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Abstract. The semigroups of unital extensions of separable C∗-algebras come in
two flavours: a strong and a weak version. By the unital Ext-groups, we mean the groups of
invertible elements in these semigroups. We use the unital Ext-groups to obtain K-theoretic
classification of both unital and non-unital extensions of C∗-algebras, and in particular we
obtain a complete K-theoretic classification of full extensions of UCT Kirchberg algebras
by stable AF algebras.
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1. Introduction. Elliott’s programme of classifying nuclear C∗-algebras has seen
great recent success in the case of finite, simple C∗-algebras due to the work of many
hands, most prominently by work of Elliott [14] and Gong et al. [17], as well as the
Quasidiagonality Theorem of Tikuisis et al. [35]. This crowning achievement together with
the groundbreaking Kirchberg–Phillips classification of purely infinite, simple C∗-algebras
[19, 26] completes the classification of separable, unital, simple C∗-algebras with finite
nuclear dimension which satisfy the universal coefficient theorem (UCT). The main focus
of this paper is the classification of non-simple C∗-algebras. The non-simple classification
is especially convoluted due to the lack of a dichotomy between the purely infinite and the
stably finite case. A rich class of non-simple C∗-algebras failing this dichotomy is the class
of graph C∗-algebras. Great progress was made recently in [12], where all unital graph
C∗-algebras were classified by a K-theoretic invariant.

The classification of unital graph C∗-algebras was an internal classification result,
meaning that it can only be used to compare objects which are already known to be uni-
tal graph C∗-algebras. The lack of external classification prevents the result from being
applicable in the study of permanence properties for the class of graph C∗-algebras. For
instance, it is an open problem whether extensions of graph C∗-algebras are again graph
C∗-algebras, subordinate to K-theoretic obstructions. The main results of this paper will be
used to solve this question for extensions of simple graph C∗-algebras in [9].

The focal point for us is the classification of extensions of classifiable C∗-algebras.
In seminal work of Rørdam [29], a Weyl–von Neumann–Voiculescu-type absorption the-
orem of Kirchberg was applied to obtain classification of extensions of non-unital UCT
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Kirchberg algebras.1 This absorption theorem was generalised by Elliott and Kucerovsky
[15], thus making the techniques of Rørdam applicable for much more general classifica-
tion results, as explored by Eilers, Restorff, and Ruiz in [11].

These methods relied heavily on the non-unital Ext-group, which is known to be iso-
morphic to Kasparov’s group KK1. It is not hard to observe that similar methods should
apply to unital extensions if one applies the strong unital Ext-group Ext−1

us (A,B) instead.
One difficulty in working with the strong Ext-group is that it is even more sensitive
than KK-theory. For instance, let u ∈A be a unitary. In contrast to KK-theory where
KK(Ad u)= KK(idA), the automorphism on Ext−1

us (A,B) induced by Ad u is not neces-
sarily the identity map. The same phenomena will never happen for the weak Ext-group
Ext−1

uw(A,B) as it embeds naturally as a subgroup of KK1(A,B).
In [11, Theorem 3.9], all full extensions of non-unital UCT Kirchberg algebras by sta-

ble AF algebras are classified by their six-term exact sequences in K-theory (with order in
K0 of the ideal). We will complete the classification of such extensions obtaining classifi-
cation in the case where the UCT Kirchberg algebra is unital. This will be divided into two
cases: one where the extension algebra is unital and the other where it is non-unital.

In the case of unital extensions, the invariant will be K+,u
six which is the six-term exact

sequence in K-theory together with order and position of the unit in the K0-groups. The
classification is as follows.

THEOREM A. Let ei : 0 →Bi →Ei →Ai → 0 be unital extensions of C∗-algebras for
i = 1, 2 such that A1 and A2 are UCT Kirchberg algebras, and B1 and B2 are stable AF
algebras. Then E1

∼=E2 if and only if K+,u
six (e1)∼= K+,u

six (e2).

Next we turn our attention to non-unital extensions with unital quotients. A unital
extension as considered above will always be full, as the Busby map is unital and the
quotient is simple. For non-unital extensions it is in general much harder to determine
whether they are full or not. However, when mixing sufficient amounts of finiteness and
infiniteness, it turns out that fullness is a very natural criterion, witnessed by the existence
of a properly infinite, full projection in the extension algebra (see Theorem 6.5).

In [16], examples were given of non-isomorphic full extensions of the Cuntz alge-
bra O2 by the stabilised CAR algebra M2∞ ⊗ K, which had isomorphic six-term exact
sequences in K-theory with order, scales and units in the K0-groups. This means that one
needs a finer invariant to classify non-unital extensions when the quotient is unital.

For this purpose, we introduce an invariant K̃+,�
six which includes the usual six-term

exact sequence of the extension 0 →B→E
π−→A→ 0, together with the K-theory of

the extension 0 →B→ π−1(C1A)→ C → 0. We refer the reader to Section 7 for more
details.

THEOREM B. Let ei : 0 →Bi →Ei →Ai → 0 be full extensions of C∗-algebras for
i = 1, 2 such that A1 and A2 are unital UCT Kirchberg algebras, B1 and B2 are stable AF
algebras. Then, E1

∼=E2 if and only if K̃+,�
six (e1)∼= K̃+,�

six (e2).

In Ref. [9], we will compute the range of the invariant K̃+,�
six for graph C∗-algebras

with exactly one nontrivial ideal and for which the nontrivial quotient is unital. This will
be used to show that an extension of simple graph C∗-algebras is again a graph C∗-algebra,
provided there are no K-theoretic obstructions.

1A UCT Kirchberg algebra is a separable, nuclear, simple, purely infinite C∗-algebra satisfying the UCT in
KK-theory.
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2. Extensions of C∗-algebras. In this section, we recall some well-known defi-
nitions and results about extensions of C∗-algebras. More details can be found in [1,
Chapter VII].

For a C∗-algebra B, we will denote the multiplier algebra by M (B), the corona
algebra M (B)/B by Q(B), and the canonical ∗-epimorphism from M (B) to Q(B)
by πB.

Let A and B be C∗-algebras. An extension of A by B is a short exact sequence

e : 0 →B
ι−→E

π−→A→ 0

of C∗-algebras. Often we just refer to such a short exact sequence above, as an extension of
C∗-algebras. At times we identify B with its image ι(B) in E, which is a two-sided, closed
ideal, and at times we identify A with the quotient E/ι(B).

To any extension of C∗-algebras as above, there are induced ∗-homomorphisms
σ : E→ M (B) and τ : A→ Q(B), the latter of these called the Busby map (or Busby
invariant) of e. We sometimes refer to arbitrary ∗-homomorphisms A→ Q(B) as Busby
maps.

An extension can be recovered up to canonical isomorphism of extensions by its Busby
map τ , as the extension

0 →B→A⊕τ,πB M (B)→A→ 0

where

A⊕τ,πB M (B)= {a ⊕ m ∈A⊕ M (B) : τ(a)= πB(m)}
is the pull-back of τ and πB.

An extension is unital if the extension algebra is unital, or equivalently, if the Busby
map is a unital ∗-homomorphism.

A (unital) extension e : 0 →B→E
π−→A→ 0 is called trivial (or split) if there is

a (unital) ∗-homomorphism ρ : A→E such that π ◦ ρ = idA.2 The extension e is called
semi-split if there is a (unital) completely positive map η : A→E such that π ◦ ρ = idA.

Let ei : 0 →B→Ei →A→ 0 be extensions of C∗-algebras with Busby maps τi for
i = 1, 2. We say that e1 and e2 are strongly unitarily equivalent, written e1 ∼s e2, if there
exists a unitary u ∈ M (B) such that Ad πB(u) ◦ τ1 = τ2.

By identifying Ei with A⊕τi,πB M (B), we obtain the following commutative dia-
gram:

0 �� B

Ad u∼=
��

�� E1

Ad(1A⊕u)(∼=)
��

�� A �� 0

0 �� B �� E2
�� A �� 0

(2.1)

with exact rows, which shows that Ad(1A ⊕ u) : E1
∼=−→E2 is an isomorphism by the five

lemma.
Similarly, e1 and e2 are weakly unitary equivalent, written e1 ∼w e2, if there exists a

unitary u ∈ Q(B) such that Ad u ◦ τ1 = τ2.

2Note that a unital extension being trivial is slightly different from an extension – which happens to be unital –
being trivial. In fact, the first requires ρ(1A)= 1E which the other does not, and in general these two notions are
different.
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In contrast to strong unitary equivalence, we cannot in general conclude that the
extension algebras E1 and E2 are isomorphic from weak unitary equivalence.

REMARK 2.1 (Cuntz sum). If B is a stable C∗-algebra, then there are isometries s1, s2 ∈
M (B) such that s1s∗

1 + s2s∗
2 = 1. Such a pair s1, s2 are called O2-isometries.

If ei : 0 →B→Ei →A→ 0 are extensions with Busby maps τi for i = 1, 2, then we
let e1 ⊕s1,s2 e2 denote the extension of A by B with Busby map τ given by

τ(a)= πB(s1)τ1(a)πB(s1)
∗ + πB(s2)τ2(a)πB(s2)

∗

for a ∈ A. This construction is independent of the choice of s1 and s2 up to strong uni-
tary equivalence, and thus we often write e1 ⊕ e2, when we only care about the extension
up to ∼s.

DEFINITION 2.2. Let A and B be separable C∗-algebras with B stable. We let

� Ext(A,B) denote the semigroup of extensions of A by B modulo the relation defined
by [e1] = [e2] if and only if there exist trivial extensions f1, f2 of A by B such that

e1 ⊕ f1 ∼w e2 ⊕ f2,

or equivalently, there exist trivial extensions f′1, f
′
2 of A by B (which can be taken as

f′i = fi ⊕ 0) such that

e1 ⊕ f′1 ∼s e2 ⊕ f′2.

Moreover, if A is unital then we let

� Extus(A,B) denote the semigroup of unital extensions of A by B modulo the relation
defined by [e1]s = [e2]s if and only if there exist trivial, unital extensions f1, f2 of A by
B such that

e1 ⊕ f1 ∼s e2 ⊕ f2.

� Extuw(A,B) denote the semigroup of unital extensions of A by B modulo the relation
defined by [e1]w = [e2]w if and only if there exist trivial, unital extensions f1, f2 of A by
B such that

e1 ⊕ f1 ∼w e2 ⊕ f2.

If B is not stable, we define Ext(us/uw)(A,B) := Ext(us/uw)(A,B⊗ K).

It is not hard to show that Ext(us/uw)(A,B) is an abelian monoid, and that any trivial
(unital) extension induces the zero element. Hence, the following makes sense.

DEFINITION 2.3. Let Ext−1(A,B), Ext−1
us (A,B) and Ext−1

uw(A,B) denote the subsemi-
groups of Ext(A,B), Extus(A,B) and Extuw(A,B), respectively (whenever these make
sense), of elements which have an additive inverse. These subsets are abelian groups.

REMARK 2.4 (Semisplit extensions). Let A and B be separable C∗-algebras with B
stable (and A unital). As in [1, Section 15.7], it follows that a (unital) extension of A by B
induces an element in Ext(A,B) (resp. in either Extus(A,B) or Extuw(A,B)) which has
an additive inverse, if and only if the extension is semisplit.

