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Abstract

In northwestern France, the Brioverian series is a thick siliciclastic succession deposited during
the Cadomian cycle (c. 750–540Ma). In the uppermost Brioverian beds, previous studies unrav-
elled an assemblage dominated by simple horizontal trace fossils associated with microbially
stabilized surfaces. Here, we report Spirodesmos trace fossils – one-way, irregular and regular
horizontal spirals – from Crozon (Finistère, Brittany), Montfort-sur-Meu and St-Gonlay
(Ille-et-Vilaine, Brittany). After reviewing the literature on horizontal spiral trace fossils, an
Ediacaran–Fortunian Spirodesmos pool is identified from marginal-marine to shelf settings,
while an Ordovician–Recent trend formed in the deep-marine realm. These results suggest that
an onshore–offshore migration in Spirodesmos took place during Ediacaran–Fortunian to
Ordovician time, similar to what happened in graphoglyptids. In addition, the age of the upper-
most Brioverian beds (Ediacaran or early Cambrian) is still a pending question. Here, we report
two new U–Pb detrital zircon datings from sandstone samples in St-Gonlay, giving maximum
deposition ages of 551 ± 7 Ma and 540 ± 5 Ma. Although these results do not discard an
Ediacaran age for the uppermost Brioverian beds, a Fortunian age is envisioned because the
new dating corroborates previous dating from Brittany, Mayenne and Normandy. However,
the intervals of error of the radiometric dating, and the dominance of non-penetrative trace
fossils associated with matgrounds (an ecology more typical of the Ediacaran Period), do
not allow definitive conclusions on the age of the uppermost Brioverian beds.

1. Introduction

The potential of ichnology to decipher macro-evolutionary trends in animal behaviour has a
long history. Compilation of ichnological data was a major part of the work of A. Seilacher
and P. Crimes. Seilacher (1974, 1977, 1986) focused on the variety of graphoglyptid trace fossils
from the deep sea (i.e. patterned trace fossils forming nets, regular meanders and spirals), aiming
to understand their environmental adaptation through time (e.g. size changes, functional opti-
mization). Seilacher (1956) was the first to recognize the potential of trace fossils to delineate the
Precambrian–Cambrian boundary; Crimes (1987, 1992a, 1994) extended this idea by reviewing
worldwide literature, and developed an ichnostratigraphic scheme that helped to define the
Cambrian GSSP (Narbonne et al. 1987; Brasier et al. 1994). In Crimes’ comprehensive work,
horizontal spiral trace fossils (as defined in this contribution) were consistently absent from the
Ediacaran and the Cambrian systems (Crimes, 1987, 1992a, b, 1994), only appearing in
the Ordovician System in the deep-marine realm (Crimes et al. 1974, 1992). Crimes suspected
that most deep-marine graphoglyptids originated in shallow-marine environments during the
Cambrian Period (Crimes, 1987; Crimes & Anderson, 1985; Crimes & Fedonkin, 1994), but the
absence of regular planispiral trace fossils in the Cambrian System was then problematic
(Crimes et al. 1992).

The Ediacaran–Cambrian transition (c. 539 Ma) was a time of striking changes in Earth eco-
systems. Ediacaran seafloors were dominated by microbially stabilized surfaces on which epi-
faunal and very shallow infaunal grazers thrived (Seilacher & Pflüger, 1994; Gehling, 1999).
Macroscopic animals of the earliest Cambrian Period started to disrupt the sediment at depth,
affecting the substrate ventilation (e.g. Mángano & Buatois, 2014; Gougeon et al. 2018a), trophic
webs (e.g. Bottjer et al. 2000;Meysman et al. 2006) and geochemical cycles (e.g. Logan et al. 1995;
Canfield & Farquhar, 2009; Boyle et al. 2018). In northwestern France, the Brioverian series of
central Brittany is a thick siliciclastic succession that was deposited during the Cadomian cycle
(c. 750–540 Ma). Despite the report of fossils since the 19th century, the age of its uppermost
beds (Ediacaran or early Cambrian) is a long-standing conundrum. Recently, new investigations
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unravelled a unique assemblage of trace and body fossils in the
vicinity of Rennes (Néraudeau et al. 2016, 2019; Gougeon et al.
2018b, 2019). Trace fossils are dominantly simple, horizontal
and associated withmicrobially stabilized surfaces; of these, planis-
pirals represent a surprising discovery.

The aim of this study is threefold: (1) to describe a new assem-
blage of planispiral trace fossils from the Brioverian series of
northwestern France; (2) to place this assemblage within a
macro-evolutionary framework and to interpret its significance;
and (3) to provide new radiometric dating in order to discuss
the age of the uppermost Brioverian deposits.

