
Math. Struct. in Comp. Science (2007), vol. 17, pp. 407–437. c© 2007 Cambridge University Press

doi:10.1017/S096012950700610X Printed in the United Kingdom

Graph rewriting for the π-calculus†

FABIO GADDUCCI

Dipartimento di Informatica, Università di Pisa,

largo Pontecorvo 3c, I-56127 Pisa, Italy

Email: gadducci@di.unipi.it.

Received 4 November 2005; revised 8 September 2006

We propose a graphical implementation for (possibly recursive) processes of the π-calculus,

encoding each process into a graph. Our implementation is sound and complete with respect

to the structural congruence for the calculus: two processes are equivalent if and only if they

are mapped into graphs with the same normal form. Most importantly, the encoding allows

the use of standard graph rewriting mechanisms for modelling the reduction semantics of

the calculus.

1. Introduction

Historically, the theory of graph rewriting has its roots in the late 1960s as the conceptual

extension of the theory of formal languages dealing with structures that are more general

than strings. The extension was motivated by a wide range of interests, from pattern

recognition to data type specification. Nowadays, the emphasis has shifted from the

generative aspects of the formalism and moved toward what could be called the ‘state

transformation’ view: a graph is considered as a data structure on which a set of rewriting

rules may implement local changes. Hence, the reduction mechanism itself expresses a

basic computational paradigm, where graphs describe the states of an abstract machine

and rewrites express its possible evolutions. The interest is confirmed by the large diffusion

of visual specification languages, such as the standard uml, and the use of graphical tools

for their manipulation.

To some extent, this is also the intuition behind the introduction of process algebras,

such as Milner’s ccs (Milner 1989): they represent specification languages for concurrent

systems, which are considered as structured entities interacting via some synchronisation

mechanism. A (possibly distributed) system is just a term over a signature, under the

hypothesis that each operator represents a basic feature of the system. The reduction

mechanism (accounting for the interaction between distinct components of a system) is

usually described operationally, according to the so-called sos-style (Plotkin 1981), where

the rewriting steps are inductively defined by a set of inference rules, which are driven

by the structure of terms. Novel extensions of the process algebras paradigm involved

calculi with higher-order features, such as process mobility. Here systems are terms, which

† Research partly supported by the EU within the project HPRN-CT-2002-00275 SegraVis (Syntactic and

Semantic Integration of Visual Modelling Techniques); and within the FETPI Global Computing, project

IST-2004-16004 SEnSOria (Software Engineering for Service-Oriented Overlay Computers).

https://doi.org/10.1017/S096012950700610X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950700610X

F. Gadducci 408

carry a set of associated names , and usually provided with a structural congruence, which

expresses basic observational properties; the reduction mechanism may also change the

topology of a system, which formally amounts to a change in the associated set of names.

Recent years have seen many proposals concerning the use of graph rewriting techniques

for the simulation of reduction in process algebras, in particular for their mobile

extensions. Typically, the use of graphs allows us to avoid the problems associated with

the implementation of reduction over the structural equivalence, such as, for example, the

α-conversion of bound names. Most of these proposals follow the same pattern. First, a

suitable graphical syntax is introduced, and its operators used to implement processes.

Then ad hoc graph rewriting techniques are usually developed to simulate the reduction

semantics. The resulting graphical structures are normally inherently hierarchical (that

is to say, roughly speaking, each node/edge is itself a structured entity, and possibly a

graph). From a practical point of view, this is unfortunate, since the restriction to standard

graphs would allow the reuse of existing theoretical techniques and practical tools.

Building on previous work on the syntactical presentation of graphs and graph rewriting

(Corradini and Gadducci 1999a; Corradini and Gadducci 1999b; Gadducci et al. 1999)

and using formalisms adopted in the algebraic specification community for modelling

flow graphs (Căzănescu and Ştefănescu 1992), in this paper we propose an encoding

of (possibly recursive) processes of the π-calculus into (typed) graphs, and prove its

soundness and completeness with respect to the original reduction semantics. The use

of unstructured (that is, non-hierarchical) graphs allows the reuse of standard graph

rewriting theory and tools for the simulation of the reduction semantics of the calculus,

such as the double-pushout (dpo) approach and the associated concurrent semantics

(which allows the simultaneous execution of independent reductions, and thus implicitly

defines a non-deterministic concurrent semantics (Baldan et al. 1999)).

Our proposal is expressive enough to encode the full calculus, which includes non-

deterministic choices. In general, we consider our use of unstructured graphs to be

an advance on most of the other implementations of the π-calculus based on graph

rewriting, such as König (1999) and Montanari et al. (1999), and those based on more

general graphical formalisms, such as Milner’s bigraphs (Milner 2001).

Our representation is reminiscent of the work on the charm (Corradini et al. 1994) and

on process graphs (Yoshida 1994). In the former, graphs are represented algebraically,

with a term structure that is analogous to the normal form presentation of structurally

congruent π-processes originally proposed by Milner (and rightly so, since they are both

inspired by the seminal work of Berry and Boudol on the cham (Berry and Boudol 1992)).

In the latter, an embedding of processes into non-hierarchical graphs is proposed, albeit

in a context more reminiscent of interaction nets than of standard graph rewriting. The

same considerations hold for reaction graphs, underlying the work on χ-calculus (Fu 1999),

which in turn shares many assumptions with the fusion calculus. It is noteworthy that solo

diagrams (Laneve et al. 2001), the graphical formalism associated with the fusion calculus,

uses hyper-graphs techniques that are similar to ours: the main difference concerns the

treatment of recursive processes, as well as our interest in also capturing a syntactic

operator for non-deterministic choice.

https://doi.org/10.1017/S096012950700610X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950700610X

Graph rewriting for the π-calculus 409

The paper has the following structure. Section 2 introduces the finite fragment of

the calculus, its syntax and reduction semantics. Section 3 recalls some basic definitions

concerning (typed) graphs, and, in particular, introduces an extension, graphs with inter-

faces, and two operations on them, sequential and parallel composition. Section 4 briefly

recalls some standard theory and tools of the dpo approach to graph transformation.

These operators on graphs are needed in Section 5, where a graphical encoding of

finite processes is introduced. Our presentation is purely set-theoretical, but its algebraic

description, using the already mentioned results on the syntactical presentation of graphs

(as surveyed in Bruni et al. (2002) and Corradini and Gadducci (1999a)), can be obtained

along the lines of Gadducci and Montanari (2002). The graphical encoding for processes is

further analysed, and a set of graph rewriting rules for recovering a normal form for each

graphical encoding of a process is given in Section 6. Then, Section 7 presents the main

result of the paper, namely, that reduction semantics can be simulated using the graph

reduction mechanism on the set of graphs obtained by the encoding. Then, Section 8

illustrates some ongoing applications of the graphical mechanism devised in the paper.

Finally, Section 9 extends the encoding to recursive processes.

This article is a considerably revised and improved version of Gadducci (2003).

2. The finite fragment of the π-calculus

This section gives a brief introduction to the finite fragment of the π-calculus, its structural

equivalence and the associated reduction semantics.

Definition 2.1 (Processes). Let N be a set of names, ranged over by x, y, w, . . .; and let

∆ = {x(y), xy | x, y ∈ N} be the set of prefix operators, ranged over by δ. A process P is

a term generated by the (mutually recursive) syntax

P ::= M, (νx)P , P1 | P2

M ::= 0, δ.P , M1 + M2 .

We let P ,Q, R, . . . range over the set Proc of processes, and M,N,O . . . range over the set

Sum of summations.

We assume the standard definitions for the set of free names of a process P , denoted

fn(P), and for α-convertibility, with respect to the restriction (νy)P and input operators

x(y).P : in both cases the name y is bound in P and can be freely α-converted. Using these

definitions, the behaviour of a process P is described as a relation over abstract processes,

that is, a relation obtained by closing a set of basic rules under structural congruence.

Definition 2.2 (Reduction semantics). The reduction relation for processes is the relation

Rπ ⊆ Proc× Proc, which is closed under the congruence ≡ induced by the set of axioms

https://doi.org/10.1017/S096012950700610X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950700610X

F. Gadducci 410

P | Q = Q | P P | (Q | R) = (P | Q) | R P | 0 = P

M + N = N + M M + (N + O) = (M + N) + O M + 0 = M

(νx)(νy)P = (νy)(νx)P (νx)(P | Q) = P | (νx)Q for x �∈ fn(P) (νx)0 = 0

Fig. 1. The set of structural axioms.

in Figure 1, inductively generated by the following set of axioms and inference rules:

x(y).P + M | xw.Q + N → P {w/y} | Q

P → Q

(νx)P → (νx)Q

P → Q

P | R → Q | R

where P → Q means that 〈P ,Q〉 ∈ Rπ .

The first rule denotes the communication between two processes, which may occur

within a non-deterministic context. The process xw.Q is ready to communicate the

(possibly global) name w along the channel x; it then synchronises with process x(y).P ,

and the local name y is thus substituted by w on the residual process P . The two latter

rules simply state the closure of the reduction relation with respect to the operators of

restriction and parallel composition.

Apart from the lack of the prefix operator τ.P , the syntax and operational semantics

for the finite fragment of the calculus just presented coincide with the initial chapter of

Sangiorgi and Walker (2001) (see Definition 1.1.1, Table 1.1 and Table 1.3).

3. Graphs and their extension with interfaces

In this section we recall a few definitions concerning (typed hyper-)graphs and their

extension with interfaces – see Bruni et al. (2002) and Corradini and Gadducci (1999a)

for a more detailed introduction.

Definition 3.1 (Graphs). A (hyper-)graph is a four-tuple 〈V , E, s, t〉 where V is the set of

nodes, E is the set of edges and s, t : E → V ∗ are the source and target functions. A

(hyper-)graph morphism is a pair of functions 〈fV , fE〉 preserving the source and target

functions.

The corresponding category is denoted by Graph. However, we often consider typed

graphs (Corradini et al. 1996), that is, graphs labelled over a structure that is itself a

graph.

Definition 3.2 (Typed graphs). Let T be a graph. A typed graph G over T is a graph

|G|, together with a graph morphism tG : |G| → T . A morphism between T -typed graphs

f : G1 → G2 is a graph morphism f : |G1| → |G2| consistent with the typing, that is, such

that tG1
= tG2

◦ f.

https://doi.org/10.1017/S096012950700610X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950700610X

Graph rewriting for the π-calculus 411

The category of graphs typed over T is denoted T -Graph: it coincides with the slice

category Graph ↓ T . In the following, a chosen type graph T is assumed.

