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Abstract
Longevity risk faced by annuity portfolios and defined-benefit pension schemes is typically long-

term, i.e. the risk is of an adverse trend which unfolds over a long period of time. However, there are

circumstances when it is useful to know by how much expectations of future mortality rates might

change over a single year. Such an approach lies at the heart of the one-year, value-at-risk view of

reserves, and also for the pending Solvency II regime for insurers in the European Union. This paper

describes a framework for determining how much a longevity liability might change based on new

information over the course of one year. It is a general framework and can accommodate a wide

choice of stochastic projection models, thus allowing the user to explore the importance of model

risk. A further benefit of the framework is that it also provides a robustness test for projection

models, which is useful in selecting an internal model for management purposes.
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1. Introduction

‘‘Whereas a catastrophe can occur in an instant, longevity risk takes decades to unfold’’

The Economist (2012)

1.1 Longevity is different from many other risks an insurer faces because the risk lies in the long-term

trend taken by mortality rates. However, although longevity is typically a long-term risk, it is often

necessary to pose questions over a short-term horizon, such as a year. Two useful questions in risk

management and reserving are ‘‘what could happen over the coming year to change the best-estimate

projection?’’ and ‘‘by how much could a reserve change based on new information?’’. The pending

Solvency II regulations for insurers and reinsurers in the EU are concerned with reserves being adequate

in 99.5% of situations which might arise over the coming year.

1.2 This paper describes a framework for answering such questions, and for setting reserve

requirements for longevity risk based on a one-year horizon instead of the more natural long-term

approach. The paper contrasts three approaches to reserving for longevity risk: the stressed-trend
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method, the mortality-shock method and a new value-at-risk proposal. The framework presented

here is general, and can work with any stochastic projection model which can be fitted to data and

is capable of generating sample paths. Like Börger (2010), Plat (2011) and Cairns (2011), we will

work with all-cause mortality rates rather than rates disaggregated by cause of death.

1.3 Börger (2010) and Cairns (2011) both work with so-called forward models of mortality,

i.e. models which produce multi-year survival probabilities as their output. In this paper we will

work with what are sometimes described as spot models for mortality, i.e. models which produce

instantaneous rates such as the force of mortality, mx, or the rate of mortality, qx. A forward model

would specify directly a distribution for the survival probability, t px, whereas a spot model would

require sample-path simulation in order to empirically derive a distribution for t px. The motivation

for a forward model comes from the desire to deal with (or avoid) nested stochastic simulations.

Both Börger (2010) and Plat (2011) approach this problem by presenting a new model specifically

designed for value-at-risk problems involving longevity. In writing about some specific challenges

regarding dynamic hedging, Cairns (2011) evaluates some approximations to avoid nested

stochastic simulations. In contrast, the framework presented in this paper avoids nested simulations

by design and without approximation.

1.4 In considering the Solvency Capital Requirement (SCR) for longevity risk, Börger (2010)

concluded that ‘‘the computation of the SCR for longevity risk via the VaR approach obviously

requires stochastic modelling of mortality’’. Similarly, Plat (2011) stated that ‘‘naturally this requires

stochastic mortality rates’’. This paper therefore only considers stochastic mortality as a solution to

the value-at-risk question of longevity risk. The value-at-risk framework presented in this paper

requires stochastic projection models.

1.5 Cairns (2011) warns of the risks in relying on a single model by posing the oft-overlooked

questions ‘‘what if the parameters [y] have been miscalibrated?’’ and ‘‘what if the model itself is

wrong?’’. Cairns (2011) further writes that any solution ‘‘should be applicable to a wide range of

stochastic mortality models’’. The framework described in this paper works with a wide variety of

models, enabling practitioners to explore the impact of model risk on capital requirements.

1.6 This paper is about the technical question of how to put longevity trend risk into a one-year,

value-at-risk framework. It is not a detailed review of current industry practices, which would be a

quite different study. Neither is this paper an attempt to evaluate the respective merits of the various

models used — the reader is directed to Cairns et al (2009) for just such a comparison, and also to

Currie (2012) for questions over the validity of model assumptions. We use a variety of all-cause

mortality models to illustrate the methodology proposed in this paper, and so the question of

whether to project by all-cause mortality or by cause of death is a side issue here; the interested

reader could continue with Booth & Tickle (2008) or Richards (2010).

2. Data

2.1 The data used in this paper are the all-cause number of deaths aged x last birthday during

each calendar year y, split by gender. Corresponding mid-year population estimates are also given.

The data therefore lend themselves to modelling the force of mortality, mxþ1
2; yþ1

2
, without further

adjustment. We use data provided by the Office for National Statistics (ONS) for England & Wales

for the calendar years 1961–2010 inclusive. This particular data set has death counts and estimated

exposures at individual ages up to age 104. We will work here with the subset of ages 50–104,

A Value-at-Risk framework for longevity trend risk

117

https://doi.org/10.1017/S1357321712000451 Published online by Cambridge University Press

https://doi.org/10.1017/S1357321712000451


which is most relevant for insurance products sold around retirement ages. The deaths and

exposures in the age group labelled ‘‘1051’’ were not used. More detailed discussion of this data set,

particularly regarding the estimated exposures, can be found in Richards (2008).

2.2 One consequence of only having data to age 104 is having to decide how to calculate annuity

factors for comparison. One option would be to create an arbitrary extension of the projected

mortality rates up to (say) age 120. Another alternative is to simply look at temporary annuities to

avoid artefacts arising from the arbitrary extrapolation. We use the latter approach in this paper,

and we therefore calculate continuously paid temporary annuity factors as follows:

�ai
x: 105�xj

¼

Z 105�x

0
tpx;yvtdt ð1Þ

where i is the discount rate, vt ¼ 1þ ið Þ
�t and t px,y is the probability a life aged x at outset in

year y survives for t years:

tpx;y ¼ exp �

Z t

0

mxþs;yþsds

� �

� exp �
Xt�1

s¼0

mxþs;yþs

 !
ð2Þ

2.3 Restricting our calculations to temporary annuities has no meaningful consequences at the

main ages of interest, as shown in Table 1.

For reference, our temporary continuous annuity factors are calculated using the trapezoidal rule

for approximating an integral on a uniform grid:

�ai
x:nj �

1

2
þ
Xn�1

t¼1

tpxvt þ
1

2
npxvn ð3Þ

2.4 In this paper we will use y 5 2011 as a common outset year throughout. From Equations 1

and 2 we will always need a mortality projection for at least (1052x) years to calculate the annuity

factor, even if we are only looking for the one-year change in the value of the annuity factor. While

we have opted for the temporary-annuity solution, it is worth noting that the models of Cairns et al

(2006) and Richards et al (2006) are capable of simultaneously extrapolating mortality rates to

higher (and lower) ages at the same time as projecting forward in time. These models therefore

deserve a special place in the actuarial toolkit, and the subject is discussed in more detail by

Richards & Currie (2011) and Currie (2011).

