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ABSTRACT

This paper studies optimal risk redistribution between firms, such as institu-
tional investors, banks or insurance companies. We consider the case where ev-
ery firm uses dual utility (also called a distortion risk measure) to evaluate risk.
We characterize optimal risk redistributions via four properties that need to be
satisfied jointly. The characterized risk redistribution is unique under three con-
ditions. Whereas we characterize risk redistributions by means of properties,
we can also use some results to study competitive equilibria. We characterize
uniqueness of the competitive equilibrium in markets with dual utilities. Finally,
we identify two conditions that are jointly necessary and sufficient for the case
that there exists a trade that is welfare-improving for all firms.
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1. INTRODUCTION

This paper characterizes optimal risk redistributions via cooperative market
games. There is a relatively large literature that analyzes cooperative bargain-
ing for optimal redistributions of risk, based on the seminal works of Borch
(1962) and Shapley and Shubik (1969). This paper mainly differs in terms of
the objective of the firms. We study optimal risk sharing in the context of dual
utility instead of Von Neumann-Morgenstern expected utility. We character-
ize a specific risk redistribution in closed form using cooperative market games
(Shapley and Shubik, 1969) and fuzzy games (Aubin, 1979, 1981). Moreover, we
characterize the situations where trade is welfare-improving for all firms, and we
characterize uniqueness of the competitive equilibrium.

Dual utility is originally introduced by Yaari (1987). It coincides with pref-
erences given by minimizing a distortion risk measure (Wang et al., 1997). Yaari
(1987) characterizes dual utility by a modification of the independence axiom
in expected utility theory. Instead of requiring independence with respect to
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probability mixtures of risks, he requires independence with respect to direct
mixing the realizations of the risks. Dual utility has applications in both actu-
arial science and finance, being also related to coherent risk measures (Artzner
et al., 1999) such as the conditional Value-at-Risk (Acerbi and Tasche, 2002).
Moreover, distortion risk measures are applied as premium principle as well by,
e.g., Wang (1995, 1996, 2000), Chateauneuf et al. (1996), and Wang et al. (1997).
It is also shown to be compatible with market-consistent valuation, using the
Esscher-Girsanov transform by Goovaerts and Laeven (2008). Alternatively,
we can interpret the preferences as if the firm is risk-neutral, and it faces a cost
of holding a buffer. This buffer is then given by a distortion risk measure such
as the conditional Value-at-Risk. These preferences are widely studied in the
actuarial literature on optimal reinsurance contract design (see, e.g., Chi, 2012;
Asimit et al., 2013; Chi and Weng, 2013), and can be formulated as dual utilities.

In risk sharing, most papers study Pareto optimality or competitive equi-
libria. For instance, Ludkovski and Young (2009) and Boonen (2015) analyze
risk redistributions in settings where every firm uses dual utility. They provide
all Pareto optimal risk redistributions, and show that they are given by a partic-
ular tranching of the aggregate risk. We use in this paper a cooperative game-
theoretic approach to characterize risk redistributions. In other words, we study
the problem via a cooperative game in order to select specific risk redistribu-
tions. We show that there exists a correspondence from solutions of specific co-
operative games to Pareto optimal risk redistributions. Such a correspondence
is called an allocation rule. Allocation rules are popular in the game-theoretic
literature (see, e.g., Aumann and Shapley, 1974; Aubin, 1979, 1981; Billera and
Heath, 1982; Mirman and Tauman, 1982). To the best of our knowledge, we
are the first to study the allocation rule Aumann—Shapley value (Aumann and
Shapley, 1974) for the problem to redistribute risk. We characterize it via four
properties. The main property requires stability, i.e, a risk redistribution should
correspond to an element of the core of the cooperative market game. For mar-
ket games, of which the game we discuss in this paper is a special case, the core
is characterized by Peleg (1989).

If all firms use the same risk measure, the risk redistribution problem can be
analyzed using the risk capital allocation game as in, e.g., Denault (2001) and
Csoka et al. (2009). In risk capital allocation problems, the goal is to allocate
the aggregate risk capital of a firm to its business units. The Aumann—Shapley
value is very popular in the literature on risk capital allocation problems (see,
e.g., Tasche, 1999; Denault, 2001; Myers and Read, 2001; Tsanakas and Bar-
nett, 2003; Kalkbrener, 2005). As argued by e.g., Tasche (1999), the risk capital
allocation problem is mainly designed for financial performance measurement.
If the aim is to redistribute risk among firms as in this paper, the assumption
that all firms use the same risk measure is however restrictive. In this paper, we
relax the assumption that all firms use the same risk measure.

We characterize existence of the Aumann—Shapley value by means of a prop-
erty that describes a strict ordering of the aggregate risk. We make use of a result
of Aubin (1981) to also characterize uniqueness of the competitive equilibrium
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as well. This characterization extends the result of Boonen (2015) by providing
necessary conditions for uniqueness of the equilibrium. For competitive equilib-
ria, a key and debatable assumption is that firms cannot influence the underlying
prices by individual transactions. In this paper, we characterize the equilibrium
risk redistribution, if unique, by means of four properties. These properties pro-
vide an alternative motivation of applying equilibrium prices in markets where
the firms do not act as price-takers. For pricing longevity risk securities, Zhou
et al. (2015) use the equilibrium prices in settings where there are just two firms.
They call this a titonnement approach.

Distorted probabilities are also used to model rank-dependent utilities,
as introduced by Quiggin (1982, 1991, 1992). In line with De Castro and
Chateauneuf (2011) for rank-dependent utilities with strictly concave utility
functions, we characterize no-trade for the problem with dual utilities. If util-
ity functions are linear, as in this paper, the characterization of De Castro and
Chateauneuf (2011) does not apply, and we provide an alternative characteriza-
tion. This characterization is based on two properties that need to hold jointly.

This paper contributes to the literature in four ways. First, we character-
ize existence and uniqueness of the risk redistributions corresponding to the
Aumann-Shapley value. Second, we characterize this risk redistribution by
means of four desirable properties. Our third contribution is that we extend the
main result of Boonen (2015) in the context of competitive equilibria. We derive
that there are two conditions that are jointly necessary and sufficient to have a
unique competitive equilibrium. Finally, we characterize when there are oppor-
tunities to trade.

This paper is set out as follows. Section 2 introduces dual utility and the risk
redistribution problem. Section 3 provides preliminary results on Pareto opti-
mality. Section 4 provides our main results. We use a cooperative game-theoretic
approach to characterize a risk redistribution via a fuzzy core criterion. Section
5 shows a link between our main results and competitive equilibria. Section 6
characterizes no-trade. Section 7 provides a numerical illustration of our results
with the conditional Value-at-Risk and Section 8 concludes.

2. BASIC SETTING WITH DUAL UTILITIES AND RISK REDISTRIBUTION
PROBLEMS

In this section, we briefly introduce dual utility and risk redistribution problems
with dual utilities.

2.1. Dual utility

Let Q2 be a finite state space and P the physical probability measure on the power
set 2% such that P(w) > 0 for all w € Q. Moreover, denote IR as the space of
all real valued stochastic variables on €2 that are realized at a well-defined future
reference time. These stochastic variables are referred to as risks. We interpret
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a realization of a risk as a future loss. We assume the state space to be finite
for simplicity, but also because we refer in this paper to some results of Boonen
(2015) that only hold for a finite state space.