In particular, if A is nuclear it follows from the Choi–Effros Lifting Theorem [5] that

Ext−1(A,B)= Ext(A,B), Ext−1
us (A,B)= Extus(A,B), Ext−1

uw(A,B)= Extuw(A,B).
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DEFINITION 2.5 (Pull-back and push-out extensions). Let e : 0 →B→E→A→ 0 be
an extension of C∗-algebras with Busby map τ , and let α : C→A be a ∗-homomorphism.
The pull-back extension e · α is the extension of C by B with Busby map τ ◦ α.

If β : B→D is a nondegenerate ∗-homomorphism3 there is an induced unital
∗-homomorphism β : Q(B)→ Q(D).4 The push-out extension β · e is the extension of
A by D with Busby map β ◦ τ .

If η : Q(B)→ Q(D) is a ∗-homomorphism, then we let η · e denote the extension of
A by D with Busby map η ◦ τ . In particular, with β as above, we have β · e= β · e.

With the notation as above, the push-out and pull-back extensions fit into the following
commutative diagram with exact rows:

e · α : 0 �� B �� Eα

��

�� C

α

��

�� 0

e : 0 �� B

β

��

�� E

��

�� A �� 0

β · e : 0 �� D �� Eβ �� A �� 0.

The top two rows form a pull-back diagram and the bottom two rows form a push-out
diagram.

REMARK 2.6 (Functoriality). The pull-back/push-out constructions of extensions turn
Ext(us/uw)(A,B) into a bifunctor with respect to (unital) ∗-homomorphisms in the first
variable, and nondegenerate ∗-homomorphisms in the second variable.

A fair warning: while any unital ∗-homomorphism η : Q(B)→ Q(D) induces a map
e �→ η · e which preserves ∼w (and ∼s if B is stable5), it does in general not preserve Cuntz
sums. This construction will be crucial in Remark 4.10 where we define e[u] = Ad u · e0 for
a unitary U(Q(B)) and a trivial unital extension e0.

The following is a celebrated result of Kasparov [18].

THEOREM 2.7 ([18]). If A and B are separable C∗-algebras, then Ext−1(A,B) is
naturally isomorphic to Kasparov’s group KK1(A,B).

REMARK 2.8 (Absorbing extensions). Let A and B be separable C∗-algebras with B
stable (and A unital). A (unital) extension e of A by B is called absorbing if e∼s e⊕ f for
any trivial (unital) extension f of A by B.6

3A ∗-homomorphism β : B→D is nondegenerate (or proper) if β(B)D=D.
4In fact, β induces a unital ∗-homomorphism M (β) : M (B)→ M (D) by M (β)(m)(β(b)d) := β(mb)d for
m ∈ M (B), b ∈B and d ∈D. This ∗-homomorphism descends to a unital ∗-homomorphism β : Q(B)→ Q(D).
5In fact, if B is stable then the unitary group U(M (B)) is connected, and thus a unitary u ∈ Q(B) lifts to a
unitary in M (B) exactly when u ∈U0(Q(B)), i.e. the connected component of 1Q(B) in the unitary group. As
η(U0(Q(B)))⊆U0(Q(D)), and as every unitary in U0(Q(D)) lifts to a unitary in M (D), it easily follows that
η preserves strong unitary equivalence classes of extensions.
6Just as with triviality, there is a difference between requiring that an extension is absorbing, or that a unital
extension is absorbing. Sometimes absorbing unital extensions are said to be unital-absorbing. However, we
simply call these absorbing as there is no cause of confusion, since a unital extension can never be absorbing in
the general sense (it would have to absorb the extension with zero Busby map, which is impossible).
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By [34] there always exists an absorbing, trivial (unital) extension e0 of A by B.7 In
particular, e⊕ e0 is absorbing for any (unital) extension e.

In particular, if e1 and e2 are absorbing extensions of A by B with [e1] = [e2] in
Ext(A,B), then e1 ∼s e2.

Similarly, if e1 and e2 are absorbing unital extensions of A by B with [e1]s = [e2]s in
Extus(A,B) (resp. [e1]w = [e2]w in Extuw(A,B)), then e1 ∼s e2 (resp. e1 ∼w e2).

REMARK 2.9 (Determining absorption). It seems inconceivable a priori that one could
ever determine when an extension is absorbing. However, this was done by Elliott and
Kucerovsky in [15].

Following [15], an extension e : 0 →B→E→A→ 0 of separable C∗-algebras is
called purely large if for any x ∈E \B, there exists a stable C∗-subalgebra D⊆ x∗Bx such
that BDB=B.

By a remarkable result [15, Theorem 6], if e : 0 →B→E→A→ 0 is a unital exten-
sion of separable C∗-algebras for which A is nuclear and B is stable, then e is absorbing
(in the unital sense) if and only if it is purely large. Similar conditions for when non-unital
extensions are absorbing were studied in [16].

A separable C∗-algebra B is said to have the corona factorisation property if any
full projection p ∈ M (B⊗ K) is equivalent to 1M (B⊗K). Many classes of separable
C∗-algebras are known to have the corona factorisation property, e.g. all C∗-algebras with
finite nuclear dimension by [28, Corollary 3.5] (building on the work in [24]). In particular,
any AF algebra has the corona factorisation property, as these have nuclear dimension zero.

An extension e of A by B with Busby map τ : A→ Q(B) is called full if for every
nonzero a ∈A, τ(a) generates all of Q(B) as a two-sided, closed ideal. As observed by
Kucerovsky and Ng in [20], if e : 0 →B→E→A→ 0 is a full extension of separable
C∗-algebras, for which B is stable and has the corona factorisation property, then e is
purely large.

3. K-theory of unital extensions. The purpose of this section is to collect some
results on the K-theory of extensions of C∗-algebras, with a main focus on what happens
to the unit in the K0-groups under certain operations of unital extensions. While most
results in this section are quite elementary and most likely well-known to some experts in
the field, we know of no references to these results and have included detailed proofs for
completion.

Consider two six-term exact sequences

x(i) : H (i)
0

�� L(i)0
�� G(i)

0

��
G(i)

1

��

L(i)1
�� H (i)

1
��

for i = 1, 2. A homomorphism (ψ∗, ρ∗, φ∗) : x(1) → x(2) of six-term exact sequences
consists of homomorphisms

φ∗ : G(1)
∗ → G(2)

∗ , ψ∗ : H (1)
∗ → H (2)

∗ , ρ∗ : L(1)∗ → L(2)∗

making the obvious diagram commute.

7This requires that A and B are separable. Although the definition of absorption makes sense without separability,
we stick to this case.
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We may also consider six-term exact sequences with certain distinguished elements,
which in our case will always be elements in xi ∈ L(i)0 and yi ∈ G(i)

0 for i = 1, 2, and will
correspond to the classes of the units in our K0-groups. If this is the case, we only consider
homomorphisms such that ρ0(x1)= x2 and φ0( y1)= y2.

If G(1)∗ = G(2)∗ =: G∗ and H (1)∗ = H (2)∗ =: H∗ then we say that x(1) and x(2)

are congruent, written x(1) ≡ x(2), if there exists a homomorphism of the form
(idH∗ , ρ∗, idG∗) : x(1) → x(2). Note that by the five lemma, this forces ρ∗ to be an isomor-
phism, but in general many different ρ∗ can implement a congruence.

If any of the groups in the six-term exact sequences contain distinguished elements,
we require that our homomorphisms preserve these elements. In particular, when consider-
ing congruence with xi ∈ L(i)0 and yi ∈ G(i)

0 = G0 being our distinguished elements, we only
consider the case y1 = y2.

DEFINITION 3.1. For an extension e : 0 →B→E→A→ 0 of (unital) C∗-algebras,
we let Ksix(e) (resp. Ku

six(e)) denote the six-term exact sequence in K-theory (resp. with
distinguished elements [1E] ∈ K0(E) and [1A] ∈ K0(A)).

Note that two extensions e and f can only have congruent six-term exact sequences, if
the two ideals are equal and the two quotients are equal (isomorphisms are not enough for
the definition to make sense). So both extensions have to be extensions of A by B for the
definition of congruence to make sense.

The following two lemmas are well-known, but we fill in the proofs for completeness.

LEMMA 3.2. Let e1 and e2 be unital extensions of A by B which are strongly unitarily
equivalent. Then Ku

six(e1)≡ Ku
six(e2).

Proof. If u ∈ M (B) implements the strong unitary equivalence, then applying
K-theory to the diagram (2.1) and using that K∗(Ad u)= idK∗(B) : K∗(B)→ K∗(B), one
obtains a congruence Ku

six(e1)≡ Ku
six(e2).

LEMMA 3.3. Let A and B be C∗-algebras with A unital and B stable. Let e : 0 →
B→E→A→ 0 be a unital extension, and let e0 be a trivial unital extension of A by B.
Then Ku

six(e) and Ku
six(e⊕ e0) are congruent.

Proof. Let s1, s2 ∈ M (B) be O2-isometries so that e⊕ e0 = e⊕s1,s2 e0. Let π : E→A
be the quotient map, σ : E→ M (B) be the canonical unital ∗-homomorphism, and
φ : A→ M (B) be a unital ∗-homomorphism which lifts τ0.

The extension algebra F of e⊕s1,s2 e0 is by definition

F= {a ⊕ m ∈A⊕ M (B) : πB(s1)τ (a)πB(s1)
∗ + πB(s2)τ0(a)πB(s2)

∗ = πB(m)}.
Define the unital ∗-homomorphism  : E→ F by

(y)= π(y)⊕ (
s1σ(y)s∗

1 + s2φ(π(y))s∗
2

)
.

This is clearly well-defined and induces a unital ∗-homomorphism of extensions by

e : 0 �� B

s1(−)s∗
1

��

�� E



��

�� A �� 0

e⊕s1,s2 e0 : 0 �� B �� F �� A �� 0.

As (s1(−)s∗
1)∗ = idK∗(B) : K∗(B)→ K∗(B), applying K-theory to the above diagram

induces a congruence Ku
six(e)≡ Ku

six(e⊕s1,s2 e0).
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COROLLARY 3.4. Let A and B be separable C∗-algebras with A unital and B sta-
ble. Suppose that e1 and e2 are unital extensions of A by B for which [e1]s = [e2]s in
Extus(A,B). Then Ku

six(e1)≡ Ku
six(e2).

Proof. By definition of Extus, there are trivial, unital extensions f1, f2, such that e1 ⊕ f1
and e2 ⊕ f2 are strongly unitarily equivalent. Hence, the result follows from Lemmas 3.2
and 3.3.

LEMMA 3.5. Let e : 0 →B
ι−→E

π−→A→ 0 be a unital extension C∗-algebras with
boundary map δ∗ : K∗(A)→ K1−∗(B) in K-theory, let u ∈ Q(B) be a unitary, and let
χ1 : K1(Q(B))→ K0(B) denote the index map in K-theory. Then Ku

six(Ad u · e) (see
Definition 2.5) is congruent to

K0(B)
ι0 �� (K0(E), [1E] + ι0(χ1([u]))) π0 �� (K0(A), [1A])

δ0

��
K1(A)

δ1

��

K1(E)
π1�� K1(B).