Table 1. Impact of using a different end age, v, for the temporary annuity factor �a3%
70:o�70j

. Source: own

calculations using S1PA (males) and a discount rate of 3% per annum for cashflows.

End age,
Percentage of S1PA:

v 100% 80% 60%

120 11.10 12.06 13.32

105 11.10 12.06 13.30
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3. Components of longevity risk

3.1 For high-level work it is often necessary to quote a single capital amount or percentage of

reserve held in respect of longevity risk. However, it is a good discipline to itemise the various

possible components of longevity risk, and a specimen list is given in Table 2.

3.2 Table 2 is not intended to be exhaustive and, depending on the nature of the liabilities, other

longevity-related elements might appear. In a defined-benefit pension scheme, or in a portfolio of

bulk-purchase annuities, there would be uncertainty over the proportion of pensioners who were

married, and whose death might lead to the payment of a spouse’s pension. Similarly, there would

be uncertainty over the age of that spouse. Within an active pension scheme there might be risk

related to early retirements, commutation options or death-in-service benefits. Such risks might be

less important to a portfolio of individual annuities, but such portfolios would be exposed to

additional risk in the form of anti-selection from the existence of the enhanced-annuity market.

3.3 This paper will only address the trend-risk component of Table 2, so the figures in Table 5 and

elsewhere can only be minimum values for the total capital requirement for longevity risk. Other

components will have to be estimated in very different ways: reserving for model risk requires a

Table 2. Specimen itemization of the components of longevity risk. A diversifiable risk can be reduced by

growing the size of the portfolio and benefiting from the law of large numbers.

Component Diversifiable? Comment

Model risk No It is impossible to know if the selected projection model is correct.

Capital must be held in respect of the risk that one’s chosen model

is wrong.

Basis risk No Models often have to be calibrated to population or industry data,

not the data of the portfolio in question. Capital must be held for

the risk that the mortality trend followed by the lives in a portfolio

is different from that of the population used to calibrate the model.

Trend risk No Even if the model is correct and there is no basis risk, an adverse

trend may result by chance which is nevertheless fully consistent

with the chosen model. Some practitioners may choose to include

an allowance for basis risk in their allowance for trend risk.

Volatility Yes? Over a one-year time horizon, capital must be held against the case of

unusually light mortality experience from seasonal or environmental

variation, such as an unusually mild winter and lower-than-normal

deaths due to influenza and other infectious diseases. Note that this

risk may not be wholly diversifiable, as one year’s light mortality

experience may equally be the start of an adverse trend.

Idiosyncratic risk Yes? Over a one-year time horizon, capital must be held against the case

of unusually light mortality experience from random individual

variation. See Plat (2011) and Richards & Currie (2009) for

examples. Note that this risk may not be wholly diversifiable, as

the light mortality experience may be what drives a change in the

expectation of the trend.

Mis-estimation risk Yes Uncertainty exists over the portfolio’s actual underlying mortality

rates, since these can only be estimated to a degree of confidence

linked to the scale and richness of the data.
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degree of subjectivity, while idiosyncratic risk can best be assessed using simulations of the actual

portfolio — see Plat (2011) and also Richards & Currie (2009) for some examples for different

portfolio sizes. For large portfolios the idiosyncratic risk will often be diversified away almost to

zero in the presence of the other components. In contrast, trend risk and model risk will always

remain, regardless of how large the portfolio is. For an overview of how capital requirements for

longevity risk fit into the wider regulatory framework, see Makin (2011a, 2011b).

4. The stressed-trend approach to longevity risk

4.1 Longevity risk lies in the long-term trend taken by mortality rates. This trend unfolds over

many years as an accumulation of small changes, so a natural approach to reserving is to use a

long-term stress projection applying over the potential lifetime of the annuitant or pensioner.

This view of longevity trend risk is sometimes called the run-off approach, and it does not

correspond with the one-year view demanded by a pure value-at-risk methodology. However, the

run-off or stressed-trend approach is arguably the most appropriate way to investigate longevity

trend risk, and it should therefore not be viewed as invalid merely because it is not a one-year

methodology. While a great many insurance risks fit naturally into a one-year value-at-risk

framework, not all risks do. It would be excessively dogmatic to insist that longevity trend risk only

be measured over a one-year horizon.

4.2 Mortality can be viewed as a stochastic process, as can the direction of mortality trends, so it

makes sense to use a stochastic projection model to calibrate a stress trend for longevity risk.

This has the benefit of being able to assign a probability to the stress; Figure 1 illustrates

the approach. The central projection comes from the maximum-likelihood estimate, while the stress

trend is simply the relevant confidence envelope for the central projection. The confidence envelope

is derived by multiplying the projection standard error by F21(p), where F is the cumulative

distribution function of a Normal (0, 1) random variable and p is the relevant probability level

(F21(0.005) 5 22.58 in this case). Note that the ‘‘projection standard error’’ here encompasses

parameter risk, not process risk, and the nature of the projection standard error is discussed in more

Figure 1. Central projection and stressed trend obtained by deducting 2.58 standard deviations,
where 2:58 ¼ F�1 99:5%ð Þ. Mortality of males aged 70 in England & Wales, modelled as per Lee &
Carter (1992) with ARIMA(3,1,3) projection of ky (see Appendix 1). The ARIMA(3, 1, 3) model
was selected from an array of ARIMA(p, d, q) models as having the lowest AIC for this data set.
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detail in Section 8. The stressed trend depicted in Figure 1 is smooth because we do not allow for

annual volatility in mortality rates, a subject which is discussed in detail in Section 8.

4.3 The stressed-trend approach to longevity risk involves calculating the capital requirement as follows:

�aZ¼�2:58
x: 105�xj

�aZ¼0
x: 105�xj

�1

 !
� 100% ð4Þ

where the numerator with Z 5 22.58 denotes the annuity factor calculated with the stressed trend as per

Figure 1, and the denominator with Z 5 0 denotes the annuity factor calculated with the central

projection. The stressed-trend approach behind Figure 1 can be used for a wide variety of regression-type

models — Table 3 shows some annuity factors calculated using central estimates and 99.5% stress

reserves, together with the resulting capital requirements. Table 3 also illustrates model risk, namely the

tendency for different models to produce different central and stressed estimates, and hence different

capital requirements.

4.4 The stressed-trend capital requirements in Table 3 are dependent on the model, the outset age

and the discount rate. Figure 2 shows how the capital requirements vary by age for four different

models. Of the models shown, it is interesting to note that the Lee-Carter model yields the second-

largest capital requirement up to age 70, but after age 88 it demands the lowest capital requirement.

