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SUMMARY
In order to solve general kinematics modeling problems and numerical stability problems of
numerical methods for spatial parallel linkage mechanisms, a general modeling method and its
numerical solving algorithm is proposed. According to the need for avoiding direct singular
configurations, valid joint variable space and valid forward kinematics solutions (VKSs) are defined.
Taking numerical convergence near singular points into account, the pseudo-arc length homotopy
continuation algorithm is given to solve the kinematics model. Finally as an example, the joint
variable space of the general Stewart platform mechanism is analyzed, which is proved to be divided
into subspaces by direct singular surfaces. And then, forward kinematics solutions of 200 testing
points are solved separately using the pseudo-arc length homotopy continuation algorithm, the
Newton homotopy continuation algorithm and the Newton–Raphson algorithm (NRA). Comparison
of the results shows that the proposed method is convergent to the same solution branch with the
initial configuration on all the testing points, while the other two algorithms skip to other solution
branches on some near singular testing points.

KEYWORDS: Spatial parallel linkage mechanism; Forward kinematics; Numerical solutions; Direct
singularity; Homotopy continuation method.

1. Introduction
Scholars have conducted a significant amount of research regarding the kinematics problem for
parallel mechanisms. The methods used can be divided into three categories, which are analytical
methods, numerical methods, and methods of sensor installation. The closed-form expression of
the kinematics problem for parallel mechanisms can be solved by using analytical methods, among
which the Sylvester resultant method is the most common. An approach was given that can solve all
40 solutions of the forward kinematics problem for the Stewart platform by using a 13-order Sylvester
resultant constructed by Gröbner basis.1 Xiguang Huang reduced the order of the Sylvester resultant to
10 and simplified the complexity of the solution.2Analytical solutions of the kinematics problems for
other parallel mechanisms are also derived by scholars,3–5 which are not enumerated here. Existing
analytical methods of solving the forward kinematics problem for parallel mechanisms will generally
result in a 20-order equation, which leads to complex computation. Because different mechanisms
need to be re-derived, the application of the analytical method is limited. The method of sensor
installation needs to install additional sensors (e.g., angle displacement sensor, line displacement
sensor and so on) on some passive joints, which leads to inconveniences in practical applications.

Numerical methods are the approach to get the position and orientation of the moving platform
within the scope of numerical accuracy by a kinematics model and the active joint variable values
of the mechanism. With improvements in computation, numerical methods have more and more
usages in parallel mechanism kinematics displacement analysis. The optimization methods, the
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Newton–Raphson method and other new intelligent methods are commonly used in the numerical
method approach. An optimization method was given to solve numerical kinematics solutions for a
6–3–3 parallel robot by establishing a kinematics model with inverse kinematics equations and by
using the squared residuals as the optimization object.6 Moreover, the kinematics model of a Stewart
platform was solved by the Newton–Raphson method.7,8 However, all these numerical methods need
an initial guess good enough to get convergence.

To obtain an approximation for forward kinematics equations, multilayer BP networks were trained
by making inverse kinematics solutions as training samples.9,10 Approximations of the forward
kinematics model of an ankle parallel mechanism was obtained by the fuzzy inference system,
and a good approximation was achieved by applying the modified genetic algorism to the model.11

Also, Antonio Morell obtained the approximations of the forward kinematics models of parallel
mechanisms by support vector regression.12 These numerical approximation methods can be used
in real time control and has a certain degree of versatility. But, they generally cause a problem
of uneven distributed approximation error, which can lead to large approximation error in some
areas when the model is convergent by the RMS error. Wang and Chen gave a generally applicable
numerical method for the forward kinematics problem for parallel mechanisms, which assumed that
each kinematics chain drove a moving platform independently and solved the kinematics solutions
by using a coordinate rotation method to make all the moving platforms overlap.13 But this method
has a complicated kinematics modeling process, which limits its application.

The homotopy continuation method in solving the forward kinematics solution of parallel
mechanisms was proposed early on by scholars. All of the 40 forward kinematics solutions of
the Stewart platform were obtained by using the Newton homotopy continuation method.14 And, the
computation complexity of this method was reduced by using a homogeneous homotopy continuation
method.15 By using the homotopy continuation method, Varedi obtained all the 16 kinematics
solutions of the three-UPU mechanism.16 These studies are focused on getting all of the forward
kinematics solutions of parallel mechanisms, rather than tracking certain branches of the forward
kinematics solutions. There are more studies similar to the above literatures, however they are not
mentioned here.

Most of the existing numerical methods do not consider the effect of the singularity of the
mechanisms to the stability of the numerical algorithms. Also, the existing numerical methods cannot
tell which solution among multiple solutions can be achieved in real applications. That is, if the joint
variable vectors of the mechanisms correspond to multiple forward kinematics solutions, the existing
numerical method cannot guarantee to be convergent to the solution of the same branch with the
initial configuration on the configurations that are nearly singular. And, the skip between the forward
kinematics solution branches may cause the discontinuous trajectory of the moving platform. In
addition, the current versatile methods are complex for building the forward kinematics models and
are not suitable for mechanized solutions. So, by analyzing the constraint equations of the kinematics
pairs that consist of parallel mechanisms, a general kinematics modeling method for the spatial
parallel linkage mechanisms is proposed and a numerical solving method based on the pseudo-arc
length homotopy continuation method is proposed. These proposed methods guarantee the theoretical
convergence on any nonsingular configurations, especially configurations near singular.

