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Abstract. We show that for T a Dunford–Schwartz operator on a σ -finite measure
space (X, 6, µ) and f ∈ L1(X, µ), whenever the one-sided ergodic Hilbert transform∑

n≥1(T
n f /n) converges in norm, it converges µ-a.s. A similar result is obtained for

any positive contraction of some fixed L p(X, 6, µ), p > 1. Applying our result to
the case where T is the (unitary) operator induced by a measure-preserving (invertible)
transformation, we obtain a positive answer to a question of Gaposhkin.

1. Introduction
Izumi [13] raised the question of the a.s. convergence of the one-sided ergodic Hilbert
transform (EHT)

∑
k≥1( f ◦ θk/k) associated to a probability preserving transformation θ

and functions in L2(X). Unfortunately, Halmos [12] showed that Izumi’s conditions are
never satisfied, and proved that on any non-atomic space there always exists a centered
f ∈ L2(X) such that the one-sided EHT fails to converge in L2-norm. Later Dowker
and Erdös [9] (see also Del Junco and Rosenblatt [14]) even obtained the existence of
f ∈ L∞(X), centered, such that

sup
n≥1

∣∣∣∣ n∑
k=1

( f ◦ θk/k)

∣∣∣∣=+∞ (a.s.);

see [2] for additional references.
We prove here that if f ∈ L1(X) and

∑
k≥1( f ◦ θk/k) converges in norm, then it

converges a.s. This yields a positive answer to the following question of Gaposhkin [11,
p. 254]: if θ is an invertible measure-preserving transformation and f ∈ L2, does the L2-
norm convergence of the one-sided EHT imply its a.s. convergence?

In [11], Gaposhkin studied the convergence of the one-sided EHT associated to a
general unitary operator on L2. He gave an example [11, pp. 253–254] of a unitary
operator U on L2 and f ∈ L2 with norm convergence of the one-sided EHT but
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no a.s. convergence, and obtained the following conditions for the a.s. convergence
(see [11, Theorem 3 and equation (33)]).

THEOREM 1.1. (Gaposhkin [11]) Let (X, 6, µ) be a probability space and U be a
unitary operator on L2(X, µ). Let f ∈ L2(X) such that∑

n>ee

‖
∑n

k=1 U k f ‖22
n3 log n(log log log n)2 <+∞. (1)

Then
∑

n≥1(U
n f/n) converges µ-a.s. and in L2-norm.

It is shown in [11] that condition (1) is optimal for the a.s. convergence of the one-sided
EHT for unitary operators; however, it is not necessary [4].

On the other hand, it is known that when U is induced by an invertible measure-
preserving transformation, the two-sided EHT converges both a.s. (Cotlar [6]) and in
norm (see, e.g., Campbell [3]). Moreover, it is known (see [4] or [7]) that the L2-norm
convergence of the one-sided EHT of any isometry (or normal contraction) V is equivalent
to condition (2) below, which is strictly weaker than (1).

Sufficient conditions for the a.s. convergence of the one-sided EHT, for Dunford–
Schwartz operators and functions in L1(X), were obtained by Derriennic–Lin [8] and
Assani–Lin [2].

Our goal is to prove the conjecture of Gaposhkin even for Dunford–Schwartz operators
or positive contractions of some L p, p > 1. Moreover, our result applies to σ -finite
measure spaces. The proof is based on a method introduced by Derriennic and Lin [8].
Our main result yields the particularly interesting following examples.

THEOREM 1.2. Let T be a Dunford–Schwartz operator on the σ -finite measure space
(X, 6, µ). Let f ∈ L p(X) (1≤ p <∞) such that

∑
n≥1(T

n f/n) converges in L p(X).
Then

∑
n≥1(T

n f/n) converges µ-almost everywhere. Moreover,

sup
n≥1

∣∣∣∣ n∑
k=1

T k f

k

∣∣∣∣
is in L p(X) if p > 1, and in weak-L1(X) if p = 1 and µ is finite.

THEOREM 1.3. Let 1< p <∞ and T be a positive contraction of L p(X, 6, µ), where µ
is σ -finite. Let f ∈ L p(X) such that

∑
n≥1(T

n f/n) converges in L p(X). Then∑
n≥1(T

n f/n) converges µ-a.s. Moreover,

sup
n≥1

∣∣∣∣ n∑
k=1

T k f

k

∣∣∣∣ ∈ L p(X).