Although the Age-Period-Cohort model generates consistently low capital requirements, Currie

(2012) raises concerns about the assumptions required in projecting mortality using the APC model.

4.5 There is also the question of how best to measure the impact of longevity risk. Plat (2011)

carries out a whole-portfolio valuation to minimise the risks associated with representing a portfolio

with model points, which makes the published results portfolio-specific. In contrast, we have often

chosen a single specimen age for most calculations in this paper on the grounds of simplicity,

although in practice for a given portfolio it would be better to follow the approach of Plat (2011).

As to the choice of specimen age, Börger (2010) chose age 65 to illustrate the impact of different

interest rates, and this age would generally be appropriate for newly written annuity business.

In contrast, we have chosen age 70 as it is more likely to be representative of mature portfolios of

pensions in payment (i.e. excluding deferred or active members in a pension scheme).

Table 3. Central and stressed estimates of �a3%
70: 35j

from 2011 using models of male mortality applied to data

from England & Wales, 1961–2010, ages 50–104. Temporary annuities to age 105 are used to avoid distortions

caused by extrapolation to higher ages. All three variants of the Lee-Carter model produced the same values.

Value of �a3%;Z

70: 35j
:

Capital requirement

Model (Appendix) (a) Z 5 0 central estimate (b) Z 5 22.58 99.5% stress ðbÞ
ðaÞ �1
� �

� 100%

LC, DDE and LC(S) (A1) 12.13 12.81 5.60%

CBD Gompertz (A2) 11.96 12.70 6.22%

CBD P-spline (A2) 11.87 12.62 6.34%

APC (A3) 12.59 13.14 4.35%

2DAP (A4) 12.76 13.38 4.92%
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4.6 Another important feature is the sensitivity of the capital requirement to the rate of discount.

Börger (2010) notes that capital requirements increase as the (net) discount rate decreases. Figure 3

shows the stressed-trend capital requirements under the Lee-Carter model, which show that lower

discount rates lead to higher capital requirements. Interest rates are particularly low at the time of

writing, so the presence of significant volumes of escalating annuities could mean an effective net

discount rate close to zero for some portfolios. Indeed, interest rates are not only low but the yield

curve has a very particular shape which has some consequences of its own (see Appendix A6).

4.7 One consequence of the stressed-trend approach is that, for a given p-value, it will tend to

produce higher capital requirements than a one-year approach. Some practitioners use a simple
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Figure 2. Capital requirement at age x on valuation date for �a3%
x: 105�xj

from stressed trend at 99.5%
level for four of the models in Table 3. Graph shows the capital requirement defined in Equation 4
for varying outset ages. The different patterns by annuity outset age show the importance of
selecting a specimen age which represents the portfolio for which capital requirements are being
calculated. Different models show different patterns by age in part because they vary in the extent to
which mortality rates are correlated under each model.
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Figure 3. Capital requirement by age for �ax: 105�xj from stressed trend at 99.5% level. Graph shows
the capital requirement defined in Equation 4 for varying outset ages and using various discount
rates. Mortality is according to the Lee-Carter model from Table 3.
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approach to try and allow for this by picking a p-value for the stressed-trend which is less than the

99.5th percentile required for the one-year approach. However, this can be arbitrary, and even less

subjective approaches can be inconsistent. For example, one simple approach might be to select a

p-value, p, such that 0.995n 5 1 2 p. The parameter n could be chosen relative to the portfolio

under consideration, say by setting it to the discounted mean term of the annuity payments.

However, the drawback of this approach is that portfolios exposed to greater levels of longevity risk

will receive less onerous values of p. For example, assume n 5 10 for a portfolio of level annuities,

thus leading to p 5 0.0489. If we then assume that the annuities are in fact escalating, the value of

n might increase to 12 (say), leading to p 5 0.0631. This is counter-intuitive — the portfolio of

escalating annuities is arguably more exposed to longevity risk, so why should it be subjected to a

weaker stress scenario? Deriving a one-year longevity stress from a multi-year calculation is tricky,

and so other methodologies are required.

5. The shock approach to longevity risk

5.1 A simplified standard-formula approach to longevity risk is to assume an immediate fall in

current and future projected mortality rates, i.e.

mshock
x;t ¼ mx;t � 1�fð Þ ð5Þ

where mx,t is the central mortality projection (Z 5 0) behind Table 3 and f is the shock reduction in

mortality rates. Analogous to Equation 4, the shock capital requirements are:

�af

x: 105�xj

�ax: 105�xj
�1

 !
� 100% ð6Þ

where the numerator is the annuity factor calculated with the shocked mortality rates according to

Equation 5 and the denominator is the annuity factor calculated using the central projection. The

QIS5 rules for Solvency II specify f 5 20% (European Commission, 2010), and the results of this are

shown in Figure 4 for the Lee-Carter model from Table 3. It is worth noting that the shock approach
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Figure 4. Capital requirement by age for �a3%
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from an immediate fall in mortality rates of 20%.
Graph shows capital requirements calculated according to Equation 6 using f 5 0.2 and the central
Lee-Carter projection in Figure 1 (Z 5 0).
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is designed to cover more aspects of longevity risk than just the trend risk. The subject of the various

components of longevity risk is addressed in Section 2.

5.2 The standard-formula approach conflicts with the stressed-trend approach: whereas in Figure 2

the capital requirements reduce after around age 70, the standard-formula capital requirements

increase steadily with age to reach excessive levels. Furthermore, the capital requirements at younger

ages look to be a little too low compared with the stressed-trend approach of Figure 2. Any given

portfolio contains many pensions at different ages, of course, and the appropriateness (or otherwise) of

the shock approach depends on the individual portfolio. Richards & Currie (2009) suggested that it

might be reasonable for a new and growing annuity portfolio.

5.3 The stressed-trend approach produces a more intuitive set of results than the shock approach —

capital requirements are greater at younger ages, where there is more scope for suffering from an

adverse long-term trend. Furthermore, comparing Figures 4 and 2 suggests that the stressed-trend

approach produces lower capital requirements than the shock approach. Börger (2010) describes ‘‘the

structural shortcomings of the shock (approach)’’, specifically the too-low capital requirements at

younger ages and the too-high requirements at older ages, concluding that ‘‘an age-dependent stress

with smaller reductions for old ages might be more appropriate’’. In theory this might not matter, as the

shock approach would be intended to work at a portfolio level and excess capital at higher ages would

be offset by lower capital requirements at younger ages, although whether this worked in practice

would depend critically on the profile of liabilities by age. Also, the shock approach, as structured as a

standard formula under Solvency II, is intended to cover more than just longevity trend risk.