Dual theory is developed and characterized by Yaari (1987) by a modifica-
tion of the independence axiom in the Von Neumann—Morgenstern expected
utility theory. Wang et al. (1997) define a distortion risk measure p : R — IR
as minus dual utility, which leads to the following definition of dual utility:

U(Y)=—p(Y) = —Eg, ,[Y], forall YeR® (1)
where Qg0 y : 2% — (0, 1] is the additive mapping such that
Qg y({w}) = g”(P(Y = Y({w}))) — g"(P(Y > Y({w}))), forallwe @, (2)

for a distortion function g”, where we define g# as a distortion function if it
is continuous, concave, increasing, and such that g#(0) = 0 and g*(1) = 1.
Here, we explicitly assume concavity of the distortion function g”. Concavity of
the distortion function g” is equivalent to aversion to mean-preserving spreads
(Yaari, 1987). Preferences given by maximizing a risk-reward trade-oftf where
the risk is measured by a distortion risk measure, can be formulated as dual
utility. This setting is discussed by, e.g., De Giorgi and Post (2008). For nota-
tional convenience, we focus on minimizing a distortion risk measure instead of
maximizing dual utility. For every risk ¥ € IR®, we refer to p(Y) as risk capital.

Wang et al. (1997) show that every distortion risk measure is coherent. Co-
herence is later formally introduced by Artzner et al. (1999) as a risk measure
satisfying the four axioms Subadditivity, Monotonicity, Positive Homogeneity,
and Translation Invariance. Here, Subadditivity of a risk measure implies that
the aggregate risk capital weakly decreases if risks are pooled. It also implies
that there is no incentive for a firm to split its risk into pieces and evaluate them
separately. Artzner et al. (1999) show that a risk measure p is coherent if and
only if there exists a set of probability measures Q such that

o(Y) = sup{E@[Y] :Qe Q}, for all Y € IR®. 3)

A representation of the set Qin (3) for distortion risk measures is given by (Den-
neberg, 1994):

0" ={QeP(Q): Q4 < g"(P(4) forall 4e2%}, (4)

where P () is the set of probability measures on 2.

Distortion risk measures are characterized by Wang et al. (1997). A mapping
is a distortion risk measure if and only if it is coherent and it satisfies the axioms
Conditional State Independence and Comonotonic Additivity. It can be shown
that the class of distortion risk measures is equal to the class of spectral risk
measures (Acerbi, 2002). There exists a wide literature on spectral risk measures
as well (see, e.g., Kasuoka, 2001).
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2.2. The risk redistribution problem

The finite collection of firms is given by N = {1, ..., n}. The risk redistribution
problem with dual utilities is defined as follows.

Definition 2.1. 4 risk redistribution problem with dual utilities is a tuple
(Xi, pi)ics, where S C N,

o X; € R® is the risk held by firm i € S:
o p; : R® — IR is the distortion risk measure that firmi € S is endowed with.
The corresponding distortion function is denoted by g;."

The class of risk redistribution problems with dual utilities is denoted by R .

In the sequel, we refer to a risk redistribution problem with dual utilities as a risk
redistribution problem. We assume that there is common knowledge about the
risks and preferences of all firms. We define the aggregate risk by X = . _y X;
and, without loss of generality, we order the state space Q = {wy, ..., ®,} such
that X(w1) > --- > X(w,).

For a risk redistribution problem, we aim to redistribute the aggregate risk
among firms. The objective of a firm is to minimize its risk capital (and, hence,
maximize dual utility). We allow for all forms of risk redistributions, as long as
the aggregate risk is redistributed. The set of feasible risk redistributions of a
risk redistribution problem R € Rg, with S C N, is given by

FR) = {(X)ies€ RHS: Y "X, =>"Xit. (5)

ieS ieS

3. PRELIMINARY RESULTS ON PARETO OPTIMALITY

In this section, we summarize some results of Jouini et al. (2008), Ludkovski
and Young (2009) and Boonen (2015) that we need in this paper. A risk redistri-
bution is called Pareto optimal if there does not exist another feasible redistri-
bution that is weakly better for all firms, and strictly better for at least one firm.
The set of Pareto optimal risk redistributions of a risk redistribution problem
R e Rgs, with S C N, is denoted by PO(R).

We next define risk measures p3, S € N that play a central role in this paper.
The function g% : [0, 1] — [0, 1] with S € N is given by gg(x) = min{g;(x) :
i € S} for all x € [0, 1]. Moreover, p% is the risk measure as defined in (1)
with g#s = g%. The function g% is continuous, concave, increasing and such that
g5(0) = 0 and g(1) = 1. Therefore, the risk measure p% is a distortion risk
measure.

As shown by Jouini et al. (2008), we get the Pareto optimal risk redistribu-
tions by minimizing the aggregate risk capital, i.e., by minimizing the value of
Y ies pi(Xy) over all (X;);es € F(R), where S € N and R € R. From Boonen
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(2015, Proposition 3.6 therein), it follows that for all S € N and R € Rg, we
have (X;);es € PO(R) if and only if (X;);cs € F(R) and

> oi(Xi) = p§ (Z X) (6)

ieS ieS

We denote eq € IR® as the risk with realization one in every state w € Q.
More generally, for every 4 € 2%, we denote e 4 € IR® as the risk with realization
one in state w € A4 and zero otherwise. A risk Y € IR is a side-payment if there
exists a constant ¢ € IR such that ¥ = ceq. It follows that Pareto optimality of
a risk redistribution is unaffected by adding zero-sum side-payments, i.e., for all
S C Nand R € Rg,itholds that (X;);cs € PO(R) if and only if (X;+cieq)ics €
PO(R) for any ¢ € IRS such that }_,_¢c¢; = 0 (see Jouini et al., 2008). So, if we
find a Pareto optimal risk redistribution ()?,») ies, We can construct a set of Pareto
optimal risk redistributions by adding zero-sum side-payments to (X;);cs. This
structure of Pareto optimal risk redistributions with side-payments also holds
true for the case with expected exponential utilities (Biihlmann and Jewell, 1979;
Gerber and Pafumi, 1998).

Next, we provide a closed-form expression of a set of Pareto optimal risk
redistributions. By straightforwardly applying Theorem 2 of Ludkovski and
Young (2009) to our setting, we get for all R € Ry, m € M(R) and d € RN
with ), v di = X(w,), that (X;)ieny € PO(R), where

p—1
Xi = [X(wr) — X(@e) =i €lon....on + dieq,  forallie N (7)
k=1
Here, 1,,49=; = 1 if m(k) = i and zero otherwise, and the set of functions M(R)
is given by

_ ) m(k) € argmin;_y 1&g P{wi, ..., wi}))
M(R)_{m AL p =l = N ]for{aljlke {,....,p— l%}
(®)
The Pareto optimal risk redistributions of the form (7) consist of a finite number
of long and short positions on various stop-loss contracts on the aggregate risk
X. The risks d;eq, i € N, ensure that we have (X))icy € F(R).
For every R € Ry, the risk redistribution (X;);ey € PO(R) is, up to side-
payments, the unique element of PO(R) if

PO(R) = {()?,- +cieq)ien ¢ € RV, Y "¢ = 0} :

ieN

Uniqueness up to side-payments is first introduced in the context of risk
measures by Jouini et al. (2008). This issue is relevant since if we know that
there exists a unique Pareto optimal risk redistribution up to side-payments,
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the only question left is to determine the size of the side-payments. We first
define the following two conditions for risk redistribution problems.