ι1��

Proof. Let a ∈ M (B) be a lift of u with ‖a‖ = 1, and define

v :=
⎛
⎝ a 0

(1 − a∗a)1/2 0

⎞
⎠ ∈ M2(M (B)), vc :=

⎛
⎝ a

(1 − a∗a)1/2

⎞
⎠ ∈ M2,1(M (B)).

Then v is a partial isometry for which v∗v = 1M (B) ⊕ 0. It is well-known (see e.g. [30,
Section 9.2] that

χ1([u])= [1M2(B̃) − vv∗] − [0 ⊕ 1B̃] ∈ K0(B). (3.1)

Let τ denote the Busby map of e, and identify E with the pull-back A⊕τ,πB M (B). Define

E2 := {a ⊕ y ∈A⊕ M2(M (B)) : (Ad u ◦ τ(a))⊕ 0 = M2(πB)(y) ∈ M2(Q(B))},
i.e. E2 is the pull-back A⊕(Ad u◦τ)⊕0,M2(πB) M2(M (B)). We obtain an embedding

Ad(1 ⊕ vc) : A⊕τ,πB M (B)→E2.

Similarly, identify the extension algebra Eu of Ad u · e with the pull-back A⊕Ad u◦τ,πB
M (B). The embedding M (B)→ M2(M (B)) into the (1, 1)-corner induces an
embedding

idA ⊕ j : A⊕Ad u◦τ,πB M (B)→E2.

We get the following diagram where all rows are short exact sequences and all maps are
∗-homomorphisms:

0 �� B

Ad vc

��

ι �� E

Ad(1⊕vc)

��

π �� A �� 0

0 �� M2(B)
ι(2) �� E2

�� A �� 0

0 �� B ��

j

��

Eu
��

idA⊕j

��

A �� 0.
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Note that (Ad vc)∗, j∗ : K∗(B)→ K∗(M2(B)) are the same map, namely the canonical iso-
morphism. In particular, by considering the induced maps of six-term exact sequences, the
five lemma implies that (idA ⊕ j)∗ : K∗(Eu)→ K∗(E2) and Ad(1 ⊕ vc)∗ : K∗(E)→ K∗(E2)

are isomorphisms. As (Ad vc)∗ = j∗, it follows that

Ad(1 ⊕ vc)
−1
∗ ◦ (idA ⊕ j)∗ : K∗(Eu)→ K∗(E)

induces a congruence Ksix(Ad u · e)≡ Ksix(e) which does not necessarily preserve the class
of the unit since Ad(1 ⊕ vc) and idA ⊕ j are not unital maps. Thus, it remains to prove that

Ad(1 ⊕ vc)
−1
0 ((idA ⊕ j)0([1Eu ]))= [1E] + ι0(χ1([u])),

or alternatively, that

(Ad(1 ⊕ vc))0([1E] + ι0(χ1([u])))= (idA ⊕ j)0([1Eu])= [1A ⊕ (1M (B) ⊕ 0)] ∈ K0(E2).

(3.2)

Note that the unitisation

Ẽ2 =E2 + C(0A ⊕ (0 ⊕ 1M (B)))⊆A⊕ M2(M (B)).

As (Ad vc)0 = j0 : K0(B)
∼=−→ K0(M2(B)) is the canonical isomorphism, it follows from

(3.1) (using that 1A ⊕ vv∗ ∈E2) that

Ad(1 ⊕ vc)0 ◦ ι0(χ1([u])) = ι
(2)
0 ◦ j0(χ1([u]))

= [1Ẽ2
− (1A ⊕ vv∗)] − [0A ⊕ (0 ⊕ 1M (B))]

= [1A ⊕ (1M (B) ⊕ 0)] − [1A ⊕ vv∗] ∈ K0(E2). (3.3)

Clearly

Ad(1 ⊕ vc)0([1E])= [1A ⊕ vcv∗
c ] = [1A ⊕ vv∗] ∈ K0(E2),

and combining this with (3.3) yields (3.2).

Recall that if L1, L2, and G are abelian groups and φi : Li → G are homomorphisms,
then

L1 ⊕φ1,φ2 L2 = {x1 ⊕ x2 ∈ L1 ⊕ L2 : φ1(x1)= φ2(x2)}
is the pull-back. When there is no doubt of what the maps φi are, we simply write L1 ⊕G L2

instead of L1 ⊕φ1,φ2 L2.

REMARK 3.6. Recall that if xi : 0 → H
ι(i)−→ Li

π(i)−→ G → 0 are extensions of abelian
groups for i = 1, 2, then their Baer sum x1 ⊕ x2 is the extension given by

0 → H
ι(1)−→ L1 ⊕G L2

{(ι(1)(x),−ι(2)(x)) : x ∈ H}
π(1)−−→ G → 0.

Addition in the group Ext(G,H) is given by the Baer sum.

The following proposition is an explicit formula for computing Ku
six(e1 ⊕ e2) using a

similar construction as the Baer sum, when we know that the boundary maps for one of e1

or e2 vanishes.

PROPOSITION 3.7. Let ei : 0 →B
ι(i)−→Ei

π(i)−→A→ 0 be unital extensions of C∗-algebras
for i = 1, 2 such that B is stable. Let δ(i)∗ : K∗(A)→ K1−∗(B) denote the boundary map of
ei in K-theory for i = 1, 2. If δ(2)∗ = 0, then Ku

six(e1 ⊕ e2) is congruent to
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K0(B)
ι
(1)
0 ��

(
K0(E1)⊕K0(A)K0(E2)

{(ι(1)0 (x),−ι(2)0 (x)):x∈K0(B)} , [1E1 ] ⊕ [1E2]
)

π
(1)
0 �� (K0(A), [1A])

δ
(1)
0

��
K1(A)

δ
(1)
1

��

K1(E1)⊕K1(A)K1(E2)

{(ι(1)1 ( y),−ι(2)1 ( y)):y∈K1(B)}
π
(1)
1�� K1(B).

ι
(1)
1��

The same result also holds in the not necessarily unital case by removing all units from the
statement.

Proof. For the not necessarily unital case, one simply ignores any mentioning of units
in the argument below.

We fix O2-isometries s1, s2 ∈ M (B), and identify e1 ⊕ e2 with e1 ⊕s1,s2 e2, which we
denote as 0 →B→E→A→ 0. Construct the pull-back diagram

B
��

��

B
��
ι(1)

��
B �� �� E0

�� ��

����

E1

π(1)

����
B �� ι

(2)
�� E2

π(2) �� �� A.

(3.4)

Applying K-theory to this diagram, and using that δ(2)∗ = 0, one gets the following
commutative diagram with exact rows and columns:

K0(B)

��

K0(B)

ι
(1)
0

��
K1(E1)

0 ��

π
(1)
1

��

K0(B) �� K0(E0) ��

��

K0(E1)

π
(1)
0

��

0 �� K1(B)

K1(A)
0 �� K0(B)

ι
(2)
0 �� K0(E2)

π
(2)
0 �� K0(A)

0 �� K1(B).

Hence, K0(E0)∼= K0(E1)⊕K0(A) K0(E2) canonically, and this isomorphism takes [1E0] ∈
K0(E0) to the element [1E1 ] ⊕ [1E2] ∈ K0(E1)⊕K0(A) K0(E2).

The pull-back diagram (3.4) induces a short exact sequence e0 : 0 →B⊕B→E0 →
A→ 0, where B⊕ 0 is the “top B” and 0 ⊕B is the “left B” in (3.4). Let � : B⊕
B→B be the Cuntz sum map �(b1 ⊕ b2)= s1b1s∗

1 + s2b2s∗
2. We obtain a commutative

diagram with exact rows

0 �� B⊕B

�

��

�� E0
��

��

A �� 0

0 �� B �� E �� A �� 0,

(3.5)

for which the ∗-homomorphism E0 →E is unital. Applying K-theory to this diagram, and
using the canonical identification K0(E0)∼= K0(E1)⊕K0(A) K0(E2) as well as the fact that
δ
(2)∗ = 0, one obtains the following commutative diagram with exact rows:
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K1(A)
δ
(1)
1 ×0 �� K0(B)⊕ K0(B)

Sum

��

(ι
(1)
0 ,ι

(2)
0 )�� K0(E1)⊕K0(A) K0(E2)

��

π
(1)
0 �� K0(A)

δ
(1)
0 ×0 �� K1(B)

2

Sum

��
K1(A)

δ
(1)
1 �� K0(B) �� K0(E) �� K0(A)

δ
(1)
0 �� K1(B).

A diagram chase shows that K0(E1)⊕K0(A) K0(E2)→ K0(E) is surjective, with kernel
{(ι(1)0 (x),−ι(2)0 (x)) : x ∈ K0(B)}. As the map E0 →E was unital, [1E1] ⊕ [1E2] is mapped
to [1E]. Hence, we obtain the following commutative diagram with exact rows:

K1(A)
δ
(1)
1 ×0 �� K0(B)⊕K0(B)

ker Sum

Sum∼=
��

(ι
(1)
0 ,ι

(2)
0 ) �� K0(E1)⊕K0(A)K0(E2)

{(ι(1)0 (x),−ι(2)0 (x)):x∈K0(B)}
∼=
��

π
(1)
0 �� K0(A)

δ
(1)
0 ×0 �� K1(B)2

ker Sum

Sum∼=
��

K1(A)
δ
(1)
1 �� K0(B) �� K0(E) �� K0(A)

δ
(1)
0 �� K1(B).

The element [1E] exactly corresponds to [1E1] ⊕ [1E2] via the above isomorphism. By
identifying K0(B) with K0(B)⊕K0(B)

ker Sum via the map x �→ (x, 0), one obtains part of the desired
congruence. Running the same argument as above where one interchange K0 and K1, one
obtains the rest of the congruence.

4. A universal coefficient theorem. Recall that a separable C∗-algebra A satisfies
the UCT (in KK-theory) if and only if there is a short exact sequence

0 → Ext(K∗(A),K∗(B))→ Ext−1(A,B)
γA,B−−−→ Hom(K∗(A),K1−∗(B))→ 0 (4.1)

for every separable C∗-algebra B. Here we made the canonical identification
KK1(A,B)∼= Ext−1(A,B) (see Theorem 2.7). In this section, we prove UCTs for the uni-
tal Ext-groups Ext−1

us and Ext−1
uw. Such UCTs were stated in [32] without a proof, and were

proved in [36] under the assumption that B has an approximate identity of projections.8

We give a complete proof without this additional assumption and prove that the UCT’s are
natural in both variables. Naturality is crucial for our applications and was not established
in [36].

DEFINITION 4.1. Given abelian groups K,H and an element h ∈ H , we can form the
pointed Ext-group of (H, h) by K by considering pointed extensions

0 → K → (G, g)
φ−→ (H, h)→ 0

for which φ(g)= h. The set Ext((H, h),K) of congruence classes of such extensions is an
abelian group as in the classical case with Ext(H,K) (see Remark 3.6).