2. Establishment of Constraint Equations
The spatial parallel linkage mechanisms can be regarded as links connected by lower pairs and these
lower pairs create the link movements under certain constraints. The mechanism kinematics models
can be established if the equations of all the introduced constraints are found.

Some research has been conducted regarding the establishment of constraint equations for lower
pairs. Javier Garcia de Jalón and Miguel Angel Serna classified constraint equations of the lower
kinematics pairs in the planar mechanisms into two categories:17 the constant distance between two
points and the constant area of triangles formed by three points. But, constraint equations deduced
by Javier Garcia de Jalón do not fit for spatial mechanisms. Constraint equations of 3D joints were
established by Sugiyama18 and Masarati.19 Sugiyama considered the situation of flexible mechanisms
and orientation representations rather than only positions which were used in Masarati’s deduction.
However, these two methods are too complex in the kinematics modeling process for the lower pairs.
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Fig. 1. Mechanism of the prismatic pair.

So, the 3D constraint equations of lower pairs are deduced here first, and then the method to
establish a set of equations for the whole mechanism is given.

2.1. Establishment of the constraint equations for the lower pairs
The most generally used kinematics pairs for the spatial parallel linkage mechanisms are rotational
pairs (R), prismatic pairs (P), cylindrical pairs (C), helical pairs (H), spherical pairs (S) and universal
pairs (U). Among them, the active kinematics pairs are always the rotational pairs and the prismatic
pairs. Because a universal pair can be regarded as a connection of two rotational pairs and a planar
pair can be regarded as a connection of two prismatic pairs and a rotational pair, these two situations
are ignored. The constraints of kinematic pairs are the holonomic constraints, so here they can be
represented by position equations of pivot points fixed with linkages.

Because the constraint equations of each kinematics pair have similar derivation processes, we
only show the derivation process of the prismatic pair constraint equations. The mechanism of the
prismatic pair is shown in Fig. 1, where linkage I is defined as the rail of the prismatic pair and linkage
II as the slider. Points A, B and C0 are fixed to the rail and point C is fixed to the slider. Among them,
points A and B are located on the axis of the rail and point C0 is located on the initial position of
point C.

Point C is limited to linear movement by the prismatic pair, so that line AB is parallel with line
CC0. Thus, the constraint equation is

(PC − PC0) × e = 0.

Where, PC and PC0 are the position vectors of points C and C0 in the base coordinate system,
respectively. And, if not mentioned separately, we will always use PA, PB, PC and PC0 to represent
the position vectors of the pivot points A, B, C and C0 in the base coordinate system, respectively. e
is the unit vector of the rail axis and can be calculated by the following equation.

e = (PA − PB)
/‖PA − PB‖. (1)

When the prismatic pair is an active pair and assuming x is the joint variable, we can get the
following constraint equation:

PC − PC0 = xe.

Table I shows constraint equations of all the involved lower pairs. Because special actuators like
the three degrees-of-freedom (DOF) motor have already been designed, constraint equations of all
the lower pairs involved are also given in Table I when they are active pairs. The pivot points chosen
for other kinematics pairs in Table I are similar to the pivot points described for the prismatic pair.
Among them, points A and B are points on the axis of linkage I and fixed with linkage I; point C
is an arbitrary point fix with the linkage II; and, point C0 is located on the initial position of point
C and is fixed with linkage I. In Table I, θ, θr, θp, θy, and x are joint variables, which are the angle
displacements or linear displacements of the joints; Rrpy is the rotational transformation matrix with
the roll, pitch, yaw angle as θr, θp, θy respectively. R is the 3× 3 rotational transformation matrix
with the rotational angle θ around the axis of the kinematics pair and is written as Eq. (2); and Ph is
the lead of the helical pair.

R = (1 − cos θ) eeT + (sin θ) e × I + (cos θ) I . (2)
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When establishing the constraint equations for the mechanisms, except for the above constraint
equations of the kinematics pairs we also need equations for the rigid body constraint, which represents
a mathematical relationship between the positions of the pivot points fixed in a rigid body. Based on
the definition of a rigid body, the rigid body constraint equations of n (n = 3, 4, 5 . . .) pivot points
are established in the following form to avoid formula singularity and extraneous roots.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Collinear & n ≥ 3 →

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

‖P1 − P2‖ = E1

P3 = E2 P1 + E3 P2

...

Pn = E2n−4 P1 + E2n−3 P

Coplanar & n ≥ 4 →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖P1 − P2‖ = E1

‖P2 − P3‖ = E2

‖P3 − P1‖ = E3

P4 = E4 P1 + E5 P2 + E6 P3

...

Pn = E3n−8 P1 + E3n−7 P2 + E3n−6 P3

O.W. →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖P1 − P2‖ = E1

‖P2 − P3‖ = E2

‖P3 − P4‖ = E3

⎫⎪⎪⎬
⎪⎪⎭ n = 3

‖P4 − P1‖ = E4

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

n = 4

P5 = E5 P1 + E6 P2 + E7 P3 + E8 P

...