COROLLARY 1.4. Let (X, 6, µ) be a probability space, and let V be the isometry on
L2(X, µ) induced by a µ-preserving transformation. If f ∈ L2(X) satisfies∑

n≥1

‖
∑n

k=1 V k f ‖22
n3 log n <+∞, (2)

then
∑

n≥1(V
n f/n) converges µ-a.s.
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COROLLARY 1.5. Let (X, 6, µ) be a σ -finite measure space, and let T be a Dunford–
Schwartz operator on (X, 6, µ) or a positive contraction of L2(X, 6, µ). Let f ∈ L2(X)
such that the series ∑

n≥1

〈T n f, f 〉

n
log n (3)

converges. Then
∑

n≥1(T
n f/n) converges µ-almost everywhere.

2. Main result and proof of Theorems 1.2 and 1.3
Let (X, 6, µ) be a σ -finite measure space and let 1≤ r <∞. Let T be a linear operator
on Lr (X, 6, µ).

We are concerned essentially with two types of operators:
? T is a Dunford–Schwartz operator on (X, 6, µ) (that is, T is a contraction of every

L p(X, 6, µ), 1≤ p ≤∞); recall (e.g. [15, p. 159]) that the modulus of T is a
positive Dunford–Schwartz operator, denoted by T, such that |T f | ≤ T| f | for every
f ∈ L1(X);

? T is a contraction of L1(X) or a positive contraction of Lr (X).
We denote by T either the linear modulus of T , in cases where T is a contraction

of L1(X), or the operator T itself, in cases where T is positive.
We say that T satisfies the pointwise ergodic theorem in Lr (X) whenever

{(1/n)
∑n

k=1 Tk f } converges µ-almost everywhere for every f ∈ Lr (X).
For f ∈ Lr , denote f ∗ := supn≥1(1/n)

∑n
k=1 Tk

| f |.

THEOREM 2.1. Let 1≤ r <∞. Let T be a power bounded operator on Lr (X, 6, µ) of a
σ -finite measure space, positive if r > 1, such that T satisfies the pointwise ergodic theorem
in Lr (X). Let f ∈ Lr such that

∑
n≥1(T

n f/n) converges in Lr (X). Then,
∑

n≥1(T
n f/n)

converges µ-almost everywhere.
Moreover, if f ∗ is in Lr (X) (respectively in weak-Lr (X)), so is supn≥1 |

∑n
k=1(T

k/k)|.

We give the proof of that theorem in the next section. We now show how to apply
Theorem 2.1 to obtain Theorems 1.2 and 1.3 and their corollaries, and we discuss other
possible applications.

Theorem 1.2 follows from Theorem 2.1 and the Dunford–Schwartz ergodic
theorem [10].

Theorem 1.3 follows from Theorem 2.1 and Akcoglu’s ergodic theorem for a positive
contraction of L p(X) 1< p <∞, see [1] or [15, p. 186].

Recall that a contraction T of L1(X) is called mean ergodic if L1(X)= { f | T f = f }
⊕ (I − T )L1(X). By a result of Çömez and Lin [5], a positive contraction of L1 that
is mean ergodic satisfies the pointwise ergodic theorem in L1(X). Hence, Theorem 2.1
applies to contractions T such that T is mean ergodic. For more results about ergodic
theorems which allow us to apply Theorem 2.1 we refer to Krengel’s book [15] (see
also [16] for a result for positive contractions in L1(X)).

Proof of Corollaries 1.4 and 1.5. It is enough to show that under the conditions of the
corollaries the one-sided EHT converges in L2(X). It follows from [4] (see also [7]), that
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for every isometry T of L2(X), condition (2) implies the norm convergence of the one-
sided EHT, while for every contraction of L2(X), (3) is sufficient for the norm convergence,
by [4]. 2

3. Proof of Theorem 2.1
Before proving Theorem 2.1 we need some preliminaries.

Let D := {z ∈ C : |z|< 1}. For every z ∈ D, define

H(z) := log
(

e
1− z

)
= 1+

∑
n≥1

zn

n
=

∑
n≥0

βnzn .

Since 1− e /∈ D, H 6= 0 on D. Hence, G := 1/H is well-defined analytic on D. So
there exists {αn}n≥0, such that

G(z)=
∑
n≥0

αnzn for all z ∈ D.

One can see that α0 = 1, and it follows from [17, Theorem 2.31, p. 192] that αn ∼

−1/n(log n)2. For convenience we use the notation γn := K/n(log(n + 1))2, n ≥ 1,
where K is such that |αn| ≤ γn .

