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Abstract

The general position number of a connected graph is the cardinality of a largest set of vertices such that no
three pairwise-distinct vertices from the set lie on a common shortest path. In this paper it is proved that
the general position number is additive on the Cartesian product of two trees.
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1. Introduction

Let dG(x, y) denote the number of edges on a shortest x, y-path in G. A set S of vertices
of a connected graph G is a general position set if dG(x, y) , dG(x, z) + dG(z, y) for
every {x, y, z} ∈

(

S

3

)

. The general position number gp(G) of G is the cardinality of a
largest general position set in G. Such a set is briefly called a gp-set of G.

Before the general position number was introduced in [9], an equivalent concept
was proposed in [14]. Much earlier, however, the general position problem has been
studied by Körner [8] in the special case of hypercubes. Following [9], the graph theory
general position problem has been investigated in [1, 3, 5, 7, 10, 11, 13].

The Cartesian product G�H of vertex-disjoint graphs G and H is the graph with
vertex set V(G) × V(H), vertices (g, h) and (g′, h′) being adjacent if either g = g′ and
hh′ ∈ E(H), or h = h′ and gg′ ∈ E(G). In this paper we are interested in gp(G�H), a
problem earlier studied in [3, 5, 10, 13]. More precisely, we are interested in Cartesian
products of two (finite) trees. (For some of the other investigations of the Cartesian
product of trees, see [2, 12, 15].) An important reason for this interest is the fact that
the general position number of products of paths is far from being trivial. First, if
P∞ denotes the two-way infinite path, one of the main results from [10] asserts that
gp(P∞ �P∞) = 4. Further, from the same paper, 10 ≤ gp(P3

∞) ≤ 16, where Gn denotes
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the n-fold Cartesian product of G. The lower bound 10 was improved to 14 in [5]. Very
recently, these results were superseded in [6], where it was shown that gp(Pn

∞) = 22n−1

for an arbitrary positive integer. Let n(G) denote the order of a graph G. In this paper
we prove the following result.

THEOREM 1.1. If T and T∗ are trees with min{n(T), n(T∗)} ≥ 3, then

gp(T �T∗) = gp(T) + gp(T∗) .

Theorem 1.1 is a significant extension of the result gp(P∞ �P∞) = 4. Moreover,
since gp(Pn

∞) = 22n−1
, there is no obvious (inductive) extension of Theorem 1.1 to

Cartesian products of more than two trees. Determining the general position number
of such products remains a challenging problem.

In the next section we give further definitions, recall some known results and prove
several new auxiliary results. Then, in Section 3, we prove Theorem 1.1.

2. Preliminaries

Let T be a tree. We denote the set of leaves of T by L(T) and set ℓ(T) = |L(T)|. If u

and v are vertices of T with deg(u) ≥ 2 and deg(v) = 1, then the unique u, v-path is a
branching path of T . If u is not a leaf of T , then there are exactly ℓ(T) branching paths
starting from u; we say that u is the root of these branching paths and that the degree-1
vertex of a branching path P is the leaf of P.

LEMMA 2.1 [9]. If T is a tree, then gp(T) = ℓ(T).

We next describe which vertices of a tree lie in some gp-set of the tree.

LEMMA 2.2. A nonleaf vertex u in a tree T belongs to a gp-set of T if and only if T − u

has exactly two components and at least one of them is a path.

PROOF. First, let R be a gp-set of T containing the nonleaf vertex u. Suppose that
T − u has at least three components, say T1, T2 and T3. Since R is a gp-set containing
u, R intersects at most one of T1, T2 and T3. Assume without loss of generality that
we have R ∩ V(T2) = ∅ and R ∩ V(T3) = ∅. Choose vertices v and w in T such that
v ∈ V(T2) and w ∈ V(T3). Then (R − {u}) ∪ {v, w} is a larger gp-set than R in T , which is
a contradiction. Hence, T − u has exactly two components, say T1 and T2. Now suppose
that neither T1 nor T2 is a path. Then, as before, R ∩ V(T1) = ∅ or R ∩ V(T2) = ∅. By
symmetry, we assume that R ∩ V(T2) = ∅. Since T2 is not a path, there are at least two
leaves x1 and x2 in T2. Again, the set (R − {u}) ∪ {x1, x2} is a larger gp-set than R in T .
Therefore, at least one of T1 and T2 is a path.