6. A Value-at-Risk framework

6.1 The stressed-trend approach of Section 4 deals with changes in mortality rates over many

years. This does not answer the one-year value-at-risk question, so something different is needed for

the likes of Solvency II. This Section describes a one-year framework for longevity risk based on the

sensitivity of the central projection to new data. This approach differs from the models of Börger

(2010) and Plat (2011), which seek to model the trend and its tail distribution directly. Börger

(2010) and Plat (2011) also present specific models, whereas the framework described here is

general and can accommodate a wide range of stochastic projection models. In contrast to Plat

(2011), who modelled longevity risk and insurance risk, the framework here is intended to focus

solely on longevity trend risk in pensions and annuities in payment.

6.2 At a high level we use a stochastic model to simulate the mortality experience of an extra year,

and then feed this into an updated model to see how the central projection is affected. This is

repeated many times to generate a probability distribution of how the central projection might

change over a one-year time horizon. In more detail the framework is as follows:

6.3 First, select a data set covering ages xL to xH and running from years yL to yH. This includes the

deaths at each age in each year, dx,y, and the corresponding population exposures. The population

exposures can be either the initial exposed-to-risk, Ex,y or the mid-year central exposed-to-risk, Ec
x;y.

For this process we need the exposures for the start of year yH 1 1, so if the basic exposures are central

we will approximate the initial exposures using Ex;yHþ1
� Ec

x�1;yH
�dx�1;yH

=2.

6.4 Next, select a statistical model and fit it to the data set in z6.3. This gives fitted values

for logmx,y, where x is the age in years and y is the calendar year. We can use the projections
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from this model to calculate various life expectancies and annuity factors at specimen ages

if desired.

6.5 Use the statistical model in z6.4 to generate sample paths for log mx;yHþ1
, i.e. for the year

immediately following the last year for which we have data. These sample paths can include trend

uncertainty or volatility or both (see Section 8). In practice the dominant source of uncertainty over

a one-year horizon is usually volatility, so this should always be included. We can estimate qx;yHþ1
,

the binomial probability of death in year yH 1 1, by using the approximation q � 1�e�m.

6.6 We simulate the number of deaths in year yH 1 1 at each age as a binomial random variable.

The population counts are the Ex;yHþ1
from z6.3 and the binomial probabilities are those simulated

in z6.5. This gives us simulated death counts at each age apart from xL, and we can calculate

corresponding mid-year exposures as Ec
x;yHþ1

� Ex;yHþ1
�dx;yHþ1

=2.

6.7 We then temporarily append our simulated data from z6.6 to the real data in z6.3, creating a

single simulation of the data we might have in one year’s time. The missing data for age xL in year

yH 1 1 is treated by providing dummy values and assigning a weight of zero. We then refit the

statistical model to this combined data set, reperform the projections and recalculate the life

expectancies and annuity values at the specimen ages using the updated central projection.

6.8 Repeat steps z6.5 to z6.7 n times, where n might be at least 1,000 (say) for Solvency II-style

work. It is implicit in this methodology that there is no migration, or that if there is migration its net

effect is zero, i.e. that immigrants have similar numbers and mortality characteristics to emigrants.

The choice of n will have a number of practical considerations, but for estimating the 99.5th

percentile a minimum value of n 5 1,000 is required.

6.9 Figure 5 shows the resulting updated central projections from a handful of instances of

performing steps z6.3–z6.8. Note that we do not require nested simulations, as the central projection is

Figure 5. One-year approach to longevity risk. Experience data for 2011 are simulated using sample
paths from an ARIMA(3, 1, 3) process and the Lee-Carter model is refitted each time the 2011 data are
simulated. The changes in central projections give an idea of how the best estimate could change over
the course of a year based on new data. For comparison with Figure 1, all of the projections here are
Z 5 0. Although we are interested in the one-year change in annuity factor, we have to do a full multi-
year projection in order to have projected mortality rates to calculate the annuity factor in Equation 1.
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evaluated without needing to perform any simulations. The nature of projections and their standard

errors is discussed in Section 8.

6.10 After following this procedure we have a set, S, of n realised values of how life expectancies

or annuity values can change based on the addition of a single year’s data:

S ¼ f�aj
x; j ¼ 1; 2; . . . ; ng ð7Þ

6.11 S can then be used to set a capital requirement to cover potential changes in expectation of

longevity trend risk over one year. For example, a one-year value-at-risk estimate of trend-risk

capital would be:

99:5th percentile of S

mean of S
�1

 !
� 100% ð8Þ

6.12 Appendix 5 contains details of how percentiles are estimated from sets of data in this paper.

Before we come to the results of this approach in Section 9, we must first consider which models are

appropriate (Section 7) and how to generate sample paths (Section 8).

7. Model choices

7.1 Suitable models for the framework in Section 6 are those which are (i) estimated from data

only, i.e. regression-type models where no subjective intervention is required post-fit, and (ii) are

capable of generating sample-path projections. Most statistical projection models are therefore

potentially suitable, including the Lee-Carter family (Appendix 1), the Cairns-Blake-Dowd model

(Appendix 2), the Age-Period-Cohort model (Appendix 3) and 2D P-spline model (Appendix 4).

This is by no means an exhaustive list, and many other models could be used. Note that a number of

models will be sensitive to the choice of time period (i.e. yL to yH) and some models will be sensitive

to the choice of age range (i.e. xL to xH).

7.2 Unsuitable models are those which either (i) require parameters which are subjectively set, or

which are set without reference to the basic data, or (ii) are deterministic scenarios. For example,

the CMI’s 2009–2011 models cannot easily be used here because they are deterministic targeting

models which do not generate sample paths — see CMI (2009, 2010). Models which project

mortality disaggregated by cause of death could potentially be used, provided the problems

surrounding the projection of correlated time series were dealt with — see Richards (2010) for

details of other issues with cause-of-death projections. Models which contain artificial limits on the

total possible reduction in mortality would not be suitable, however, as the purpose of this exercise

is to estimate tail risk. When modelling tail risk, it would be self-defeating to use a model which

starts by limiting the tail in question. In addition to this, Oeppen & Vaupel (2004) show that models

claiming to know maximum life expectancy (and thus limiting the maximum possible

improvements) have a poor record.

8. Sample paths

8.1 The framework in Section 6 requires the generation of sample-path projections for the

following year. There are two components to the uncertainty over projected mortality rates: (i) trend

risk, and (ii) volatility. Trend risk is the uncertainty over the general direction taken by mortality

rates, and is what is illustrated in Figure 1. Trend uncertainty is determined by the uncertainty over
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the parameters in the projection model, and is therefore a form of parameter risk. Volatility is an

additional risk on top of the particular direction taken — it arises due to temporary fluctuations in

mortality around the trend, such as those caused by a harsh (or mild) winter, or an outbreak of

influenza. Volatility is fundamentally a short-term phenomenon and would therefore seem to be of

less concern to an annuity writer than the trend risk. However, volatility plays an important role in

the one-year simulations required for the framework described in Section 6.

