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For a system in which arrivals occur according to a Poisson process, we give a new
approach for using simulation to estimate the expected value of a random variable
that is independent of the arrival process after some specified time t+We also give
a new approach for using simulation to estimate the expected value of an increas-
ing function of independent uniform random variables+ Stratified sampling is a key
technique in both cases+

1. INTRODUCTION AND SUMMARY

In Section 2 we consider a model in which arrivals occur according to a Poisson
process, and we then present an efficient way of using stratified sampling to esti-
mate the expected value of a random variable whose mean depends on the arrival
process only through arrivals up to some specified time t+ In Section 3 we show
how to use stratified sampling to efficiently estimate the expected value of a non-
decreasing function of random numbers+

2. SYSTEMS HAVING POISSON ARRIVALS

Consider a system in which arrivals occur according to a Poisson process and sup-
pose that we are interested in using simulation to compute E @D# , where the value
of D depends on the arrival process only through those arrivals before time t+ For
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instance, D might be the sum of the delays of all arrivals by time t in a parallel
multiserver queuing system+ We suggest the following approach to using simula-
tion to estimate E @D# + First, with N~t ! equal to the number of arrivals by time t,
note that

E @D# � (
j�0

m

E @D 6N~t !� j #
e�lt~lt ! j

j!

� E @D 6N~t ! � m#�1 �(
j�0

m e�lt~lt ! j

j!
�+ (1)

Each run of our suggested simulation procedure generates an independent estimate
of E @D# + At each stage of a run, we will have a set S whose elements are arranged
in increasing value and which represents the set of arrival times+ For simplicity, we
will present our approach under the assumption that E @D 6N~t !� 0# can be easily
computed and also that D can be determined by knowing the arrival times along
with the service time of each arrival+ A run is as follows:

1+ Let N � 1+ Generate a random number U1 and let S � $tU1% +
2+ Suppose N~t !� 1, with the arrival occurring at time tU1+ Generate the ser-

vice time of this arrival and compute the resulting value of D+ Call this value
D1+

3+ Let N � N � 1+
4+ Generate a random number UN and add tUN in its appropriate place to the

set S so that the elements is S are in increasing order+
5+ Suppose N~t !� N, with S specifying the N arrival times; generate the ser-

vice time of the arrival at time tUN , and using the previously generated ser-
vice times of the other arrivals, compute the resulting value of D+ Call this
value DN +

6+ If N � m, return to Step 3+ If N � m, use the inverse transform method to
generate the value of N~t ! conditional on it exceeding m+ If the generated
value is m � k, generate k additional random numbers, multiply each by t,
and add these k numbers to the set S+ Generate the service times of these k
arrivals and, using the previously generated service times, compute D+ Call
this value D�m+

With D0 � E @D 6N~t !� 0# , the estimate from this run is

EST � (
j�0

m Dj e�lt~lt ! j

j!
� D�m�1 �(

j�0

m e�lt~lt ! j

j!
�+

Using the fact that the set of unordered arrival times, given that N~t ! � j, is dis-
tributed as a set of j independent uniform ~0, t ! random variables, it follows that the
preceding is an unbiased estimator of E @D# + Generating multiple runs and taking
the average value of the resulting estimates yields the final simulation estimator+
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We now show that EST has a smaller variance than does the raw simulation
estimator D+

Theorem 1:

Var~EST ! � Var~D!+

Proof: The quantity D can be simulated as follows:

1+ Generate the value of N ' , a random variable whose distribution is the same
as that of N~t ! condition to exceed m+ That is,

P $N ' � k%�
~lt !k0k!

(
k�m�1

`

~lt !k0k!