In order to give an inductive definition of the encoding for processes, we need to provide

operations over typed graphs. The first step is to equip them with suitable ‘handles’ for

interacting with an environment.

Definition 3.3 (Graphs with interfaces). Let J,K be typed graphs. A graph with input

interface J and output interface K is a triple G = 〈j, G, k〉 for G a typed graph and

j : J → G, k : K → G the input and output morphisms.

Let G, H be graphs with the same interfaces. An interface graph morphism f : G ⇒ H

is a typed graph morphism f : G→ H between the underlying graphs that preserves the

input and output morphisms.

We use J
j
−→ G

k← K to denote a graph with interfaces J and K . With an abuse of

notation, we sometimes refer to the image of the input and output morphisms as inputs

and outputs, respectively. More importantly, in the following we often refer implicitly to

a graph with interfaces as the representative of its isomorphism class, still using the same

symbols to denote it and its components.

In order to define our encoding for processes, we introduce two operators on graphs

with discrete interfaces, that is, such that their set of edges is empty.

Definition 3.4 (Two operators). Let G = I
j
−→ G

k← K and G
′ = K

j ′

−→ G′
k′← J be graphs

with discrete interfaces. Their sequential composition is the graph with discrete interfaces

G ◦G
′ = I

j ′′

−→ G′′
k′′←J for G′′ the disjoint union G � G′, modulo the equivalence on nodes

induced by k(x) = j ′(x) for all x ∈ NG′ , and j ′′, k′′ the uniquely induced arrows.

Let G = J
j
−→ G

k←K and H = J ′
j ′

−→ H
k′←K ′ be graphs with discrete interfaces such that

tk(y) = tk′ (y) for all y ∈ Nk ∩ Nk . Their parallel composition is the graph with discrete

interfaces G⊗H = (J � J ′)
j ′′

−→ V
k′′← (K ∪K ′) for V the disjoint union G�H , modulo the

equivalence on nodes induced by k(y) = k′(y) for all y ∈ NK ∩NK ′ , and j ′′, k′′ the uniquely

induced arrows.

Intuitively, the sequential composition G ◦ G
′ is obtained by taking the disjoint union

of the graphs underlying G and G
′, and gluing the outputs of G with the corresponding

inputs of G
′. Similarly, the parallel composition G⊗H is obtained by taking the disjoint

union of the graphs underlying G and H, additionally gluing the outputs K of G with

the corresponding outputs K ′ of H. The two operations are defined on ‘concrete’ graphs,

even if the result is independent of the choice of the representatives, up-to isomorphism†.

A graph expression is a term over the syntax containing all graphs with discrete

interfaces as constants, and parallel and sequential composition as binary operators. An

† While the sequential operator corresponds to categorical composition, the parallel operator only recalls

the tensor product of monoidal catgeories. A more standard definition for the latter operator is given, for

example, in Corradini and Gadducci (1999a). Our choice, however, allows for a compact presentation of the

graphical encoding in the following sections.

https://doi.org/10.1017/S096012950700610X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950700610X

F. Gadducci 412

Lp :

mL

��

(1)

K
r ��l��

mK

��

(2)

R

mR

��

G D
r∗

��
l∗

�� H

Fig. 2. A direct derivation.

expression is well formed if all occurrences of those operators are defined for the interfaces

of their arguments, according to Definition 3.4; its interfaces are computed inductively

from the interfaces of the graphs occurring in it, and its value is the graph obtained by

evaluating all operators in it.

4. Rewriting graphs (with interfaces)

This section recalls the basic tools of the double-pushout (dpo) approach to (typed

hyper-)graph transformation, as presented in Corradini et al. (1997) and Drewes et

al. (1997), and it introduces its extension to graphs with interfaces.

Definition 4.1 (Graph production). A T -typed graph production is a pair of arrows 〈l :

K → L, r : K → R〉 in T -Graph such that l is mono. A T -typed graph transformation

system (gts) G is a tuple 〈T , P , π〉 where T is the type graph, P is a set of production

names and π is a function mapping each name to a T -typed production.

A production π(p), often called a rewriting rule, is usually denoted by a span L
l←− K

r−→
R, and is often simply represented by the name p.

Definition 4.2 (Derivation). Let p : L
l←− K

r−→ R be a T -typed production. A match of

p in a T -typed graph G is a morphism mL : L → G. A direct derivation from G to H

via production p at a match mL is a diagram as depicted in Figure 2, where (1) and (2)

are pushout squares in T -Graph. In this case we write p/m : G =⇒ H , for m the triple

〈mL,mK,mR〉, or just simply G =⇒ H .

We use Π : G =⇒∗ H to denote a sequence of direct derivations, which are constrained

in the expected way, and =⇒G for the reduction relation associated with a gts G.

Operationally, applying a production p to a graph G consists of three steps. First, the

match mL : L→ G is chosen, providing an occurrence of L in G. Then, all the items of G

matched by L − l(K) are removed, leading to the context graph D. If D is well defined,

and the resulting square is indeed a pushout, the items of R− r(K) are added to D, further

coalescing those nodes and edges identified by r, obtaining the derived graph H .

4.1. Track function and interface morphisms

We now turn our attention to the well-known notion of track function, which is a partial

function identifying the items before and after a derivation.

https://doi.org/10.1017/S096012950700610X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950700610X

Graph rewriting for the π-calculus 413

R1

mR1

��

K1

r1��
l1 ��

mK1

��

L1

mL1

��

��
���

L2

mL2
��

�����

K2

l2��
r2 ��

mK2

��

R2

mR2

��
H1 D1

r∗1

��
l∗1

�� G D2
l∗2

��
r∗2

�� H2

Fig. 3. Possible critical pair for direct derivations p1/m1 and p2/m2.

Definition 4.3 (Track function). Let p be a production and p/m : G =⇒ H be a direct

derivation, as in Figure 2. The track function tr(p/m) associated with the derivation is the

partial function r∗ ◦ (l∗)−1 : G→ H .

We use the notion of trace to lift derivations to graphs with interfaces.

Definition 4.4 (Graph with interfaces derivation). Let G = R
r⇒ G

v⇐ V and H = R
r′⇒

H
v′⇐ V be graphs with the same interfaces, and let p/m : G =⇒ H be a direct derivation

such that the trace function tr(p/m) is total on v(V) and r(R). We say p/m : G =⇒ H is a

direct derivation of graphs with interfaces if r′ = tr(p/m) ◦ r, that is, if r′ is obtained by

the composition of r with the track function tr(p/m) (and similarly for v′).

Hence, a derivation between graphs with interfaces is a direct derivation between the

underlying graphs such that inputs and outputs are preserved.

We also use the track function to define the notion of confluence for gts’s. To this end,

we consider its obvious extension tr(Π) to a derivation Π, possibly of length zero.

Definition 4.5 (Strong (local) confluence). Let G be a gts. The associated reduction

relation =⇒G is strongly confluent if for any two direct derivations p1/m1 : G =⇒ H1

and p2/m2 : G =⇒ H2 as in Figure 3, there exist two derivations Π1 : H1 =⇒∗ H and

Π2 : H2 =⇒∗ H such that tr(Π1) ◦ tr(p1/m1) = tr(Π2) ◦ tr(p2/m2).

Confluence is thus implied by the standard notion of parallel independence, as we

will make explicit in Appendix A. Note, however, that the notion is stronger than the

corresponding property in, for example, term rewriting, since the preservation of the track

function implies not only that the two derivations reach the same graph, but that the

items of the starting graph are preserved. In particular, this also implies that the interface

morphisms are preserved.

5. From processes to graphs with interfaces

The aim of this section is to present a methodology for encoding processes into graphs.

The first step in our simulation of the π-calculus is to search for a suitable type graph,

and then to exploit the composition operators defined previously to obtain an inductive

encoding.

The type graph is defined in Figure 4. Note that all edges have at most one node in

the source, which is connected by an incoming tentacle; on the other hand, the nodes in

the target list are always enumerated in a clockwise direction, starting from the single

https://doi.org/10.1017/S096012950700610X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950700610X

F. Gadducci 414

par

����

c

��

sum

��
		

•

��
��

��

��

op

1

��
2

��

0�� �

�� ��

��

ν

ν

��

�� ◦

Fig. 4. The type graph (for op ∈ {in, out}).

incoming tentacle, unless otherwise specified by an enumerating label. For example, the

edge ν has the node • as source, and the node list 〈•, ◦〉 as target. The edge op actually

stands as a concise representation for two edges, namely in and out, with the same source

and target: more precisely, they have the node � as source and the node list 〈•, ◦, ◦〉 as

target, as specified by the enumerating labels 0, 1 and 2.

The type graph is used to model processes syntactically, and our encoding corresponds

to the usual construction of the tree associated with a term of an algebra: names are

interpreted as variables, so they are mapped to leaves of the tree and can be shared

safely. Intuitively, a tree with a node of type • or � as root corresponds to a process or

summation, respectively, whilst each node of type ◦ basically represents a name. The set

of edges contains an element for each operator of the calculus: it also includes the edge c

for ‘coercing’ the occurrence of a summation within a process context (a standard device

from algebraic specifications, see, for example, Goguen and Meseguer (1992)); and the

edge ν, a restriction without continuation, which will be needed later.

A further step is the characterisation of a class of graphs such that all processes can

be encoded into an expression containing only those graphs as constants, and parallel

and sequential composition as binary operators. Thus, we consider names p, s �∈ N: a

first set actually includes an element for each edge of the type graph, and is presented in

Figure 5 (except for the constant sum, which corresponds to the non-deterministic choice

and is similar to par). Note also that par is a graph with interfaces ({p}, {p} � {p}) and

the disjoint union is conventionally represented by the pair {p1, p2}.
An additional set of constants is presented in Figure 6: these do not correspond to any

operator of the signature, but represent some ‘house-keeping’ operations, which will be

needed for our formal presentation of the encoding.