Pn = E4n−9 P1 + E4n−10 P2 + E4n−11 P3 + E4n−12 P4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

n ≥ 5

(3)

Where P i (i = 1, 2, . . . , n) is the position vector of the ith pivot point and Ej (j = 1, 2, . . . , 4n − 12)
is the constant determined by the mechanism parameters.

2.2. Establishment of the constraint equations of the whole mechanism
The constraint equations establishment method for the spatial parallel linkage mechanisms is given
in this section. Because the parallel mechanisms always have multiple kinematics chains and the
moving platform connects with all the kinematics chains, the process of the constraint equations
establishment is to combine the constraint equations of the kinematics pairs sequentially from the
base platform to the end of each of the kinematics chains and then to add the constraint equations
formed by the moving platform.

Referring to the constraint equations in Table I, rules of combining constraint equations can be
established as follows:

(1) For adjacent kinematics pairs in each kinematics chain, linkage II of the moving-platform-near
pair is defined to be linkage I of the base-platform-near pair and the pivot point C of the base-
platform-near pair is sequentially defined as located on the pivot points A, B, and C0 of the
moving-platform-near pair to obtain the constraint equations.

(2) Linkage I of the pair connected with the base platform linkage is defined as the base platform
linkage and the positions of the pivot points A, B, and C0 are known.

In order to get the constraint equations of the moving platform, three non-collinear pivot points
are first needed to be chosen on the moving platform. Then, the pivot point C of all the kinematics
pairs connected with the moving platform are created as to be located on the three chosen points,
separately. All the constraint equations of the moving platform can be listed based on the constraint
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Table I. Constraint equations of all the involved lower pairs.

Name of the Non-active pairs Active pairs
kinematics pairs mechanism constraint equations constraint equations

Rotational pair
‖PA − PC‖ = ‖PA − PC0‖
‖PB − PC‖ = ‖PB − PC0‖ PC − PB = R(PC0 − PB)

Cylindrical pair ‖(PA − PC) × e‖ = ‖(PA − PC0) × e‖ PC − PB = R(PC0 − PB) + xe

Prismatic pair (PC − PC0) × e = 0 PC − PC0 = xe

Helical pair
θ = (PC − PC0) · e

Ph

PC − PB = R(PC0 − PB) + θPh

2π
e

PC − PB = R(PC0 − PB) + θPh

2π
e

Spherical pair ‖PA − PC‖ = ‖PA − PC0‖ PC − PA = Rrpy(PC0 − PA)

equations shown in Table I. Then, a check for the existence of any n pivot points in a rigid body
needs to be conducted. If they exist, constraint equations between these pivot points need to be
replaced by the rigid body constraint equations given above. Finally, a process of simplification, such
as eliminating the same equations and then directly solving the equations with only one unknown
variable, is conducted. The flowchart from the above steps for establishing the mechanism constraint
equations is shown in the Fig. 2.

By the method described above, the set of equations containing the position of the three fixed pivot
points on the moving platform and other pivot points are established. Because solving the position and
orientation of the moving platform by the given position of the three points on it is easy, solving the
forward kinematics of the mechanisms is equal to that of solving the established equations. Though
many new unknown variables in the kinematics model other than the variables that represent the
position and orientation of the moving platform are introduced, the established constraint equations
will be a 1 or 2 order polynomial equation, if there is no passive helical pair in the mechanism. In
this case, the nonlinear degree of the model will be significantly lower than the model obtained by
other methods, which can improve the speed of solving the equations.

3. Singularity Analysis of Mechanisms
Singularity of parallel mechanisms was defined by multiple scholars almost simultaneously in the early
1990s. Ma and Angeles classified the parallel mechanism singularities into architectural singularity,
configuration singularity and formulation singularity by the formation reason of singularities and
dimensions of a singular workspace.20,21 Gosselin defined the singularities of parallel mechanisms by
the singularities of the coefficient matrix of the differential kinematics equations.22 Tsai named these
three categories of singularities by inverse, direct (forward) and combined singularities in 1999.23

Direct singularity makes the mechanism unable to bear the load along the singular DOF, while inverse
singularity leads to movement incapacity of the moving platform in the singular DOF. Combined
singularity is a situation where the above two singularities take place simultaneously. Sometimes,
inverse singularity is used to obtain stiffness enhancement of mechanisms in a certain direction and
direct singularity may lead to uncertain movement of the moving platform. So, in general singularity
of a parallel mechanism means direct singularity. First, direct singularity criterion based on the
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Fig. 2. Flowchart of the establishment of the mechanism constraint equations.

constraint equations established in the former section is shown, and then the valid joint variable space
is defined.

Assume that the established constraint equations can be written as follows:

F (v, x) = [F1 (v, x) · · · Fn (v, x)
]T = 0. (4)

Where F is an n dimension polynomials column vector, v is an n dimension unknown column vector
whose elements are the position coordinates values of the pivot points, and x is an m dimension joint
variable column vector. Thus the differential kinematics equation be written as Eq. (5).