Conversely, we observe that u is a nonleaf vertex on a pendant path in T . Thus, u

belongs to a gp-set in T . �

In G�H, if h ∈ V(H), then the subgraph of G�H induced by the vertices (g, h),
g ∈ V(G), is a G-layer, denoted by Gh. The H-layers, gH, are defined analogously. The
G-layers and H-layers are isomorphic to G and H, respectively. The distance function
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in Cartesian products is additive, that is, if (g1, h1), (g2, h2) ∈ V(G�H), then

dG�H((g1, h1), (g2, h2)) = dG(g1, g2) + dH(h1, h2). (2.1)

If u, v ∈ V(G), then the interval IG(u, v) between u and v in G is the set of all vertices
lying on shortest u, v-paths, that is,

IG(u, v) = {w : dG(u, v) = dG(u, w) + dG(w, u)} .

In what follows, the notation dG(u, v) and IG(u, v) may be simplified to d(u, v) and
I(u, v) if G is clear from the context. Equality (2.1) implies that intervals in Cartesian
products have the following nice structure (see [4, Proposition 12.4]).

LEMMA 2.3. If G and H are connected graphs and (g1, h1), (g2, h2) ∈ V(G�H), then

IG�H((g1, h1), (g2, h2)) = IG(g1, g2) × IH(h1, h2) .

Equality (2.1) also easily implies the following fact (also proved in [13]).

LEMMA 2.4. Let G and H be connected graphs and R a general position set of G�H.

If u = (g, h) ∈ R, then V(gH) ∩ R = {u} or V(Gh) ∩ R = {u}.

For finite paths, the result gp(P∞ �P∞) = 4 mentioned in Section 1 reduces to the
following result.

LEMMA 2.5 [10]. If n1, n2 ≥ 2, then

gp(Pn1 �Pn2 ) =



















4 for min{n1, n2} ≥ 3,
2 n1 = n2 = 2,
3 otherwise.

To conclude the preliminaries we construct special maximal (with respect to
inclusion) general position sets in products of trees.

LEMMA 2.6. Let T and T∗ be two trees with min{n(T), n(T∗)} ≥ 3, vi ∈ V(T) \ L(T)
and v∗

j
∈ V(T∗) \ L(T∗). Then (L(T) × {v∗

j
}) ∪ ({vi} × L(T∗)) is a maximal general

position set of T �T∗.

PROOF. Set R = (L(T) × {v∗
j
}) ∪ ({vi} × L(T∗)) and let V0 = {u, v, w} ⊆ R. We first con-

sider the case when V0 ⊆ L(T) × {v∗
j
} or V0 ⊆ {vi} × L(T∗). By symmetry, assume that

V0 ⊆ L(T) × {v∗
j
}. Then each vertex of V0 corresponds to a leaf of L(T) in the layer

T
v∗

j � T . Therefore, u, v, w do not lie on a common geodesic in T �T∗.
In the following, without loss of generality, we can assume that u, w ∈ L(T) × {v∗

j
}

with u = (vk, v∗
j
), w = (vs, v∗

j
) and v = (vi, v∗

ℓ
) ∈ {vi} × L(T∗). By (2.1),

d(u, v) = dT (vk, vi) + dT∗(v
∗
j , v∗
ℓ
), d(w, v) = dT (vs, vi) + dT∗(v

∗
j , v∗
ℓ
)

and d(u, w) = dT (vk, vs). Note that vk and vs are two distinct vertices of T in
L(T) and vi ∈ V(T) \ L(T). Then dT (vk, vi) < dT (vk, vs) + dT (vs, vi) whenever vi

lies on the vk, vs-geodesic or outside the vk, vs-geodesic of T . This implies that
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d(u, v) < d(u, w) + d(w, v) in T �T∗. Therefore, w does not lie on the u, v-geodesic
in T �T∗. Analogously, u does not lie on the v, w-geodesic and v does not lie on the
u, w-geodesic of T �T∗. Thus, u, v, w do not lie on a common geodesic in T �T∗,
which implies that R is a general position set in T �T∗.

Next we prove the maximality of (L(T) × {v∗
j
}) ∪ ({vi} × L(T∗)) as a general position

set in T �T∗. Otherwise, there is a general position set R′ in T �T∗ of order
greater than ℓ(T) + ℓ(T∗) such that R ⊂ R′. Then there exists a vertex z ∈ R′\R, say
z = (vp, v∗q). If p = i, then there exist two vertices (vi, v∗s ), (vi, v∗t ) ∈ R such that z ∈