2. General background

2.a. Geological setting and previous work

The Brioverian series (c. 660–540Ma; Le Corre et al. 1991; Guerrot
et al. 1989, 1992) is the informally named thick sedimentary suc-
cession deposited during the Cadomian cycle (c. 750–540 Ma) in
northwestern France (Fig. 1a, b; Chantraine et al. 2001; Ballèvre
et al. 2013). In the Rennes area (Fig. 1b), only the uppermost
Brioverian beds are exposed, with a thickness evaluated at
c. 1300 m (Trautmann et al. 1999). The Brioverian series of
Brittany lies unconformably on an Icartian basement (c. 2200–
1800 Ma) and is unconformably overlain either by the
Ordovician Red Bed Series (‘Séries Rouges Initiales’) or by the
Ordovician Armorican Sandstone (‘Grès Armoricain’; Cogné,
1959; D’Lemos et al. 1990; Le Corre et al. 1991). The terrigenous
siliciclastic sediments of the Brioverian series resulted from the
erosion of the Cadomian belt in northern Brittany and accumu-
lated in a marginal, intra-plate basin in central Brittany (Denis,
1988; Dissler et al. 1988; Rabu et al. 1990; Dabard et al. 1996).
Locally, carbonaceous cherts (‘phtanites’), limestones and igneous
intrusions have also been reported (Denis &Dabard, 1988; Dabard,
1990, 2000; Chantraine et al. 2001). On a regional scale, the cor-
relation of the Brioverian sedimentary deposits is hindered by
the discontinuous cropping out, facies changes, the absence of bio-
stratigraphic markers and the metamorphic overprint from the
Devonian–Carboniferous Variscan orogeny (Denis & Dabard,
1988; D’Lemos et al. 1990; Le Corre et al. 1991; Ballèvre et al.
2013). While traditionally interpreted as deeper-marine turbiditic
deposits (Dangeard et al. 1961; Denis, 1988; Trautmann et al.
1999), the Brioverian sedimentary beds also show evidence of shal-
low-marine storm-influenced (Dabard & Loi, 1998; Dabard &
Simon, 2011) and marginal-marine tidally influenced conditions
(Graindor, 1957; Dabard, 1990, 2000; Néraudeau et al. 2019).

Fossils recovered from the Brioverian series are algal or bacte-
rial organic-walled microfossils in cherts and limestones (Cayeux,
1894; Deflandre, 1955; Chauvel & Schopf, 1978; Chauvel &
Mansuy, 1981; Mansuy & Vidal, 1983), macroscopic body fossils
of unknown origin (Néraudeau et al. 2019) and trace fossils.
Ichnofossils were first discovered in the late 19th century
(Lebesconte, 1886), but did not draw the attention of the scientific
community for a long time. Recently, new investigations in the
vicinity of Rennes (Fig. 1b) have unravelled an assemblage domi-
nated by simple horizontal grazing trails (Circulichnis, Gordia,
Helminthoidichnites, Helminthopsis), passively filled horizontal
burrows (Palaeophycus) and horizontal spiral trace fossils
(Spirodesmos; Néraudeau et al. 2016; Gougeon et al. 2018b,
2019). In addition, microbially textured surfaces (MISS of
Noffke et al. 2001) are common both in fossiliferous and azoic
intervals (Lebesconte, 1886; Gougeon et al. 2018b).

The age of the uppermost Brioverian sedimentary beds in
Brittany, Normandy and Mayenne has been highly debated
(Fig. 1b). In Brittany, the overlying Red Bed Series gave an age
of 472 ± 5 Ma (Rb–Sr dating from volcanic rocks; Auvray et al.
1980), 465 ± 1Ma (U–Pb dating from volcanic rocks; Bonjour et al.
1988; Bonjour & Odin, 1989) and 486 ± 28Ma (Pb–Pb dating from
volcanic rocks; Guerrot et al. 1992), placing these beds within the
Ordovician Period (contra McMahon et al. 2017; Went, 2017). In
the westernmost part of Brittany (Crozon area; Fig. 1b), Guerrot
et al. (1992) obtained an age of 543 ± 18 Ma (Pb–Pb dating) for
a tuff intercalated within Brioverian beds, whereas a maximum
deposition age of 546 ± 2 Ma (U–Pb dating) has been obtained
by Ballouard et al. (2018) from detrital zircon grains extracted from
a sandstone (see also Dabard et al. 2021). In the vicinity of Rennes
(Fig. 1b), detrital zircon grains gave a maximum deposition age of
c. 550 Ma (U–Pb dating from sandstone and siltstone; Gougeon
et al. 2018b); however, five zircon grains dated at 532.1 ± 3.9 Ma
were problematic to interpret (Gougeon et al. 2018b). InNormandy,
Brioverian sediments were deposited in a different palaeogeographic
domain than in central Brittany, as they are separated by the North
Armorican Shear Zone (Fig. 1b; Chantraine et al. 1982; Guerrot et al.
1992). In this domain, granitoid intrusions within Brioverian sedi-
ments have been dated at 540 ± 10 Ma (U–Pb dating on monazite;
Pasteels &Doré, 1982). InMayenne, where the Brioverian series is in
continuity with its equivalent of central Brittany (Fig. 1b), radiomet-
ric dating on zircon grains yielded an age of 540 ± 17 Ma (tuff and
detrital horizons; Guerrot et al. 1992).