Condition [SC]: The distortion function g7, is strictly concave.

Condition [U]: For all k € {1,...,p — 1} such that X(wr) > X(wpy1),
there exists a firm i € N such that for all m € M(R) it holds that m(k) = i.

If the distortion functions g;, i € N are all strictly concave, condition [SC]
holds. Strict concavity of the distortion function is equivalent to strongly pre-
serving second-order stochastic dominance (Chew et al., 1987). A sufficient con-
dition for condition [U] is | M(R)| = 1. Condition [U] states that all functions
in M(R) differ only for k € {1,..., p — 1} such that X(w;) = X(wiy1). This
condition can be verified by plotting all distortion functions g;,i € N. Then,
condition [U] holds if, for every value of P(2;),k € {1,..., p — 1}, there is a
unique distortion function that takes the minimum. Boonen (2015, Theorem 3.8
therein) shows that if R € R y is such that condition [SC] holds, there exists a risk
redistribution that is, up to side payments, the unique element of PO(R) if and
only if condition [U] holds. One Pareto optimal risk redistribution in PO(R) is
given in (7).

4. THE AUMANN-SHAPLEY VALUE FOR RISK REDISTRIBUTION PROBLEMS

In this section, we characterize a rule to implicitly determine the side-payments
of a Pareto optimal risk redistribution. The firms meet each other and trade the
risk. The risk redistribution is determined via a cooperative bargaining process.
We show that the risk redistribution corresponding to the Aumann—Shapley
value is unique under three conditions. In this paper, we focus on risk redis-
tribution problems in R y, that is defined in Definition 2.1. Recall that the state
space 2 and the set of firms N are both fixed and finite.

In Subsection 4.1, we introduce how a risk redistribution problem can be for-
mulated as an allocation problem. Subsection 4.2 defines the Aumann—Shapley
value, and characterizes its existence. In Subsection 4.3, we characterize the
Aumann-Shapley value via four desirable properties.

4.1. From risk redistribution problems to capital allocation problems

In general, the aim is to find a risk redistribution (AN’i)ie N € F(R) that is per-
ceived as fair by the firms. We require risk redistributions to be Pareto optimal,
ie, ) ,.ypi(Xi) = py(X) asin (6). In this subsection, we show how we can
obtain a risk redistribution via an allocation.

Definition 4.1. An allocation is a vector a € RY such that Yoien @i = py(X).
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Risk redistribution problems K Allocations

Pareto optimal

risk redistributions

FIGURE 1: An overview of the correspondences between risk redistribution problems, allocations and risk
redistributions. Every allocation rule K generates a risk redistribution rule ¥ via ¢.

An allocation assigns to every firm risk capital. In the next proposition, we show
that an allocation corresponds with a Pareto optimal risk redistribution.

Proposition 4.2. For every allocation a_€ IRY, there exists a risk redistribution
(X))ien € PO(R) such that a; = p;(X;) for alli € N. Under conditions [SC]
and [U], this risk redistribution is unique.

If conditions [SC] and [U] do not hold, we need to decide which risk redistribu-
tion to pick out of a non-empty collection of risk redistributions corresponding
to an allocation. For every firm, the risk capital of all the risk redistributions
corresponding to an allocation is the same. For every allocation, we pick a spe-
cific corresponding Pareto optimal risk redistribution. We denote this injective
mapping by ¢, i.e., ¢ maps allocations in {a € RY : Y. a; = pi(X)} to risk
redistributions in PO(R).

We next introduce allocation rules and risk redistribution rules. In Subsec-
tion 4.2, we focus on an allocation rule that is not always well-defined on R y.

Definition 4.3. An allocation rule K maps every risk redistribution problem in
Ry C Ry into a unique allocation in {a € R : Doienai = pr(X)h

Definition 4.4. A risk redistribution rule  maps every risk redistribution prob-
lem R e Ry C Ry into a risk redistribution in PO(R).

An allocation rule K corresponds with a risk redistribution rule v via the map-
ping ¢, using v = ¢ o K. A risk redistribution problem R € Ry is mapped
into an allocation via K. This allocation corresponds with a risk redistribution
(Xi)ien € PO(R) using the mapping ¢. To summarize, we provide an overview
in Figure 1.

In this section, we focus on risk capital allocations. There is an impressive
amount of literature on allocation problems within the area of game theory.
The main sources for this section are Aumann and Shapley (1974), Aubin (1979,
1981), Billera and Heath (1982) and Mirman and Tauman (1982). These papers
use the setting of a production problem with a given production function for
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multiple goods. The characterizations in these papers are formulated in terms
of this production function, but are not directly transferable in a meaningful
way to our setting of allocating risk capital. If all firms use the same risk mea-
sure, the allocation problem corresponds to the allocation problem discussed
by Denault (2001). In the setting of Denault (2001), risk capital of a firm is to
be allocated to its constituents. Denault (2001) uses a game-theoretic approach
as well. The properties that we provide in this section are similar to his, but we
formulate some properties in Subsection 4.3 in terms of the risk redistribution
problem, while Denault (2001) focuses on a specific structure of cooperation for
the allocation problem.

4.2. The Aumann—Shapley value

In Subsection 4.1, we show how the capital allocation problem can be formu-
lated as an allocation problem. This suggests that likely candidates for solv-
ing the capital allocation problem can be solution concepts proposed in game
theory for cooperative games. In this subsection, we define the allocation rule
Aumann-Shapley value. We use this allocation rule to obtain a specific allo-
cation, and thus a risk redistribution (Proposition 4.2). This allocation rule is
first introduced by Aumann and Shapley (1974) for games with a continuum
of players. It is based on a fuzzy game r. A fuzzy game is given by a mapping
r : RY — IR that is normalized such that no and full participation of firm
i € N correspond with A; = 0 and A; = 1, respectively.

Let every firm consist of infinitesimally small, identical, and comonotonic
portfolios that can cooperate as a separate party. Before and after risk redis-
tribution, it follows from Positive Homogeneity and Comonotonic Additivity of
p; that the total risk capital of a firm will be the aggregate risk capital of its
portfolios. The fuzzy game corresponding to a risk redistribution game in R y
is given by

(.) = min Z 0i(X0) : Z X:ZA,-X,- , forallaeRY. (9)
ieN:A; >0 ieN:A; >0 ieN

From (6), it straightforwardly follows that
r(A) = Pfiena -0 (Z m{,-) , forallx e RY. (10)
ieN

Note that r(ey) = p3(X). The fuzzy game r : RY — IR, as defined in (9),
is positive homogeneous. For such fuzzy games, the Aumann—Shapley value is
formally defined as follows.
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Definition 4.5. The Aumann—Shapley value for risk redistribution problems, de-
noted by AS: R’y — RY, is given by

AS;(R) = %(e]v), foralli € N, (11)

where the fuzzy game r is defined in (9) and R’y C Ry is the class of all risk
redistribution problems for which the fuzzy game r is partially differentiable at
A= eN.

For a more general class of fuzzy games, Aumann and Shapley (1974) define
this value via a “diagonal formula”. This is identical to (11) for positive homo-
geneous fuzzy games (see, e.g., Denault, 2001). Also for risk capital allocation
problems, which resemble the problems where all firms use the same risk mea-
sure,zthe Aumann-Shapley value received considerable attention in the litera-
ture.