Bv̇ = Aẋ. (5)

Where A and B have the form of:

A =

⎡
⎢⎣

−∂F1/∂x1 · · · −∂F1/∂xm

...
...

−∂Fn/∂x1 · · · −∂Fn/∂xm

⎤
⎥⎦ B =

⎡
⎢⎣

∂F1/∂v1 · · · ∂F1∂vn

...
. . .

...
∂Fn/∂v1 · · · ∂Fn/∂vn

⎤
⎥⎦ .

According to the definition of direct singularity of parallel mechanisms, det(B) = 0 is the criterion
of direct singular configuration. Generally, workspace of the parallel mechanisms is segmented into
subspaces by “surfaces” consisting of singular points. But, it is much more complicated for the joint
space of parallel mechanisms. Some mechanisms with multiple forward kinematic solutions may

https://doi.org/10.1017/S0263574715000508 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574715000508


Forward kinematics modeling and numerical solving method of parallel mechanisms 299

have different singular “surfaces” for each forward kinematics solution in the joint space (the 3-RRR
mechanism, the 3-PRR mechanism and the 3-RPR mechanism for example). Based on this point,
researchers studied the nonsingular transition between different forward kinematics solutions.24–26

To represent the joint space that can be reached in real works, the valid joint space (VJS) of a certain
initial configuration is defined here based on the above mentioned phenomenon.

Definition 1. The VJS of a certain initial configuration is the direct nonsingular continuous
subspace of the whole joint space that contains the initial configuration.

The configurations of mechanisms should not reach the direct singular configurations or even near
the direct singular configurations, so the valid joint variable space is the joint variable space that
can be actually reached in real works. Because the transition between different forward kinematics
solutions is not used in most works, the following defined VKS can be regard as the only forward
kinematics solution reached in real works in the VJS.

Definition 2. The VKS of a configuration is the forward kinematics solution in the VJS with the
same branch as the initial configuration.

4. To Solve the Constraint Equations
An algorithm to solve the VKS and an error estimate method is explained here.

Existing numerical methods cannot theoretically guarantee to obtain the VKS and can only
distinguish solutions by range restriction or other ways. To solve this problem, an algorithm that
can theoretically solve the VKS is produced based on the homotopy continuation method. The
homotopy continuation method is a kind of numerical method for nonlinear equations. The idea is
to track a set of similar equations with known solutions, so as to get solutions of the equations to be
solved by coefficient transition of the known solutions equations. In the use of the homotopy method
to solve numerical solutions of forward kinematics problem for parallel mechanisms, Raghavan made
the first efforts in 199114 followed by Sreenivasan, who improved this method in 1992.15 But, their
research was focused on solving all the solutions of the forward kinematics problem and do not
consider the effect of the singularities on the convergence of the homotopy path. Thus these methods
cannot directly solve the VKS. The pseudo-arc length homotopy continuation method used here can
jump over singular points, so the VKS can be solved by tracking the homotopy path of the initial
configuration. The homotopy function of the joint variable vector x∗ is constructed as follows to track
the solution branch of the VKS.

H (v, λ) = F (v, λx∗ + (1 − λ) x0) λ ∈ [0, 1] . (6)

There are H(v0, 0) = 0 and H(v∗, 1) = 0, so when λ changes from 0 to 1, the solution of the
equation H = 0 changes from v0 to v∗. According to the topological invariant of the homotopy
method, v∗ is the VKS when the increment of λ is small enough. But when the VJS is not a convex
space, there may be a λ that makes the mechanism reach or near to the singular points and the
algorithm above cannot converge in that situation. Thus, the homotopy continuation method with the
pseudo-arc length constraint27 shown by Eq. (7) is used to guarantee the convergence.

D (v, λ, s) =
[

H (v, λ)
N (v, λ, s)

]
n+1×1

= 0. (7)

Where N (v, λ, s) is the pseudo-arc length constraint polynomial and can be written as (8)

N (v, λ, s) = 0.5v̇ (s0) · v (s) + 0.5λ̇ (s0) λ (s) − (s − s0) . (8)

Where s is the coordinate of the pseudo-arc length and s0 is the initial value of s, [ v̇(s) λ̇(s) ]T is the
tangent vector of the equations and can be calculated with Eq. (9).

D̂ (v (s0) , λ (s0))

[
v̇ (s0)

λ̇ (s0)

]
= ∂ D (v, λ, s)

∂s
=
[

0
1

]
. (9)
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Fig. 3. The flowchart of the pseudo-arc length homotopy continuation algorithm.

Where D̂ is the partial derivative matrix of D on [v, λ]T and has the form as Eq. (10).

D̂ (v, λ) =

⎡
⎢⎢⎢⎣

∂ H (v, λ)

∂v n×n

∂ H (v, λ)

∂λ n×1

∂N (v, λ, s)

∂v 1×n

∂N (v, λ, s)

∂λ 1×1

⎤
⎥⎥⎥⎦

n+1×n+1

(10)

Formula (11) is the Newton secant method to solve v (s) and λ(s) with given v (s0) and λ(s0).