8.2 The distinction between trend risk and volatility can be illustrated by examining a drift model,

which says that the mortality index k in year y 1 1 is related to the index in the previous year by the

simple relationship:

kyþ1 ¼ ky þ drift constantþAyþ1 ð9Þ

where ky is (say) the Lee-Carter mortality index in year y and {Ay} is a set of independent, identically

distributed noise terms with zero mean and variance s2
2. In fitting a drift model there are therefore

three parameters to be estimated: (i) the drift constant, (ii) the standard error of the drift constant,

sdrift, and (iii) the standard error of the noise process, sA. For an annuity writer, trend risk lies in the

uncertainty over the drift constant, i.e. in the parameter risk expressed by sdrift. For an assurance-

type liability the situation may be reversed and the dominant risk might be the noise variance,

sA, i.e. the volatility.

8.3 For a detailed risk investigation any simulation should be capable of including or excluding

each type of risk independently, i.e. (i) trend risk only, (ii) volatility only, and (iii) trend risk and

volatility combined. This enables the actuary to not only reproduce a realistic-looking sample-path

projection when required, but also to test the relative contribution of each of the two risks to the

costs for a given liability profile.

8.4 The drift model in Equation 9 is a simple and restricted subset of a full ARIMA model for

ky. The situation for simulations under ARIMA models is analogous: there is a noise process

as before, but now ky 1 1 is related to one or more previous values as an autoregressive moving

average. There are therefore more parameters to be estimated than just the drift constant, and each

new parameter will also have an estimated standard error corresponding to sdrift. As before, the

variance of the noise process, s2
A, will be labelled as the volatility, while the trend risk lies in the

standard error of log m̂x;y, which arises from the uncertainty surrounding the various ARIMA

parameter estimates.

8.5 For models projecting via a penalty function the situation is different because the forecast is

always smooth and there is no volatility. However, simulation of volatility can be achieved by

randomly sampling columns from the matrix of unstandardised residuals and adding them column-

wise to the smooth projection. This approach is very general and requires no distributional

assumption for the volatility — and therefore no estimate of sA — as the empirical set of past

volatility is used for sampling. This has the advantage of simulating mortality shocks in a given year

while preserving the age structure. For any smooth projection model, therefore, a simulated sample

path, msimulated
x;y , can be obtained as follows:

logmsimulated
x;y ¼ log m̂x;y þ Zsx;y þ Irx;y ð10Þ

where m̂x;y is the smooth projected force of mortality and sx,y the corresponding standard error of

log m̂x;y. Z is a value from a N(0, 1) distribution, while I is an indicator variable taking the value zero
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(if excluding volatility) or one (if including volatility). rx,y is derived from a randomly chosen

column j from the unstandardised residuals thus:

rx;y ¼ log Dx;j� log Ec
x;j� log m̂x;j ð11Þ

where j is a year in the data region, i.e. j 2 f1961; 1962; . . . ; 2010g for the data in this paper, and

yZ2011. With this method of simulating sample paths for smooth projection models, we again

have the facility to consider the two components of risk in Equation 10 either separately or

combined. To include trend risk only, we sample Z from a N(0, 1) distribution and set I 5 0. To

include volatility only, we set Z 5 0 and I 5 1. To include both trend risk and volatility, we sample

Z from N(0,1) and set I 5 1. Note that this approach will work for any model where projections are

smooth, including the fully smoothed 2D P-spline models of Richards et al (2006) and the variant of

the Lee-Carter model in Richards & Currie (2009).

8.6 Although we have very different structures for our projections — drift models, ARIMA

processes and penalty forecasts — we can nevertheless arrange a common framework for trend risk

(represented by parameter uncertainty) and volatility (which is either simulated or resampled from

the past departure from the model fit). These two separate components are individually switchable

to allow investigation of their respective and combined impact. This is summarised in Table 4.

8.7 There is an irony behind Table 4 and the VaR approach to longevity risk. Longevity risk is

essentially about an adverse long-term trend, the uncertainty about which is predominantly

described by parameter risk. However, when simulating over a time horizon as short as a year, the

volatility is likely to play the major role.

9. Results of the one-year VaR approach

9.1 The framework in Section 6 is applied to some of the models in Table 3. The results for some

selected models are shown in Table 5. As a check, the average annuity value in column (a) in Table 5

should be very close to the central annuity value in column (a) in Table 3.

9.2 With the exception of the 2DAP, the capital requirements shown in Table 5 are lower than the

equivalent values in Table 3. This is partly because the data behind the models in Table 3 end in

2010 and project rates forward to 2011 and beyond. In contrast, the data behind the models in

Table 5 end in 2011 due to the simulated extra year’s experience, so there is one year’s less

uncertainty in the projections. However, the primary driver in the reduced capital requirements in

Table 5 is the difference in time horizon — a single year as opposed to the run-off in Table 3. As

with Table 3, model risk is illustrated by the varying capital requirements.

Table 4. Sources of uncertainty in sample paths

Projection type Trend risk Volatility

Drift sdrift sA

ARIMA s.e. of log m̂x;y sA

Penalty s.e. of log m̂x;y resampled residuals added to log m̂x;y
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9.3 One issue with the Figures in Table 5 is that they are sample quantiles, i.e. they are based on

the top few order statistics and are therefore themselves random variables with uncertainty

surrounding their estimated value. One approach is to use a more sophisticated estimator of the

quantile, such as that from Harrell & Davis (1982). Such estimators are more efficient and produce

standard errors for the estimator without any distributional assumptions. Figure 6 illustrates the

Harrell-Davis estimates of the value-at-risk capital for the smoothed Lee-Carter model, LC(S),

together with a confidence envelope around those estimates.

9.4 Plat (2011) felt that there was a risk of underestimation of true risk if the so-called spot model is

not responsive to a single extra year’s experience. This is perhaps true of the time-series models shown

in Table 5. However, this cuts both ways as overestimation of capital requirements is also possible if the

model is too responsive. This is possible for models using penalty projections, such as those of Richards

et al (2006) and Richards & Currie (2009), and an illustration of what can go wrong is given in z10.3.

Table 5. Average and 99.5th percentile values for �a3%
70: 35j

from 2011 using models of male mortality

applied to data from England & Wales, 1961–2010, ages 50–104. Temporary annuities to age 105 are used

to avoid distortions caused by extrapolation to higher ages. Discounting is at 3% per annum. Percentiles are

estimated using the method described in Appendix 5. Results are based on 1,000 simulations according to

the procedure described in steps z6.3–z6.8.