Next, we state a necessary and sufficient condition to guaranty uniqueness
of the Aumann-Shapley value if condition [SC] holds. We first introduce
equivalent states. Two states w, ' € Q are equivalent if X;(w) = X;(«') for all
i € N. The following condition requires a weak ordering of the aggregate risk.

Condition [WO]: X(w) = X(«') for equivalent states w,o’ € £ and
X(w) # X(') otherwise.

Condition [WO)] states that if the aggregate risk X is given, we are able
to determine the corresponding realizations of the risks (X,..., X;;). The
condition X(w;) > --- > X(w,) is sufficient for condition [WO] to hold.

Theorem 4.6. For all R € Ry such that condition [SC] holds, it holds that R €
Ry if and only if condition [ WO | holds.

It follows from Theorem 4.6 that if condition [SC] holds, the condition X(w;) >

- > X(w),) is sufficient for the Aumann—Shapley value to exist. All other in-
stances where the Aumann—Shapley value exists can be neglected since, without
loss of generality, we can reformulate the risk redistribution problem such that
there are no equivalent states. If condition [SC] holds, we have that the Aumann—
Shapley value exists, and corresponds to a unique risk redistribution if and only
if conditions [U] and [WO] hold simultaneously. Recall Figure 1; the three condi-
tions for uniqueness characterize risk redistribution rule ¢ = ¢ o K: conditions
[SC] and [U] guarantee that mapping ¢ is one-to-one, and conditions [SC] and
[WO] make sure that allocation rule K is one-to-one.

Next, we provide a closed-form expression of the Aumann—Shapley value
for risk redistribution problems. Tsanakas and Barnett (2003) obtain a closed-
form expression of the Aumann—Shapley value in case all firms use the same
risk measure and under the assumptions that the probability density function is
continuous and the distortion function g is twice differentiable. Then, it holds
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that AS;(R) = Ep[X;g'(1 — Fx(X))]foralli € N. In the following proposition,
we show the Aumann—Shapley value for the risk redistribution problem.

Proposition 4.7. For all R € Ry, the Aumann—Shapley value is given by

»
AS(R) = [enP({or. ... o)) — gvP({w1. ... . o1 D] Xi(wp),
=1

foralli e N. (12)
For all R € R’y such that condition [SC] holds, we get from Proposition 4.7 that
AS(R) = E@,g;,_x[Xi]’ foralli € N, (13)

where Qg x is the probability measure in (2).

4.3. Characterization

In this subsection, we characterize the Aumann—Shapley value. To do so, we first
define four properties of allocation rules. We consider the following properties of
an allocation rule K : Ry — IRY on a subclass of risk redistribution problems

Ry € Ry
1. Aggregation Invariance: If forana > 0 and b € IR" it holds that R =
(X; p])]eNeRN, ( p,)jeNeRNandX = aX; + b;eq for all
i e N, then

K(R) = aK(R) + b.

2. Monotonicity: If R € Ry is such that there exist firms 7, j € N such that
gi(x) < gj(x) forall x € [0, 1] and X;(w) < X;(w) for all w € 2, then

Ki(R) < K;(R).

3. No Split-up: If R= (X;, p)iex € Ry, R= (Xi, pi)iey € Rvand £ € N
aresuch that N = NU{n+1}, X; = X; forall j € N\{¢}, X;+ X1 = X¢
and py = pu41, then

K;(R) = K;(R) forall j € N\{¢} and K;(R) + K,41(R) > Ki(R).

4. Core Selection: Forall Re R ~, we have K(R) € core(R), where core(R)
denotes the core (Gillies, 1953) of a risk redistribution problem, which is
defined as

core(R) = aeIRN:Zaigpfg(Z)G) forall S C N,Zai:pj‘v(X) .

ieS ieS ieN
(14)
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The first three properties are based on, but weaker than, the properties in
Billera and Heath (1982) and Mirman and Tauman (1982). Their properties
depend only on a specific cost function in the problem to allocate production
costs of a firm to the goods, whereas we define properties that are based on the
potential to benefit from pooling risks from different firms.

The property Aggregation Invariance is necessary for an allocation rule to be
compatible with the use of risk measures. If, for instance, another currency is
used, the relative allocation remains the same.

The property Monotonicity is a standard extension of the Monotonicity
property of risk measures. If a firm holds a portfolio of which its realization
is smaller in every state of the world than another firm and is endowed with a
smaller distortion function than this other firm, its allocation should be lower
than the allocation of this other firm. A smaller distortion function g; leads to
a smaller value of p;(X;) for the same risk X;. Specifically, from interchanging
the firms i and j in the definition of Monotonicity, it follows that allocation
rules satisfying Monotonicity also satisfy the following property:

Symmetry: If R € Ry is such that there exist firms i, Jj € N where X; = X; and
pi = pj, then

Ki(R) = K;(R).

The property No split-up is inspired by Tsanakas (2009) and Wang (2016) in
the context of regulatory arbitrage. It implies that firms do not have any incen-
tive to split the firm into two or more firms. If there is only one firm, it follows
from Subadditivity of the risk measures that this firm is not willing to split-up
in multiple firms. In this sense, the set of firms is stable against merging and
splitting. Also, the allocation to the other firms is independent of whether a
firm splitted. This property is weaker than the property Consistency in Mirman
and Tauman (1982).

The property Core Selection implies that there does not exist a subgroup of
firms that can strictly benefit altogether by splitting off and redistributing risk
with only the firms in this subgroup. This property is widely discussed in the
game-theoretic literature (see, e.g., Gillies, 1953). The conditions in (14) include
all individual rationality conditions, i.e., K;(R) < p;(X;) foralli € N. Core
Selection implies that an allocation is in the core of the cooperative cost game
(N, ¢),} with

o(S) = pi (Z Xl-> (15)

ieS

= min {Zpi (X)) : Xies € F(RY |, (16)

ieS

where R € R, for all S € N. The equality (16) follows from (6).
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If firms use dual utilities, the cooperative cost game is a Transferable Util-
ity game. This is shown by Bergstrom and Varian (1985), and follows from the
fact that the Pareto optimal risk redistributions are characterized as the ones
minimizing the aggregate risk capital (see (6)). The game (N, ¢) in (15), (16)is a
special case of market games that are introduced by Shapley and Shubik (1969)
for a wide class of utility functions. If all firms use the same risk measure, the
game (N, ¢) corresponds with the cooperative cost game in Denault (2001).4
This follows from the fact that p; = p for alli € N implies p§ = p forall SC N
and, hence, ¢(S) = p (X5 Xi)-

In the next proposition, we show that the set core(R) is larger than the core of
the game (N, cy), where the cooperative cost game (, cy) is given by ¢y (S) =
P (3;cs Xi). This game (N, cy) is identical to the cooperative cost game of
Denault (2001).

Proposition 4.8. For all R € Ry, we have core(R) # @ and, moreover, the core
of the game (N, cy) is a subset of core(R).

In a similar way as in Cséka et al. (2009), we can show that the class of risk
redistribution games coincides with the class of totally balanced games. This
implies that the core(R) # @ for all risk redistributions R € Rgwith SC N.