2.b. Outcrops under study and depositional environments

The outcrop at La Lammerais village nearby St-Gonlay (Fig. 1b)
yields slates with trace fossils, stacked in a pile c. 2 m high and
50 m long (outcrops for this contribution are located on private
properties, which do not allow details on their exact locations).
These slates were extracted from a pit that was exploited by locals
to build houses and pathways decades ago; unfortunately, the pit is
now covered with vegetation and therefore impossible to sample
in situ. Slates are made of siltstone and rare very-fine- to fine-
grained sandstone. One loose sandstone sample was collected
for U–Pb dating, coming from a nearby agricultural field. At La
Lammerais outcrop, sedimentary structures are parallel-lamination
organized in siltstone–sandstone bundles (i.e. rhythmite-like;
Néraudeau et al. 2019, fig. 3), current-ripples (Néraudeau et al.
2019, fig. 2), tool-marks/spindle-shaped flute-marks, possible
load-casts, and pustular and wrinkled microbially textured surfaces
(Gougeon et al. 2018b, figs 4, 7).

Nearby St-Gonlay, another outcrop has been investigated at Le
Lorinou locality, situated 1.4 km to the east of La Lammerais. This
outcrop is very poor in trace fossils (no spiral trace fossils were
found there), but beds are preserved in situ and a sandstone sample
was collected for U–Pb zircon dating.

The outcrop of Le Bois-du-Buisson is located at the entrance of
a small forest in Montfort-sur-Meu (Fig. 1b). It consists of a small
quarry of c. 3 m high and 10 m long, with vegetation extensively
covering the sedimentary beds. However, a few siltstone beds are
accessible and reveal fresh surfaces with trace fossils. Sedimentary
structures are parallel-lamination organized in siltstone–sandstone
bundles (i.e. rhythmite-like, similar to what is found at La
Lammerais), and pustular and wrinkled microbially stabilized
surfaces.

In addition, Montfort-sur-Meu is the host of Les Grippeaux
quarry, where P. Lebesconte recovered fossils for the first time
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in the late 19th century (Lebesconte, 1886; Gougeon et al. 2018b).
Nowadays, the quarry is secured by a fence preventing any access.
Many samples were collected in the late 19th and early 20th cen-
tury by P. Lebesconte, F. Kerforne and other geologists; they are
housed at the Geological Institute of the University of Rennes 1
and at the Museum of Natural History of Nantes, and are available
for study. Sedimentary structures are pustular microbially stabi-
lized surfaces.

The outcrop in Crozon (Fig. 1b) is located on the coastal cliff at
La Plage-du-Goulien. This outcrop has not been visited by the
authors, and the only trace fossil discovered was reported by E.
Hanson in 2014 (pers. comm.). The sedimentology of the
Brioverian series from the Bay of Douarnenez and the Cove of
Dinan (both in the vicinity of Crozon) has been studied in two doc-
toral theses (J.R. Darboux, unpubl. Ph.D. thesis, University of
Brest, 1973; Denis, 1988). The succession displays parallel-lami-
nated/bedded sandstone and siltstone with flute-casts, load-casts,
tool-marks, rip-up clasts, carbonate concretions, normal and
reverse grading, convolute bedding, flame structures, and current,
wave and climbing ripples. Both authors interpreted the succession
as deposited by turbidites, located either below the limit of the
storm wave-base action, or deeper in an abyssal plain. However,
Denis (1988) noted the presence of oscillatory flow structures, len-
ticular bedding (Facies 3 of Denis, 1988) and mud-drapes, which
are more typical of shallower environments.