The constant newx is the unique graph with interfaces (�, {x}) and with a bijection

as output morphism, and similar characterisations hold for the other constants. Now,

for a set Γ of names, we use idΓ and newΓ as shorthands for
⊗

o∈Γ ido and
⊗

o∈Γ newo,

• p��

s �� � �� op

��

��

◦ x��

◦ y��

p �� • �� ν ��

• p��

◦ x��

p �� • �� ν �� ◦ x��

p �� • �� par ��

��

• p1��

• p2��

p �� • �� c �� � s��

Fig. 5. Graphs opx,y (with op ∈ {in, out}); νx and νx; and par and c (top to bottom and left to right).

https://doi.org/10.1017/S096012950700610X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950700610X

Graph rewriting for the π-calculus 415

◦ x��

x �� ◦ x��

p1

��
p �� • p2��

x �� ◦

s �� �

Fig. 6. Graphs newx and idx; ∆p; and 0x and 0s (top to bottom and left to right).

�M�pΓ = c ◦ �M�sΓ
�(νy)P �pΓ = νw ◦ (�P {w/y}�p{w}�Γ ⊗ idw) ◦ (0w ⊗ idΓ) for w �∈ Γ

�P | Q�pΓ = par ◦ (�P �pΓ ⊗ �Q�pΓ)

�0�sΓ = 0s ⊗ newΓ

�xy.P �sΓ = outx,y ◦ (�P �pΓ ⊗ id{x,y})

�x(y).P �sΓ = inx,w ◦ (�P {w/y}�p{w}�Γ ⊗ id{x,w}) ◦ (0w ⊗ idΓ) for w �∈ Γ

�M + N�sΓ = sum ◦ (�M�sΓ ⊗ �N�sΓ)

Fig. 7. The encodings for processes.

respectively: they are well defined, as the ⊗ operator is associative. Finally, the encoding of

processes into trees, which map each finite process into a graph expression, is introduced

in the following definition.

Definition 5.1 (Encoding for processes). Let P be a process and Γ be a set of names such

that fn(P) ⊆ Γ. The (mutually recursive) encodings �P �pΓ and �M�sΓ, which map a process

P into a graph, are defined by structural induction according to the rules in Figure 7

(where we assume the standard definition for name substitution).

As we have already observed, the encoding above merely puts the standard construction

of a tree from a term into a graph expression, while solving sensible issues like α-

conversion of bound names, which are denoted by ◦ nodes that are not in the image

of the variable morphism. For example, the tree associated with the graph expression

�x(z).zw.0 | xx.0�p{x,w} is represented in Figure 8. In the following, for any process P , its

tree encoding is the graph �P �pfn(P)
, simply denoted as �P �p.

The mapping is well defined in the sense that the value of the resulting graph expression

is independent of the choice of the name w in the rules for restriction and input prefix;

moreover, given a process P and a set of names Γ such that fn(P) ⊆ Γ, the encoding

�P �pΓ is a graph with interfaces ({p},Γ).

The mapping is not surjective, since there are graphs with interfaces ({p},Γ) that are

not in the image of the encoding. As an example, consider the graph in Figure 9, which

represents a name-sharing situation that is not allowed in the process construction, where

the name y, which should be local to the process (possibly) occurring below the input

prefix x(y), is instead shared and made visible globally.

6. Process equivalence from graph rewrites

The previous section introduced a graphical encoding for processes. The aim of this

section is to show that an alternative encoding of a process can be obtained from its tree

https://doi.org/10.1017/S096012950700610X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950700610X

F. Gadducci 416

p �� • �� par ��

��

• �� c �� � �� in
0 ��

2

��1

��

• �� c �� � �� out ��

��

��

•

◦ w��

• �� c �� � �� out ��

��
��

• ◦

◦ x��

Fig. 8. The tree encoding for x(z).zw.0 | xx.0.

•

p �� • �� c �� � �� out ��

��
��

• �� c �� � �� in ��

��

◦ x��

◦ ◦ y��

Fig. 9. A graph with a forbidden name-sharing situation.

encoding via a set of transformation rules, which is tailored to the need to recast process

equivalence in terms of graph isomorphism.

So, we introduce the gts Rn
π , which contains the five rules depicted in Figures 10, 11

and 12. We will now describe the two rules for removing the occurrences of the parallel and

choice operators, while coalescing their continuations, represented in Figure 10. Consider

the leftmost: its three components are represented by three graphs, separated by a vertical

line. The span of the graph morphisms is not presented explicitly: since the morphism

on the left-hand side has to be mono and the right-hand side only contains a node, the

span is uniquely chosen (and the morphism on the right-hand side coalesces the three

nodes).

Another rule is needed to detach restriction, by substituting the occurrence of the ν

operator with ν: it is shown in Figure 11.

The final two rules are needed to remove the useless occurrences of the restriction and

coercion operators, and are shown in Figure 12. Note that the occurrence of, for example,

a restriction operator is useless if the name it binds does not occur in the process: the

rule implements this exactly since it cannot be applied unless the node representing the

name is isolated.

Proposition 6.1 (Confluent encoding). The reduction relation =⇒Rn
π

induced by the gts

Rn
π is strongly confluent.

The proof is straightforward since the rules are pairwise parallel independent (see

Appendix A). First, they share no edge. Moreover, they usually preserve nodes, the only

exception being the rule for removing restriction and coercion. However, the rule for

removing, for example, the coercion operator (left-hand side of Figure 12) can never form

a critical pair with the rule for removing the sum operators (left-hand side of Figure 10),

since in order for the former to be applied, the unique node � must not be connected to

any other edge (according to the so-called dangling condition, see, for example, Corradini

et al. (1997)).

https://doi.org/10.1017/S096012950700610X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950700610X

Graph rewriting for the π-calculus 417

•

• �� par

��

��

•

•

•

•

•

�

� �� sum

��

��

�

�

�

�

�

Fig. 10. The rules for removing the parallel (left-hand side) and sum (right-hand side) operators.

•

• �� ν

��

��

◦

•

•

◦

• �� ν

��
◦

Fig. 11. The rule for substituting the restriction operator.

• �� ν �� ◦ • • • �� c �� � • •

Fig. 12. The rules for removing the restriction (left-hand side) and coercion (right-hand side)

operators.

p �� • ��

��

c �� � �� in
0 ��

2

��1

��

• �� c �� � �� out ��

��

��

•

◦ w��

c �� � �� out ��

��
��

• ◦

◦ x��

Fig. 13. Normal form of the tree encoding for x(z).zw.0 | xx.0.

We use nfp(G) to denote the normal form associated with a graph with interfaces G,

which is unique up-to isomorphism.

Theorem 6.1 (Encoding preserves congruence). Let P , Q be processes and Γ be a set of

names such that fn(P) ∪ fn(Q) ⊆ Γ. Then, P ≡ Q (that is, the two processes are equated

by the set of axioms in Figure 1) if and only if nfp(�P �pΓ) = nfp(�Q�pΓ).

The proof can be found in Appendix B.

Consider the process P = x(z).zw.0 | xx.0 again. Its tree encoding was presented in

Figure 8 (left-hand side), and Figure 13 depicts its normal form, which is obtained by

removing the only par edge and coalescing three nodes via an application of the rule in

Figure 10. Note that its normal form is, for example, the same as P | 0, which is obtained

by an additional application of the rule for removing the parallel operator together with

an application of the rule in Figure 12 (right-hand side) for removing the useless coercion

operator.

https://doi.org/10.1017/S096012950700610X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950700610X

F. Gadducci 418

p �� • �� go p �� • �� gp s �� � �� gs

Fig. 14. Graphs go, gp and gs (from left to right).

go

• ��

��

��

c �� � �� in
2

��
1

��

0 �� •

◦2

c �� � �� out ��
��

��

• ◦1

◦3

go

•

��

� •

◦2

� • ◦1

◦3

go

•

��

gs

�

��

◦1

◦23

Fig. 15. The rule pπ for synchronisation in Ra
π .

7. Reductions versus graph rewrites

In this section we introduce the gts Rπ , and show how it simulates the reduction semantics

for processes, and the removal of those sub-processes discarded after a reduction step.

First, we will enrich the signature with three additional edges: Figure 14 gives a direct

presentation of the associated constants needed in the graph expressions.

The edge go is just a syntactical device for detecting the ‘entry’ point of the computation,

thus avoiding the need to perform reductions below the outermost prefix operators; whilst

the edges gp and gs are needed for detecting those parts of the graphical encoding (rooted

in by either a process node or a sum node, hence the acronyms for garbage processes and

garbage summations) that must be discarded after the reduction has taken place, thus

implementing a garbage collection phase.

Now, the gts Ra
π for simulating the reduction steps contains just one rule, shown in

Figure 15. The action of the rule on those nodes representing names is described by using

an explicit label, so the ◦ nodes identified by 2 and 3 are coalesced by the rule. The node

identifiers are of course arbitrary: they correspond to the actual elements of the set of

nodes and are just used to characterise the span of functions.

It seems noteworthy that just one rule is needed to recast the reduction semantics

for the π-calculus. First, the structural rules are taken care of by the fact that graph

morphisms allow the embedding of a graph within a larger graph, thus simulating the

closure of reduction with respect to contexts. Second, no distinct instance of the rule is

needed: a particular instance of the process x(y).P +M | xw.Q+R is chosen to represent

the synchronisation, while graph isomorphism takes care of the closure with respect to

structural congruence, and the interfaces of the renaming of free names.

Finally, note that, even if the search for a match can be considered a global operation,

rule application itself is a local operation, coalescing a few nodes and removing four

edges.

Some components of a process may be discarded during the reduction. This forces

us to perform some additional steps for garbage collection, basically restricting to the

graph reachable from the source node of the unique go edge. This is implemented by

https://doi.org/10.1017/S096012950700610X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950700610X

Graph rewriting for the π-calculus 419

gs

� ��

��

in ��

��

��• ◦

◦

gs

�

��

• ◦

◦

gs gp

�

��

•

��

��

◦

ν̂ �� ◦

Fig. 16. The rule for the garbage collection of input in Rg
π .

gs

� ��

��

out ��

��

��• ◦

◦

gs

�

��

• ◦

◦

gs gp

�

��

•

��

◦

◦

Fig. 17. The rule for the garbage collection of output in Rg
π .

gp

• ��

��

c �� �

gp

•

��

�

gp gs

•

��

�

��
gs

�

��

� �

Fig. 18. The rules for the garbage collection of coercion and of summation nodes in Rg
π .

g

• ��

��

ν̂ �� ◦

g

•

��
g

•

��
gp

•

��

� �

Fig. 19. The rules for the garbage collection of restriction and of process nodes in Rg
π (for

g ∈ {g0, g3}).

adding explicit rules for removing useless edges. The gts Rg
π thus contains seven rules: in

particular, the rules for the garbage collection of to-be-removed prefixes are depicted in

Figure 16 and Figure 17; the rule for coercion is depicted in Figure 18 (left-hand side),

and the similar rules for restriction are presented in Figure 19 (left-hand side).