In Subsection 4.1 and (15), (16), we show how the risk redistribution prob-
lem can formulated as a cooperative cost game (N, ¢). This suggests that likely
candidates as solutions to the risk redistribution problems are well-known solu-
tion concepts for Transferable Utility games. A solution concept of cooperative
Transferable Utility games that received considerable attention is the Shapley
value (Shapley, 1953). The corresponding allocation rule does not satisfy all
properties defined in this subsection. As discussed by Denault (2001) and Csoka
and Pintér (2015), the Shapley value need not be in the core of cooperative cost
games when firms use the same risk measure. Therefore, it does not satisfy Core
Selection. Also the allocation rules corresponding to other well-known solution
concepts such as the Compromise value (Tijs, 1981) and Nucleolus (Schmeidler,
1969) do not satisfy all properties defined in this subsection. The Compromise
value does not satisfy Core Selection and No Split-up, while the Nucleolus does
not satisfy No Split-up.

In the following proposition, which is derived from Mirman and Tauman
(1982) and Denault (2001) in the context of fuzzy games, we show that the
Aumann-Shapley value is an allocation rule satisfying all four properties that
are defined in this subsection.

Proposition 4.9. The Aumann—Shapley value satisfies the properties Aggregation
Invariance, Monotonicity, No Split-up and Core Selection on R').

Proposition 4.9 follows from Denault (2001) and Mirman and Tauman (1982),
since allocation rules satisfying:

e Additivity and Positivity (see Mirman and Tauman, 1982) satisfy Aggregation
Invariance;
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e Additivity (see Mirman and Tauman, 1982) satisfy Monotonicity;
e Consistency (see Mirman and Tauman, 1982) satisty No Split-up,

and, moreover, Core Selection is shown by Denault (2001).

The properties 1.—4. do not necessarily characterize a unique allocation rule.
As a solution, we adjust the property Core Selection to be more restrictive. This
property is first introduced in the seminal works of Aubin (1979, 1981) and later
imposed by Denault (2001) in the context of risk capital allocation problems. We
focus on the following criterion on risk redistributions (X )ien € PO(R):

YopXy<miny > op(X): Y K=Y auXgp, (17)

ieN ieN:A; >0 ieN:A; >0 ieN

for all A € [0, 1]". The conditions in (17) include all individual rationality con-
ditions, because A = ¢; yields ,o,(X ) < pi(X;) foralli € N. In general, (17)
leads to the following property of an allocation rule K : Ry — RY:

5. Fuzzy Core Selection: For all R € RN, we have K(R) € Fcore(R), where
Fcore(R) denotes the fuzzy core (Aubin, 1979) of a risk redistribution
problem R € Ry, which is defined as

Feore(R)={a e RV : Zkiai <r(x) forall A €0, I]N, Za[ =r(en)

ieN ieN
(18)
where the fuzzy game r : RY — IR is defined in (9).°

Since r(es) = ¢(S) for all S € N, we get that the fuzzy core is a subset of the
core. Hence, every allocation rule satisfying Fuzzy Core Selection satisfies Core
Selection.

In order to characterize the Aumann—Shapley value based on Aubin (1981),
we first show that the fuzzy game r is subadditive, which implies that r is convex
due to positive homogeneity of this fuzzy game.

Lemma 4.10. For all R € Ry, the fuzzy game r is subadditive, i.e., r (A) +r(\") >
r(A+ M) forall x, N € lRﬁrV

Lemma 4.10 shows that the fuzzy game r is subadditive, which also implies that
the cooperative cost game (N, ¢) is subadditive. From Aubin (1979, Proposition
3 therein on page 342) and Lemma 4.10, it follows that for all R € Ry, we have
AS(R) € Fcore(R) and Fcore(R) is single-valued. Aubin (1981) shows this
result for subadditive and positive homogeneous fuzzy games, and Lemma 4.10
states that the fuzzy game r is subadditive. From this result, we directly get the
following theorem.

https://doi.org/10.1017/asb.2016.34 Published online by Cambridge University Press


https://doi.org/10.1017/asb.2016.34

RISK REDISTRIBUTION GAMES WITH DUAL UTILITIES 317

Theorem 4.11. The Aumann—Shapley value is the unique allocation rule satisfying
Fuzzy Core Selection on R/y.

From Theorems 4.6 and 4.11, we get that condition [WO] is equivalent with
existence of a single-valued fuzzy core.

In this section, we have characterized the Aumann-Shapley value by means
of the property Fuzzy Core Selection. In other words, the Aumann—Shapley
value, if existent, is the unique rule that satisfies the property Fuzzy Core Se-
lection. In the next section, we show how this result relates to competitive equi-
libria.

5. COMPETITIVE EQUILIBRIA FOR RISK REDISTRIBUTION PROBLEMS

In this section, we discuss results for the competitive equilibria that follow from
the game-theoretic literature. We show a link with competitive equilibria, and
how we can apply game-theoretic results to characterize uniqueness of com-
petitive equilibria. In the setting with dual utilities, competitive equilibria are
studied by Dana and Le Van (2010) and Boonen (2015). Let there be a linear
pricing functional 7 (p, X) = Y, .o PuX(w) for all X € IR®, where p € R,
is a strictly positive price vector. We assume that the risk-free rate is zero, i.e.,
w(p,1) = 1, and we interpret p as the a probability measure. The economy
R € Ry is in equilibrium when every firm i € N solves

min p;(X;) (19)
X;eR®
st.w(p, X;) < w(p, X, (20)

where the price vector p induces market clearing, i.e.,
(Xicn € F(R. (21)

Aumann, and Shapley (1964) and Aubin (1981) show that the fuzzy core of
risk redistribution problems is equivalent to the set of allocations corresponding
to the competitive equilibria, which is the set of vectors a € IR such that there
exists an equilibrium risk redistribution (X;);ey With ¢; = p(X;),i € N. This
is originally shown by Aumann (1964) for games with a continuum of players.
Aubin (1981, Theorem 4.1 therein) extends this result to the context of positive
homogeneous fuzzy games. Aubin (1981, Proposition 8.1 therein) shows that
the corresponding equilibrium prices are given by a probability distribution p €
O(g>) such that Zﬁ:l PrXi(wy) = a; for alli € N, where a € Fcore(R), and
the set Q(g%) is defined in (4).° It follows that the allocation corresponding to
the competitive equilibria is unique if and only if the fuzzy core is single-valued.
From this and Theorem 4.11, we get that the allocation corresponding to the
competitive equilibria is unique if and only if the Aumann—Shapley value exists.
If condition [SC] holds, Proposition 4.6 shows that the Aumann—Shapley value
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is unique if and only if condition [WO] holds. From Boonen (2015, Theorem 3.8
therein), we get that the risk redistribution corresponding to this allocation is
unique if and only if conditions [U] holds. Hence, we directly get the following
result.

Theorem 5.1. For all R € Ry such that condition [SC] holds, the equilibrium
risk redistribution (X;);cn is unique if and only if conditions [U] and [ WO ] hold
Jointly.

Conditions [U] and [WO] hold jointly is identical to the case where the following
two conditions hold jointly:

e Forallk e {l,..., p—1}such that the states w; and wy | are not equivalent,
there exists a firm i € N such that for all m € M(R) it holds that m(k) = i;’
e X(w) = X(«) for equivalent states w, o’ € Q only.

In an expected utility framework, Aase (1993) shows three regularity condi-
tions that are sufficient to ensure uniqueness of the equilibrium risk redistribu-
tion. All three conditions are imposed on the utility functions only. Theorem 5.1
implies that if firms use dual utilities, it is sufficient to impose three conditions
to ensure uniqueness of the equilibrium. Two conditions also depend on the
aggregate risk. This result extends the main result of Boonen (2015, Theorem
4.4 therein), who only derives two jointly sufficient conditions for uniqueness of
the competitive equilibria with dual utilities.