REMARK 4.2. There is a homomorphism K → Ext((H, h),K) given by

k �→ [K � (K ⊕ H, k ⊕ h)� (H, h)].
8While this is not stated explicitly in [36, Theorems 4.8 and 4.9], it can be deduced from the proof that B is
assumed to have an approximate identity of projections.
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The kernel of this map is {ψ(h) :ψ ∈ Hom(H,K)}. It easily follows that there is a short
exact sequence

0 → K/{ψ(h) :ψ ∈ Hom(H,K)} → Ext((H, h),K)→ Ext(H,K)→ 0.

NOTATION 4.3. For abelian groups H and K, and h ∈ H , we let Hom((H, h),K) denote
the subgroup of Hom(H,K) consisting of homomorphisms δ for which δ(h)= 0.

NOTATION 4.4. We write Ext((K∗(A), [1A]),K∗(B)) for the group

Ext((K0(A), [1A]),K0(B))⊕ Ext(K1(A),K1(B))

and Hom((K∗(A), [1A]),K∗+1(B)) for the group

Hom((K0(A), [1A]),K1(B))⊕ Hom(K1(A),K0(B)).

REMARK 4.5. It is easily seen that there is a homomorphism

γ̃A,B : Ext−1
us (A,B)→ Hom((K∗(A), [1A]),K∗+1(B)),

given by mapping [e]s to its boundary map in K-theory.
Similarly, there is a map

κ̃A,B : ker γ̃A,B → Ext((K∗(A), [1A]),K∗(B))

given by mapping [e]s to its induced six-term exact sequence in K-theory with position of
the unit. This is well defined since the boundary maps vanish, but a priori it is not obviously
a homomorphism (it is a homomorphism by Corollary 4.6).

The following is an immediate consequence of Proposition 3.7 and the definition of
the sum in the pointed Ext-group.

COROLLARY 4.6. Let A and B be separable C∗-algebras for which A is unital. Then
the map

κ̃A,B : ker γ̃A,B → Ext((K∗(A), [1A]),K∗(B))

defined in Remark 4.5 is a homomorphism.

We introduce the following nonstandard notation to ease what follows.

NOTATION 4.7. Let A be a unital separable C∗-algebra and B be a separable C∗-
algebra. We define

�A,B := {ψ([1A]) :ψ ∈ Hom(K0(A),K0(B))}.
REMARK 4.8. If A and B are C∗-algebras with A unital, then

0 → K0(B)/�A,B → Ext((K∗(A), [1A]),K∗(B))→ Ext(K∗(A),K∗(B))→ 0

is a short exact sequence by Remark 4.2.

For a unital C∗-algebra D, we let U(D) denote its unitary group, and let U0(D) denote
the connected component of 1D in U(D). Recall that a unital C∗-algebra D is K1-surjective
(resp. K1-injective) if the canonical homomorphism U(D)/U0(D)→ K1(D) is surjective
(resp. injective), and K1-bijective if it is both K1-surjective and K1-injective.

While the following result is well-known to experts, we know of no reference and thus
include a proof.
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PROPOSITION 4.9. If B is a stable C∗-algebra then the corona algebra Q(B) is
K1-bijective.

Proof. Stability of B implies that Q(B) is properly infinite and thus K1-surjective
by [6]. For K1-injectivity, let u ∈ U(Q(B)) be such that [u] = 0 in K1(Q(B)). By [23,
Corollary 2.5], the connected stable rank of B is at most 2. Consequently, the general
stable rank9 of B is at most 2. By [22, Theorem 2] (which relies on results in [27]), it
follows that u lifts to ũ ∈ U(M (B)). By [7], one has U(M (B))= U0(M (B)), and thus
u ∈ U0(Q(B)). Hence, Q(B) is K1-injective.

REMARK 4.10. Let A and B be separable C∗-algebras for which A is unital and B is
stable. For every x ∈ K0(B)∼= K1(Q(B)), there is an induced semisplit, unital extension
ex of A by B (uniquely determined up to strong unitary equivalence) given as follows:
Let τ0 : A→ Q(B) be the Busby map of a trivial, absorbing unital extension [34], and let

u ∈ U(Q(B)) be a unitary being mapped to x under the natural isomorphism K1(Q(B))
∼=−→

K0(B). Then, ex is the extension with Busby map Ad u ◦ τ0.
As τ0 is uniquely determined up to strong unitary equivalence, and since K1(Q(B))=

U(Q(B))/U0(Q(B)) by Proposition 4.9, it easily follows that ex is unique up to strong
unitary equivalence.

The following elementary lemma will be used frequently.

LEMMA 4.11. Let A and B be separable C∗-algebras for which A is unital and B is
stable. Let e be a unital extension of A by B, and let u ∈ U(Q(B)). Then

[Ad u · e]s = [e]s + [e[u]1 ]s ∈ Extus(A, B).

In particular, the map

K0(B)→ Ext−1
us (A,B), x �→ [ex]s

is a group homomorphism.

Proof. Let s1, s2 ∈ M (B) be O2-isometries, and let ⊕ denote the Cuntz sum induced
by this choice of isometries. Then, we have

Ad(u ⊕ u∗) ◦ (τe ⊕ τe[u]1 )= Ad(u ⊕ u∗) ◦ (τe ⊕ (Ad u ◦ τ0))= (Ad u ◦ τe)⊕ τ0 (4.2)

where τ0 is an absorbing, trivial unital extension. As u ⊕ u∗ lifts to a unitary in M (B), the
result follows.

The following is an immediate consequence of Lemma 3.5 applied to the case where
e is a trivial unital extension.

COROLLARY 4.12. Let A and B be separable C∗-algebras for which A is unital and B
is stable, and let x ∈ K0(B). Then ex induces the element

[0 → K0(B)→ (K0(B)⊕ K0(A), x ⊕ [1A])→ (K0(A), [1A])→ 0]
in Ext((K0(A), [1A]),K0(B)).

Recall that γA,B : Ext−1(A,B)→ Hom(K∗(A),K1−∗(B)) denotes the canonical
homomorphism.

9Not to be confused with the topological stable rank, which in modern terms is usually just referred to as stable
rank.

https://doi.org/10.1017/S0017089519000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089519000053


214 JAMES GABE AND EFREN RUIZ

LEMMA 4.13. Let A be a separable, unital C∗-algebra satisfying the UCT, and let B
be a separable, stable C∗-algebra. Then there is an exact sequence

0 → K0(B)/�A,B → Ext−1
us (A,B)→ Ext−1(A,B).

Moreover, the map Ext−1
uw(A,B)→ Ext−1(A,B) is an isomorphism onto

γ−1
A,B(Hom((K∗(A), [1A]),K∗+1(B))) (⊆ Ext−1(A,B)).

Proof. By a result of Skandalis [33, Remarque 2.8] (see also [32] or [21] for a proof),
there is an exact sequence of the form

K0(B) �� Ext−1
us (A,B)

�� Ext−1(A,B)

ι∗1
��

KK(A,B)

ι∗0

��

K1(B)

where ι∗i is induced from the unital ∗-homomorphism ι : C →A. It is easily seen that
ι∗0 : KK(A,B)→ K0(B) factors as

KK(A,B)
γ0−→ Hom(K0(A),K0(B))

ev[1A ]−−−→ K0(B)

where ev[1A] is evaluation at [1A]. Similarly, ι∗1 : Ext−1(A,B)→ K1(B) factors as

Ext−1(A,B)
γ0−→ Hom(K0(A),K1(B))

ev[1A ]−−−→ K1(B).

Since A satisfies the UCT, γ0 is surjective and thus im(ι∗0)= �A,B. Hence, the exact
sequence collapses to an exact sequence

0 → K0(B)/�A,B → Ext−1
us (A,B)→ Ext−1(A,B)

where the image of Ext−1
us (A,B)→ Ext−1(A,B) is ker ι∗1. By using the above exact

sequence, it easily follows that ker ι∗1 = γ−1
A,B(Hom((K∗(A), [1A]),K∗+1(B))), so we

obtain a short exact sequence

0 → K0(B)/�A,B → Ext−1
us (A,B)→ γ−1

A,B(Hom((K∗(A), [1A]),K∗+1(B)))→ 0.

Using Lemma 4.11 it follows that the quotient Ext−1
us (A,B)/(K0(B)/�A,B) is canon-

ically isomorphic to Ext−1
uw(A,B). Combined with the above short exact sequence, it

follows that Ext−1
uw(A,B)→ Ext−1(A,B) is injective and its image is

γ−1
A,B(Hom((K∗(A), [1A]),K∗+1(B)))

as desired.

We can now assemble the pieces provided by the previous results in this section and
obtain the following UCT. This is a minor improvement on the UCT sequences proved
by Wei [36, Theorems 4.8 and 4.9], in which the C∗-algebra B was required to have an
approximate identity of projections. Also, Wei does not prove that the UCTs for the unital
Ext-groups are natural, which will be important in our applications.
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THEOREM 4.14. Let A be a unital, separable C∗-algebra satisfying the UCT, and let B
be a separable C∗-algebra. There is a commutative diagram

K0(B)/�A,B
��

��

K0(B)/�A,B
��

��
Ext((K∗(A), [1A]),K∗(B))

����

�� �� Ext−1
us (A,B)

����

γ̃A,B �� �� Hom((K∗(A), [1A]),K∗+1(B))

Ext(K∗(A),K∗(B)) �� �� Ext−1
uw(A,B)

γA,B �� �� Hom((K∗(A), [1A]),K∗+1(B)).

(4.3)

for which all rows and columns are short exact sequences. This diagram is natural with
respect to unital ∗-homomorphisms in the first variable, and with respect to nondegenerate
∗-homomorphisms in the second variable.

Proof. By replacing B with B⊗ K, we may assume that B is stable.
By Lemma 4.13 and the UCT for Ext−1 (see (4.1)), we obtain a short exact sequence

0 → Ext(K∗(A),K∗(B))→ Ext−1
uw(A,B)

γA,B−−−→ Hom((K∗(A), [1A]),K∗+1(B))→ 0.
(4.4)

The map Ext(K∗(A),K∗(B))→ ker γA,B above, which is an isomorphism by exactness,
is exactly the inverse of the isomorphism

κA,B : ker γA,B
∼=−→ Ext(K∗(A),K∗(B))

given by applying K-theory to a given extension (which induce short exact sequences by
vanishing of the boundary maps). That κA,B is an isomorphism follows from the UCT. The
homomorphism

γ̃A,B : Ext−1
us (A,B)→ Hom((K∗(A), [1A]),K∗+1(B))

is the composition of the surjective homomorphisms Ext−1
us → Ext−1

uw and γA,B from (4.4),
so γ̃A,B is surjective. Hence, we obtain the following commutative diagram:

K0(B)/�A,B
��

��

K0(B)/�A,B
��

��
ker γ̃A,B

����

�� �� Ext−1
us (A,B)

����

γ̃A,B �� �� Hom((K∗(A), [1A]),K1−∗(B))

ker γA,B �� �� Ext−1
uw(A,B)

γA,B �� �� Hom((K∗(A), [1A]),K1−∗(B))

(4.5)

for which the rows and columns are short exact sequences. Consider the diagram

0 �� K0(B)/�A,B �� ker γ̃A,B

κ̃A,B(∼=)
��

�� ker γA,B

κA,B∼=
��

�� 0

0 �� K0(B)/�A,B �� Ext((K∗(A), [1A]),K∗(B)) �� Ext(K∗(A),K∗(B)) �� 0
(4.6)
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which has exact rows. The map κ̃A,B is a homomorphism by Corollary 4.6, and clearly
the right square above commutes. The left square above commutes by Remark 4.2 and
Corollary 4.12. Hence, κ̃A,B is an isomorphism by the five lemma. By gluing together the
diagrams (4.5) and (4.6) in the obvious way, we obtain the desired diagram (4.3).