In Montfort-sur-Meu and St-Gonlay, the dominance of silt-
stone intercalated with laminated very-fine-grained sandstone,
and the record of rhythmite-like bundles and current ripples, sug-
gest a marginal-marine, tidally influenced depositional environ-
ment (cf. Nio & Yang, 1991; Tessier et al. 1995; Dalrymple,
2010). This conclusion is strengthened by observations in
Chanteloup and Nouvoitou (both in the vicinity of Rennes), where
a sandstone facies displays mudstone drapes within fine-grained
sandstone samples (i.e. flaser lamination; see online Supplementary
Fig. S1); these areas could represent the seaward, sandier part of
the intertidal system. Sedimentary structures made by oscillatory
flows (e.g. wave ripples, hummocky cross-stratification) have

not been observed in the area so far. These conclusions are pre-
liminary and await further support, notably from Brioverian
outcrops revealing bedding architecture, and from more sam-
pling of sedimentary structures.

3. Materials and methods

3.a. Terminology of planispiral trace fossils

This contribution focuses only on spirals formed on a horizontal
plane (i.e. planispirals). Three-dimensional, vertically (e.g. Gyrolithes,
Lapispira) or horizontally (e.g. Avetoichnus, Helicodromites,
Helicolithus) oriented spirals are not comparable with the
Brioverian material. In order to describe spiral morphologies,
the following terms will be used: a regular spiral maintains a con-
stant distance between whorls (Fig. 2b, c); an irregular spiral has a
variable distance between whorls (Fig. 2a, d); a one-way spiral is a
simple spiral with no central turnaround (Fig. 2a, b, d; Seilacher,
1977; Crimes & McCall, 1995); a two-way spiral is a double spiral
with a central turnaround (Fig. 2c; Seilacher, 1977; Crimes &
McCall, 1995); and a bounded spiral is an irregular, one-way
spiral that decreases the distance between whorls outward
(Fig. 2d).

3.b. U–Pb dating method

A classic mineral separation procedure has been applied to concen-
trate zircon grains for U–Pb dating. Rocks were crushed and only
the powder fraction with a diameter < 250 μm was kept. Heavy
minerals were successively concentrated by Wilfley table, heavy
liquids and an isodynamic Frantz separator. Zircon grains were
then handpicked under a binocular microscope to produce the
most representative sampling, with the aim of avoiding any inten-
tional bias (see Malusà et al. 2013). Selected grains were then
embedded in epoxy mounts, grounded and polished. Zircon grains
were imaged by cathodoluminescence (CL) using a Reliotron CL
system equipped with a digital colour camera available at the
GeOHeLiS analytical platform (University of Rennes 1).

Fig. 1. Geological map of northwestern France, and new U–Pb dating. (a) Location of the Brioverian deposits in northwestern France. (b) Close-up showing the Brioverian
deposits, and the three localities with planispiral trace fossils. NASZ –North Armorican Shear Zone; SASZ – South Armorican Shear Zone. (c) Kernel density estimation diagrams
for La Lammerais and Le Lorinou samples.
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U–Pb geochronology was conducted by in situ laser ablation
inductively coupled plasma mass spectrometry (LA-ICP-MS) at
the GeOHeLiS analytical platform using an ESI NWR193UC
Excimer laser coupled to a quadripole Agilent 7700× ICP-MS.
Instrumental conditions are reported in online Supplementary
Table S1, while the analytical protocol can be found in Manzotti
et al. (2015). Kernel density diagrams for analyses that are
100 ± 10% concordant were generated using IsoplotR (Vermeesch,
2018). When dealing with detrital zircon geochronology, a mini-
mum of three different ages obtained on three different zircon
grains overlapping in age at 2σ has been demonstrated to produce
a statistically robust maximum deposition age (Dickinson &
Gehrels, 2009). The second important criteria in order to deter-
mine this maximum deposition age is the degree of concordance
of the individual analysis used to calculate this age. Most authors
consider all analyses that are 90% concordant ormore, while others
only consider analyses that are at least 95% concordant. In this
study, because of the complexity of one of the datasets (La
Lammerais), only analyses that were at least 95% concordant were
considered to calculate the maximum deposition age, in order to
avoid using apparent ages that could be younger than the true
age due to a non-negligible Pb loss.

3.c. Museum repository

From La Lammerais and Le Bois-du-Buisson, samples were col-
lected and reposited at the Geological Institute of the University
of Rennes 1 (collections Gougeon andNéraudeau). Historical spec-
imens from Les Grippeaux are reposited at the Museum of Natural
History of Nantes (collections Barrois and Lebesconte) and the
Geological Institute of the University of Rennes 1 (collections
Kerforne, Rolland and Rouault). The trace fossil from La Plage-
du-Goulien has not been collected and was only photographed
in the field by E. Hanson.