From Aubin (1981, Theorem 4.1 therein), we can find all equilibria from the
fuzzy core even when the function g% is not strictly concave or when the fuzzy
game r is not partially differentiable at A = ey. The following representation of
the fuzzy core follows from Aubin (1979, Proposition 4 therein on page 343):

Fcore(R) = {(Eg[Xi))ien : Q € Q*}, forall Re Ry, (22)
where the set O* is given by

0" ={Q e 0@gy) : V(X)) = Eg[ X1}, (23)

and where Q(gy) is defined in (4). From (4), we get that Q(g}) is a finite-
dimensional bounded space, and the intersection of a finite number of closed
half-spaces. Therefore, Q(g7}) is a convex polytope. Hence, it is compact and so
it holds that O* # @. Aubin (1981, Proposition 8.1 therein) shows that the set of
all equilibrium prices is given by Q*. This leads to the following theorem, which
extends the result of Boonen (2015, Theorem 4.2 therein) to the case where con-
dition [SC] does not hold.

Theorem 5.2. For all R € Ry such that X(w1) > --- > X(w,), the equilibrium
prices are unique.

If the fuzzy core is not single-valued, one can select an element based on Mertens
(1988). He characterizes a generalization of the Aumann-Shapley value which is
well-defined also in case of non-differentiability of the fuzzy game r in A = ey.
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This allocation rule is given by a convex combination of “nearby” Aumann—
Shapley values (Eg[Xi])ien for Q € O*.

6. NO-TRADE

In this section, we characterize no-trade in the risk redistribution problem. This
means that the market is already in an optimum, and there exists no risk redis-
tribution that is welfare-improving for all firms, and strictly welfare-improving
for at least one firm. The aggregate hedge benefit of a risk redistribution (X;);en
is given by

D o (X)) — pi(X0)].

ieN

From (6), it follows that

min {Zmiﬁ) C(Xiien € f(R)} = px (X).

ieN

From this, it follows that the maximum aggregate hedge benefit over all feasible
risk redistributions is given by

max {Z[pf(X» —pi(XD]: (Xjen € f(R)} =D pi(X) = o}y (1)

ieN ieN

=D cllih) — ().

ieN

Since (X;)ien € F(R), we derive from (6) that ) ,_ pi(X;) > p} (X), and, so,
the maximum aggregate hedge benefit is non-negative. We analyze whether this
amount is zero or positive. This is zero if and only if the cooperative cost game
(N, c) is additive. If the maximum aggregate hedge benefit is positive, there is an
opportunity to obtain welfare gains from trading for all firms. This maximum
aggregate hedge benefit can be allocated freely to every firm. This needs to be
subtracted from the vector (p;(X;));cy. Due to Proposition 4.2, there exists a
risk redistribution to this allocation. If p} (X) = ) ;.5 pi(X)), it follows that
no firm can benefit from risk redistribution. Then, a Pareto optimal risk redis-
tribution for firms is to keep their prior risk. We call this situation no-trade. The
following proposition characterize no-trade by two restrictive conditions.

Proposition 6.1. If R € Ry is such that condition [SC] holds, we have p}, (X) =
Y ien Pi(Xy) if and only if the following two conditions hold jointly:

e all X;,i € N are comonotonic with each other:®
o /(X)) = p3(X)), forall i € N,
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If condition [SC] holds and there is no hedge potential, i.e., if p} (X) =
> ien Pi(X;), all risks are comonotonic according to Proposition 6.1. Moreover,
pi(X;) = py(X;) for all i € N. This implies that for all i € N, we have

gi(x) = gy(x), forallx e {P{wi,..., o)), ke{l,...,p—1}s.t.
Xi(wr) > Xi(wpr1)} (24)

Hence, it holds that p}, (X) = ),y pi(X;) only under two strong conditions. If
all firms are expected utility maximizers, it is a necessary and sufficient condition
that u(X;) is proportional with u’j.(X ;) foralli, j € N (see Borch, 1962), where
u;, i € N are the expected utility functions.

7. TILLUSTRATION WITH CONDITIONAL VALUE-AT-RISK

In this section, we provide an extensive example of the Aumann—Shapley value
for risk redistributions. We assume that every firm i € N is risk-neutral, but
faces costs of holding capital given by CoC;(p;(Y) — Ep[Y]) for all Y € IR®,
where CoC; € [0,1] and p; := CVaR,,. Here, CoC; represents the cost of
capital for holding a buffer, and CVaR,, with «; € (0, 1) is the conditional
Value-at-Risk which is the distortion risk measure with distortion function
gi(x) = min{{=, 1} (see Dhaene et al., 2006). The conditional Value-at-Risk,
also called Expected Shortfall, received considerable attention after the intro-
duction of the Basel 111 regulations and the Swiss Solvency Test (see, e.g., Eling
et al., 2008; Basel Committee on Banking Supervision, 2012; Chen, 2014). Also
in reinsurance contract design, there is a substantial literature that studies CVaR
(see, e.g., Chi and Tan, 2011; Chi, 2012; Asimit et al., 2013; Chi and Weng, 2013;
Boonen et al., 2016).

Define 8; = 1 — CoC;. Let the preferences of firm i € N be given by a
distortion risk measure mean-CVaR, which is given by

MCVaR,, 5,(Y) := B Ep[Y]+ (1 — B)CVaR, (Y), forallYeR% (25)

These preferences are generated by the distortion function g;(x) = B;ix + (1 —
Bi) min{;=—, 1} for x € [0, 1].

For every S € N, we define firms i§ € argmin{{**. : i € S} and j§ €
argmin{f; : j € S}, where it is possible that i = j5. Moreover, we define
xs Bi

N Bz + aisBis/ (1 — i)

Then, we derive that the minimum of the distortion functions for the firms in S

is given by

(1= B+ 1i)x {0 < x < xs,
's

(1 —=Bj)x+ Bj: ifxg<x<l,

g5(x) = (26)
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TABLE 1

THE SELECTION OF THE FIRMS i§, j¢, S € N, CORRESPONDING TO EXAMPLE 7.2.

N {1} 2 (3} {I,2} {1.3} {2.3} N

i§ 1 2 3 1 3 3 3
Js 1 2 3 2 1 2 2

and, hence, we get p%(Y) = MCVaRs, ﬂfg(Y) for all Y € IR, where

—Bix + Biy/(1 — Ol,S
Bjz — Biy + Bis/(1 —

a =

We illustrate this distortion function in Example 7.2.

A Pareto optimal risk redistribution is given by a stop-loss contract on the
aggregate risk: firm i}, bears the risk max{X — X(wy-), 0} and firm j3 bears
the risk min{ X, X(wy+)}, where k* is the largest index in {1, ..., p} such that
P(X > X(wi+)) < xy. Hence, there exists a Pareto optimal risk redistribution
such that only the firms i}, and j} bear non-degenerate risk. This leads to the
following proposition.

Proposition 7.1. Let every firm i € N endowed with risk measure MCVaR,, g,.
The following two statements hold true:

e For all R € Ry, there exists a Pareto optimal risk redistribution (X )ieN €
PO(R) such that there are at most two firms i, j € N for which X; and X are
not degenerate.

e Forall R € Ry such that there exists a firm i € N such that o; > o and B; >
Bj for all j € N, there exists a Pareto optimal risk redistribution (AA;})iE N €
PO(R) such that jfv'j is degenerate for all j # i.