, k � m +

2+ Generate the values of A1, + + + ,AN ' , independent uniform ~0, t ! random
variables+

3+ Generate the values of S1, + + + ,SN ' , independent service time random
variables+

4+ Generate the value of N~t !, a Poisson random variable with mean lt+
5+ If N~t !� m, use the arrival times A1, + + + ,AN~t ! along with their service times

S1, + + + ,SN~t! to compute the value of D+
6+ If N~t !� m, use the arrival times A1, + + + ,AN ' along with their service times

S1, + + + ,SN ' to compute the value of D+

It is now easy to check, by conditioning on N~t !, that

EST � E @D 6N ',A1, + + + ,AN ' ,S1, + + + ,SN ' #+

The result now follows from the conditional variance formula+ �

Remarks:

1+ The use of Eq+ ~1! is the use of stratified sampling ~see @3# !, which has
been previously suggested when analyzing Poisson arrival systems ~see,
for instance, @1, p+ 228# !+ However, previous suggestions were to first esti-
mate E @D 6N~t ! � 1# by a sequence of independent runs; then to estimate
E @D 6N~t !� 2# by a new sequence of independent runs ~that are also inde-
pendent of the runs used to compute E @D 6N~t ! � 1# !, and so on+ This
differs from our idea of estimating all of the quantities E @D 6N~t !� j # , j �
1, + + + ,m, and E @D 6N~t ! � m# in a single run, sequentially making use of
the set of generated data values used to estimate E @D 6N~t ! � j # to speed
the estimation of E @D 6N~t ! � j � 1# , and so on+

2+ It should be noted that the variance of our estimator (j�0
m Dj e�lt~lt ! j0j! �

D�m~1 � (j�0
m e�lt~lt ! j0j!! is, because of the positive correlations intro-

duced by reusing the same data, larger than it would be if the Dj were inde-
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pendent estimators+ However, we believe that the increased speed of the
simulation will usually more than make up for this increased variance+

3+ When computing Dj�1, we can make use of quantities used in computing
Dj + For instance, suppose Di, j was the delay of arrival i when N~t !� j+ Then
if the new arrival time tUj�1 is the kth smallest of the new set S, then Di, j�1 �
Di, j for i � k+

4+ Other variance reduction ideas can be used in conjunction with our approach+
For instance, we can improve the estimator by using a linear combination of
the service times as a control variable+

It remains to determine an appropriate value of m+A reasonable approach might
be to choose m to make E @D 6N~t !� m# ~1 �(j�0

m e�lt~lt ! j0j!! sufficiently small+
Because Var~N~t !!� lt, a reasonable choice would be of the form m � lt � kMlt
for some positive integer k+ One can often bound E @D 6N~t ! � m# and use this
bound to determine the appropriate value of m+ For instance, suppose D is the sum
of the delays of all arrivals by time t in a single server system with mean service
time 1+ Then because this quantity will be maximized when all arrivals come simul-
taneously, we see that

E @D 6N~t !# � (
i�1

N~t !�1

i+

Because the conditional distribution of N~t ! given that it exceeds m will, when m is
at least five standard deviations greater than E @N~t !# , put most of its weight near
m � 1, we see from the preceding equation that one can reasonably assume that

E @D 6N~t ! � m#� ~m � 1!202+

Using that for a standard normal random variable Z ~see @2# !,

P~Z � x!� �1 �
1

x 2
�

3

x 4� e�x 202

cM2p
, x � 0,

we see, upon using the normal approximation to the Poisson, that for m � lt �
kMlt , we can reasonably assume that

E @D 6N~t ! � m#P $N~t ! � m%� ~m � 1!2
e�k 202

2kM2p
+

For instance, with lt � 103 and k � 6, the preceding upper bound is about 0+0008+

3. COMPUTING THE EXPECTED VALUE OF AN INCREASING FUNCTION

Suppose that we want to use simulation to compute E @g~U1, + + + ,Un!# ,where U1, + + + ,Un

are independent uniform~0,1! random variables and g is nondecreasing in each of
its coordinates+ Because of the monotonicity of g, ) i�1

n Ui will often be a good
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predictor of g in the sense that E @Var~g~U1, + + + ,Un !6) i�1
n Ui !# will be relatively

small+ Because of this,we suggest generating U1, + + + ,Un by first generating the value
of) i�1

n Ui and then generating U1, + + + ,Un conditional on the generated value of the
product+ In generating the value of ) i�1

n Ui on different simulation runs, we sug-
gest using stratified sampling+

To implement the preceding idea, we need to first show how to generate

) i�1
n Ui and how to generate U1, + + + ,Un conditional on) i�1

n Ui + Note the following:

~a! �ln~U1{{{Un! is a gamma~n,1! random variable+
~b! �ln~U1{{{Uj !, j � 1, + + + , n, can be regarded as the first j event times of a

Poisson process with rate 1+
~c! Given that the nth event of a Poisson process occurs at time t, the first

n � 1 event times are distributed as the ordered values of a set of n � 1
uniform~0, t ! random variables+

Now the generation can proceed as follows:

1+ Generate the value of T, a gamma random variable with parameters ~n,1!+
~T will equal �ln~U1{{{Un!+!