4. Results

4.a. Planispiral trace fossils from the Brioverian series

The Brioverian series of central Brittany contains a rich assemblage
of simple horizontal trace fossils, with Helminthoidichnites
and Helminthopsis being the most common forms. Originally,
Lebesconte (1886, pl. 34, fig. 7) figured a planispiral trace fossil
from Montfort-sur-Meu without further discussion. Since then,
spiral trace fossils have not been reported in the Brioverian series.
Here, we describe two types of planispiral trace fossils: (1) irregular,
one-way spiral trace fossils; and (2) regular, one-way spiral trace
fossils.

Four irregular, one-way spiral trace fossils were recovered from
La Lammerais, Le Bois-du-Buisson and Les Grippeaux (Fig. 3a).
Specimens are 0.3–1 mm wide, have 1¼–1¾ whorls, and are pre-
served in positive and negative reliefs (preservation as epirelief or

hyporelief is unknown because slates with trace fossils are not
preserved in situ). One specimen (Fig. 3a) has a different infill
than the host rock and a lining; this is potentially a burrow.
Rarely, they are associated with Helminthoidichnites, small-
scale branching trace fossils (cf. Pilichnus), and pits of uncertain
affinity. They are commonly found on pustular microbially tex-
tured surfaces.

Two regular, one-way spiral trace fossils were recovered from
La Plage-du-Goulien and Les Grippeaux (Fig. 3b, c). Specimens
are 1–3 mm wide, have 2¼–2½ whorls, and are preserved in pos-
itive and negative reliefs. The distance between whorls remains
constant until the last whorl, where the course detaches from
the spiral system and progressively disappears. They are associated
withHelminthopsis and pits of uncertain affinity. The surfaces they
are found on are not textured.

Spirodesmos, Spirophycus and Spirorhaphe are the most
common planispirals from the trace fossil record: however, their
morphological boundaries are unclear. Spirodesmos is a regular
to irregular, one-way spiral trace fossil (Geinitz, 1867; Andrée,
1920; Huckriede, 1952; Xia et al. 1987). For Seilacher (1977),
Spirodesmos has a wide spacing between whorls; although this is
clearly so in the type ichnospecies S. interruptus Andrée, 1920,
S. archimedeus Huckriede, 1952 has a narrower spacing between
whorls. This issue becomes critical with Spirodesmos kaihuaensis
Xia, He & Hu, 1987 and S. spiralis (Geinitz, 1867), both having
irregular courses with variable distances between whorls.
Spirophycus is a regular to irregular, one-way spiral trace fossil that
commonly grades into meanders (Heer, 1876; Häntzschel, 1975).
Seilacher (1977) argued that Spirophycus has wide strings with a
tubercular surface and backfilled laminae (see also Książkiewicz,
1977; but see Uchman, 1998). The spiral portion of Spirophycus
(e.g. Heer, 1876, pl. 66, fig. b; Sacco, 1888, pl. 2, fig. 14), with regular
whorls distinctly spaced from each other, can however be very sim-
ilar to Spirodesmos archimedeus. Spirorhaphe is a regular to irregu-
lar spiral trace fossil with either a one-way (S. azteca, S. graeca) or
two-way (S. involuta) course (Seilacher, 1977; Crimes & McCall,
1995). The inclusion of one-way spirals in Spirorhaphe is overlap-
ping with Spirodesmos and Spirophycus morphologies, which is
problematic.

Despite these taxonomical issues (see also Crimes & Crossley,
1991; Uchman, 1998; Minter & Braddy, 2009), planispirals from
the Brioverian series are comparable to Spirodesmos. Brioverian
irregular, one-way spiral trace fossils are reminiscent of
Spirodesmos spiralis (cf. Geinitz, 1867; Stepanek & Geyer, 1989).
However, because of its irregular course and the poor extent of
its whorls, Spirodesmos spiralis needs to be re-evaluated taxonomi-
cally; in this study, Brioverian forms are referred to Spirodesmos
isp. Conversely, Brioverian regular, one-way spiral trace fossils
belong to Spirodesmos archimedeus (cf. Huckriede, 1952;
Zapletal & Pek, 1971; Horn, 1989). Spirodesmos ranges from the
Ediacaran–Cambrian (this study) to the Holocene periods (e.g.
Kitchell et al. 1978; Smith et al. 2005).

