̂a

also considers states in which b has received announcements; but as we require the state

imagined by agent a to be related to states that verify B� ∧ ¬b� and states that verify

¬B� ∧b� for all �, we rule out the possibility that agent b has received any announcement.

Encoding two (unconstrained) tilings Formulas D3 encodes that, at each leaf of the tree,

there is exactly one tile type for the first tiling and exactly one tile type for the second

tiling. Formula D4 encodes the fact that when these two pairs of coordinates coincide,

that is when x1=x2 and y1=y2, then the tile type of the first tiling and the tile type of the

second tiling are identical.

It may be the case that in the tree, two different leaves with the same valuation have

different tile types. Therefore, we also have to constrain the tree so that the leaves denoting

the same position in the first tiling (resp. second tiling) contain the same tile type for the

first tiling (resp. second tiling). This is expressed by formulas D5 and D6.

In Formula D5, modality Ka universally picks a sequence of announcements. The guard∧2n
i=1K

i
b(KbBi ∨ Kbbi) ensures that all bits of (x1, y1) have been announced: at each step

i � 2n either Bi or bi has been announced and read by b (checked by the fact that either

b knows Bi or b knows bi). Maybe more has been announced: for instance B2n+1. In

particular, b considers sequences of announcements where only coordinates (x1, y1) have

been announced (and no more). It selects the branches where valuations on the branch

respect the announcement:

— either bits are not yet defined (and then it respects the announcements);

— or a bit of (x1, y1) is set and it should respect the announcement.

All leaves in selected branches correspond to the announced value of (x1, y1). Then, the

formula
∨
t∈T K

4n
b 1t checks that these leaves are of the same tile type t. Likewise with

Formula D6 for the second tiling.

So, with formulas D3–D6, we encode in the tree two identical (unconstrained) tilings

in a single tree. It remains to enforce that this tiling is valid.

Encoding constraints (t0), (v) and (h) They are expressed respectively by formulas D7-D9.

As we said at the beginning of the proof, the latter two constraints motivate the encoding

of two tilings. Comparing adjacent positions would not be possible with our epistemic

language if the tree encoded a single tiling.

One can then check that there exists a tiling for the instance (T , t0, k) of the tiling

problem iff formula ϕ is A-satisfiable.

https://doi.org/10.1017/S0960129517000214 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000214