2+ Generate n �1 random numbers, V1, + + + ,Vn�1, and order them to obtain V~1!�
{{{ � V~n�1!+ ~So, TV~ j !� �ln~U1{{{Uj !+!

3+ Let V~0!� 0 and V~n!� 1, and set

Uj � e�T @V~ j !�V~ j�1! #, j � 1, + + + , n+

Let Gn denote the distribution function of a gamma random variable with param-
eters ~n,1!+ Suppose that we are planning to do m simulation runs+ Then on the kth
simulation run, a random number U should be generated and T should be taken to
equal Gn

�1~~U � k � 1!0m! ~i+e+, we use stratified sampling when generating the
successive values of T !+We should then follow Steps 2 and 3 of the preceding and
then for the values of Ui obtained in Step 3, compute g~U1, + + + ,Un!+ The average of
the values of g~U1, + + + ,Un! obtained in the m runs is then taken as the estimator of
E @g~U1, + + + ,Un!# +

Remarks:

1+ It follows from the fact that a gamma random variable with parameters ~n,1!
has the same distribution as does 1

2
_x2n

2 , where x2n
2 is a chi-squared random

variable with 2n degrees of freedom, that

Gn
�1~x! �

1

2
Fx2n

2
�1~x!,

where Fx2n
2 is the distribution function of a chi-squared random variable

with 2n degrees of freedom+ Approximations for the inverse of the chi-
square distribution function are readily available in the literature+
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2+ We suggest using Gn
�1~~k � 0+5!0m! as the value of T on the kth simulation

run; that is, rather than generating the value of a uniform random variable
on ~~k � 1!0m, k0m! to determine T, just use the value ~k � 0+5!0m+

3+ Another way to do the stratification is to choose r values 0 � a0 � a1 �
{{{ � ar � ar�1 � `+ Determine pi � P $ai�1 � T � ai %, i � 1, + + + , r � 1,
and then perform mpi of the m planned simulation runs with T simulated
conditional on its being in the interval ~ai�1,ai !+ This conditional value
can be simulated by using the rejection procedure based on an exponential
random variable that is conditioned to lie in the same interval+ Indeed,
even better is to do a small preliminary simulation to estimate the quan-
tities Var~g~U1, + + + ,Un!6ai�1 � T � ai !+ If si

2 , i � 1, + + + , r � 1, are the esti-
mates, then do a total of m~ pi si

20(j pj sj
2! of the runs conditional on

ai�1 � T � ai , either by using the inverse transform or the rejection method+
~If the inverse transform is used, then you should stratify within the sub-
intervals+! The final estimate is (j�1

r�1 pj PXj , where PXj is the average of the
simulation runs done conditional on ai�1 � T � ai +

4+ If g~u1, + + + ,un! is only increasing in k of its variables, say in u1, + + + ,uk, then
we can generate U1, + + + ,Un on successive runs by using stratified sampling
on ) i�1

k Ui , generating U1, + + + ,Uk conditional on the value of this product
and generating Ui , i � k, as independent uniforms+

5+ If g~u1, + + + ,un! is increasing in some of its variables and decreasing in the
others, then we can still utilize the preceding idea+ For if g is, say, increasing
in its first r variables and decreasing in its final n � r, then

E @g~U1, + + + ,Un !# � E @g~U1, + + + ,Ur ,1 � Ur�1, + + + ,1 � Un !# ,

which shows that we can just work with the increasing function h~u1 + + + ,un!�
g~u1, + + + ,ur ,1 � ur�1, + + + ,1 � un!+
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