Value of �a3%
70: 35j

Capital requirement

Model (Appendix) (a) average value (b) 99.5th percentile ðbÞ
ðaÞ �1
� �

� 100%

LC (A1) 12.14 12.72 4.80%

DDE (A1) 12.15 12.77 5.06%

LC(S) (A1) 12.15 12.76 5.04%

CBD Gompertz (A2) 11.98 12.44 3.85%

CBD P-spline (A2) 11.89 12.36 3.98%

APC (A3) 12.61 13.04 3.40%

2DAP (A4) 12.80 13.69 6.97%

Age
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99.5% Capital requirement
95% confidence envelope

Figure 6. Harrell-Davis (1982) estimate of 99.5% value-at-risk capital requirement for LC(S)
model in Table 5, together with approximate 95% confidence envelope.
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10. A test for model robustness

10.1 Besides answering the value-at-risk question, the framework outlined here can also be used to

test a model for robustness to new data. When selecting a model for internal management use, it is

important to know two things about its behaviour when new data becomes available. First, one wants

the model to fit, and second, one wants the model to produce sensible results. For example, Richards

et al (2007) highlight occasions when two-dimensional P-spline models can come unstuck due to

under-smoothing in the time direction. A particular model must be tested in advance to see if it is

vulnerable to such behaviour and either correct it or choose a different model.

10.2 Note that the question of robustness here — will the model fit and work? — is quite different

from the question of model suitability, which might itself be addressed by back-testing or the kind of

quantitative assessment carried out by Cairns et al (2009). Indeed, the one-year framework

presented in this paper might usefully be added to the tests in Cairns et al (2009) when considering

an internal model. To illustrate, consider the models listed in Table 5. In each case 1,000 simulations

were carried out of the next year’s potential mortality experience, and in each case the model was

successfully refitted. The resulting capital requirements are in a similar enough range to conclude

that any one of these models could be used as an internal model, safe in the knowledge that once the

commitment has been made to use the model the user is unlikely to be surprised by the model’s

response to another year’s data.

10.3 In contrast, consider an example where we remove the over-dispersion parameter from the 2DAP

model, i.e. we force c2 5 1 regardless of the over-dispersion apparent in the data (see Appendix 4

for details of the over-dispersion parameter). With 1,000 simulations of the framework in steps z6.3 to

z6.8, there were five instances where the model without over-dispersion could not fit. Although this

failure rate sounds small (0.5%), the implied capital requirement is also of the order of 30%. When

the model fits are inspected, we see that a number of the simulations have led to under-smoothing in

time and thus excessively volatile projections. The 2DAP model is therefore only usable as an

internal model with the England & Wales dataset with the over-dispersion parameter. Analogous

situations are possible with many other models, and it is obviously important to find a model’s weak

points before committing to use it.

10.4 The procedure described in steps z6.3–z6.8 is therefore not only useful for value-at-risk

calculations, it is also a practical test of the robustness of a model. The procedure can be used to

check that the model selected this year will continue to perform sensibly when new data arrive next

year. Furthermore, there is no reason to force the generating stochastic model to be the same as the

one being tested. The reality of model risk — as shown in Tables 3 and 5 — means that a thorough

robustness test would involve testing a model’s ability to handle the sample paths generated by a

different model. Without this sort of test, there is a risk of investing in a given model only for it to

surprise (or embarrass) when new data become available. It therefore makes sense to throughly test

a model before committing to using it.

11. Conclusions

11.1 There are a number of components to longevity risk, of which trend risk is just one part. The

longevity trend risk faced by insurers and defined-benefit pension schemes exists as a long-term

accumulation of small changes, which could together add up to an adverse trend. Despite the long-

term nature of longevity risk, there are reasons why insurers and others want to look at longevity
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through a one-year, value-at-risk prism. These reasons include the one-year horizon demanded

by the ICA regime in the United Kingdom and the pending Solvency II regime for the European

Union. This paper describes a framework for putting a long-term longevity trend risk into a

one-year view for setting capital requirements. The results of using this framework tend to produce

lower capital requirements than the stressed-trend approach to valuing longevity risk, but this is not

uniformly the case.

11.2 Whatever the choice of method — stressed trend, mortality shock or value-at-risk — the

actual capital requirements depend on the age and interest rate used in the calculations, and also

the choice of model. However, the three approaches used in this paper suggest that, at a specimen

male age of 70 and based on population mortality rates, the capital requirement in respect of

longevity trend risk in level annuities should be at least 3 1
2% of the best-estimate reserve. For

escalating annuities, or for indexed pensions in payment, the minimum capital requirement in

respect of longevity trend risk will be higher.
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Appendix 1: Lee-Carter model

A1.1 Lee & Carter (1992) proposed a single-factor model for the force of mortality defined as follows:

logmx;y ¼ ax þ bxky ð12Þ

where mx,y is the force of mortality applying at age x in year y. ax is the age-related component of

mortality, ky is a period effect for year y and bx is an age-related modulation of ky. The Lee-Carter

model is fitted by estimating the parameters ax, bx and ky by the method of maximum likelihood

discussed by Brouhns et al (2002). Note, however, that the model specified in Equation 12 cannot be

fitted without further specification, as there are infinitely many parameterizations which yield the

same fitted values. To see this, note that the following transformations yield the same fitted values

of mx,y for any real value of c:

ax ! anx ¼ ax�cbx; bx ! bn

x ¼ bx; ky ! kn

y ¼ ky þ c: ð13Þ

A1.2 We therefore fix a convenient parameterisation by setting
P

kj ¼ 0 and
P

k2
j ¼ 1. This has

the attractive feature that ax is a measure of average log mortality for age x.

A1.3 A notable variant of the Lee-Carter model is that of Delwarde et al (2007), who used

penalised splines to smooth the bx parameters. This is labelled the DDE model, and a useful feature

is that it reduces the risk that mortality rates at adjacent ages will cross over in the projections.

A further improvement can be obtained by smoothing both the bx and the ax parameters, which we

will denote by LC(S). All three versions of the Lee-Carter model — LC, DDE and LC(S) — could

project k either as a drift model or as a full ARIMA time-series process. A further variant of the

Lee-Carter model was proposed by Richards & Currie (2009), which applied spline smoothing not

only to bx but also to ky. In this case, projections of ky are done by means of the penalty function, as

in the 2D P-spline models in Appendix 4.