[
v(k) (s)

λ(k) (s)

]
=
[

v(k−1) (s)

λ(k−1) (s)

]
− D̂

−1
(v (s0) , λ (s0)) D

(
v(k−1) (s) , λ(k−1) (s) , s

)
. (11)

The initial iteration can be determined according to formula (12).

[
v(0) (s)

λ(0) (s)

]
=
[

v (s0)
λ (s0)

]
+ (s − s0)

[
v̇ (s0)
λ̇ (s0)

]
. (12)

The error between the kth iteration results v(k) and v∗ can be estimated by (13).

e(k) = ∥∥v∗ − v(k)
∥∥ ≤ ρ

⎛
⎝
(

∂ H
(
v(k), 1

)
∂v

)−1
⎞
⎠∥∥H

(
v(k), 1

)∥∥ ≤ ε. (13)

Where ρ(·) is the spectral radius operator and ε is the error tolerance. With error estimation, numerical
solutions with arbitrary precision can be theoretically solved. Proved by Keller, this algorithm can skip
the singular points and guarantee the convergence in the same branch,28 which is not demonstrated
here. The flowchart of the pseudo-arc length homotopy continuation algorithm to solve the kinematics
problem for the spatial parallel linkage mechanisms is shown in Fig. 3.
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Table II. Comparison of the three algorithms.

The pseudo-arc length The Newton homotopy The
homotopy continuation algorithm continuation algorithm NRA

Theoretical convergence on the
near singular configurations

Yes No No

Dependence on the initial guess No No Yes
Computational complexity C2

N C2
N CN

Orders of the partial derivative
matrix

n+1 n n

Shown in Fig. 3, the pseudo-arc length homotopy continuation algorithm needs to conduct the
Newton secant algorithm for each iteration step of the pseudo-arc length variable s. Also, the Newton
homotopy continuation algorithm needs to conduct the Newton secant algorithm for each iteration
step of the homotopy variable λ. So, if the computational complexity of the NRA is assumed to be CN,
then the computational complexities of the pseudo-arc length and the Newton homotopy continuation
algorithm are both C2

N. The comparison of the pseudo-arc length homotopy continuation algorithm,
the Newton homotopy continuation algorithm and the NRA are shown in Table II.

In Table II, n is the equation number of the constraint equations. The computational complexities
of the two homotopy continuation algorithms are both the square of the NRA computational
complexity. And the order of the partial derivative matrix used by the pseudo-arc length homotopy
continuation algorithm is one order higher than that in the other two algorithms. So, among the
three compared algorithms, the computation time of the pseudo-arc length homotopy continuation
algorithm is the longest and the NRA computational time is the shortest. But the pseudo-arc length
homotopy continuation algorithm has the advantage of theoretical convergence for the near singular
configurations and independence on the initial iteration value. These will be shown in the next section
by the example of the Stewart platform.

5. Case Study of the Stewart Platform Mechanism
The forward kinematics problem of the Stewart platform mechanism (six-SPS) is solved in this
section as an example to verify the proposed method. First, the kinematics model of the mechanism is
established by the method given in Section 2 and the singularity analysis of the joint variable space is
conducted. Then, the kinematics model is solved separately by using the pseudo-arc length homotopy
continuation algorithm, the Newton homotopy continuation algorithm and the NRA. Finally, the
results of the three methods are contrasted.

The mechanism of the Stewart platform is shown in Fig. 4. The centers of six spherical pairs
on the base platform are asymmetric and as are the centers of six spherical pairs on the moving
platform. The pivot points of the spherical pairs on the base platform are chosen, as described in
Section 2, to be the centers of themselves as Di (corresponding to point A in Table I), where i =
1, 2, . . ., 6 and hereinafter are the same. Similarly, pivot points of the prismatic pairs are chosen to
be point Di , Ei , and Fi (corresponding to point A, B, and C0, respectively in Table I) and the pivot
points of the spherical pairs on the moving platform are chosen to be the centers of themselves as Gi

(corresponding to point A, in Table I). The right-hand coordinate frame �D3-xyz shown in Fig. 4 is
the base coordinate frame. The z-axis is vertically upward, and the x-axis extends from point D3 to
point D2. Another right-hand coordinate frame �G3 − x′y′z′ is the coordinate frame fixed with the
moving platform, and the x’-axis extends from point G3 to point G2. Table III shows the position
coordinate vector of the spherical pair centers on the base platform and the moving platform in their
own local coordinate frame separately.

PDi and PGi
′ in Table III are the position coordinate vectors of point Di in the base coordinate frame

and the position coordinate vector of point Gi in the moving platform coordinate frame respectively.
Notice that points Di , Ei , and Fi are three collinear pivot points with rigid body constraints. The
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Table III. Position coordinate vectors of the spherical pair centers.