Proposition 7.1 (Confluent garbage collection). The reduction relation =⇒Rg
π

induced by

the gts Rg
π is strongly confluent.

As with Proposition 6.1, the proof is straightforward since the rules are pairwise parallel

independent. All the possibly shared edges are preserved, except for the rules collecting

sum and process nodes: once again, the dangling condition assures us that, for example,

the rules for removing a prefix (Figures 16 and 17) may never form a critical pair with

the rule for removing a summation node (right-hand side of Figure 18).

The intuition is that after each reduction step, the garbage collection is performed by

first removing all the input and output edges; then, those ◦ nodes representing bound

names that are not referred to anymore by the process are also removed; and, finally, the

https://doi.org/10.1017/S096012950700610X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950700610X

F. Gadducci 420

isolated sum and process nodes are discarded. Note the introduction of a restriction edge

after the removal of an input edge: since each node is bound at most once, this ensures

that the node is removed with the rule for the restriction operator after all the edges

using that node (that is, all the input and output edges using the associated name) are

discarded.

Let nfg(G) denote the normal form associated with a graph with interfaces G, which is

unique up-to isomorphism. Moreover, let the symbol �P �Γ denote the graph with interfaces

∆p ◦ (�P �pΓ ⊗ go), which can be further simplified to �P � whenever Γ = fn(P). We now

state the main theorems of the paper, which concern the soundness and completeness of

our encoding with respect to the reduction semantics.

Theorem 7.1 (Encoding preserves reductions). Let P , Q be processes and Γ be a set of

names such that fn(P) ⊆ Γ. If P → Q, then Ra
π entails a direct derivation nfp(�P �Γ) =⇒ G

via an edge-preserving match, and nfg(G) = nfp(�Q�Γ).

Intuitively, a reduction step is simulated by applying a rule on an enabled event, that

is, by finding a match covering a sub-graph with the go operator on top. Then, the

garbage collection phase removes those items corresponding to the sub-processes that are

discarded after the resolution of non-deterministic choices.

Theorem 7.2 (Encoding reflects reductions). Let P be a process and Γ be a set of names

such that fn(P) ⊆ Γ. If Ra
π entails a direct derivation nfp(�P �Γ) =⇒ G via an edge-

preserving match, then there exists a process Q such that P → Q and nfg(G) = nfp(�Q�Γ).

As noted earlier, the correspondence holds since the presence of the go operator forces

the match to be applied only to operators on top, thus forbidding the occurrence of a

reduction inside the outermost prefix operators.

The restriction to edge-preserving matches is necessary in order to ensure that the two

edges of the rule labelled by c can never be merged together. Intuitively, allowing for

their coalescing would correspond to the synchronisation of two summations, that is, as

allowing for a reduction x(y).P + xw.Q→ P {w/y} | Q. Instead, it is necessary to allow for

the coalescing of nodes, in order to recover those synchronisations with output prefix xx,

as in Figure 20 below.

The proofs can be found in Appendices C and D, respectively.

Example 7.1 (Rule application). Let P be the process x(z).zw.0 | xx.0. The associated

tree encoding �P �p is depicted in Figure 8, and the graph with interfaces nfp(�P �p) is

represented in Figure 13. The graph with interfaces nfp(�P �) is concisely represented on

the left of Figure 20: those nodes in the image of either the input or the output morphism

are so denoted by the label (either p or one of the free names {x, w}), while the use of

integers as labels on the remaining nodes is used to denote the track function associated

with the derivation.

The application of a rewriting step, resulting in the graph on the right, simulates the

transition x(z).zw.0 | xx.0 → xw.0. In fact, after removing the � node labelled by 1 (and

2), and the connected gs edge, the resulting graph with interfaces is nfg(�xw.0�).

https://doi.org/10.1017/S096012950700610X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950700610X

Graph rewriting for the π-calculus 421

go

p• ��

��

��

c �� 1� �� in

2

��
1

��

0 �� •1 �� c �� �3 �� out ��

��

��

•3

◦w

c �� 2� �� out ��

��
��

•2 ◦1

◦x

go

p
1
•2 ��

��

c �� �3 �� out ��

��

��

•3

gs ◦w

1
2�

��

◦1x

Fig. 20. A rewriting step, simulating the transition x(z).zw.0 | xx.0→ xw.0.

8. Some remarks on the use of the encoding

In this section we collect together some of the applications that have been devised so

far by exploiting the technique for simulating process reduction, by means of a graphical

encoding, that we have proposed and instantiated in this paper for the π-calculus.

8.1. An implementation technique

The graphical technique proposed in this paper proceeds in two steps.

— First, the tree encoding for processes is considered (Section 5), and a gts Rn
π for

recovering a normal form nfp(�P �pΓ) for the graphical encoding of a process P is given

(Section 6).

— Then, rules for simulating process reduction, as well as garbage collection, are

considered (Section 7).

The normal form nfp(�P �) plays a pivotal role with respect to process reduction, and

the theorems of Section 7 reflect this fact: indeed, in previous papers this normal form was

characterised explicitly by means of a suitable encoding (Gadducci and Montanari 2001;

Gadducci 2003). Nevertheless, the tree encoding suggests an alternative approach to the

simulation of the reduction semantics, as made explicit by the proposition below.

Proposition 8.1 (Confluent implementation). Let Ri
π be the gts obtained as the union of

the gts’s Rn
π and Rg

π . Then, the reduction relation =⇒Ri
π

induced by the gts Ri
π is strongly

confluent.

This result is easily proved. In fact, all the rules of this new gts are pairwise parallel

independent, with the exception of the rules for removing coercion and restriction:

Figure 12 (left) and (right) versus Figure 19 (left) and Figure 18 (left), respectively.

However, consider the removal of the coercion operator: the application of the rule

of Figure 12 can be simulated by applying in sequence, from left to right, the rules

of Figure 18, so the possible critical pair arising from the rules removing coercion is

eliminated. A similar consideration also holds for the removal of the restriction operator,

and thus strong confluence immediately follows.

Thus, the gts Rπ , obtained as the union of Ri
π and Ra

π , can be considered as a graphical

implementation of the reduction semantics for the π-calculus, turning the congruence

closure into a set of rewriting rules: the gts Rπ allows at the same time the normalisation

https://doi.org/10.1017/S096012950700610X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950700610X

F. Gadducci 422

of a process and the execution of a reduction step, as well as the garbage collection of its

discarded components.

Proposition 8.2 (Compatible reductions). Let P be a process, �P � =⇒∗ G be a derivation in

Rπ and p be a rule in Ri
π such that there exist two direct derivations p/m1 : G =⇒ H1 and

pπ/m2 : G =⇒ H2 for pπ the rule in Ra
π . Then there exist two direct derivations pπ/m3 :

H1 =⇒ H and p/m4 : H2 =⇒ H such that tr(pπ/m3) ◦ tr(p1/m1) = tr(p/m4) ◦ tr(pπ/m2).

Consider a graph G that is reachable from the encoding of a process. The key remark

is that there can be no occurrence in G of either a gs or a gp edge in the sub-graph that

is rooted in the source node of the unique occurrence of the go edge. Hence, any two

direct derivations as above starting from G have to be parallel independent.

A corresponding compatibility result cannot be recovered for the syntactical represent-

ation of processes: indeed, the aci (associativity, commutativity and identity) axioms of

the two binary operators make it difficult to obtain a rewriting system performing process

reduction and implementing in a confluent way the laws of structural congruence.

8.2. On concurrent reductions

The role of the interface graph K in a rewriting rule (see Figure 2) is to characterise in the

graph to be rewritten those items that are read but not consumed by a direct derivation.

Such a distinction is important when considering concurrent derivations. Concurrent

derivations are defined as equivalence classes of concrete derivations up to so-called shift

equivalence (see, for example, Corradini et al. (1997)) identifying (as for the analogous

and better-known permutation equivalence of the λ-calculus) those derivations that differ

only in the scheduling of independent steps. Roughly speaking, the equivalence states the

interchangeability of two direct derivations p1/m1 : G =⇒ H and p2/m2 : H =⇒ I if they

act either on disjoint parts of G, or on parts that are in the image of the interface graphs.

Thus, our encoding may be exploited for the definition of a concurrent reduction

semantics of the π-calculus. The presence of the operator go on the interface graph allows

for the simultaneous execution of more than one reduction, since its sharing implies

that more than one pair of (distinct) input and output resources may synchronise. The

removal of the two edges labelled by c ensures that simultaneous reductions must not

include resources that occur inside a subgraph whose root is a summation node.

The idea of exploiting the concurrency features offered by the graphical encod-

ing of processes (of the ambient calculus) was originally suggested in Gadducci and

Montanari (2001). However, most of the classical results in the literature, such as the

characterisation of shift-equivalent derivations by means of graph processes, were restricted

to gts’s with linear rules, that is, such that both morphisms of the span are injective. An

extension of the classical concurrent semantics for dpo, in order to include the possibility

of non-linear rules, has been considered in Gadducci and Montanari (2005), with an

application to the solo calculus. More recently, a new formalism, graph with equivalences,

has been proposed as a means for recovering an event structures semantics for those gts’s

that are well suited to modelling process calculi (Baldan et al. 2006).

https://doi.org/10.1017/S096012950700610X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950700610X

Graph rewriting for the π-calculus 423

8.3. Verifying spatial logics

A recent series of papers advocated spatial logics as a suitable formalism for expressing

behavioural and spatial properties of system specifications, which are often given as

processes of a calculus. Besides the temporal modalities of the Hennessy–Milner tradition,

these logics include operators for reasoning about the structural properties of a system.

For example, the connective void represents the (processes structurally congruent to

the) empty system, and the formula φ1|φ2 is satisfied by those processes that can be

decomposed into two parallel components satisfying φ1 and φ2, respectively. Moreover,

these logics come equipped with mechanisms for reasoning about the names occurring in

a system.

There are several approaches to the verification of spatial properties for logics for

either process calculi (see, for example, Caires (2004) and Caires and Cardelli (2003),

and the references therein) or for other data structures. The results for the graphical

encoding presented in this paper have been exploited to introduce a novel approach

to the verification of (finite) spatial formulae (Caires 2004) for π-calculus specifications.