A1.4 The drift model is very simple and is described in Equation 9 for k. In contrast, an

ARIMA model is more complicated, but also more flexible and produces more realistic expanding

‘‘funnels of doubt’’ for the projected mortality rates. To understand an ARIMA model, we first

define the lag operator, L, which operates on an element of a time series to produce the previous

element. Thus, if we define a collection of time-indexed values fkyg, then Lky ¼ ky�1. Powers of

L mean the operator is repeatedly applied, i.e. Liky ¼ ky�i. The lag operator is also known as the

backshift operator.

A1.5 A time series, ky, is said to be integrated if the differences of order d are stationary,

i.e. 1�Lð Þ
dky is stationary. A time series, ky, is said to be autoregressive of order p if it involves a

linear combination of the previous values, i.e. 1�
Pp
i¼1

ariL
i

� �
ky, where ari denotes an autoregressive

parameter to be estimated. A time series, ky, is said to be a moving average of order q if

the current value can be expressed as a linear combination of the past q error terms, i.e.

ky ¼ 1þ
Pq
i¼1

maiL
i

� �
Ay, where mai denotes a moving-average parameter to be estimated

and {Ay} is a sequence of independent, identically distributed error terms with zero mean and
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common variance. A time series, ky, can be modelled combining these three elements as an

autoregressive, integrated moving average (ARIMA) model as follows:

1�
Xp

i¼1

ariL
i

 !
1�Lð Þ

dky ¼ 1þ
Xq

i¼1

maiL
i

 !
Ay ð14Þ

A1.6 A drift model is sometimes referred to as an ARIMA(0, 1, 0) model, emphasizing that the drift

model is a narrowly restricted subset of available ARIMA models. Although an ARIMA(p, d, q)

model is by definition more complicated than a drift model, it is also more flexible and produces more

reasonable extrapolations of past trends. To illustrate this, Figure 7 shows the past mortality rates for

males aged 70 in England & Wales, together with two Lee-Carter projections: a drift model and an

ARIMA model.

A1.7 The restrictive and rigid nature of the drift-model projection is evident in Figure 7. The

gradient of the trajectory of mortality rates shows an increasing rate of improvement, with the most

recent twelve or so years of data showing the fastest rate of decline. This is broadly extrapolated by

the ARIMA model. In contrast, the drift model projects with a shallower gradient which looks like a

less credible extrapolation. Plat (2011)refers to the ARIMA(0,1,q) model as a kind of ‘‘exponential

smoothing’’, meaning the projection of ky depends more heavily on recent values than distant

values. This is useful against a backdrop of accelerating improvements, as it yields more sensible-

looking extrapolations in Figure 7.

A1.8 ARIMA processes can be fitted with or without a mean; the ARIMA processes for k in the

Lee-Carter models in this paper are fitted with a mean.

Appendix 2: Cairns-Blake-Dowd (CBD) model

A2.1 Cairns et al (2006) introduced a two-factor model for the force of mortality defined as

follows:

logmx;y ¼ k0;y þ k1;y x� �xð Þ ð15Þ

Figure 7. Observed mortality at age 70 with Lee-Carter projections using a drift model (—) and an
ARIMA(3, 1, 3) model (- -). The ARIMA(3, 1, 3) model was selected from an array of ARIMA(p, d, q)
models as having the lowest AIC for this data set.
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where mx,y is the force of mortality applying at age x in year y. Projections of future mortality are

done by means of a bivariate random walk with drift for k0 and k1, where both the drift terms and

their correlation are estimated from the data.

A2.2 The model in Equation 15 is essentially a Gompertz (1825) model fitted separately for each

year y. Currie (2011) relaxed the Gompertz assumption to allow a general smooth function of age

instead of a straight line on a logarithmic scale as follows:

logmx;y ¼ k0;y þ k1;yS xð Þ ð16Þ

where S() denotes a smooth function based on penalised splines (of which the Gompertzian straight

line is a special case).

A2.3 In addition to projecting mortality rates in time, Richards & Currie (2011) showed how the

models in Cairns et al (2006) & Currie (2011) can also be used to extrapolate mortality rates to

higher (and lower) ages. The ability to extrapolate is a useful feature shared with the 2D P-spline

models in Appendix 4.

Appendix 3: Age-Period-Cohort (APC) model

A3.1 The Age-Period-Cohort model for the force of mortality is defined as follows:

logmx;y ¼ ax þ ky þ gy�x ð17Þ

where mx,y is the force of mortality applying at age x in year y for the birth cohort born in

y2x. There are numerous issues requiring care with the APC model, including the risk of over-

interpreting the parameter values and projecting parameters whose values are dictated by the choice

of identifiability constraints. The three constraints used in the APC model in this paper are:

C1
X

j

kj ¼ 0

C2
X

c

wcgc ¼ 0

C3
X

c

wccgc ¼ 0 ð18Þ

A3.2 In C2 and C3 wc is the cohort weight, namely, the number of times cohort c occurs in the

data set. If we have nx ages and ny years then we have nc 5 nx 1 ny 2 1 cohorts and c runs from

1 (oldest) to nc (youngest). The first two constraints are used in Cairns et al (2009), but the third

constraint is different (although Cairns et al (2009) do use C3 in their discussion of their models M6

and M7). We prefer constraint C3 to the constraint used in Cairns et al (2009) because we can check

that C1, C2 and C3 do indeed specify a unique parameter solution. The non-linear nature of the

third constraint in Cairns et al (2009) would appear to have two drawbacks: first, it is very difficult

to check that a unique solution has in fact been specified, and second, the efficient numerical

methods implemented in Currie (2012) are not available for non-linear constraints.

A3.3 Although popular and seemingly intuitive, Currie (2012) raises concerns about the use of the

APC model. Some implementations of the APC model assume a zero correlation between the a,

k and g terms. However, using the England & Wales population data, Currie (2012) found that these

parameters were highly correlated, thus invalidating a core assumption of the model. Currie (2012)
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highlights similar worries about correlations amongst parameters in the Renshaw-Haberman model

(Renshaw & Haberman, 2006). The limitations and challenges of the Age-Period-Cohort model are

discussed in Clayton & Schifflers (1987).

A3.4 Note that in this paper k in APC models is projected as a random walk with drift, while g in

APC models is projected as an ARIMA process without a mean.

Appendix 4: 2D P-spline models

A4.1 Currie et al (2004) proposed the following model:

log mx;y ¼
X

i

X
j

BiðxÞBjðyÞyij ð19Þ

where mx,y is the force of mortality applying at age x in year y, and B() represents a basis spline —

see de Boor (2001). This model smoothed the yij with two of the penalty functions proposed by

Eilers & Marx (1996) — one penalty in age and one in calendar time.

A4.2 Richards et al (2006) presented an alternative model where the smoothing took place by year

of birth instead of year of observation:

logmx;y ¼
X

i

X
k

BiðxÞBkðy� xÞyik ð20Þ

A4.3 As in Richards et al (2006), we use a five-year spacing between the knots by age and by time.