Fig. 2. Terminology of planispirals: (a) an irregular one-
way spiral; (b) a regular one-way spiral; (c) a regular two-
way spiral; and (d) a bounded spiral. See text for further
explanations.
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4.b. U–Pb dating

For the sandstone sample from La Lammerais, 118 zircon grains
were analysed, among which 107 analyses have a concordance
of 100 ± 10%. Their U (49–1195 ppm) and Pb (6–493 ppm) con-
tents, as well as their Th/U ratios (0.02–1), are highly variable
(see online Supplementary Table S2). A first group of 12 analy-
ses yields apparent ages between 2.8 and 1.06 Ga. The remain-
ing analyses form two major peaks at 600 and 550 Ma, with
minor peaks around 850 and 650 Ma (Fig. 1c). The 10 youngest
analyses that are more than 95% concordant yield a weighted
average 206Pb/238U date of 540 ± 5 Ma (mean square weighted
deviation (MSWD), 1.2) that we consider as the maximum dep-
osition age for this sandstone.

For the sandstone sample from Le Lorinou, 89 grains were
analysed, out of which 68 are 100 ± 10% concordant (online
Supplementary Table S2). They are characterized by variable U
and Pb contents (21–726 ppm and 2–242 ppm, respectively), with
Th/U ratios between 0.05 and 1.4. A first group of 22 zircon grains
yields Neoarchean (2.9 Ga) to Palaeoproterozoic (1.8 Ga) ages, fol-
lowed by a gap until the end of the Mesoproterozoic. The remain-
ing grains present apparent ages around 1000, 900, 800 and
680 Ma, with a major peak around 600 Ma (Fig. 1c). The youngest
three grains provide a weighted 206Pb/238U date of 551 ± 7 Ma
(MSWD, 0.009) that we consider as the maximum deposition
age for this sandstone.

5. Discussion

5.a. Radiometric age of the uppermost Brioverian beds with
trace fossils

At Le Lorinou (St-Gonlay), zircon grains from a sandstone bed
associated with trace fossils yielded a maximum deposition age
of 551 ± 7 Ma, whereas zircon grains from a loose sandstone sam-
ple at La Lammerais (St-Gonlay) gave a maximum deposition age
of 540 ± 5Ma (this study). In Crozon, the youngest U–Pb dating on
zircon grains from Brioverian tuff gave an age of 543 ± 18 Ma
(Guerrot et al. 1992), whereas another U–Pb dating on zircon
grains from a sandstone gave a maximum deposition age of
546 ± 2Ma (Ballouard et al. 2018). InMontfort-sur-Meu, no radio-
metric dating has been done so far.

The radiometric age for the base of the Cambrian is given by
U–Pb dating on zircon grains from tuff in southern Oman, dated
at 541.0 ± 0.13 Ma (Bowring et al. 2007). However, recent U–Pb

dating on zircon grains from tuff in southern Namibia constrained
the age of the basal Cambrian within a 538.6–538.8 Ma interval
(Linnemann et al. 2019). If we consider a radiometric age of
c. 539Ma for the base of the Cambrian System, the Brioverian beds
of Crozon could either be Ediacaran (c. 635–539 Ma) in age or
younger, while the Brioverian of St-Gonlay could be Ediacaran
but is suspected to be Fortunian (c. 539–529Ma) in age or younger.
Indeed, the new results of this study agree with earlier dating else-
where (maximum deposition age of c. 550 Ma in Néant-sur-Yvel,
Brittany, with five zircons grains dated at 532.1 ± 3.9 Ma;
540 ± 10 Ma in Normandy; and 540 ± 17 Ma in Mayenne;
Pasteels & Doré, 1982; Guerrot et al. 1992; Gougeon et al.
2018b) and suggest an early Cambrian age for the uppermost
Brioverian beds, from a radiometric standpoint (see also
Guerrot et al. 1989, 1992; Dabard et al. 2021). In terms of trace
fossil biostratigraphy, the matground ecology of the Brioverian
series is more typical of late Ediacaran assemblages (Gougeon
et al. 2018b). Because of the differences provided by these two
proxies (radiometric dating and ichnostratigraphy), definitive con-
clusions on the age of the uppermost Brioverian beds with trace
fossils are not possible at this point.

5.b. Critical review on Ediacaran and Cambrian planispiral
trace fossils

Several trace fossils inaccurately described or suggested to be planis-
pirals, have been reported from the Ediacaran and the Cambrian sys-
tems. Fedonkin (1985, 1990) erected Planispiralichnus Fedonkin,
1985 and Protospiralichnus Fedonkin, 1985 from the Fortunian
Kessyuse Formation of northern Russia. Planispiralichnus is made
of dense, overlapping loops (Fedonkin, 1990; Marusin & Kuper,
2020), whereas Protospiralichnus starts as a bounded spiral until it
scribbles abundantly (Fedonkin, 1990); because of their scribbling pat-
terns, neither of them represent spirals (Buatois et al. 2017). Jenkins
(1995, pl. 2, fig. E) reported cf. Protospiralichnus from the
Ediacaran Rawnsley Quartzite of southern Australia; the develop-
ment of a full circle and/or a loop affiliates this trace fossil to
Circulichnis or Gordia instead (see also Buatois & Mángano,
2016, fig. 2.8e). Multilaqueichnus Yang & Yin (in Yang et al.
1982) from the Cambrian Stage 3 Jiulaodong Formation of central
China has overlapping loops (Yang et al. 1982, pl. 2, fig. 1); these
trace fossils distinctly scribble and are not spirals either (contra
Mángano & Buatois, 2016, 2020). Finally, a trace fossil from the
Fortunian part of the Chapel Island Formation of eastern