First, an algorithm for model checking spatial formulae based on the analysis of the

(normal form of the) graphical representation of processes was presented (Gadducci and

Lluch Lafuente 2006). An encoding of (possibly recursive) formulae in a spatial logic

for processes into formulae in a temporal graph logic (a modal extension of Courcelle’s

monadic second-order logic (Courcelle 1997)) was then considered: the encoding is correct,

that is, a process verifies a spatial formula exactly when its graphical representation verifies

the translated formula (Gadducci and Lluch Lafuente 2007).

8.4. Distilling labelled transition systems

Reduction semantics has the advantage of conveying the semantics of calculi with

relatively few compact rules. Its main drawback is poor compositionality, in the sense that

the dynamic behaviour of arbitrary stand-alone terms (like x(y).P) can be interpreted

only by inserting them in the appropriate context (that is, [] | xw.Q) where a reduction

may take place. In other words, reduction semantics is often less suitable when specific

behaviours other than confluence (such as termination or reachability) are of interest. In

fact, simply using the reduction relation to define equivalences between components (for

example, in terms of bisimulation) fails to give a compositional framework, and in order

to recover a suitable notion of equivalence, it is often necessary to verify the behaviour

of single components under any viable execution context.

A standard way out of the impasse, by reducing the complexity of such analyses, is to

express the behaviour of a computational device using a labelled transition system (lts).

Provided the label associated with a component evolution faithfully express how that

component might interact with the whole of the system, it would be possible to analyse

in vitro the behaviour of a single component without considering all contexts. Thus, a

‘well-behaved’ lts represents a fundamental step towards a compositional semantics of

the computational device.

https://doi.org/10.1017/S096012950700610X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950700610X

F. Gadducci 424

The graphical techniques proposed in the paper have been successfully employed to

synthesise suitable lts’s for process calculi. In fact, graphs with interfaces are amenable to

the synthesis mechanism based on borrowed contexts (bc’s), which were proposed by Ehrig

and König (Ehrig and König 2004), and which are in turn an instance of relative pushouts,

which were originally introduced by Milner and Leifer (Leifer and Milner 2000). The bc

mechanism allows the effective construction of an lts that has graphs with interfaces

as both states and labels, and such that the associated bisimilarity is automatically a

congruence. The approach has been initially tested against the π-calculus (Gadducci and

Montanari 2005); and it has been fully exploited for the simpler ccs to prove that the

bisimilarity on (encodings of possibly recursive) processes obtained via bc’s coincides with

the standard strong bisimilarity for that calculus (Bonchi et al. 2006).

9. Dealing with recursion

The introduction of a replication operator, denoted by !, is now almost considered the

standard approach for dealing with infinite processes. Intuitively, the behaviour of a

process !P coincides with the behaviour of a (possibly) unbound number of instances of

P itself, that is, P | P | Unfortunately, it seems hard to describe the behaviour of

processes including replication within our graphical encoding, since this operator, even

in the input-guarded !x(y).P version, implicitly represents a global operation involving

the duplication of necessarily unspecified sub-processes, so it is hard to model via graph

rewriting, which is an eminently local process.

Nevertheless, it should be obvious that our framework allows for the modelling of

recursive processes, that is, of processes defined using constant invocation, which is

equivalent to the use of replication (as originally stated in Milner (1993, page 212)). Each

process is compiled into a gts, and new rules are added for the simulation of the unfolding

steps in addition to the two rules synthesised by Figure 15.

9.1. On recursive processes

In this section we present recursive processes and their reduction semantics – see, with

minor variations, Sangiorgi and Walker (2001, Section 3.2).

Definition 9.1 (Recursive process expressions). Let N be a set of names ranged over by

x, y, w, . . .; let ∆ = {x(y), xy | x, y ∈ N} be the set of prefix operators ranged over by δ;

and let I be a set of process identifier ranged over by A,B, C,

A (recursive) process expression P is a term generated by the (mutually recursive)

syntax

P ::= M, (νx)P , P1 | P2, A〈x1, . . . , xn〉

M ::= 0, δ.P , M1 + M2 .

We let P ,Q, R, . . . range over the set RProc of process expressions, and M,N,O, . . . range

over the set RSum of summation expressions.

https://doi.org/10.1017/S096012950700610X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950700610X

Graph rewriting for the π-calculus 425

We assume the standard definitions for the set of free names of a process expression (just

stating that fn(A〈x1, . . . , xn〉) = {x1, . . . , xn}), and for (capture avoiding) substitution and

α-conversion.

Definition 9.2 (Recursive processes). Let N be a set of names ranged over by x, y, w, . . .,

and I be a set of process identifiers ranged over by A,B, C,

A recursive process φ is a finite set of equations (at most one for each process identifier

A) of the following kind

A(x1, . . . , xn) =φ PA

where the xi are distinct names and PA is a process expression with

fn(PA) ⊆ {x1, . . . , xn} .

Intuitively, an equation corresponds to a procedure definition (introducing formal

parameters within round brackets), and each identifier in a process expression represents

a procedure invocation (actual parameters within angle brackets).

As with finite processes, we may define the behaviour of a process φ as a relation over

abstract process expressions, though the reduction relation is now parametric with respect

to the recursive process.

Definition 9.3 (Recursive reduction semantics). The reduction relation for a recursive

process φ is the relation Rφ
π ⊆ RProc × RProc, which is closed under the congruence ≡

induced by the set of axioms in Figure 1, that is inductively generated by the following

set of axioms and inference rules:

x(y).P + M | xw.Q + N →φ P {w/y} | Q

P →φ Q

(νx)P →φ (νx)Q

P →φ Q

P | R →φ Q | R

A(x1, . . . , xn) =φ PA

A〈y1, . . . , yn〉 →φ PA{y1/x1
, . . . ,yn /xn}

where P →φ Q means that 〈P ,Q〉 ∈ Rφ
π .

9.2. From recursive processes to graphs

In the definition of reductions semantics given in the previous section, a different reduction

system was associated with each recursive process. It then seems natural that, in order

to encode recursive processes into graphs, we associate a distinct graph transformation

system with each process to simulate its behaviour.

We now extend the type graph by adding an edge An for each equation identifier A and

natural number n with the node • as source and n outgoing tentacles reaching the node

◦. The resulting type graph is, of course, infinite, but the set of edges with different types

occurring in each recursive process is actually finite.

https://doi.org/10.1017/S096012950700610X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950700610X

F. Gadducci 426

◦ x1��

p �� • �� An

��

��

... ...

◦ xn��

Fig. 21. The graph with interfaces Ax1 ,...,xn .

go

p• ��

��

A1

��
◦x

go

p•

��

◦x

go

p• ��

��

c �� 1� �� in ��
��

��

•1 �� A1
�� ◦y

◦x

Fig. 22. The rule p
φ
A for A(x) =φ x(y).A〈y〉.

We must also extend the class of graphs to be used as constants in order to simulate

process expressions by graph expressions. More precisely, we need graphs like the one

depicted in Figure 21, which, intuitively, represent A〈x1, . . . , xn〉.
Remember that newΓ is a shorthand for

⊗
o∈Γ newo for a set of names Γ. The encoding

of process expressions into graphs is then introduced in the following definition.

Definition 9.4 (Encoding for process expressions). Let P be a process expression and Γ

be a set of names such that fn(P) ⊆ Γ. The graph encoding �P �pΓ, which maps a process

expression P into a graph, is given by extending the encoding of Definition 5.1 with the

following rule:

�A〈x1, . . . , xn〉�pΓ = Ax1 ,...,xn ⊗ newΓ .

The mapping is well defined, and, given a set of names Γ, the encoding �P �pΓ of a

process expression P is a graph (actually, a tree) with interfaces ({p},Γ). It is still sound

and complete, as stated by the proposition below, which extends Proposition 6.1.

Proposition 9.1. Let P , Q be process expressions and Γ be a set of names, such that

fn(P) ∪ fn(Q) ⊆ Γ. Then, P ≡ Q if and only if nfp(�P �pΓ) = nfp(�Q�pΓ).

The result follows from Theorem 6.1: a process identifier behaves as an additional

constant since it is ininfluent with respect to the laws of structural congruence.

9.3. From recursive processes to graph transformation systems

We introduce for each recursive process φ the gts Rφ
π , which extends Ra

π , described in

Section 7, by adding an unfolding rule p
φ
A for each equation A(x1, . . . , xn) =φ PA in φ.

Intuitively, the production is given by restricting the span

Ax1 ,...,xn ←− go⊗ newΓ −→ nfp(�PA�Γ)

for Γ = {x1, . . . , xn} to the underlying graphs. Consider, for example, a process φ containing

the equation A(x) =φ x(y).A〈y〉: the unfolding rule p
φ
A is shown in Figure 22.

https://doi.org/10.1017/S096012950700610X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950700610X

Graph rewriting for the π-calculus 427

go

p•

��

��

◦x

B1

��

go

p•

��

◦x

go

p•

��

��

◦x

c �� 2� �� out

��

��

��

•2 �� B1

��

Fig. 23. The rule p
φ
B for B(x) =φ xx.B〈x〉.

go

p• ��

��

��

A1

��
◦x

B1

��

go

p• ��

��

��

c �� 1� �� in ��
��

��

•1 �� A1
�� ◦y

◦x

c �� 2� �� out ��

����

•2 �� B1

��

go

1
2•p ��

��

��

A1

��
gs ◦yx

1
2�

��

B1

��

Fig. 24. Unfolding �A〈x〉 | B〈x〉� to �x(y).A〈y〉 | xx.B〈x〉�, then synchronising.

Now, we add to Rg
π a new rule for each process identifier, which is used to remove it

whenever a gp edge is attached to the source of the identifier: the resulting gts, which is

still denoted Rg
π , is also strongly confluent.

We can then extend our soundness and completeness results to recursive processes.

Proposition 9.2 (Encoding the reductions). Let φ be a recursive process, P be a process

expression and Γ be a set of names such that fn(P) ⊆ Γ.

Let Q be a process expression. If P →φ Q, then Rφ
π entails a direct derivation

nfp(�P �Γ) =⇒ G via an edge-preserving match, and nfg(G) = nfp(�Q�Γ).

For the other direction, if Rφ
π entails a direct derivation nfp(�P �Γ) =⇒ G via an

edge-preserving match, there exists a process expression Q such that P →φ Q and

nfg(G) = nfp(�Q�Γ).