There is, however, an important difference between the 2D P-spline models in Richards et al (2006)

and the ones used in this paper. All the models fitted in this earlier paper assumed that the number of

deaths follows a Poisson distribution, a key feature of which is that the variance is equal to the mean.

In practice many mortality counts exhibit greater variance than the mean, a phenomenon called over-

dispersion. For time-series models this does not pose a problem, but for models using penalty

projections over-dispersion can lead to under-smoothing in the time direction, and thus unstable and

volatile projections. To allow for this extra variance, and to restore the stability to the penalty

projections, we can include an over-dispersion parameter, as described by Djeundje & Currie (2011).

This works as follows: if we let Y be a Poisson random variable with parameter m, we thus have

E(Y) 5 Var(Y) 5m. If we now suppose that the variance of Y is greater than the Poisson assumption by

a factor of c2, then Var(Y) 5 c2m. c2 is referred to as the over-dispersion parameter, and if c2 5 1 we

have the usual Poisson distribution. In practice we expect c2
Z1, but in our implementation we only

impose c2 . 0, thus theoretically allowing the phenomenon of under-dispersion. The importance of

the over-dispersion parameter for projections is illustrated in z10.3.

A4.4 Richards & Currie (2011) showed how the models in Richards et al (2006) can be used not

only to project mortality forward in time, but also to extrapolate mortality rates to higher (and

lower) ages. This useful property is shared with the CBD model in Appendix 2.

Appendix 5: Quantiles and Percentiles

A5.1 Quantiles are points taken at regular intervals from the cumulative distribution function of a

random variable. They are generally described as q-quantiles, where q specifies the number of

intervals which are separated by q 2 1 points. For example, the 2-quantile is the median, i.e. the

point where values of a distribution are equally likely to be above or below this point.
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A5.2 A percentile is the name given to a 100-quantile. In Solvency II work we most commonly

look for the 99.5th percentile, i.e. the point at which the probability that a random event exceeds

this value is 0.5%. This is the boundary of the top 200-quantile. There are various ways of

estimating a quantile or percentile, but the one most easily accessed by actuaries is the definition

used by Microsoft Excel and the R (2011) function quantile ( ) with the option type57.

A5.3 We will illustrate by using the following five lines of R code to (i) generate 1,000 pseudo-

random numbers from a N(0,1) distribution, (ii) write these values to a temporary file called

data.csv, and then (iii) calculate the 99.5th percentile:

set.seed(1)

temp5rnorm(1000)

write(temp, file5 ''C:/data.csv'', ncol51)

sort(temp) [994:1000]

quantile(temp, 0.995, type57)

A5.4 After executing the above instructions, the R console should contain something like the

following:

. set.seed(1)

. temp5rnorm(1000)

. write(temp, file5 ''C:/data.csv'', ncol51)

. sort(temp) [994:1000]

[1] 2.401618 2.446531 2.497662 2.649167 2.675741 3.055742 3.810277

. quantile(temp, 0.995, type57)

99.5%

2.446787

where the greater-than symbol denotes a command executed by R and the other three lines are

output. We can see the seven largest values, and we can also see that the R quantile ( ) function

has returned 2.446787. If we read the contents of the file data.csv into Excel we can use the

equivalent PERCENTILE (A : A,0.995) function. It returns the value 2.446786655, i.e. R and

Excel agree to at least seven significant figures.

A5.5 Note that the answer produced by R and Excel is not one of the seven largest values in the

data. This is because in both cases the software is interpolating between the fifth and sixth largest

values. In general, we seek a percentile level p2 (0,1). If x[i] denotes the ith largest value in a data

set, then the value sought is x[(n 2 1)p 1 1]. In the example above, n 5 1000 and p 5 0.995, so

(n 2 1)p 1 1 5 995.005. This latter value is not an integer, so we must interpolate between the 995th

and 996th largest values. The final answer is then:

0:995 n2:446531þ 0:005 n2:497662 ¼ 2:446787 ð21Þ

which agrees with the Excel and R answers to at least seven significant figures. There are other

methods of calculating quantiles and percentiles, however, and further information can be found in

Hyndman & Fan (1996).

A5.6 An important point to note is that sample quantiles and percentiles are estimators, and are

thus subject to uncertainty themselves. This is evidenced by the above example producing an
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estimate of the 99.5th percentile as 2.4468, whereas the true value for the N(0,1) distribution in

question is 2.5758 (Lindley & Scott, 1984). There are many ways of calculating the confidence

intervals for a quantile, including bootstrapping, but for illustration here we use the methods of

Harrell & Davis (1982) by running the following two R statements (in addition to the five above):

library (Hmisc)

hdquantile (temp, 0.995, se5TRUE, names5FALSE)

A5.7 After executing the above two instructions immediately following the initial five above, the

R console should contain something like the following:

. hdquantile (temp, 0.995, se5TRUE, names5FALSE)

[1] 2.534310

attr(,''se'')

[1] 0.1360113

which shows three things: (i) the Harrell-Davis estimate of the 99.5th percentile (2.5343) is

noticeably closer to the true known value for the standard normal distribution (2.5758), courtesy of

greater efficiency, (ii) the standard error of the estimate of the percentile is substantial with 1,000

values, and (iii) the true known value is well within the 95% confidence interval implied by this

estimate and standard error.

Appendix 6: Yield curves

A6.1 A yield curve describes the pattern of redemption yields by outstanding term for a given class

of bonds. At the time of writing, a complication is that the assumption of a constant discount rate is

not an accurate one — Figure 8 shows the yield curve implied by principal strips of UK government

gilts on 27th April 2012. The non-constant nature of the yield curve causes some complications for

the shape of capital requirements, as shown in Figure 9. Above age 80 the capital requirement for

the given yield curve is best approximated by a constant discount rate of 3% p.a., but below age 70

a discount rate of 4% p.a. would be a closer approximation. Indeed, the capital requirements below

age 65 are in fact slightly lower than those for the 4% curve, despite the fact that the yield curve in

Figure 8. Zero-coupon yields implied by prices of principal strips of UK gilts on 27th April 2012 (>)
and fitted Svensson (1994) model (—).
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Figure 8 peaks at 3.71%. The interaction of the survival curve and the shape of the yield curve is

therefore not a trivial point. Makin (2011a) considers the finer points of interaction between

longevity risk and interest rates.

Figure 9. Capital requirement by age for �ax:105�xj from stressed longevity trend at 99.5% level for
various discount rates using the Lee-Carter model from Table 3 (dashed lines) and a Svensson
(1994) yield-curve model fitted to the yields implied by prices of principal strips of UK gilts on 27th

April 2012 (>).
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