Position vectors Values (unit: mm) Position vectors Values (unit: mm)

PD1 [200.764,53.795,0]T PG1
′ [122.475122.475, 0]T

PD2 [169.706, 0, 0]T PG2
′ [51.764, 0, 0]T

PD3 [0, 0, 0]T PG3
′ [0, 0, 0]T

PD4 [−31.058, 53.795, 0]T PG4
′ [−70.711122.475, 0]T

PD5 [53.795200.764, 0]T PG5
′ [−44.829167.303, 0]T

PD6 [115.911200.764, 0]T PG6
′ [96.593167.303, 0]T

Fig. 4. Mechanism of the Stewart platform.

constraint equations of each SPS kinematics chain can be written as follows:

e = (PEi − PDi)/‖PEi − PDi‖
PFi = ‖PFi − PDi‖ e + PDi

PGi = PFi + xie

(14)

Where xi is the joint variable of the prismatic pair in the ith kinematics chain. Formula (15) can be
obtained by simplifying (14).

‖PGi − PDi‖2 =
(√

‖PFi − PDi‖ + xi

)2
= L2

i . (15)

Where Li is the length of the ith leg and is the input of the forward kinematics problem. Next, the
constraint equations of the platform are established. Gi(i = 1 ∼ 6) are six coplanar pivot points with
the rigid body constraints, so their constraint equations have the following form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PG2 = E1 PG1 + E2 PG3 + E3 PG5

PG4 = E4 PG1 + E5 PG3 + E6 PG5

PG6 = E7 PG1 + E8 PG3 + E9 PG5

‖PG1 − PG3‖ = E10

‖PG3 − PG5‖ = E11

‖PG5 − PG1‖ = E12

(16)
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Where Ej (j = 1 ∼ 12) are constants determined by the position coordinate values shown in Table
III. Among them the E1, E2, ..., E9 can be calculated by projecting the PG2, PG4, PG6 onto the basis
vector set composed by PG1, PG3, PG5 as shown in the Eq. (17). E10, E11, E12 are actually the length
of the segments G1G3, G3G5, G5G1 and can be calculated by Eq. (18).

⎡
⎢⎣

E1 E4 E7

E2 E5 E8

E3 E6 E9

⎤
⎥⎦ = ([ P ′

G1 P ′
G3 P ′

G5

]+ M
)−1 ([ P ′

G2 P ′
G4 P ′

G6

]+ M
)

(17)

⎡
⎢⎣

E10

E11

E12

⎤
⎥⎦ =

⎡
⎢⎣
∥∥P ′

G1 − P ′
G3

∥∥∥∥P ′
G3 − P ′

G5

∥∥∥∥P ′
G5 − P ′

G1

∥∥
⎤
⎥⎦ . (18)

M is the 3× 3 matrix where all the elements of it are 1 in Eq. (17). Table IV shows the results of
E1, E2, ..., E12.

Constraint equations of the whole mechanism can be established as follows by integrating Eq. (15)
and (16).

F (v, x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(xG1 − xD1)2 + (yG1 − yD1)2 + (zG1 − zD1)2 − L2
1

(xG2 − xD2)2 + (yG2 − yD2)2 + (zG2 − zD2)2 − L2
2

(xG3 − xD3)2 + (yG3 − yD3)2 + (zG3 − zD3)2 − L2
3

(xG4 − xD4)2 + (yG4 − yD4)2 + (zG4 − zD4)2 − L2
4

(xG5 − xD5)2 + (yG5 − yD5)2 + (zG5 − zD5)2 − L2
5

(xG6 − xD6)2 + (yG6 − yD6)2 + (zG6 − zD6)2 − L2
6

E1xG1 + E2xG3 + E3xG5 − xG2

E1yG1 + E2yG3 + E3yG5 − yG2

E1zG1 + E2zG3 + E3zG5 − zG2

E4xG1 + E5xG3 + E6xG5 − xG4

E4yG1 + E5yG3 + E6yG5 − yG4

E4zG1 + E5zG3 + E6zG5 − zG4

E7xG1 + E8xG3 + E9xG5 − xG6

E7yG1 + E8yG3 + E9yG5 − yG6

E7zG1 + E8zG3 + E9zG5 − zG6

(xG1 − xG3)2 + (yG1 − yG3)2 + (zG1 − zG3)2 − E10

(xG3 − xG5)2 + (yG3 − yG5)2 + (zG3 − zG5)2 − E11

(xG5 − xG1)2 + (yG5 − yG1)2 + (zG5 − zG1)2 − E12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0 (19)

Equation (19) is a set of equations that has 18 polynomial equations and a highest order of 2, where
v = [xG1xG2xG3xG4xG5xG6yG1yG2yG3yG4yG5yG6zG1zG2zG3zG4zG5zG6]T is the 18-dimensional vector
of the unknowns and x = [L1L2L3L4L5L6]T is the six-dimensional vector of the joint variables.
Other symbols in Eq. (19) represent constants. Before the forward kinematics problem is solved, the
singularity of the joint variable space is analyzed to show the VJS of a given initial configuration.
Because the Jacobian matrix of the F(v, x) is used in the singularity analysis, its expression is
shown in Appendix A. There are six joint variables for the Stewart mechanism, so the whole joint
variable space cannot be expressed in a Cartesian coordinate frame. At 190 (mm) the L1, L3, and
L5 is fixed and the joint variable space spanned by L2, L4, and L6 using the traversal algorithm is
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Table IV. Parameters in the constraint equations.