As with Proposition 9.1, the result is a consequence of Theorems 7.1 and 7.2.

Example 9.1 (Mapping a recursive process). Consider the process expression P = A〈x〉 |
B〈x〉, for the process φ defined by

A(x) =φ x(y).A〈y〉 B(x) =φ xx.B〈x〉.

The unfolding rule p
φ
B is presented in Figure 23.

How is the reduction P →φ P simulated? The graph on the left of Figure 24 represents

nfp(�P �). The graph in the centre represents the situation after the (possibly simultaneous)

application of both the unfolding rules p
φ
A and p

φ
B . Now, an application of the rule for

synchronisation does the trick, giving the graph on the right: after the garbage collection

phase, the resulting graph is isomorphic to the initial state.

https://doi.org/10.1017/S096012950700610X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950700610X

F. Gadducci 428

10. Conclusions and further work

In this paper we have presented an encoding of (possibly recursive) processes of the

π-calculus into (typed hyper-)graphs, and have proved that it is sound and complete with

respect to the original reduction semantics.

The key technical point is the use of nodes as place-holders for names, and, in particular,

the use of a graph morphism to represent the free names occurring in a process. Our

solution avoids the need for any encapsulation in the encoding of processes, and it allows us

to capture the full extent of the calculus, including recursion and non-deterministic choice.

Moreover, the use of unstructured graphs allows the reuse of standard graph rewriting

theory and tools for simulating the reduction semantics of the calculus. We consider this

an advance on most of the other approaches for the graphical implementation of calculi

with name mobility (such as Milner’s bigraphs (Milner 2001)), where ad hoc mechanisms

for graph rewriting have to be developed.

Our presentation of the finite fragment of the π-calculus is reminiscent of the encoding

for mobile ambients in Gadducci and Montanari (2001). This fact strengthens our belief

that any calculus with name mobility may find a presentation within our formalism along

the lines of the encodings in these two papers. The calculus should contain a parallel

operator that is associative, commutative and with an identity; also, its operational

semantics should be reduction-like (that is, via unlabelled transitions), and the rules

should not substitute a free name for another, so that name substitution is handled by

node coalescing. The mechanism is reminiscent of name fusion, and hence the resemblance

of our graphical encoding to solo diagrams.

Our encoding of process reduction represents a starting point, and we plan to test

its efficiency by using it as a preprocessing step in one of the many existing tools for

implementing graph rewriting. On the theoretical side, we have sketched out a list of

ongoing applications in Section 8: in particular, we plan to continue the study of the

observational equivalences induced on processes by the encoding according to the relative

pushouts approach.

Appendix A. Parallel independence

This appendix introduces the classical notion of parallel independence, and states its

connection with strong confluence. It is a mild generalisation of Plump (2005, Section 3.3).

Definition A.1 (Parallel independence). Let p1/m1 : G =⇒ H1 and p2/m2 : G =⇒ H2 be

two direct derivations as in Figure 25. These derivations are parallel independent if there

exists an independence pair amongst them, that is, two graph morphisms i1 : L1 → D2 and

i2 : L2 → D1 such that l∗2 ◦ i1 = mL2
and l∗1 ◦ i2 = mL1

.

Intuitively, two derivations as in Figure 25 are parallel independent if they act on

disjoint items of the graph G, or at least on items that are simply read, and thus not

deleted, by any of the two rule applications. The proposition below is a classical result

relating parallel independence to rule sequentialisation (see, for example, Corradini et al.

(1997)).

https://doi.org/10.1017/S096012950700610X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950700610X

Graph rewriting for the π-calculus 429

R1

mR1

��

K1

r1��
l1 ��

mK1

��

L1

mL1

��

��
��� ��

L2

mL2
��

�����

K2

l2��
r2 ��

mK2

��

R2

mR2

��
H1 D1

r∗1

��
l∗1

�� G D2
l∗2

��
r∗2

�� H2

Fig. 25. Parallel independence for p1/mL1
: G =⇒ H1 and p2/mL2

: G =⇒ H2.

Proposition A.1 (Confluence from parallel independence). Let p1/m1 : G =⇒ H1 and

p2/m2 : G =⇒ H2 be two direct derivations as in Figure 25 such that they are parallel

independent with independence pair i1 : L1 → D2 and i2 : L2 → D1. Then there exists a

graph H and two derivations p2/m
∗
2 : H1 =⇒ H with match r∗2 ◦ i2 and p1/m

∗
1 : H2 =⇒ H

with match r∗1 ◦ i1 such that tr(p2/m
∗
2) ◦ tr(p1/m1) = tr(p1/m

∗
1) ◦ tr(p2/m2).

We say that two rules are parallel independent if for any two possible matches, the

corresponding direct derivations are parallel independent, and a gts is parallel independent

if its productions are pairwise parallel independent. It is then clear, thanks to the result

above, that the reduction relation in a parallel independent gts is strongly confluent.

Proposition A.2 (Confluent reductions). If G is a parallel independent gts, the associated

reduction relation =⇒G is strongly confluent.

Appendix B. Process equivalence versus graph isomorphism

In this appendix we provide a proof sketch of Proposition 6.1 of Section 5, which links

finite processes and graphs with interfaces. The correspondence itself is split into two

parts: soundness is proved, basically, by induction on the tree encoding proposed in

Definition 5.1, and completeness is shown by analysing the structure of the graphs in the

image of the tree encoding, and of their normal forms.

We begin by stating a pair of useful lemmas.

Lemma B.1. Let P , Q be processes. If P ≡ Q, then fn(P) = fn(Q).

The next lemma proves that it is enough to restrict attention to encodings with respect

to the set of free names of a process.

Lemma B.2. Let P be a process and Γ be a set of names such that fn(P) ⊆ Γ. Then,

�P �pΓ = �P �p ⊗ newΓ.

The result above is proved by induction on the cardinality of Γ. The key point, which is

proved by induction on the encoding of P , is that for each x ∈ Γ, the name x is mapped

into an isolated node if and only if x �∈ fn(P).

The pivotal lemma below states that derivations are preserved under closure with

respect to graph contexts, which, intuitively, are defined as graph expressions ‘with a hole’.

Lemma B.3. Let G a graph with discrete interfaces and C[−] be a graph context such

that the graph expression C[G] is well defined. If Rπ entails a direct derivation G =⇒ H,

then it also entails a direct derivation C[G] =⇒ C[H].

https://doi.org/10.1017/S096012950700610X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950700610X

F. Gadducci 430

Sketch of proof. The proof is by induction on C[−], that is, on the number of

composition operators occurring in it. Let G = I⇒G⇐J be a graph with interfaces,

p : L ← K → R be a production and mL : L → G be a match. Clearly, this induces a

match from L to the graphs underlying the compositions G ◦H1 and G⊗H2 for any pair

H1, H2.

Moreover, if the match induces a derivation p/m : G =⇒ H, the derivation can be lifted

to G ◦ H1 and G ⊗ H2. This is because a derivation must preserve the interfaces, so no

composition can let a dangling condition occur: should a rule remove, for example, a

node (such as the rule for the garbage collection of coercion on the right-hand side of

Figure 12), then that node does not occur in the interface, hence it cannot interact with

the context, and thus remains isolated after the composition. The shape of the target of

the derivation can be proved, by checking the construction, to be H ◦ H1 and H ⊗ H2,

respectively.

The lemmas above are used to infer the following result.

Corollary B.1. Let P be a process and Γ be a set of names such that fn(P) ⊆ Γ. Then

nfp(�P �pΓ) = nfp(�P �p)⊗ newΓ.

This corollary tells us that in order to prove soundness, it is enough to restrict attention

to the set of names occurring free in a process.

Proposition B.1. Let P , Q be processes. If P ≡ Q, then nfp(�P �p) = nfp(�Q�p).

Sketch of proof. We need to prove that the axioms in Figure 1 are preserved by the

reduction in normal form of the tree encoding. First, note that α-conversion is intuitively

verified since bound names are mapped into internal nodes (that is, nodes that are not in

the image of the variable function) and these nodes are identity-less, up-to isomorphism,

in graphs with interfaces.

The core of the proof then proceeds by structural induction on processes to show

that whenever two processes are identified by an axiom, they can be rewritten to the

same graph. For all the axioms, the pattern to be followed is the same: first, the graph

expression associated with a process by the tree encoding is manipulated, thus highlighting

the left-hand side of a rule; then, Lemma B.3 is applied.

As an example, consider the law P | 0 = P . By construction, �P | 0�p coincides with

par ◦ (�P �p⊗ �0�pfn(P)
), and the latter part is encoded as c◦ (0s⊗newfn(P)). Now, the value

of the latter expression is isomorphic to the value of (c ◦ 0s) ⊗ newfn(P), so, thanks to

Lemma B.2 and the associativity and commutativity of ⊗, we obtain the graph expression

par ◦ (�P �p⊗ (c ◦0s)). Now, c ◦0s can be rewritten to 0p (the obvious graph with interfaces

({p},�)) using the rule for removing coercion, hence, by Lemma B.3, we obtain the graph

expression par ◦ (�P �p ⊗ 0p). Analogously, the removal of the par edge results in the

expression ∆p ◦ (�P �p ⊗ 0p), whose value is isomorphic to �P �p.

The soundness of the remaining laws is proved similarly.

https://doi.org/10.1017/S096012950700610X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950700610X

Graph rewriting for the π-calculus 431

The combination of the two results above implies that the soundness part of Theorem 6.1

holds. The completeness result is more difficult to prove, and we need to introduce two

further technical lemmas. The first restates a well-known normal form for processes.

Lemma B.4 (Normal forms). Let P be a process and ≡ be the congruence induced by the

set of axioms in Figure 1. Then, P is equivalent, according to ≡, to a process of the shape

(νx1) . . . (νxn)(M1 | . . . |Mm) such that all xj ’s are different names, {x1, . . . , xn} ⊆
⋃

i fn(Mi)

and each summation Mi has the shape δi1 .Pi1 + . . . + δik .Pik .

Now, thanks to the soundness of the encoding, it is enough to prove completeness for

the normal forms, that is, that if two processes are mapped to graphs with interfaces with

the same normal form (with respect to Rn
π), then their normal forms as processes are also

the same, modulo renaming of bound names and the associativity and commutativity

axioms of the parallel and non-deterministic choice operators.