Fig. 3. Spirodesmos isp. and Spirodesmos archimedeus from the uppermost Brioverian beds of Brittany. (a) Spirodesmos isp. (irregular one-way spiral trace fossil) from Le Bois-du-
Buisson (IGR 2852). (b, c) Spirodesmos archimedeus (regular one-way spiral trace fossils) from (b) Les Grippeaux (IGR 112628) and (c) La Plage-du-Goulien. Scale bars are 1 cm
across.

1288 R Gougeon et al.

https://doi.org/10.1017/S0016756820001430 Published online by Cambridge University Press

https://doi.org/10.1017/S0016756820001430
https://doi.org/10.1017/S0016756820001430
https://doi.org/10.1017/S0016756820001430


Canada was considered a spiral by Crimes & Fedonkin (1994,
fig. 2i). This trace fossil has been observed in the field by one of
the authors (R.G.) and represents the scribbling burrow of a large
infaunal deposit-feeder.

In addition, non-ichnological structures from the Ediacaran
and the Cambrian have been mistaken for planispiral trace fossils.
An important debate arose with the report of Precambrian spiral
fossils from the Lower Vindhyan Limestone of northeastern India
(Beer, 1919) and from the Belt Series of northwestern USA
(Walcott, 1899). Both authors suggested a trace fossil origin, an
opinion followed by Seilacher (1956). However, Cloud (1968) sus-
pected an algal origin, and re-evaluation of both materials con-
firmed that view (Walter et al. 1976; Runnegar, 1991).
Arenicolites spiralis Billings, 1872 and Helminthoidichnites sang-
shuanensis Du (in Du et al. 1986; Yan & Liu, 1998) are certainly
of similar algal affinity (Hofmann, 1971; Walter et al. 1990;
Shaowu, 1998). Furthermore, Aceñolaza (2005) reported circular
structures from the Cambrian Mesón Group of northwestern
Argentina, and erected the new ichnospecies Spirodesmos milanai;
Minter et al. (2006) argued these structures were formed by shrink-
age cracks in matgrounds instead (cf. Pflüger, 1999; Buatois et al.
2013; Sedorko et al. 2019).

Finally, rare horizontal spiral trace fossils have been reported
from the Ediacaran and the Cambrian systems. Planispiralichnus
rarus Menasova, 2003 is a one-way spiral trace fossil discovered
in the Fortunian Khmelnitsky Formation of western Ukraine.
The holotype is made of three whorls with angular intervals along
the course; the first two whorls are continuous, while the last one is
made of unconnected segments (Ivantsov et al. 2015, pl. 7, fig. 4a, b).
This specimen possesses the key features of a spiral trace fossil and
should not be affiliated to Planispiralichnus as described by
Fedonkin (1990). Jensen & Palacios (2016, fig. 4b) reported one-
way spiral trace fossils from the Ediacaran–Fortunian Cíjara
Formation of central Spain. The photographed specimen is a con-
tinuous to discontinuous trail, with 2½ whorls and an irregular
course. Carbone &Narbonne (2014, fig. 4.5) also figured an irregu-
lar one-way spiral with 1¾ whorls and a continuous course from
the Fortunian part of the Ingta Formation of northwestern Canada.
Finally, Runnegar (1992, fig. 3.9) figured an irregular two-way spi-
ral transitional with a meandering trace fossil from the Ediacaran
Rawnsley Quartzite of southern Australia. Jensen (2003) consid-
ered this trace fossil to represent Helminthorhaphe grading into
Spirorhaphe.