The second statement of Proposition 7.1 is also shown by Asimit ez al. (2013) in
the context of risk transfers between two divisions within an insurance company.
It follows from the fact that there exist 7}, j} such that i}, = jx.

In this paper, we assume that the side-payments follow from the Aumann—
Shapley value, for which the prices are generated by the distortion function of
MCVaR; p;,. We conclude this section with an example.

Example 7.2. Let N = {1, 2,3}, Q = {w], wy, w3}, P({w}) = %for all w € ,
p1 = MCVARys505 p2 = MCVARys02 and p3 = MCV ARy2.05. Moreover,
let X(w1) =1, X(wy) =0, X(a)3)——1andX1 =X, =—X3=X

In this example, the firms i§ and j§ are umquely determined, and given in
Table 1. From (26), we get xy = 0.5, and the distortion function g7 is given by

5 (x) = 1.2x if0<x<0.5,
SN =108x402 if05<x<1,
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TABLE 2

THE COOPERATIVE COST GAME (N, ¢) CORRESPONDING TO EXAMPLE 7.2.

S {1} {2} {3} {1,2} {1, 3} {2, 3} N
c(S) 1/3 1/3 1/3 14/30 0 0 4/30
1 =
r .Y
/7
/'/7 —
-/
4 /
/
2/3} Py
/

1 s

5 iy

= e

13} o
c‘.:./'
/
27,
7
0 . ,
0 1/3 2/3 1
€r —

FIGURE 2: Construction of the function g}, via the distortion functions g, g> and g3 corresponding to
Example 7.2. The function g; is the dashed-dotted line, g; is the dotted line, g3 is the dashed line and

g 1s the solid line.

so that py, = MCVaRys.,. The distortion functions g1, g, g3 and g%, are dis-
played in Figure 2. From this ﬁgure we get that argmin{g ;(x) : Jj € N} is single-
valued at x = P({w}) = 3 and at x = P{wi, wn}) = 5. Hence, it holds
that |IM(R)| = 1 and, Zherefore condition [U] holds. Moreover, it holds that
m(l) = 3 and m(2) = 2. According to (7) withd, = —1 and dy = d3 = 0, a
Pareto optimal risk redistribution is given by (X )iy Such that X, 1 = —1-eq,
Xa(w1) = 1, Xa(w2) = 1, Xi(@3) = 0, X3(w1) = 1, X3(w2) = 0 and X3(w3) = 0.

We proceed with determining the side-payments.

The cooperative cost game (N, c), as defined in (15), for this example is given
in Table 2. The core is defined in (14). We derive that the core in this example is

given by the polytope

core(R)={a e RY :a; +a)+ a3 =4/30,a; < 1/3,a, + a> < 14/30, a,

+a3 <0,a;+ a3 < 0}

— conv{(4/30, 1/3, —1/3), (1/3,4/30, —1/3), (4/30, 4/30, —4/30)},
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where conv denotes the convex hull operator. We proceed with discussion the
Aumann—Shapley value, which is an element of this set due to Proposition 4.8.

We get that the equilibrium price vector is given by p = Qg x = (O 4,1 3 30)
This leads to the Aumann—Shapley value, that is given by ASI(R) ASZ(R)
Ey. [X] = 30, and AS3(R) = E@* HA=AT = —34—0. It is easy to verify this

is a core element. Then, the risk redistribution /\A’ L Xs and X; corresponding to
the Aumann—Shapley value is given by X, = 30 ceq, Xa(w)) = 0.4, Xa(wn) =
0.4, Xz(a)3) = —0.6, X3(a)1) = 04, Xg(a)g) = —0.6 and X3(a)3) = —0.6. SO, we
see that Firm 3 gets a smaller risk in the risk redistribution corresponding to the
Aumann—Shapley value. This is due to the fact that Xs is a negatively correlated
to the aggregate risk, and therefore a good hedge for the other firms.

*
& X

8. CONCLUSION

In this paper, we analyze optimal risk sharing with dual utility maximizing firms.
We characterize a game-theoretic solution concept that is in line with the solu-
tion concept of Denault (2001) for risk capital allocation problems. Whereas the
characterization is similar, the underlying problem is fundamentally different
from risk capital allocations. Risk capital allocations generally serve as perfor-
mance measure (see, e.g., Tasche, 1999), whereas in this paper we aim to share
risk. By doing so, we also contribute to the literature on uniqueness of compet-
itive equilibria, and we characterize no-trade.

We characterize a solution by means of cooperative game theory. The coop-
erative game that we derive in this paper can be seen as a generalization of the
cooperative game of Denault (2001), where the risk measures are firm-specific.
Moreover, it is a market game (Shapley and Shubik, 1969) with preferences given
by dual utilities. We characterize one specific solution concept that happens to
coincide with the competitive equilibrium. For future research, we suggest to
study alternative solution concepts for this cooperative game with dual utilities.

In this paper, we assume that there is a finite space. This allows us to charac-
terize the set of Pareto optimal risk redistributions as being unique up to side-
payments (Boonen, 2015, Theorem 3.8 therein). Moreover, we use a finite state
space to characterize existence of the Aumann-Shapley value (Theorem 4.6).
Generalizing the setting to an infinite state space would be an interesting topic
for future research. Whereas condition [U] has a straightforward translation to
the class of continuous risks, condition [WO] has not.
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NOTES

1. For notational convenience, we write g; instead of g”.

2. For risk capital allocation problems, there is a wide range of game-theoretic (e.g., Denault,
2001; Tsanakas and Barnett, 2003; Kalkbrener, 2005), financial (e.g., Tasche, 1999) and economic
(e.g., Myers and Read, 2001) approaches described in the literature. In this literature, it is called
the Euler rule.

3. Cooperative cost games consist of the set of firms N and a characteristic function ¢ : 2V —
IR. In the context of the risk redistribution problem considered in this paper, the characteristic
function yields for any subset S € N the minimal aggregate risk capital if only the firms in S
decide to redistribute.

4. Literally, this is not true as Denault (2001) defines this game for all coherent risk measures
and allows for a continuous state space.

5. Note that the fuzzy game satisfies r (es) = ¢(S) for all S € N, where the cooperative cost
game (NN, ¢) is as defined in (15) and eg is the vector with ones for firms in S and zeros for firms in
M\S.

6. Note that Q(g%) contains probability measures whereas p is a vector. Here, we mean that
Pi = Q({wy}) for some Q € Q(gy) andallk € {1, ..., p}.

7. Alternative formulation: for all m, m’ € M(R) such that m # n, it holds that m(k) = n' (k)
onlyif k € {1, ..., p — 1} is such that the states w; and wy are equivalent.