Lemma B.5. Let P be a process. If Rn
π entails a derivation �P �p =⇒ G, the graph with

interfaces G satisfies the single output property: the underlying graph is a (hyper-)tree,

only sharing ◦ leaves; the input (the node in the image of p) has no predecessor; and the

outputs (the nodes in the image of fn(P)) have no successors.

Hence, the graph G is connected and acyclic, the input and target functions are jointly

surjective and the output and source functions are jointly injective. Even if the normal

forms for those graphs with interfaces in the image of the tree encoding could be described

more precisely (additional constraints involve, for example, the node in the target of those

edges labelled by restriction), this is enough for our purposes.

Sketch of proof. The property is clearly true for all the graph constants used in the

tree encoding, and it is easy to see that it holds for the graph expressions resulting from

the tree encoding: it is always preserved by the parallel composition operators, since the

interfaces are discrete; and by case inspection it can be verified that it is preserved also by

all the occurrences of the sequential composition operator. Hence the lemma holds since

all the rules in Rn
π also preserve the property.

Note now that the normal form of a process is essentially unique since the orderings

of the restriction and parallel and sequential composition operators are irrelevant.

Consequently, we will denote the process (νx1) . . . (νxn)(M1 | . . . | Mm) by the shorthand

(νΓ)
⊎m

i=1 Mi for the set of names Γ = {x1, . . . , xn}.
We can now give a sketch of the completeness part. For more general completeness

results on term-like presentations of graphical structures, see Bruni et al. (2002), Corradini

and Gadducci (1999a) and Gadducci et al. (1999), in particular, see, for example, Corradini

and Gadducci (1999a, Lemma 22).

Proposition B.2. Let P and Q be processes. If nfp(�P �p) = nfp(�Q�p), then P ≡ Q.

Sketch of proof. Let P and Q be processes and (νΓP)
⊎m

i=1 Mi and (νΓQ)
⊎o

j=1 Ni be

their respective normal forms. Consider the tree encodings �P �p and �Q�p.

https://doi.org/10.1017/S096012950700610X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950700610X

F. Gadducci 432

Note that the graph with interfaces νw rewrites, according to the rule in Figure 11, to

the value of the expression ∆p ◦ (idp ⊗ νw). By repeated applications, �P �p rewrites to

[∆p ◦ (idp ⊗ νx1
)] ◦ . . . ◦ [∆p ◦ (idp ⊗ νxn)] ◦G ◦ (0xn ⊗ idfn(P)∪{x1 ,...,xn−1}) ◦ . . . ◦ (0x1

⊗ idfn(P))

for G the value of �
⊎m

i=1 Mi�fn(P)∪ΓP
. First, note that the latter part of the expression

has the same value of 0ΓP
⊗ idfn(P). So, let ∆k

p be the unique graph with interfaces

({p}, {p1, . . . , pk}): the former part of the expression then has the same value as ∆n+1
p ◦

(idp ⊗ νΓP
). A similar characterisation holds for the rewrites of par into ∆p, so we finally

obtain the graph expression

∆n+m
p ◦

(
νΓP
⊗

m⊗
i=1

�Mi�fn(P)∪ΓP

)
◦ (0ΓP

⊗ idfn(P)) .

Now, since nfp(�P �p) and nfp(�Q�p) denote isomorphic graphs, they have the same

interfaces, hence fn(P) = fn(Q). Furthermore, there must be a bijective correspondence

between the sets of edges attached to the image of the input p, so also ΓP and ΓQ have

the same cardinality (hence, they are the same, since their identity is irrelevant) and the

(normal forms of) P and Q have the same number of summations in parallel.

Hence, the result relies inductively on the proof that summations mapped to isomorphic

graphs are equated by the structural congruence. The general result then holds by

structural induction on the depth of the normal form of a process.

Combined with Lemma B.3, the propositions above imply Theorem 6.1. Finally, note

that Proposition 9.1, concerning processes expressions, is also a corollary, since process

identifiers are just additional constants that may occur in a graph expression.

Appendix C. From reductions to rewrites

This appendix contains the proof of the first main result of the paper, Theorem 7.1,

which relates process reductions to graph rewrites. By exploiting the correspondence

between processes and tree encodings shown in the previous section, we could rely on the

correspondence between graph rewrites and their algebraic presentation, as proved, for

example, in Corradini and Gadducci (1999b, Theorem 4.9). We prefer instead to provide

the sketch of a direct proof.

So, let ∆s and ∆x,y denote the constant graphs with interfaces ({s}, {s1, s2}) and

({x}, {x, y}), respectively, obviously corresponding to ∆p; let news denote the constant

graph with interfaces (�, {s}), corresponding to newx; and let �M�gsΓ denote the graph

expression ∆s ◦ (gs⊗ �M�sΓ) for each summation M, enriching the tree encoding with a gs

edge and obviously corresponding to �P �Γ.

Proposition C.1. Let R be the process x(y).P + M | xw.Q + N. Then, Ra
π entails the

derivation nfp(�R�) =⇒ nfp(�P {w/y} | Q�fn(R))⊗ [news ◦ nfp(�M + N�gsfn(R)
)].

Sketch of proof. The proof has the following pattern: first, a graph expression cor-

responding to the left-hand side of the rule in Ra
π is chosen; then, a graph expression

corresponding to the application of the rule to the given graph expression is computed;

https://doi.org/10.1017/S096012950700610X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950700610X

Graph rewriting for the π-calculus 433

finally, we show how the left-hand side occurs in the encoding �R�, much as in the proof

of Proposition B.1, and then apply Lemma B.3.

So, consider a graph expression corresponding to the left-hand side of the rule in Ra
π

and such that the source of the go occurs in the input interface, and all the remaining

nodes occur in the output interface, namely,

L = ∆p ◦ (go⊗ ∆p) ◦ (G⊗H)

for

G = c ◦ ∆s ◦ (ids ⊗ inx,y)

and

H = c ◦ ∆s ◦ (ids ⊗ outx,w) .

The application of the rule with the identity match results in the value of

R = [∆p ◦ (go⊗ ∆p)]⊗ [news ◦ ∆s ◦ (gs⊗ ∆s)]⊗ newx ⊗ (neww ◦ ∆w,y) .

Consider the graphical encoding for R: it can be reduced by the par and sum rules in

Rn
π into the value of the expression ∆p ◦ (go⊗ ∆p) ◦ (G′ ⊗H

′), for

G
′ = c ◦ ∆s ◦ {�M�sfn(R) ⊗ [inx,y ◦ (�P �p{y}∪fn(R)

⊗ id{x,y}) ◦ (0y ⊗ idfn(R))]}

(and similarly for H
′). Manipulating G

′, we get the graph expression

G ◦ {�M�sfn(R) ⊗ [(�P �p{y}∪fn(R)
⊗ id{x,y}) ◦ (0y ⊗ idfn(R))]}

(and similarly for H and H
′). The latter expression is equivalent to

(�M�sfn(R) ⊗ �P �p{y}∪fn(R)
⊗ id{x,y}) ◦ (0y ⊗ idfn(R)) .

We now turn our attention to the parallel composition G
′⊗H

′. The resulting expression,

after the manipulation of G
′ and H

′, is equivalent to the left-hand side L of the rule in

Ra
π , post-composed with

C = (�M�sfn(R) ⊗ �P �p{y}∪fn(R)
⊗ �N�sfn(R) ⊗ �Q�pfn(R)

⊗ id{x,y,w}) ◦ (0y ⊗ idfn(R)) .

After the reduction step, the resulting graph is the value of the expression R◦C, thanks

to Lemma B.3. This can be further manipulated into the equivalent expression

{[∆p ◦ (go⊗ ∆p)]⊗ [news ◦ ∆s ◦ (gs⊗ ∆s)]}
◦ [�M�sfn(R) ⊗ �P �p{y}∪fn(R)

⊗ �N�sfn(R) ⊗ �Q�pfn(R)
⊗ (neww ◦ ∆y,w)]

◦ (0y ⊗ idfn(R)) ;

the intermediate expression is equivalent to

(�M�sfn(R) ⊗ idp ⊗ �N�sfn(R) ⊗ �Q�pfn(R)
) ◦ [idfn(R) ⊗ �P �p{y}∪fn(R)

⊗ (neww ◦ ∆y,w)] .

Finally, note that the expression

[idfn(R) ⊗ �P �p{y}∪fn(R)
⊗ (neww ◦ ∆y,w)] ◦ (0y ⊗ idfn(R))

https://doi.org/10.1017/S096012950700610X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950700610X

F. Gadducci 434

has the same value as

idfn(R) ⊗ �P {w/y}�pfn(R)
.

Thus, the expression resulting from the reduction step has the same value as

[∆p ◦ (go⊗∆p)◦ (�P {w/y}�pfn(R)
⊗ �Q�pfn(R)

)]⊗ [news ◦∆s ◦ (gs⊗∆s)◦ (�M�sfn(R)⊗ �N�sfn(R))] ,

and the result holds.

A further lemma characterises the normal form for discarded summations.

Lemma C.1. Let M be a summation and Γ be a set of names such that fn(M) ⊆ Γ. Then

nfg(nfp(�M�gsΓ)) has the same value as the expression gs⊗ newΓ.

These results are enough to prove Theorem 7.1. In fact, the closure under structural

congruence ≡ is ensured by the correspondence between processes and graphs with

interfaces established via the gts Rn
π; while the closure of reduction with respect to

process contexts is ensured by Lemma B.3 (see also Corradini and Gadducci (1999b,

Lemma 4.8)).

Appendix D. From rewrites to reductions

In this appendix we turn our attention to the proof of Theorem 7.2, which relates graph

rewrites to process reductions. As with the proof of the completeness of Rn
π , it exploits

the normal form for processes established by Lemma B.4.

We first state a simple result concerning the application of the rule pπ in Ra
π .

Lemma D.1. Let G be a graph with discrete interfaces and mL be an edge-preserving

match for the rule pπ in Ra
π into the graph underlying G. Then, a direct derivation

pπ/m : G =⇒ H for that given match always exists.

The existence of the derivation for any match mL relies on standard results from graph

rewriting theory, since the rule is left-injective, and it is a bijection on nodes, while the

match is injective on edges (for example, the existence of the so-called pushout complement

is ensured by the fact that no node is removed by the application of the rule: see, for

example, Corradini et al. (1997, Proposition 3.3.4)).