5.c. Macro-evolutionary profile and onshore–offshore
migration

Our detailed literature review (Section 5.b above and online
Supplementary Material) unravelled the environmental and tem-
poral distribution of Spirodesmos (Fig. 4). The Ediacaran System
and the Fortunian Stage are then marked by the appearance of a
Spirodesmos pool, composed of irregular and regular forms colo-
nizing marginal-marine to shelf environments. The Brioverian
assemblage represents a key component of that pool, holding
the oldest regular one-way planispirals (Spirodesmos archimedeus)
both inmarginal-marine and open-shelf settings (inMontfort-sur-
Meu and Crozon, respectively). During the Ediacaran and the
Cambrian periods, deposit-feeding was the dominant feeding
strategy (MacNaughton & Narbonne, 1999; Carbone & Narbonne,
2014), and early Spirodesmos were arguably made by epifaunal
detritus-feeders and shallow-infaunal deposit-feeders. Indeed,
‘surplus stretches’ as observed in Spirorhaphe and inferring

open-burrow systems (Seilacher, 1967a, b, 1977) have not been
observed in Ediacaran–Fortunian material. Moreover, Ediacaran–
Fortunian Spirodesmos are often preserved on microbially stabilized
surfaces, which could represent the nutritive resource of their trace-
maker (Carbone & Narbonne, 2014). Possible producers are enter-
opneusts and nematodes, both suspected to first appear during the
Cambrian Period or before (Knoll & Carroll, 1999; Budd & Jensen,
2000; Maletz, 2014; Cunningham et al. 2017). Enteropneusts pro-
duce regular horizontal spirals on the modern deep-sea floor on
areas of greater nutritional values, using tactile sensory systems in
their head (Lemche et al. 1976; Smith et al. 2005; Jones et al.
2013). Nematodes spiral by contracting all the muscles of one side
of their body (Wharton, 2004). However, spiralling in nematodes
has been suggested for other purposes than feeding (e.g. responses
to increasing temperature, osmotic stress, desiccation and for repro-
duction; Huettel, 2004; Wharton, 2004).

Although deep-marine deposits with trace fossils have been
reported both from the Ediacaran (e.g. Narbonne & Hofmann,
1987; Liu et al. 2010) and the Cambrian (e.g. Hofmann et al.
1994; Seilacher et al. 2005) systems, planispirals are consistently
absent. However, planispirals are common through the rest of
the Phanerozoic Eonothem in the deep-sea, and Spirodesmos forms
a conspicuous Ordovician–Recent deep-marine trend (Fig. 4;
online Supplementary Material). Deep-marine seafloors are char-
acterized by an absence of light, high hydrostatic pressure, oxygen
and temperature fluctuations, and low nutrient content (Sanders &
Hessler, 1969; Gage & Tyler, 1991, pp. 9–29; Rex & Etter, 2010, pp.
1–49). These stressful conditions play an important role on animal
fitness and their physiology (e.g. Childress & Thuesen, 1992;
Yancey et al. 2004; van der Grient & Rogers, 2015). However, with
the increased competition for space and food on early Cambrian
shelves (Orr, 2001), planispiral tracemakers may have adapted
their metabolisms to the deep-sea. An onshore–offshore migration
in Spirodesmos is then suggested during Ediacaran–Fortunian to
Ordovician time, similarly to the migration observed in grapho-
glyptids (Crimes & Anderson, 1985; Crimes et al. 1992; Crimes
& Fedonkin, 1994; Orr, 2001; Uchman, 2003). The existence of
an onshore–offshore migration is also reinforced by the presence
of an important gap (c. 230 Ma) between the Ediacaran–Fortunian
Spirodesmos pool and the next shallow-marine Spirodesmos report
from the Permian Vryheid Formation of eastern South Africa
(Mason et al. 1983; Fig. 4).

6. Conclusion

The age of the uppermost Brioverian deposits of central Brittany,
northwestern France, is a long-standing question. Here, two U–Pb
detrital zircon grain datings on sandstone samples collected in
St-Gonlay gave maximum depositional ages of 551 ± 7 Ma and
540 ± 5 Ma. Although an Ediacaran age for the uppermost
Brioverian beds cannot be discarded, a Fortunian age is suggested
in this study, following previous dating in Brittany, Normandy and
Mayenne. However, the intervals of error of the radiometric dating
and trace fossil biostratigraphy do not allow definitive conclusions.

A unique assemblage of irregular and regular, one-way planis-
piral trace fossils of Spirodesmos affinity has been recovered from
the uppermost Brioverian beds in Crozon, Montfort-sur-Meu and
St-Gonlay. Planispiral trace fossils are unusual in the Ediacaran
and the Cambrian systems, and an in-depth literature review
revealed that the Brioverian assemblage belonged to an
Ediacaran–Fortunian, marginal-marine to shelf Spirodesmos pool.
Ediacaran–Fortunian Spirodesmos were arguably made by
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detritus- or deposit-feeders, possibly related to enteropneusts or
nematodes. However, by the Ordovician Period, Spirodesmos
became conspicuous mostly in the deep-marine realm, underscor-
ing an onshore–offshore migration similar to what has been
reported in graphoglyptids.
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