Parameter symbols Parameter values Parameter symbols Parameter values

E1 0.3333 E7 0.9107
E2 0.9107 E8 −0.2440
E3 −0.2440 E9 0.3333
E4 −0.2440 E10 207.846
E5 0.3333 E11 207.846
E6 0.9107 E12 207.846

Fig. 5. Joint variable space of the Stewart platform mechanism.

analyzed. Figure 5 demonstrates the results of the joint variable space, in which the color of each
point represents its Jacobian determinant. Points with a light blue color are the singular points.

To clearly display the results of the singularity analysis, Fig. 6 is used to show the near singular
points (with a Jacobian determinant of less than 0.1% of the average value) in the plane where
L6 = 190, 210, 230, and 250 (mm). It is revealed that the joint variable space is divided into
subspaces by the surface consisting of singular points.

Demonstrated by Fig. 6, the large subspace that contains the initial joint variable vector
[170, 170, 170, 170, 170, 170]T (mm) is chosen to be the VJS of the Stewart mechanism. By choosing
points on the nonsingular paths from the initial configuration in the position and orientation space of
the moving platform, pivot point position coordinate vectors (denoted by v) and joint variable vectors
(denoted by x) for each v (this process is shown in the Appendix B) are generated. Then, 100 normal
points and 100 near singular points in the VJS are randomly chosen to calculate their VKS, whose
pivot point position coordinate vectors and joint variable vectors are denoted by vi and xi(i = 1 200),
respectively. The xi is the input of the forward kinematics analysis. The vi is the analytical solution of
the forward kinematics problem for the Stewart mechanism and also the forward kinematics solution
that can be reached from the initial configuration by the nonsingular path. The forward kinematics
solutions of the 200 points are calculated separately by the pseudo-arc length homotopy continuation
method, the Newton homotopy continuation method and the NRA, which are represented by vPHi ,
vNHi and, vNRi (i = 1 200), respectively. The calculation is done in a PC computer with the Pentium
Dual-Core E5700 CPU and the CPU frequency is 2.99 GHz. The numerical accuracy is chosen to be
0.0005 and the maximum iteration number is chosen to be 150. The relative error of the above results
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Fig. 6. Distribution of near singular points in the joint variable space. (a) L1 = L3 = L5 = 190(mm), L6 =
190(mm) (b) L1 = L3 = L5 = 190(mm), L6 = 210(mm). (c) L1 = L3 = L5 = 190(mm), L6 = 230(mm) (d)
L1 = L3 = L5 = 190(mm), L6 = 250(mm).

is defined as:

ePHi = ‖vi − vPHi‖/‖vi‖
eNHi = ‖vi − vNHi‖/‖vi‖
eNRi = ‖vi − vNRi‖/‖vi‖

(i = 1 ∼ 200) (20)

Figure 7 is the relative error distraction of the results.
For the nonsingular points, the relative errors of the three algorithms are all below 0.1%. But for

the near singular points, the pseudo-arc length homotopy continuation method can obtain solutions
that have the same precision as with the nonsingular points, while the Newton homotopy continuation
method and the NRA get solutions with large differences as compared to the analytical solutions.
Verified by the inverse kinematics (shown in Appendix B), these solutions with large differences to
the analytical solutions are also solutions for the forward kinematics problem and are solutions of
another branch, so that the Newton homotopy continuation method and the NRA are not convergent
to the same solution branch with the initial configuration on these points. The comparison of the
calculation results is shown in Table V.

Based on the data in Table V, though the proposed algorithm needs more computational time
compared to the Newton homotopy continuation algorithm and the NRA, it can converge to the same
solution branch with the initial configuration on all the testing points. Because the Newton homotopy
continuation algorithm also tracks the solution branch of the initial configuration by the variation of
λ but cannot guarantee to be convergent, performance of it is much better than that of NRA, which is
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Table V. Comparison of the calculation results of the three algorithms.

The pseudo-arc length The newton homotopy The
homotopy continuation algorithm continuation algorithm NRA

Ratio of points with relative error
less than 0.1% in the near
singular points

100% 61% 10%

Average relative error of the
normal points result

0.026% 0.024% 0.036%

Average computational time for
one point (sec)

3.203 2.286 0.208

Fig. 7. Relative error distraction of the three algorithms. (a) Relative error of the pseudo-arc length homotopy
continuation method results. (b) Relative error of the Newton homotopy continuation method results. (c) Relative
error of the NRA results.
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the most effective in the aspect of computational time. However, the Newton homotopy continuation
algorithm and the NRA skip to other solution branches on 39% and 90% near singular testing points,
respectively. This may lead to a discontinued trajectory in the motion of the moving platform.

6. Conclusions
(1) A general method to establish the kinematics models for the special linkage mechanisms is

proposed by combining the constraint equations of lower pairs.
(2) A general method for solving VKS is proposed by combining the pseudo-arc length homotopy

continuation algorithm and the established kinematics model. Convergence advantage of the
algorithm on near singular points is verified by solving the forward kinematics problem of the
general Stewart platform mechanism and comparing the results of the proposed algorithm with
the results of the Newton homotopy continuation algorithm and the NRA.