It remains to be shown that diagram (4.3) is natural in both variables. For verifying
this let C be separable, unital C∗-algebra satisfying the UCT, let φ : C→A be a uni-
tal ∗-homomorphism, let D be a separable, stable C∗-algebra, and let ψ : B→D be a
nondegenerate ∗-homomorphism. We first check that diagram (4.5) is natural, and then
(4.6).

It is well-known that Ext−1
us (A,B)→ Ext−1

uw(A,B) is natural, and by naturality of six-
term exact sequences the maps γ̃A,B and γA,B are natural.

Again by naturality of six-term exact sequences, it follows that

φ∗(ker γ̃A,B)⊆ ker γ̃C,B, and ψ∗(ker γ̃A,B)⊆ ker γ̃A,D.

Hence, the inclusion ker γ̃A,B ↪→ Ext−1
us (A,B) is natural in both variables. Similarly, the

inclusion ker γA,B ↪→ Ext−1
uw(A,B) and the map ker γ̃A,B → ker γA,B are natural in both

variables. This implies that diagram (4.5) is natural. Hence, it remains to check that the
diagram (4.6) is natural.

It is straightforward to verify that the maps in the lower row of (4.6) are natural (this is
purely algebraic, and of course uses that φ0([1C])= [1A]). We saw above that ker γ̃A,B →
ker γA,B is natural.

We will show that κ̃A,B is natural in the first variable. Let e : 0 →B→E→A→ 0
be a unital extension inducing an element in ker γ̃A,B, i.e. e has vanishing boundary maps
in K-theory. Construct the pull-back diagram

e · φ : 0 �� B �� Eφ

��

�� C

φ

��

�� 0

e : 0 �� B �� E �� A �� 0.

(4.7)

As φ is a unital map, Eφ is unital and the map Eφ →E is unital. As φ∗([e]s)= [e · φ]s, we
should check that

κ̃C,B([e · φ]s)= (φ∗)∗(̃κA,B([e]s)). (4.8)

Applying K-theory to the pull-back diagram (4.7), and using that both e and e · φ have
vanishing boundary maps, we obtain the diagram

κ̃C,B([e · φ]) : 0 �� K∗(B) �� (K∗(Eφ), [1Eφ
])

��

�� (K∗(C), [1C])
φ∗
��

�� 0

κ̃A,B([e]) : 0 �� K∗(B) �� (K∗(E), [1E]) �� (K∗(A), [1A]) �� 0.

Since this is a pull-back diagram, it follows that (4.8) holds. Hence, κ̃A,B is natural in the
first variable. That κ̃A,B is natural in the second variable, and that κA,B is natural in both
variables, is checked in a similar fashion.

It remains to check that K0(B)/�A,B → ker γ̃A,B is natural in both variables. For this
purpose, fix a unitary in u ∈ Q(B) inducing an arbitrary element in K0(B). Let eA,B and
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eC,B be absorbing, unital extensions of A by B and of C by B, respectively. By definition,
we have

[u] + �A,B �→ [Ad u · eA,B]s ∈ ker γ̃A,B, [u] + �C,B �→ [Ad u · eC,B]s ∈ ker γ̃C,B.

In order to check that K0(B)/�A,B → ker γ̃A,B is natural in the first variable, we should
therefore verify that

φ∗([Ad u · eA,B]s)= [Ad u · eC,B]s.

This follows easily from Lemma 4.11 since

φ∗([Ad u · eA,B]s)= [Ad u · (eA,B · φ)]s = [eA,B · φ]s + [Ad u · eC,B]s = [Ad u · eC,B]s,

where we used that eA,B · φ is trivial so that [eA,B · φ]s = 0. Hence, K0(B)/�A,B →
ker γ̃A,B is natural in the first variable. For the second variable, let ψ : Q(B)→ Q(D) be
the induced ∗-homomorphism, and let eA,D be an absorbing, unital extension of A by D.
Note that ψ∗([u])= [ψ(u)]. As above, we get

ψ∗([Ad u · eA,B]s) = [(ψ ◦ Ad u) · eA,B]s

= [Adψ(u) · (ψ · eA,B)]s

Lem. 4.11= [ψ · eA,B]s + [Adψ(u) · eA,D]s

= [Adψ(u) · eA,D]s.

As [Adψ(u) · eA,D]s is the image of ψ∗([u])+ �A,D via the map K0(B)/�A,B →
ker γ̃A,B, it follows that this map is natural in the second variable, thus finishing the
proof.

5. Classification of unital extensions. In this section, we will apply our UCT to
obtain classification results for certain unital extensions of C∗-algebras via their six-term
exact sequence in K-theory.

The main idea is the following: suppose e1 and e2 are absorbing, semisplit unital
extensions of A by B, and suppose that [e1]w = [e2]w ∈ Ext−1

uw(A,B). By Theorem 4.14,
there is an element x ∈ K0(B) such that [e1]s = [e2 ⊕ ex]s, and in particular e1

∼= e2 ⊕ ex by
absorption. So the goal will be to prove, under certain conditions, that e2 ⊕ ex

∼= e2.
As a technical devise, we introduce the following notation.

NOTATION 5.1. If δ∗ ∈ Hom((K∗(A), [1A]),K∗+1(B)), then we define

�
δ∗
A,B := q−1

δ1
({φ([1A]0) : φ ∈ Hom(ker δ0, cokerδ1)})

where qδ1 : K0(B)→ cokerδ1 is the canonical epimorphism.

Note that we always have �A,B = �0
A,B ⊆ �

δ∗
A,B (see Notation 4.7). The following is

essentially [36, Theorem 3.5], but without assuming that B has an approximate identity of
projections.

LEMMA 5.2. Let e : 0 →B
ι−→E

π−→A→ 0 be a unital extension of separable
C∗-algebras with B stable, let δ∗ : K∗(A)→ K1−∗(B) denote the induced boundary map
in K-theory, and let x ∈ K0(B). Then Ku

six(e)≡ Ku
six(e⊕ ex) if and only if x ∈ �δ∗A,B.
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Proof. By Lemmas 4.11, 3.2, 3.3 and 3.5, Ku
six(e⊕ ex) is congruent to

K0(B)
ι0 �� (K0(E), [1E] + ι0(x))

π0 �� (K0(A), [1A])
δ0

��
K1(A)

δ1

��

K1(E)
π1�� K1(B).

ι1��

(5.1)

If x ∈ �δ∗A,B, then there is a homomorphism φ : ker δ0 → cokerδ1 such that qδ1(x)=
φ([1A]). Define η0 = idK0(E) + ι0 ◦ φ ◦ π0 : K0(E)→ K0(E), where ι0 : cokerδ1 → K0(E)
is the injective homomorphism induced by ι0. Letting η1 = idK1(E) it easily follows that
η∗ : K∗(E)→ K∗(E) induces a congruence between Ku

six(e) and the sequence (5.1).
Now suppose that Ku

six(e) is congruent to Ku
six(e⊕ ex) which in turn is congruent to

the sequence (5.1). There is a homomorphism η∗ : K∗(E)→ K∗(E) such that η0([1E])=
[1E] + ι0(x) and the following diagram with exact rows:

K1(A)
δ1 �� K0(B)

ι0 �� K0(E)
π0 ��

η0

��

K0(A)
δ0 �� K1(B)

K1(A)
δ1 �� K0(B)

ι0 �� K0(E)
π0 �� K0(A)

δ0 �� K1(B)

commutes. By a standard diagram chase, there is a homomorphism φ ∈
Hom(ker δ0, cokerδ1) such that η0 = idK0(E) + ι0 ◦ φ ◦ π0, where ι0 : cokerδ1 → K0(E) is
the map induced by ι0. Hence,

[1E] + ι0(x)= η0([1E])= [1E] + ι0 ◦ φ([1A]).
Letting qδ1 : K0(B)→ cokerδ1 denote the quotient map, we get ι0(qδ1(x))= ι0(x)= ι0 ◦
φ([1A]) which implies qδ1(x)= φ([1A]) since ι0 is injective. Thus, x ∈ �δ∗A,B.

PROPOSITION 5.3. Let A be a separable C∗-algebra satisfying the UCT, and let
α ∈ Aut(A) be an isomorphism such that K∗(α)= K∗(idA). Then the induced Pimsner–
Voiculescu sequence collapses to a short exact sequence

0 → K1−∗(A)→ K1−∗(A�α Z)→ K∗(A)→ 0, (5.2)

and the induced element in Ext(K∗(A),K1−∗(A)) is mapped to

KK(α)− KK(idA) ∈ KK(A,A)

via the map Ext(K∗(A),K1−∗(A))→ KK(A,A) from the UCT.

Proof. That the Pimsner–Voiculescu sequence collapses to a short exact sequence is
obvious.

Let M := { f ∈ C([0, 1],A) : α( f (0))= f (1)} be the mapping torus of α and idA. It is
well-known that the extension

0 → C0((0, 1),A)→M→A→ 0

induces a short exact sequence

0 → K1−∗(A)→ K∗(M)→ K∗(A)→ 0

which represents the element in Ext(K∗(A),K1−∗(A)) induced by KK(α)− KK(idA). By
[1, Section 10.4] it follows that this extension is congruent to (5.2).
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The following lemma is an immediate consequence of the Elliott–Kucerovsky absorp-
tion theorem.

LEMMA 5.4. Let A and C be separable, unital, nuclear C∗-algebras, with a unital
embedding ι : A→ C, and let B be a separable stable C∗-algebra. If e is an absorbing,
unital extension of C by B, then e · ι is an absorbing, unital extension of A by B.

Proof. It follows immediately from the definition of pure largeness that e · ι is also
purely large, so the result follows from [15, Theorem 6].

In the following, we consider

�
(0,δ1)

A,B = q−1
δ1
({ψ([1A]) :ψ ∈ Hom(K0(A), cokerδ1)}),

which is a special case of Notation 5.1. Clearly

�
(0,δ1)

A,B ⊆ �
δ∗
A,B ⊆ K0(B).

The following lemma is the main technical tool to obtain our classification of unital
extensions. While the conditions on A in the following lemma might look slightly technical,
we emphasise that any unital UCT Kirchberg algebra has these properties; K1-surjectivity
follows from [6] and the condition on automorphisms follows from the Kirchberg–Phillips
theorem [19, 26].

LEMMA 5.5. Let e : 0 →B→E→A→ 0 be a unital extension of separable
C∗-algebras with boundary map δ∗ : K∗(A)→ K1−∗(B) in K-theory. Suppose that B
is stable, and that A is nuclear, K1-surjective, satisfies the UCT, and that for any y ∈
KK(A,A) for which K∗(y)= K∗(idA), there is an automorphism α ∈ Aut(A) such that
KK(α)= y. Then for any x ∈ �(0,δ1)

A,B there is an automorphism β ∈ Aut(A) for which
K∗(β)= idK∗(A), and

[e · β]s = [e]s + [ex]s ∈ Extus(A,B).