Proposition D.1. Let R be a process. If Ra
π entails the derivation nfp(�R�) =⇒ G, there

exist processes P ,Q, S and summations M,N such that

R ≡ (νΓR)(x(y).P + M | xw.Q + N | S)

for a set of names ΓR of cardinality m and

G = ∆m+1
p

◦ {νΓR
⊗ nfp(�P {w/y} | Q | S�fn(R)∪ΓR

)⊗ [mews ◦ nfp(�M + N�gsfn(R)∪ΓR
)]}

◦ (0ΓR
⊗ idfn(R)) .

https://doi.org/10.1017/S096012950700610X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950700610X

Graph rewriting for the π-calculus 435

Sketch of proof. For any process R, the graph nfp(�R�) has interfaces ({p}, fn(R)) and

exactly one occurrence of a go edge, which is outgoing from the image of p.

Since nfp(�R�) satisfies the single output property (see Lemma B.5), any match mL for

the rule pπ must be injective, and at most coalesces the ◦ nodes corresponding to the

names 1 and 3 in Figure 15†. Furthermore, the presence of a go edge forces mL to map

the edges of the left-hand side of pπ onto two corresponding top operators in nfp(�R�).

So, let (νΓR)
⊎n

i=1 Mi be the normal form for R. The mapping mL identifies two indexes

j, k ∈ 1 . . . n, such that Mj = x(y).Pj + Nj and Mk = xw.Pk + Nk (for x the unique name

such that it coincides with mL(1), and similarly for y and w). Since we may safely assume

j = 1 and k = 2, we end up obtaining a labelled reduction

(νΓR)(x(y).P + N | xw.Q + M | S)→ (νΓR)(P {w/y} | Q | S) .

Then, the result holds by mimicking the reasoning of Proposition C.1 above, and because,

according to Lemma B.3, graph rewrites are preserved by closure with respect to graph

contexts.

Theorem 7.2 is then a corollary of Proposition D.1. The proof takes into account the

characterisation of the normal form for discarded sums, as shown in Lemma C.1, and the

further removal of useless restriction operators occurring among νR .

Proposition 9.2, which concerns the reduction of recursive processes, is proved along the

lines of the two propositions in these appendixes. In fact, the key point is that strengthened

versions of the various lemmas still hold, since the unfolding rules remove no nodes.

Acknowledgments

I am greatly indebted to the anonymous referees for suggesting many improvements with

respect to the submitted version.

References

Baldan, P., Corradini, A., Ehrig, H., Löwe, M., Montanari, U. and Rossi, F. (1999) Concurrent

semantics of algebraic graph transformation. In: Ehrig, H., Kreowski, H.-J., Montanari, U. and

Rozenberg, G. (eds.) Handbook of Graph Grammars and Computing by Graph Transformation,

Volume 3, World Scientific 107–187.

Baldan, P., Gadducci, F. and Montanari, U. (2006) Concurrent rewriting for graphs with equivalences.

In: Baier, C. and Hermanns, H. (eds.) Concurrency Theory. Springer-Verlag Lecture Notes in

Computer Science 4137 279–294.

Berry, G. and Boudol, G. (1992) The chemical abstract machine. Theoretical Computer Science 96

217–248.

Bonchi, F., Gadducci, F. and König, B. (2006) Process bisimulation via a graphical encoding.

In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L. and Rozenberg, G. (eds.) Graph

Transformation. Springer-Verlag Lecture Notes in Computer Science 4187 168–183.

† In fact, no coalescing of the ◦ node labelled 2 occurs in the tree encoding, since it corresponds to a local

name, and the property is preserved under reduction.

https://doi.org/10.1017/S096012950700610X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950700610X

F. Gadducci 436

Bruni, R., Gadducci, F. and Montanari, U. (2002) Normal forms for algebras of connections.

Theoretical Computer Science 286 247–292.

Caires, L. (2004) Behavioral and spatial observations in a logic for the π-calculus. In: Walukiewicz, I.

(ed.) Foundations of Software Science and Computation Structures. Springer-Verlag Lecture Notes

in Computer Science 2987 72–87.

Caires, L. and Cardelli, L. (2003). A spatial logic for concurrency (part I). Information and

Computation 186 194–235.

Căzănescu, V.-E. and Ştefănescu, Gh. (1992) A general result on abstract flowchart schemes with

applications to the study of accessibility, reduction and minimization. Theoretical Computer

Science 99 1–63.

Corradini, A. and Gadducci, F. (1999a) An algebraic presentation of term graphs, via gs-monoidal

categories. Applied Categorical Structures 7 299–331.

Corradini, A. and Gadducci, F. (1999b) Rewriting on cyclic structures: Equivalence between the

operational and the categorical description. Informatique Théorique et Applications/Theoretical

Informatics and Applications 33 467–493.

Corradini, A., Montanari, U. and Rossi, F. (1994) An abstract machine for concurrent modular

systems: CHARM. Theoretical Computer Science 122 165–200.

Corradini, A., Montanari, U. and Rossi, F. (1996) Graph processes. Fundamenta Informaticae 26

241–265.

Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R. and Löwe, M. (1997) Algebraic

approaches to graph transformation I: Basic concepts and double pushout approach. In:

Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformation,

Volume 1, World Scientific 163–245.

Courcelle, B. (1997) The expression of graph properties and graph transformations in monadic

second-order logic. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by

Graph Transformation, Volume 1, World Scientific 313–400.

Drewes, F., Habel, A. and Kreowski, H.-J. (1997) Hyperedge replacement graph grammars. In:

Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformation,

Volume 1, World Scientific 95–162.

Ehrig, H. and König, B. (2004) Deriving bisimulation congruences in the DPO approach to graph

rewriting. In: Walukiewicz, I. (ed.) Foundations of Software Science and Computation Structures.

Springer-Verlag Lecture Notes in Computer Science 2987 151–166.

Fu, Y. (1999) Variations on mobile processes. Theoretical Computer Science 221 327–368.

Gadducci, F. (2003) Term graph rewriting and the π-calculus. In: Ohori, A. (ed.) Programming

Languages and Semantics. Springer-Verlag Lecture Notes in Computer Science 2895 37–54.

Gadducci, F., Heckel, R. and Llabrés, M. (1999) A bi-categorical axiomatisation of concurrent graph

rewriting. In: Hofmann, M., Pavlovic̀, D. and Rosolini, G. (eds.) Category Theory and Computer

Science. Electronic Notes in Theoretical Computer Science 29.

Gadducci, F. and Lluch Lafuente, A. (2006) Graphical verification of a spatial logic for the π-

calculus. In: Heckel, R., König, B. and Rensink, A. (eds.) Graph Transformation for Verification

and Concurrency. Electronic Notes in Theoretical Computer Science 154.

Gadducci, F. and Lluch Lafuente, A. (2007) Graphical encoding of a spatial logic for the π-calculus.

In: Montanari, U. and Mossakowski, T. (eds.) Algebra and Coalgebra in Computer Science.

Springer-Verlag Lecture Notes in Computer Science (to appear).

Gadducci, F. and Montanari, U. (2001) A concurrent graph semantics for mobile ambients. In:

Brookes, S. and Mislove, M. (eds.) Mathematical Foundations of Programming Semantics.

Electronic Notes in Theoretical Computer Science 45.

https://doi.org/10.1017/S096012950700610X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950700610X

Graph rewriting for the π-calculus 437

Gadducci, F. and Montanari, U. (2002) Comparing logics for rewriting: Rewriting logic, action

calculi and tile logic. Theoretical Computer Science 285 319–358.

Gadducci, F. and Montanari, U. (2005) Observing reductions in nominal calculi via a graphical

encoding of processes. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F. and de Vrijer,

R. C. (eds.) Processes, terms and cycles (Klop Festschrift). Springer-Verlag Lecture Notes in

Computer Science 3838 106–126.

Goguen, J. and Meseguer, J. (1992) Order sorted algebra I: Equational deduction for multiple

inheritance, overloading, exceptions and partial operations. Theoretical Computer Science 105

217–273.

König, B. (1999) Generating type systems for process graphs. In: Baeten, J. C. M. and Mauw, S.

(eds.) Concurrency Theory. Springer-Verlag Lecture Notes in Computer Science 1664 352–367.

Laneve, C., Parrow, J. and Victor, B. (2001) Solo diagrams. In: Kobayashi, N. and Pierce, B. (eds.)

Theoretical Aspects of Computer Science. Springer-Verlag Lecture Notes in Computer Science

2215 127–144.

Leifer, J. and Milner, R. (2000) Deriving bisimulation congruences for reactive systems. In:

Palamidessi, C. (ed.) Concurrency Theory. Springer-Verlag Lecture Notes in Computer Science

1877 243–258.

Milner, R. (1989) Communication and Concurrency, Prentice Hall.

Milner, R. (1993) The polyadic π-calculus: A tutorial. In: Bauer, F. L., Brauer, W. and

Schwichtenberg, H. (eds.) Logic and Algebra of Specification. Nato ASI Series F 94 203–246.

Milner, R. (2001) Bigraphical reactive systems. In: Larsen, K.G. and Nielsen, M. (eds.) Concurrency

Theory. Springer-Verlag Lecture Notes in Computer Science 2154 16–35.

Montanari, U., Pistore, M. and Rossi, F. (1999) Modeling concurrent, mobile and coordinated

systems via graph transformations: Concurrency, parallellism, and distribution. In: Ehrig, H.,

Kreowski, H.-J., Montanari, U. and Rozenberg, G. (eds.) Handbook of Graph Grammars and

Computing by Graph Transformation, Volume 3, World Scientific 189–268.

Plotkin, G. (1981) A structural approach to operational semantics. Technical Report DAIMI FN-19,

Computer Science Department, Aarhus University.

Plump, D. (2005) Confluence of graph transformation revisited. In: Middeldorp, A., van Oostrom, V.,

van Raamsdonk, F. and de Vrijer, R. C. (eds.) Processes, terms and cycles (Klop Festschrift).

Springer-Verlag Lecture Notes in Computer Science 3838 280–308.

Sangiorgi, S. and Walker, D. (2001) The π-calculus: A Theory of Mobile Processes, Cambridge

University Press.

Yoshida, N. (1994) Graph notation for concurrent combinators. In: Ito, T. and Yonezawa, A. (eds.)

Theory and Practice of Parallel Programming. Springer-Verlag Lecture Notes in Computer Science

907 393–412.

https://doi.org/10.1017/S096012950700610X Published online by Cambridge University Press

https://doi.org/10.1017/S096012950700610X