It follows from the identity G(z)H(z)= 1 that

βn +

n∑
k=1

αkβn−k = βn +

n−1∑
k=0

βkαn−k = 0 for all n ≥ 1. (4)

Fix 1≤ r <∞ as in Theorem 2.1.
Since

∑
n≥0 |αn|<∞, the operator series

∑
n≥0 αnT n converges in Lr (X, µ) in

operator norm, and defines a bounded operator, denoted by G(T ). Moreover, for every
f ∈ Lr (X, µ), the series

∑
n≥0 αnT n f is µ-almost everywhere absolutely convergent, by

the monotone convergence theorem (since the monotone sequence {(
∑n

k=0 |αk T k f |)r } is
bounded in L1(X, µ) by (

∑
n≥0 |αn|‖T n f ‖r )r ).

For every f ∈ Lr (X, µ), we define H(T ) f ∈ Lr by f +
∑

n≥1(T
n f/n) whenever the

series converges in Lr .
Define also, for every n ≥ 1,

Hn = Hn(T ) := I +
n∑

k=1

T k

k
=

n∑
k=0

βk T k . (5)

Recall that for f ∈ Lr , f ∗ = supn≥1(1/n)
∑n

k=1 Tk
| f |.

PROPOSITION 3.1. Let T be as in Theorem 2.1. Then, there exists K1, K2 > 0, so that,
for every h ∈ Lr (X, µ),

sup
n≥1
‖HnG(T )h‖r ≤ K1‖h‖r (6)

and
sup
n≥1
|HnG(T )h(x)| ≤ K2h∗. (7)
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Proof. We have

HnG(T )(h) =
n∑

k=0

βk T kh +
n∑

k=0

βk

∑
m≥1

αm T m+kh

=

n∑
k=0

βk T kh +
n∑

k=0

βk

∑
m≥k+1

αm−k T mh

=

n∑
k=0

βk T kh +
n∑

m=1

(m−1∑
k=0

βkαm−k

)
T mh +

∑
m≥n+1

( n∑
k=0

βkαm−k

)
T mh

= h +
∑

m≥n+1

( n∑
k=0

βkαm−k

)
T mh, (8)

where we used (4) for the last equality.
It suffices to deal with the series of the last equality. We have∑

m≥n+1

( n∑
k=0

βkαm−k

)
T mh =

2n∑
m=n+1

( n∑
k=0

βkαm−k

)
T mh

+

∑
m≥2n+1

( n∑
k=0

βkαm−k

)
T mh. (9)

Let us prove (6). Since T is power bounded in Lr and, by monotonicity of {γn}, there
exists L1 > 0 such that∥∥∥∥ ∑

m≥2n+1

( n∑
k=0

βkαm−k

)
T mh

∥∥∥∥
r
≤ L1‖h‖r

∑
m≥2n+1

( n∑
k=0

βkγm−n

)
≤ L2‖h‖r log n

∑
m≥n+1

γm ≤ L3‖h‖r .

For the first sum in (9), we have∥∥∥∥ 2n∑
m=n+1

( n∑
k=0

βkαm−k

)
T mh

∥∥∥∥
r
≤ L1‖h‖r

2n∑
m=n+1

[[n/2]∑
k=0

βkγm−[n/2] +

n∑
k=[n/2]+1

β[n/2]γm−k

]

≤ L4‖h‖r

(
log n

∑
m≥[n/2]

γm +
1
n

2n∑
m=n+1

∑
k≥0

γk

)
≤ L5‖h‖r .

We now prove (7). Write Sm :=
∑m

k=1 Tk
|h|. For the second sum in (9), monotonicity

of {γn} yields∣∣∣∣ ∑
m≥2n+1

( n∑
k=0

βkαm−k

)
T mh

∣∣∣∣ ≤ ∑
m≥2n+1

γm−n

( n∑
k=0

βk

)
Tm
|h|

≤ C log n
∑

m≥2n+1

γm−n(Sm − Sm−1)

≤ C log n

[ ∑
m≥2n+1

(γm−n − γm+1−n)Sm

]
.
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Hence, using Abel summation again, we obtain∣∣∣∣ ∑
m≥2n+1

( n∑
k=0

βkαm−k

)
T mh

∣∣∣∣ ≤ C log n

[ ∑
m≥2n+1

(γm−n − γm+1−n)mh∗
]

≤ C log nh∗
(

4nγn+1 +
∑

m≥n+1

γm

)
≤ C ′h∗.

Let us deal with the first sum of (9). By (4), we have∣∣∣∣ 2n∑
m=n+1

( n∑
k=0

βkαm−k

)
T mh

∣∣∣∣= ∣∣∣∣ 2n∑
m=n+1

βm T mh +
2n∑

m=n+1

( m−1∑
k=n+1

βkαm−k

)
T mh

∣∣∣∣
≤

2n∑
m=n+1

βmTm
|h| +

2n∑
m=n+1

( m−1∑
k=n+1

βkγm−k

)
Tm
|h|

≤
1
n

S2n +

2n∑
m=n+1

(
1
n

∑
k≥1

γk

)
Tm
|h| ≤ 2

(
1+

∑
k≥1

γk

)
h∗.