8. Risks X;, i € N are comonotonic with each other if there exists an ordering (i, ..., w,) on
the state space 2 such that X;(w;) > --- > X;(w,) foralli e N.
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APPENDIX A. PROOFS

Proof of Theorem 4.2. One can determine a Pareto optimal risk redistribution (Xien €
PO(R) via (7) for any choice of m € M(R) and d € IR" such that Y iendi = X(w,). For
every allocation « eNIRN, it ho}ds for the side-payments ¢; - eq, i € ]\Lwith ¢ =a — pi(X)
that 37, v =0, (Xi)ien = (Xi + ¢ - eq)ien € PO(R) and a = (0;(X;))ien-

If the conditions [SC] and [U] hold, it follows from Boonen (2015, Theorem 3.8 therein)
that the choice of the Pareto optimal risk redistribution (X;);cy is unique up to side-payments.
Hence, for every allocation a, there is a unique risk redistribution ()N(,-);E » such that ¢, =
p,—(X») foralli € N. |
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Proof of Theorem 4.6. First, we show “<” (if) part of the proof. Let R € Ry be such
that X(w) = X(') for equivalent states w, o’ € Q only. Then, it holds that ), _, A; X;(w) =
Y ien i Xi (') for all equivalent states w, ' € Qand A € IRL. For all other states w, o’ €
such that X(w) > X(«'), it follows from continuity that there exists a neighborhood Uc
IRY, of ey such that 3", x4 Xi(®) > >,y riXi(@) forall & € U. Hence, there exists a
neighborhood U C IRﬁrV+ of ey such that Y,y A Xi(w) = -+ = Y. v Ai Xi(w,) for all
A € U. From this, (1) and (2), it follows that

r) = Eq, |:ZA,-X,«:| . forallaeU. (A1)

ieN

This linear function is partially differentiable and, so, the Aumann-Shapley value Vr(ey)
exists.

We continue by showing the “=" (only if) part of the proof. Let R € Ry be such that
condition [SC] holds and the Aumann—Shapley value Vr(ey) exists. From (4), we get that
O(g%) 1s a finite-dimensional bounded space, and the intersection of a finite number of half-
spaces. Therefore, Q(g%,) is a convex polytope. Define 0c O(gy) as all extreme points of
the convex polytope Q(g%) such that r(ey) = Eg[X] forall Q € 0, where the set O(gy) is
defined in (4). Note that the set Q is non-empty since O(g?%) is compact. Since the fuzzy game
r is piecewise linear, there exists a neighborhood U C IRiv ,ofeyanda O € O such that

r(h) = Ey [Z )»,-X,} , forallre U (A2)

ieN

For all Q € 0, it holds by definition that

Ey [Z A,-Xi:| <r(r), forallreU, (A3)

ieN

and, by local linearity of the fuzzy game r on U, it holds for all Q € O that

Eg {Z x,x,} =r(), forallaeU. (A4)

ieN

Since the gradient Vr (ey) exists, it follows that (Eg[X;]);cy is constant for all Q 0.

For every Q € O, there exists an ordering on the state space Q = {w), ..., w,} such that
Qo) = gyP(wr, ..., o)) — gvP{or, ..., wr1})) forall k € {1, ..., p}. Since condition
[SC] holds, we get from Boonen (2015, equation (36) therein) that for all Q;, Q, € O we have
Qi (@) # Qa(wy) only if X(wi—1) = X(wi) or X(wi) = X(wes1). Let X(wx) = X(we41) and
let Q;, Q, € QO both be generated by a different ordering on the state space Q = {w, ..., w,}
such that X(w;) > --- > X(w,) only via interchanging the states w; and wyyi. So, it
holds that Q;(w) = Q(w) for all w € Q\{w, wiy1}. From strict concavity of the func-
tion g%, we get Qi (wr) # Qx(wi). Hence, (Eg[X;])ien is constant for Q € {Q;, Q,} only
if X;(wr) = X;(wiy) foralli € N. Continuing this procedure for all states wy, wi; € € such
that X(wx) = X(wi41) yields that the Aumann—Shapley value exists if for all wg, wry1 € Q
such that X(wy) = X(wiy1) the states wy and wyyy are equivalent. This concludes the
proof. |
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Proof of Proposition 4.7. Let R € R’y. Then, the fuzzy game r on a neighborhood of ey
is given in (A1). Partial differentiating the fuzzy game r in A = ey yields

ar
I

(en) = Eg,. [Xi], forallie N.
N

Hence, the Aumann—Shapley value is given by

I
AS(R) = Z[g;(P({wl, o) — gvP(or, .. o)) X (),  foralli e N.
k=1
This concludes the proof. |

In order to prove, e.g., Proposition 4.8, Lemma 4.10 and Proposition 6.1, we first show
the following technical result.

Lemma A.1. Forall Re Ry and SC T C N, it holds that

ps(Y) = pi(Y), forall Y € R¥.

Proof. This result follows directly from the fact that gg(x) = min{g;(x) : j € S} >
min{g;(x) : j € T} = gr(x) for all x € [0, 1] and, therefore, O(g}) S Q(g%), where the set
Q(g) is defined in (4). ]

Proof of Proposition 4.8. Since p}, is coherent, it is shown by Denault (2001) that the core
of (N, cy) is non-empty for all R € Ry.
Let a be an element of the core of (N, cy). Then, from

Y oa <ok (Z X,-) (AS)

ieS ieS
<05 (Z X,) (A6)

ieS
=¢(S), (A7)

for all S € N and ¢y(N) = ¢(N) follow that a € core(R), where (AS5) follows from that « is
in the core of (N, cy), (A6) follows from Lemma A.1 and (A7) follows from (16). Hence, we
get that the core of (N, cy) is a subset of core(R), which concludes the proof. |

Proof of Lemma 4.10. Let R € Ry. Subadditivity of the fuzzy game r follows directly
from

rO) + 1) = Pfieya, - (Z m) + Pfreng=o) (Z x;-x») (A3)

ieN ieN

2 PN+ >0) <Z AiX,) + PN +a=0) (Z /\;.X,-) (A9)
ieN ieN

z IO(*ieN:A,-H;w) <Z()“i + )‘;)Xi> (A10)
ieN

=r(A+ 1), (A11)
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foralla, A’ € RY. Here, (A8) follows from (10), (A9) follows from Lemma A.1, (A10) follows
from Subadditivity of p;eN:Af+A5>O) and (A11) follows from (10). This concludes the proof. B

Proof of Proposition 6.1. Let R € R be such that condition [SC] holds. First, we show
the “«” (if) part of the proof. Let R € Ry be such that X;,i € N are all comonotonic
with each other and let p; (X;) = p3(X;) foralli € N. Then, pi (X) = Y,y pi(X;) follows
directly from

D oi(X) =" o (X)) (A12)
ieN ieN
= p% (X). (A13)

Here, (A12) follows from p;(X;) = pj(X;) for alli € N and (A13) follows from that all
X;, i € N are comonotonic with each other and Comonotonic Additivity of p},.

Next, we show the “=" (only if) part of the proof. Let R € Ry be such that p} (X) =
> icn Pi(Xi). Generally, it follows from Subadditivity of p} and Lemma A.1 that

Py (X) <Y o (X)) (Al4)
ieEN

<Y X, (A15)
ieN

Since it holds that p3 (X) = Y,y i (X:), the inequalities turn into equalities in (A14)—(A15).
From (6), we get that the equality p} (X) = ),y 0¥ (Xi) implies that X;,i € N is Pareto
optimal. Since condition [SC] holds, Boonen (2015, Proposition 3.7 therein) shows that this
implies comonotonicity of the risks X;, i € N with each other. From Lemma A.1, it follows
that the equality ", y o3 (Xi) = X,y 0i (X;) implies p; (X;) = p3(X;) forevery i € N. This
concludes the proof. [ ]

https://doi.org/10.1017/asb.2016.34 Published online by Cambridge University Press


https://doi.org/10.1017/asb.2016.34