Proof. Let e0 be an absorbing, trivial, unital extension e0. Since

[(e⊕ e0) · β]s = [e · β]s + [e0 · β]s = [e · β]s

for any automorphism β ∈ Aut(A), it follows that we may replace e with e⊕ e0 without
loss of generality, and thus assume that e is absorbing.

As x ∈ �(0,δ1)

A,B we may find a homomorphism ψ : K0(A)→ K0(B)/im δ1, such that

ψ([1A])= x + im δ1. Let 0 → F1
f1−→ F0

f0−→ K0(A)→ 0 be a free resolution.10 As F0 and F1

are free, we may construct the following commutative diagram with exact rows:

0 �� F1

ψ1

��

f1 �� F0

ψ0

��

f0 �� K0(A)

ψ

��

�� 0

K1(A)
δ1 �� K0(B) �� K0(B)/im δ1

�� 0.

10I.e. a short exact sequence with both F0 and F1 free abelian groups.
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Letting G denote the push-out of ψ1 and f1, we get the following commutative diagram:

0 �� F1

ψ1

��

f1 �� F0

ψ̃0

��

f0 �� K0(A) �� 0

0 �� K1(A) �� G

φ

��

�� K0(A)

ψ

��

�� 0

K1(A)
δ1 �� K0(B) �� K0(B)/im δ1

�� 0.

(5.3)

with exact rows. The homomorphism φ : G → K0(B)making the diagram commute, exists
by the universal property of push-outs. Let x∗ ∈ Ext(K∗(A),K1−∗(A))⊆ KK(A,A) be such
that

x0 = [
0 → K1(A)→ G → K0(A)→ 0

] ∈ Ext(K0(A),K1(A)),

and x1 is the trivial extension. As K∗(x∗) is the zero map, it follows from our hypothesis
on A that there is an automorphism α ∈ Aut(A) such that KK(α)= KK(idA)+ x∗.

Applying Proposition 5.3, the Pimsner–Voiculescu sequence for the C∗-dynamical
system (A, α,Z) collapses to a short exact sequence

0 → K1−∗(A)
ι1−∗−−→ K1−∗(A�α Z)→ K∗(A)→ 0,

which exactly induces the element x∗ ∈ Ext(K∗(A),K1−∗(A)). Here, ι : A→A�α Z is
the inclusion map. In particular, we may assume that K0(A�α Z)= K0(A)⊕ K1(A), and
K1(A�α Z)= G, and thus we have a homomorphism

(δ0 ⊕ 0, φ) : K∗(A�α Z)→ K1−∗(B).

As ι∗ : K∗(A)→ K∗(A�α Z) is injective, it induces a surjection

ι∗ : Ext(K∗(A�α Z),K∗(B))� Ext(K∗(A),K∗(B)).

As A satisfies the UCT, so does A�α Z by [31]. Thus, by Theorem 4.14, we get the
following commutative diagram:

Ext(K∗(A�α Z),K∗(B)) �� ��

ι∗
����

Extuw(A�α Z,B)

ι∗
��

�� �� Hom((K∗(A�α Z), [1]),K1−∗(B))

ι∗
��

Ext(K∗(A),K∗(B)) �� �� Extuw(A,B) �� �� Hom((K∗(A), [1]),K1−∗(B))

for which the rows are short exact sequences. We may pick [f′]w ∈ Extuw(A�α Z,B)
which lifts the homomorphism (δ0 ⊕ 0, φ). Recall that we identified G = K1(A�α Z), so
by (5.3), we have

ι∗(δ0 ⊕ 0, φ)= ((δ0 ⊕ 0) ◦ ι0, φ ◦ ι1)= (δ0, δ1)= δ∗.

Thus, ι∗([f′]w) and [e]w induce the same element in Hom. Thus, by doing a diagram
chase in the above diagram (using surjectivity of the left vertical map), there is an ele-
ment [f′′]w ∈ Extuw(A�α Z,B) vanishing in Hom, such that ι∗([f′]w + [f′′]w)= [e]w. Let
f be an absorbing unital extension of A�α Z by B such that [f]w = [f′]w + [f′′]w. Then
[f · ι]w = [e]w.
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Let τ : A→ Q(B) be the Busby map of e, and η : A�α Z → Q(B) be the Busby map
of f. In particular, η ◦ ι is the Busby map of f · ι. Recall from the beginning of the proof
that we assumed that e was absorbing, and by Lemma 5.4, f · ι is also absorbing. Thus, as
[f · ι]w = [e]w, there is a unitary u ∈ Q(B) such that

Ad u ◦ τ = η ◦ ι.
Let w ∈A�α Z denote the canonical unitary, so that Ad w ◦ ι= ι ◦ α. Then

τ ◦ α = Ad u∗ ◦ η ◦ ι ◦ α
= Ad u∗ ◦ η ◦ Ad w ◦ ι
= Ad u∗ ◦ Ad η(w) ◦ η ◦ ι
= Ad u∗ ◦ Ad η(w) ◦ Ad u ◦ τ
= Ad(u∗η(w)u) ◦ τ.

Hence, it follows from Lemma 4.11 that

[e · α]s = [e]s + [e[u∗η(w)u]]s = [e]s + [e[η(w)]]s ∈ Extus(A,B).

Recall that [f]w = [f′]w + [f′′]w, where [f′′]w vanishes in Hom, and [f′]w induces the
homomorphism (δ0 ⊕ 0, φ) : K∗(A�α Z)→ K1−∗(B). Thus, [f]w also induces the homo-
morphism (δ0 ⊕ 0, φ), so in particular

K1(η)= φ : K1(A�α Z)→ K1(Q(B))= K0(B).

It follows that

[e · α]s = [e]s + [eφ([w])]s ∈ Extus(A,B). (5.4)

By commutativity of the lower right square in (5.3), the two compositions

K1(A�α Z)
φ−→ K0(B)→ K0(B)/im δ1, K1(A�α Z)→ K0(A)

ψ−→ K0(B)/im δ1,

are the same. It is well known that [w] is mapped to [1A] via the map K1(A�α Z)→
K0(A).11 Thus, we have

φ([w])+ im δ1 =ψ([1A])= x + im δ1,

where x ∈ �(0,δ1)

A,B is our given element from the statement of the lemma. As A is
K1-surjective, we may find a unitary v ∈A such that

φ([w])+ δ1([v])= x. (5.5)

Let β = Ad v ◦ α be the induced automorphism on A. By construction K∗(α)= idK∗(A) and
thus K∗(β)= idK∗(A). By Lemma 4.11, it follows that

[e · β]s = [e · α]s + [eδ1([v]1)]s

(5.4)= [e]s + [eφ([w]1)]s + [eδ1([v]1)]s

= [e]s + [eφ([w]1)+δ1([v]1)]s

(5.5)= [e]s + [ex]s

as desired.

11The proof of this is identical to the proof showing that the map K1(C(T))→ K0(K) induced by the usual
Toeplitz extension sends the class of the canonical unitary in C(T) to [e11]0.
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PROPOSITION 5.6. Let A and B be separable C∗-algebras, with A unital, nuclear
and satisfying the UCT, and B stable. Suppose that A is K1-surjective and that for any
y ∈ KK(A,A) for which K∗(y)= K∗(idA), there is an automorphism α ∈ Aut(A) such that
KK(α)= y. Let e1 and e2 be unital extensions of A by B and suppose that

(a) [e1]w = [e2]w in Extuw(A,B),
(b) Ku

six(e1)≡ Ku
six(e2),

(c) the exponential maps δ0 : K0(A)→ K1−∗(B) induced by e1 and e2 vanish.

Then there is an automorphism β ∈ Aut(A) with K∗(β)= idK∗(A) such that [e1 · β] = [e2]
in Extus(A,B).

Proof. Let δ∗ : K∗(A)→ K1−∗(B) be the connecting maps in the six-term exact
sequences of e1 and e2, which agree since Ku

six(e1)≡ Ku
six(e2). As [e1]w = [e2]w, it fol-

lows from Theorem 4.14 that there is an x ∈ K0(B) such that [e1 ⊕ ex]s = [e2]s in
Extus(A,B). As

Ku
six(e1 ⊕ ex)

Cor. 3.4≡ Ku
six(e2)≡ Ku

six(e1),

it follows from Lemma 5.2 that x ∈ �δ∗A,B. As δ0 = 0, it clearly holds that �δ∗A,B = �
(0,δ1)

A,B

and thus Lemma 5.5 provides an automorphism β ∈ Aut(A) such that

[e1 · β]s = [e1]s + [ex]s = [e2]s ∈ Extus(A,B)

as wanted.

REMARK 5.7. The only thing Condition (c) was used for in Proposition 5.6 was so that
�
(0,δ1)

A,B = �
δ∗
A,B. Hence, one may replace Condition (c) with this more general condition in

order to obtain the conclusion of Proposition 5.6.
In particular, Condition (c) in Proposition 5.6 may be replaced by any of the following

statements, as these all imply that �(0,δ1)

A,B = �
δ∗
A,B. Proving that (c1)–(c6) imply �(0,δ1)

A,B =
�
δ∗
A,B is left to the reader.

(c1) The class of the unit [1A] vanishes in K0(A).
(c2) The exponential map δ0 is injective.
(c3) The index map δ1 is surjective.
(c4) K0(A)∼= Z ⊕ G, such that [1A] = (1, g) for some g ∈ G.
(c5) ker δ0 is a direct summand in K0(A).
(c6) K0(E) is divisible.

PROPOSITION 5.8. Let ei : 0 →B→Ei →A→ 0 be unital extensions of C∗-algebras
for i = 1, 2 such that A is a unital UCT Kirchberg algebra, and B is a stable AF algebra.
If Ku

six(e1)≡ Ku
six(e2) then there is an automorphism α ∈ Aut(A) such that e1 and e2 · α are

strongly unitarily equivalent.
In particular, if Ku

six(e1)≡ Ku
six(e2) then E1

∼=E2.

Proof. We identify Ext(A,B)∼= KK1(A,B) in the usual way (see Theorem 2.7).
By [11, Theorem 2.3] (which is based on [29, Theorem 3.2]), there exist x ∈
KK(A,A) and y ∈ KK(B,B) such that K∗(x)= K∗(idA), K∗(y)= K∗(idB), [e1] × y =
x × [e2] in KK1(A,B). Since B is an AF algebra, we have that y = KK(idB).
Thus, [e1] = x × [e2]. Since A is a UCT Kirchberg algebra, by the Kirchberg–Phillips
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theorem [19], [26] there exists an isomorphism α(1) : A→A such that x = KK(α(1)). By
[29, Proposition 1.1], we get

[e2 · α(1)] = x × [e2] = [e1] ∈ KK1(A,B)∼= Ext(A,B).

By Lemma 4.13 it follows that [e1]w = [e2 · α(1)]w in Extuw(A,B). Now, as K∗(α(1))=
idK∗(A), it follows that

Ku
six(e2 · α(1))≡ Ku

six(e2)≡ Ku
six(e1).