We deduce the following proposition.

PROPOSITION 3.2. Let T be as in Theorem 2.1 and h ∈ (I − T )Lr (X). Then h =
limn→+∞ HnG(T )h both in Lr and almost everywhere.

Proof. Let us first prove the convergence in Lr . By (6) it suffices to show the result for
h ∈ (I − T )Lr (X). By (8), the assertion is that for h ∈ (I − T )Lr (X)∥∥∥∥ ∑

m≥n+1

( n∑
k=0

βkαm−k

)
T mh

∥∥∥∥
r
−→

n→+∞
0.

For u ∈ Lr (X), we have∑
m≥n+1

( n∑
k=0

βkαm−k

)
T m(u − T u)

=

∑
m≥n+1

( n∑
k=0

βkαm−k

)
T mu −

∑
m≥n+2

( n∑
k=0

βkαm−k−1

)
T mu

=

∑
m≥n+2

( n∑
k=1

(βk − βk−1)αm−k

)
T mu (10)

+

( n∑
k=0

βkαn+1−k

)
T n+1u +

∑
m≥n+1

αm T mu −
∑

m≥n+2

βnαm−n−1T mu.

Now, using (4), we have∥∥∥∥ n∑
k=0

βkαn+1−k T n+1u +
∑

m≥n+1

αm T mu −
∑

m≥n+2

βnαm−nT mu

∥∥∥∥
r

≤
‖u‖r

n
+

∑
m≥n+1

γm‖u‖r +
1
n

∑
m≥2

γm‖u‖r −→
n→+∞

0.
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It remains to deal with the term in (10). We have, splitting the sum according to
k ≤ [n/2],∥∥∥∥ ∑

m≥n+2

( n∑
k=1

(βk − βk−1)αm−k

)
T mu

∥∥∥∥
r
≤

∑
m≥n+2

( n∑
k=1

|βk − βk−1|γm−k

)
‖u‖r

≤

[n/2]∑
k=1

(βk−1 − βk)‖u‖r
∑

m≥n+2

γm−[n/2] +
‖u‖r
[n/2]

∑
m≥n+2

γm−n

≤
K

log n
‖u‖r ,

for a constant K > 0 independent of u.
To show the almost everywhere convergence, by (7) and the Banach principle (see, e.g.,

[10, p. 332]) it suffices to show the result for h ∈ (I − T )Lr (X). We could proceed as
above, but since we have identified the limit, it suffices to show only the almost everywhere
convergence of HnG(T )h for every h ∈ (I − T )Lr (X).

Let u ∈ Lr (X). We have

HnG(T )(u − T u)= Hn(G(T )u − T G(T )u)= Hn(v − T v),

where v := G(T )u ∈ Lr (X). Hence,

HnG(T )(u − T u) = v − T v +
n∑

k=1

T kv − T k+1v

k

= v −

n∑
k=2

T kv

k(k − 1)
−

T n+1v

n + 1
−→

n→+∞
v −

∑
k≥2

T kv

k(k − 1)
,

since
∑

k≥2(T
kv/k(k − 1)) converges a.s. by Beppo Levi’s theorem and |T nv|/n ≤

Tnv/n goes to zero, as T satisfies the pointwise ergodic theorem in Lr . 2

Proof of Theorem 2.1. Since
∑

n≥1(T
n f/n) converges in L1(X), we have

lim
n→+∞

1
n

∥∥∥∥ n∑
k=1

T k f

∥∥∥∥
1
= 0;

hence, f ∈ (I − T )L1(X) (see, e.g., [15, Theorem 2.1.3, p. 73]).
Since H(T ) f = limn Hn f exists in Lr by assumption, Proposition 3.2 and continuity

of G(T ) yield, in Lr

f = lim
n→+∞

HnG(T ) f = lim
n→+∞

G(T )Hn f = G(T )H(T ) f.

Define g := H(T ) f . Then, we have f = G(T )g and g ∈ (I − T )Lr (X). By the a.s. part
of Proposition 3.2, we then obtain

Hn f = HnG(T )g −→
n→+∞

g µ-almost everywhere.

The fact that the maximal function belongs to weak L1(X) when r = 1, or to Lr (X) when
r > 1, follows from Proposition 3.1. 2
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