Appendix A. The Jacobian matrix of F(v, x)
The Jacobian matrix J of the F(v, x) shown in the Eq. (19) is the partial derivative matrix ∂ F(v,
x)/∂v. Because the Jacobian matrix is an 18 × 18 sparse matrix, it is displayed by giving expressions
of all its nonzero elements in the Table A1.

In Table A1, the element symbol Jij (i, j = 1, 2, 3...18) represents the matrix element of J in the
ith row and the jth column.

Appendix B. The inverse kinematics verification of the forward kinematics solutions
The position and orientation parameters of the moving platform can be denoted as θr, θp, θy, x, y, z,
among which the θr, θp, θy are the Euler angles of the moving platform coordinate frame relative to the
base coordinate frame in the 3–2–1 order. And the x, y, z are the position coordinate values of the origin
of the moving platform coordinate frame in the base coordinate frame. So u = [θr, θp, θy, x, y, z]T

can be used as the position and orientation parameter vector of the moving platform and the position
and orientation space is R6. The pivot point position coordinate vector v can be calculated by the
following equation.

v = T (u)
[

P ′T
G1 P ′T

G2 P ′T
G3 P ′T

G4 P ′T
G5 P ′T

G6

]T
. (A1)

In Eq. (A1), T (u) is the transformation matrix of the moving platform coordinate frame relative
to the base coordinate frame, and can be calculated by Eq. (A2).

T (u) =

⎡
⎢⎢⎢⎣

cpcr spcrsy−cysr spcrcy + sysr x

cpsr spsrsy + cysr spsrcy−sycr y

−sp cpsy cpcy z

0 0 0 1

⎤
⎥⎥⎥⎦ . (A2)

In Eq. (A2), the cj and sj (j = r, p, y) represent cos(θj ) and sin(θj ) respectively. By solving the
kinematics model F(v, x) = 0, the forward kinematics solution of the analyzed Stewart mechanism
can be written as v(x). When v(x) is the forward kinematics solution corresponding to the input joint
variable vector x, the condition Eq. (A3) holds, which has the form of the inverse kinematics solution
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Table A1. Nonzero elements of the Jacobian matrix of the F(v, x).

Element Element Element Element
symbol Expression symbol Expression symbol Expression symbol Expression

J1,1 2(xG1 − xD1) J1,7 2(yG1 − yD1) J1,13 2(zG1 − zD1) J2,2 2(xG2 − xD2)
J2,8 2(yG2 − yD2) J2,14 2(zG2 − zD2) J3,3 2(xG3 − xD3) J3,9 2(yG3 − yD3)
J3,15 2(zG3 − zD3) J4,4 2(xG4 − xD4) J4,10 2(yG4 − yD4) J4,16 2(zG4 − zD4)
J5,5 2(xG5 − xD5) J5,11 2(yG5 − yD5) J5,17 2(zG5 − zD5) J6,6 2(xG6 − xD6)
J6,12 2(yG6 − yD6) J6,18 2(zG6 − zD6) J7,1 E1 J7,2 −1
J7,3 E2 J7,5 E3 J8,7 E1 J8,8 −1
J8,9 E2 J8,11 E3 J9,13 E1 J9,14 −1
J9,15 E2 J9,17 E3 J10,1 E4 J10,3 E5

J10,4 −1 J10,5 E6 J11,7 E4 J11,9 E5

J11,10 −1 J11,11 E6 J12,13 E4 J12,15 E5

J12,16 −1 J12,17 E6 J13,1 E7 J13,3 E8

J13,5 E9 J13,6 −1 J14,7 E7 J14,9 E8

J14,11 E9 J14,12 −1 J15,13 E7 J15,15 E8

J15,17 E9 J15,18 −1 J16,1 2(xG1 − xG3) J16,3 2(xG3 − xG1)
J16,7 2(yG1 − yG3) J16,9 2(yG3 − yG1) J16,13 2(zG1 − zG3) J16,15 2(zG3 − zG1)
J17,3 2(xG3 − xG5) J17,5 2(xG5 − xG3) J17,9 2(yG3 − yG5) J17,11 2(yG5 − yG3)
J17,15 2(zG3 − zG5) J17,17 2(zG5 − zG3) J18,1 2(xG1 − xG5) J18,5 2(xG5 − xG1)
J18,7 2(yG1 − yG5) J18,11 2(yG5 − yG1) J18,13 2(zG1 − zG5) J18,17 2(zG5 − zG1)

of the Stewart mechanism.

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
(xG1 − xD1)2 + (yG1 − yD1)2 + (zG1 − zD1)2√
(xG2 − xD2)2 + (yG2 − yD2)2 + (zG2 − zD2)2√
(xG3 − xD3)2 + (yG3 − yD3)2 + (zG3 − zD3)2√
(xG4 − xD4)2 + (yG4 − yD4)2 + (zG4 − zD4)2√
(xG5 − xD5)2 + (yG5 − yD5)2 + (zG5 − zD5)2√
(xG6 − xD6)2 + (yG6 − yD6)2 + (zG6 − zD6)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A3)

The v and x of an arbitrary u can be generated by Eqs. (A1)∼(A3), which are regarded as
the theoretical solution and the input of the forward kinematics problem for the Stewart platform
respectively.
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