By [6] A is K1-surjective, and by the Kirchberg–Phillips theorem (cited above) A satisfies
the condition in Proposition 5.6 about automorphisms. Hence, this proposition produces
an automorphism α(2) ∈ Aut(A) with K∗(α(2))= idK∗(A) such that

[e1]s = [e2 · α]s ∈ Extus(A,B)

where α = α(1) ◦ α(2).
As A is simple, unital and nuclear, B is stable with the corona factorisation property,

and the extensions e1 and e2 · α are unital, it follows that e1 and e2 · α are full and thus
absorbing. Hence, e1 and e2 · α are strongly unitarily equivalent.

The “in particular” part follows since the extension algebra of e2 is isomorphic to the
extension algebra of e2 · α and since strong unitary equivalence implies isomorphism of
the extension algebras.

By K+,u
six (e) we mean the six-term exact sequence in K-theory with order in all

K0-groups. The following is the main classification result of this section and is Theorem
A.

THEOREM 5.9. Let ei : 0 →Bi →Ei →Ai → 0 be unital extensions of C∗-algebras for
i = 1, 2, such that A1 and A2 are unital UCT Kirchberg algebras and B1 and B2 are stable
AF algebras. Then E1

∼=E2 if and only if K+,u
six (e1)∼= K+,u

six (e2).

Proof. Suppose E1
∼=E2. As the extension ei is unital, and as Ai is simple, it follows

that the extension ei is full. As Bi is stable, it therefore follows that Bi is the unique
maximal ideal in Ei for i = 1, 2.12 It follows that the extensions e1 and e2 are isomorphic,
and thus K+,u

six (e1)∼= K+,u
six (e2).

Now suppose that there is an isomorphism K+,u
six (e1)

∼=−→ K+,u
six (e2) induced by

φ∗ : K∗(A1)
∼=−→ K∗(A2), ψ∗ : K+

∗ (B1)
∼=−→ K+

∗ (B2), ρ∗ : K∗(E1)
∼=−→ K∗(E2).

By the Kirchberg–Phillips theorem [19], [26] we find an isomorphism α : A1
∼=−→A2 such

that K∗(α)= φ∗. Similarly, by Elliott’s classification of AF algebras [13], we find an iso-

morphism β : B1
∼=−→B2 such that K∗(β)=ψ∗. We obtain the following commutative

diagram:

12Clearly B1 is a maximal ideal as the corresponding quotient is simple. If J⊆E1 is a two-sided, closed ideal
such that J �⊆B1, then there is an element x ∈ J \B1 inducing a nonzero element in A1. As the extension is full
and B1 is stable, it follows that x induces a full element in M (B1). Hence, B1xB1 =B1 so B1 � J and thus
J=E1 by maximality of B1. The same argument works for E2.

https://doi.org/10.1017/S0017089519000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089519000053


224 JAMES GABE AND EFREN RUIZ

e1 : 0 �� B1

β∼=
��

�� E1

∼= η(1)

��

�� A1
�� 0

β · e1 : 0 �� B2
�� E′

1
�� A1

�� 0

e2 · α : 0 �� B2
�� E′

2
��

∼= η(2)

��

A1

α∼=
��

�� 0

e2 : 0 �� B2
�� E2

�� A2
�� 0

(5.6)

which has exact rows. It is easy to see that the map

K∗(η(2))−1 ◦ ρ∗ ◦ K∗(η(1))−1 : K∗(E′
1)→ K∗(E′

2)

induces a congruence Ku
six(β · e1)≡ Ku

six(e2 · α). By Proposition 5.8, it follows that
E′

1
∼=E′

2, so it follows that E1
∼=E2.

6. Determining when extensions are full. In this section, we characterise when cer-
tain extensions are full with a stable ideal. We show that when the ideal is sufficiently finite
(e.g. an AF algebra) and the quotient is sufficiently infinite (e.g. a Kirchberg algebra), then
this is characterised by the existence of a properly infinite, full projection in the extension
algebra.

LEMMA 6.1. Let B be a σ -unital C∗-algebra with stable rank one. Then B is stable
if and only if there exists a projection p ∈ M (B) which is properly infinite, and which is
strictly full, i.e. BpB=B.

In particular, if p ∈ M (B) is a strictly full, properly infinite projection, then pBp is
stable.

Proof. If B is stable, then 1M (B) ∈ M (B) is a strictly full, properly infinite
projection.

Conversely, suppose p ∈ M (B) is a strictly full, properly infinite projection. Let
p1, p2, . . . ∈ M (B) be a sequence of pairwise orthogonal projections in M (B), such that
pi ≤ p and p ∼ pi for all i ∈ N. Then the hereditary C∗-subalgebra B0 of B generated by
p1, p2, . . . is isomorphic to pBp ⊗ K. As p is strictly full it follows that B0 ⊆B is a sta-
ble, full, hereditary C∗-subalgebra. It is an easy consequence of [25, Lemma 4.6] that B is
stable (as any strictly positive element in B0 induces a full, properly infinite element in the
scale of the Cuntz semigroup of B).

“In particular” is immediate since M (pBp)∼= pM (B)p canonically, and since pBp
is σ -unital with stable rank one.

The following is essentially [2, Proposition 2.7].

LEMMA 6.2. Let A, C and D be C∗-algebras and suppose that φ : A→D and
π : C→D are ∗-homomorphisms for which π is surjective. Suppose that p ∈A and q ∈ C
are projections such that φ(p)= π(q) and φ(p)Dφ(p) is K1-injective. If both p and q are
properly infinite, then p ⊕ q is properly infinite in the pull-back A⊕φ,π C.
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Proof. By replacing A, C and D with pAp, qCq and φ(p)Dφ(p), we may assume that
A, C and D are unital and properly infinite, that φ and π are unital maps, and that D is
K1-injective. Under these assumptions, we should show that A⊕φ,π C is properly infinite.

The result now follows from [2, Proposition 2.7]. In fact, although said result assumes
that both maps are surjective (corresponding in our case to φ and π ), they only use that one
map is surjective. We fill in the proof for completion.

Let s1, s2, s3 ∈A and t1, t2, t3 ∈ C be isometries with mutually orthogonal range
projections. Let

v :=
2∑

j=1

φ(sj)π(tj)
∗ ∈D

which is a partial isometry satisfying φ(sj)= vπ(tj) for j = 1, 2. Note that

1D ∼ φ(s3s∗
3)≤ 1D − vv∗, 1D ∼ π(t3t∗3)≤ 1D − v∗v.

It follows that 1D − vv∗ and 1D − v∗v are properly infinite and full in D. By [2,
Lemma 2.4(i)] there is a unitary u ∈D with [u] = 0 ∈ K1(D) such that v = uv∗v. As D
is K1-injective, it follows that u is homotopic to 1, and thus lifts to a unitary ũ ∈ C.

Clearly ũt1, ũt2 ∈ C are isometries with orthogonal range projections, and

π(̃utj)= uπ(tj)= vπ(tj)= φ(sj)

so sj ⊕ ũtj ∈A⊕φ,π C for j = 1, 2 are isometries with orthogonal range projections. Hence,
A⊕φ,π C is properly infinite.

By the above lemma we deduce the following property about proper infiniteness of
projections in purely large extensions (see Remark 2.9).

PROPOSITION 6.3. Let 0 →B→E→A→ 0 be a purely large extension of separable
C∗-algebras such that B is stable, and suppose that p ∈E \B is a projection. Then p is
properly infinite if and only if p +B ∈A is properly infinite.

Proof. “Only if” is trivial. To prove “if”, assume that the image of p in A is properly
infinite. Let τ : A→ Q(B) be the Busby map of the extension. We may identify E with the
pull-back A⊕τ,πB M (B). Let q ∈ M (B) be the projection induced by p. As purely large
extensions are full,13 it follows that q is full in M (B). As our given extension is purely
large, it easily follows that the extension

0 →B→B+ Cq → C → 0

is purely large. By [16, Proposition 2.7] it follows that q is a properly infinite, full projection
in M (B). Hence, qBq ∼=B is stable, and thus πB(q)Q(B)πB(q)∼= Q(B) is K1-injective
by Proposition 4.9. By Lemma 6.2, p is properly infinite.

PROPOSITION 6.4. Let e : 0 →B→E→A→ 0 be an extension of separable C∗-
algebras for which A is simple and B has stable rank one and the corona factorisation
property. Suppose that there is a projection p ∈E \B such that p +B ∈A is properly
infinite. Then B is stable and e is full if and only if p is full and properly infinite in E.

13It is easy to see that an extension e is full if and only if the Cuntz sum e⊕ 0 is full. If e is purely large, then
e⊕ 0 is nuclearly absorbing by [16, Corollary 2.4]. As e⊕ 0 absorbs any full, trivial, weakly nuclear extension
(which always exist), it follows that e⊕ 0 – and thus also e – is full.
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Proof. “Only if” follows from Proposition 6.3 as e is purely large by the corona fac-
torisation property. For “if” suppose that p is full and properly infinite. Then B=BpB
by fullness of p. By Lemma 6.1, it follows that B is stable and B∼= pBp. Hence, by [3,
Theorem 4.23], p induces a full projection in M (B). As A is simple, and as p +B ∈A is
mapped to a full projection in Q(B) via the Busby map, it follows that the extension e is
full.

The following can be used to characterise when the extensions we wish to classify are
full.

THEOREM 6.5. Let e : 0 →B→E→A→ 0 be an extension of C∗-algebras such that
A is a Kirchberg algebra and B is an AF algebra. The following are equivalent.

(i) B is stable and the extension e is full,
(ii) E contains a full, properly infinite projection,
(iii) any projection p ∈E \B is full and properly infinite (in E).

Proof. (i)⇒ (iii): Suppose that p ∈E \B is a projection. Fullness of e and simplicity
of A imply that p is full. As B has the corona factorisation property by virtue of being an
AF algebra, it follows from Proposition 6.3 that p is properly infinite.

(iii)⇒ (ii): Let q ∈A be a nonzero projection. By [4, Proposition 3.15], q lifts to a
projection p ∈E \B, which is properly infinite and full by assumption.

(ii)⇒ (i): Follows from Proposition 6.4

7. Classification of non-unital extensions. In [16, Section 4], an example was
given of two non-unital, full extensions ei : 0 →Bi →Ei →Ai → 0 such that Ai

∼=O2,
Bi

∼= M2∞ ⊗ K, Ksix(e1)∼= Ksix(e2) (with order, scale and units preserved), but for which
E1 �∼=E2. In this section, we will describe how to obtain classification of such (and more
general) extensions. Note that our invariant needs to carry more information than the
six-term exact sequence alone.

The following lemma indicates the main trick that will be used to get classification
of non-unital extensions with unital quotients. It implies that if one can arrange that the
corresponding Busby maps have the same unit, and that the units in the quotients lift to
projections, then the classification problem can be reduced to the unital case.

LEMMA 7.1. Let A and B be C∗-algebras with A unital, and let τi : A→ Q(B) be
(not necessarily unital) Busby maps for i = 1, 2. Suppose that τ1(1A)= τ2(1A), and that
this projection lifts to a projection p ∈ M (B). If the unital extensions

0 → pBp → (1A ⊕ p)(A⊕τi,πB M (B))(1A ⊕ p)→A→ 0 (7.1)

for i = 1, 2 are strongly unitarily equivalent, then so are the extensions induced by
τ1 and τ2.

Proof. The Busby maps τ̃i of the extensions (7.1) are just the corestrictions of the
Busby maps τi to τi(1A)Q(B)τi(1A)∼= Q( pBp) (the canonical isomorphism). By assump-
tion there is a unitary ũ ∈ M ( pBp) such that Ad πpBp(̃u) ◦ τ̃1 = τ̃2. Using the canonical
identification M ( pBp)∼= pM (B)p, let u = ũ + (1M (B) − p). Then u is a unitary in
M (B) satisfying Ad πB(u) ◦ τ1 = τ2.

The next goal will be to arrange that τ1(1A)= τ2(1A) ∈ Q(B) by twisting one
extension by an automorphism on B. For this purpose, we introduce the following notation.
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NOTATION 7.2. Let e : 0 →B→E
π−→A→ 0 be an extension of C∗-algebras where A

is unital, but E is not necessarily unital. Let

De := π−1(C1A)⊆E.

In the case where E is unital, then D= B̃ is the (forced) unitisation of B.

LEMMA 7.3. Let ei : 0 →Bi →Ei →Ai → 0 be extensions of C∗-algebras for i = 1, 2

with Busby maps τi : Ai → Q(Bi). Suppose that A1 and A2 are unital, that β : B1
∼=−→B2 is

an isomorphism, and let β : Q(B1)
∼=−→ Q(B2) be the induced isomorphism of corona alge-

bras. Then β ◦ τ1(1A1)= τ2(1A2) if and only if there is a ∗-homomorphism μ : De1 →De2

(necessarily unique and necessarily an isomorphism) making the diagram

0 �� B1

β

��

�� De1

μ

��

�� C �� 0

0 �� B2
�� De2

�� C �� 0

commute.

Proof. The Busby maps of the extensions in the above diagram are C � λ �→ λτi(1Ai)

so the result follows immediately from [10, Theorem 2.2].

When considering the ordered K-theory K+∗ (A)= (K+
0 (A),K1(A)) for unital C∗-

algebras A, we will often add the class of the unit to the invariant

K+,u
∗ (A) := (K+

0 (A), [1A]0,K1(A)).

Alternatively, we may consider the unital embedding j : C ↪→A. This gives an induced
diagram

j∗ : K+
∗ (C)→ K+

∗ (A). (7.2)

This diagram contains exactly the same information as K+,u∗ (A), thus motivating the
following construction.

Suppose e : 0 →B
ι−→E

π−→A→ 0 is an extension of C∗-algebras for which A is uni-
tal, but where E is not necessarily unital. We assume for convenience that 1A lifts to a
projection in E.

Again, we have a unital embedding j : C ↪→A, and we obtain the following pull-back
diagram:

0 �� B �� De� �

��

�� C

j

��

�� 0

0 �� B
ι �� E

π �� A �� 0,
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where De is as in Notation 7.2. Our invariant will be to apply K-theory with order and scale
to this diagram, thus obtaining the following commutative diagram:

K+,�
0 (B) �� K+,�

0 (De)

��

�� K+,�
0 (C)

j0
��

K+,�
0 (B)

ι0 �� K+,�
0 (E)

π0 �� K+,�
0 (A)

δ0

��
K1(A)

δ1

��

K1(E)
π1�� K1(B).

ι1��

We denoted this diagram by K̃+,�
six (e). Homomorphisms between such diagrams are defined

in the obvious way.
Suppose that ei : 0 →Bi →Ei →Ai → 0 are extensions of C∗-algebras for i = 1, 2

with Ai unital. Suppose that there is a commutative diagram

e1 : 0 �� B1

β

��

�� E1

η

��

�� A1

α

��

�� 0

e2 : 0 �� B2
�� E2

�� A2
�� 0

where all maps are ∗-homomorphisms, and α is unital. Then η(De1)⊆De2 and thus it
easily follows that (β, η, α) induces a homomorphism K̃+,�

six (e1)→ K̃+,�
six (e2).

In the cases we will be considering below, we assume that A is a unital UCT Kirchberg
algebra, B is a stable AF algebra, and E contains a full, properly infinite projection. Hence,
the order and scale can be ignored in K0(E) and K0(A), and the scale of K0(B) can be
ignored when considering K̃+,�

six (e).
We obtain our final classification result which is exactly Theorem B.

THEOREM 7.4. Let ei : 0 →Bi →Ei →Ai → 0 be full extensions of C∗-algebras for
i = 1, 2, such that A1 and A2 are unital UCT Kirchberg algebras, and B1 and B2 are
stable AF algebras. Then E1

∼=E2 if and only if K̃+,�
six (e1)∼= K̃+,�

six (e2).

Proof. Suppose E1
∼=E2. As the extension ei is full, as Ai is simple and Bi is stable, it

follows that Bi is the unique maximal ideal in Ei for i = 1, 2 (see Footnote 12). It follows
that the extensions e1 and e2 are isomorphic, and thus K̃+,�

six (e1)∼= K̃+,�
six (e2).

For the converse, suppose that K̃+,�
six (e1)∼= K̃+,�

six (e2), and let

φ∗ : K+,�
∗ (A1)

∼=−→ K+,�
∗ (A2), ψ∗ : K+,�

∗ (B1)
∼=−→ K+,�

∗ (B2),

ρ∗ : K+,�
∗ (E1)

∼=−→ K+,�
∗ (E2), θ0 : K+,�

0 (De1)
∼=−→ K+,�

0 (De2)

be a collection of isomorphisms inducing the isomorphism on K̃+,�
six . We first show

that we may assume that A=A1 =A2, B=B1 =B2, φ∗ = idK∗(A), ψ∗ = idK∗(B), that
τ1(1A)= τ2(1A), where τi is the Busby map of ei for i = 1, 2, and that θ0 = K0(μ) where
μ : De1 →De2 is the isomorphism provided by Lemma 7.3.

By the Kirchberg–Phillips theorem [19], [26], we may pick an isomorphism

α : A1
∼=−→A2 such that K∗(α)= φ∗.

As Dei is an extension of two AF algebras, it is itself an AF algebra by [8, Chapter 9].
Hence, by Elliott’s classification of AF algebras [13] we may pick an isomorphism
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μ : De1

∼=−→De2 such that K0(μ)= θ0. In particular, μ restricts to an isomorphism β : B1
∼=−→

B2 satisfying K0(β)=ψ0.
Forming the push-out extension β · e1 and the pull-back extension e2 · α, we obtain a

diagram identical to (5.6). By Lemma 7.3, we get

β ◦ τ1(1A1)= τ2(1A2)= τ2 ◦ α(1A1).

Let

μ(1) : De1

∼=−→Dβ·e1 , μ(2) : De2·α
∼=−→De2

be the induced isomorphisms, i.e. the restriction–corestriction of η(1) and η(2), respectively.
Now, it follows from (5.6) (by inverting the isomorphisms) that we obtain induced iso-

morphisms K̃+,�
six (β · e1)

∼=−→ K̃+,�
six (e1) and K̃+,�

six (e2)
∼=−→ K̃+,�

six (e2 · α). By composing these

isomorphisms with the already given isomorphism K̃+,�
six (e1)

∼=−→ K̃+,�
six (e2), it follows that

the compositions

K∗(α)−1 ◦ φ∗ ◦ K∗(idA1)
−1 = idK∗(A1), K∗(idB2)

−1 ◦ψ∗ ◦ K∗(β)−1 = idK∗(B2)

K∗(η(2))−1 ◦ ρ∗ ◦ K∗(η(1))−1, K0(μ
(2))−1 ◦ θ0 ◦ K0(μ

(1))−1

give rise to an isomorphism K̃+,�
six (β · e1)

∼=−→ K̃+,�
six (e2 · α). Moreover, observe that μ(0) :=

(μ(2))−1 ◦μ ◦ (μ(1))−1 is the unique (by Lemma 7.3) ∗-homomorphism making the
diagram

0 �� B2
�� Dβ·e1

μ(0)

��

�� C �� 0

0 �� B2
�� De2·α �� C �� 0

commute, and that K0(μ
(0))= K0(μ

(2))−1 ◦ θ0 ◦ K0(μ
(1))−1.

Therefore, without loss of generality, we may assume that A=A1 =A2, B=B1 =
B2, φ∗ = idK∗(A), ψ∗ = idK∗(B) that τ1(1A)= τ2(1A), and that that θ0 = K0(μ) where
μ : De1 →De2 is the map provided by Lemma 7.3 (with β = idB).

As B has real rank zero and K1(B)= 0, the projection τ1(1A) ∈ Q(B) lifts to
a projection p ∈ M (B) by [4, Corollary 3.16]. In particular, by identifying Ei with
A⊕τi,πB M (B) in the canonical way, 1A ⊕ p defines a projection both in E1 and in E2

since τ1(1A)= τ2(1A). Note that when identifying De1 and De2 in a canonical way with a
subalgebra of A⊕ M (B), then μ is simply the identity map. Hence, μ(1A ⊕ p)= 1A ⊕ p.
In particular, by commutativity of the diagram

K0(De1)
��

θ0=K0(μ)

��

K0(E1)

ρ0

��
K0(De2)

�� K0(E2),

which is part of K̃+,�
six (e1)→ K̃+,�

six (e2), it follows that ρ0([1A ⊕ p])= [1A ⊕ p].
By Theorem 6.5 it follows that 1A ⊕ p is a full, properly infinite projection in both E1

and E2. Moreover, pBp is a full and stable corner in B by Lemma 6.1. Let

ι : pBp ↪→B, ιi : (1A ⊕ p)Ei(1A ⊕ p) ↪→Ei

https://doi.org/10.1017/S0017089519000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089519000053


230 JAMES GABE AND EFREN RUIZ

for i = 1, 2 denote the inclusions, which are all inclusions of full, hereditary, C∗-
subalgebras in separable C∗-algebras and thus induce isomorphisms in K-theory. Since
ρ0([1A ⊕ p])= [1A ⊕ p] it follows that the map

K∗(ι2)−1 ◦ ρ∗ ◦ K∗(ι1) : K∗((1A ⊕ p)E1(1A ⊕ p))→ K∗((1A ⊕ p)E2(1A ⊕ p))

induces a congruence Ku
six(pe1p)≡ Ku

six(pe2p), where peip denotes the unital extension

0 → pBp → (1A ⊕ p)E1(1A ⊕ p)→A→ 0

for i = 1, 2.
Thus, by Proposition 5.8 there is an automorphism α ∈ Aut(A) such that pe1p and

pe2p · α= p(e2 · α)p are strongly unitarily equivalent. By Lemma 7.1 it follows that e1 and
e2 · α are strongly unitarily equivalent. As the extension algebra of e2 · α is isomorphic to
E2, it follows that E1

∼=E2 as desired.

REMARK 7.5. In a future paper [9], we compute the range of the invariant K̃+,�
six for

graph C∗-algebras with a unique, nontrivial ideal. This will be used to show that an exten-
sion of two simple graph C∗-algebras is again a graph C∗-algebra, provided that there are
no K-theoretic obstructions.
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