IT �T∗((vi, v∗s ), (vi, v∗t )) (since vi T∗ � T∗). This is a contradiction, showing that p , i.
Similarly, we have q , j. Now we consider the positions of vp in T and v∗q in T∗.
Suppose first that vp ∈ L(T), v∗q ∈ L(T∗). Then there are two vertices (vp, v∗

j
), (vi, v∗q) in

R such that z ∈ IT �T∗((vp, v∗
j
), (vi, v∗q)), contradicting that R ∪ {z} is a general position

set of T �T∗. If vp ∈ L(T) and v∗q < L(T∗), then we select a vertex v∗q′ ∈ L(T∗) such
that v∗q′ is closer to the leaf of the corresponding branching path than v∗q in T∗.
Then z ∈ IT �T∗((vp, v∗

j
), (vi, v∗q′)), which is a contradiction. Similarly, vp < L(T) and

v∗q ∈ L(T∗) cannot occur. Finally, we assume that vp < L(T), v∗q < L(T∗). Now we
select two vertices vp′ ∈ L(T) and v∗q′ ∈ L(T∗) such that vp′ is closer to the leaf
of the branching path than vp in T and v∗q′ is closer to the leaf of the branching
path than v∗q in T∗. But then (vp, v∗q) ∈ IT �T∗((vp′ , v∗

j
), (vi, v∗q′)), which is a final

contradiction. �

3. Proof of Theorem 1.1

If T and T∗ are both paths, then Theorem 1.1 holds by Lemma 2.5. In what follows
we may assume without loss of generality that T∗ is not a path. From Lemma 2.6,
gp(T �T∗) ≥ gp(T) + gp(T∗), so it remains to prove that gp(T �T∗) ≤ gp(T) + gp(T∗).
Set n = n(T), n∗ = n(T∗), V(T) = {v1, . . . , vn} and V(T∗) = {v∗1, . . . , v∗n∗}.

Assume on the contrary that there exists a general position set R of T such that
|R| > gp(T) + gp(T∗). Since the restriction of R to a T-layer of T �T∗ is a general
position set of the layer (which is in turn isomorphic to T), the restriction contains at
most gp(T) = ℓ(T) elements. Similarly, the restriction of R to a T∗-layer contains at
most gp(T∗) = ℓ(T∗) elements. We now distinguish two major cases.

Case 1. There exists a T-layer T
v∗

j with |V(Tv∗
j ) ∩ R| = gp(T), or a T∗-layer vi T∗ with

|V(vi T∗) ∩ R| = gp(T∗). By the commutativity of the Cartesian product, we may assume
without loss of generality that there is a T∗-layer vi T∗ with |R ∩ V(vi T∗)| = gp(T∗).
Let R = R1 ∪ R2, where R1 = R ∩ V(vi T∗) and R2 = R \ R1 =

⋃

t∈[n]\{i}(V(vt T∗) ∩ R).
Further, let S∗ be the projection of R ∩ V(vi T∗) on T∗, that is, S∗ = {v∗

j
: (vi, v∗

j
) ∈ R1}.

Since |R1| = gp(T∗), our assumption implies that |R2| ≥ gp(T) + 1. Since gp(T) = ℓ(T),
there exist two different vertices w = (vp, v∗q) and w′ = (vp′ , v∗q′) from R2 such that vp

and vp′ lie on the same branching path P of T . (Note that it is possible that vp = vp′ .)
We may assume that dT (vp′ , x) ≤ dT (vp, x), where x is the leaf of P. We proceed by
distinguishing two subcases based on the position of v∗q and v∗q′ in T∗.
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Case 1.1. There exists a branching path P∗ of T∗ that contains both v∗q and v∗q′ . Recall
that T∗ is not a path. Lemma 2.2 implies that a vertex of a tree belongs to a gp-set
if and only if it lies on a pendant path and has degree 1 or 2. Therefore, we can
select P∗ with the root of degree at least 3. Assume that dT∗(v∗q′ , y) ≤ dT∗(v∗q, y), where
y is the leaf of P∗. (The reverse case can be treated analogously.) Since S∗ is a
gp-set of T∗, which is not isomorphic to a path, there is a vertex v∗

k
∈ S∗ lying on

P∗. So, we may assume that P∗ is a branching path that contains v∗q, v∗q′ and a vertex
v∗

k
∈ S∗. (It is possible that some of these vertices are the same.) Let z = (vi, v∗

k
). Then

z ∈ R1. We proceed by distinguishing four subcases based on the position of vp, vp′

and vi in T .

Subcase 1.1.1. vp′ ∈ I(vi, vp). If v∗
k

is closer than v∗q, v∗q′ to the leaf y of P∗, then,
by Lemma 2.3, w′ ∈ IT �T∗(w, z), which is a contradiction. On the other hand, if
v∗

k
∈ I(v∗q, v∗q′), then, since ℓ(T∗) ≥ 3, there exists z′ = (vi, v∗

k′
) ∈ {vi} × S∗ such that

v∗
k
,v∗q ∈ I(v∗q′ , v∗

k′
) in T∗. Then

d(w′, z′) = dT (vp′ , vi) + dT∗(v
∗
q′ , v∗k′)

= dT (vp′ , vi) + dT∗(v
∗
q′ , v∗k) + dT∗(v

∗
k, v∗k′)

= d(w′, z) + d(z, z′),

which implies that z ∈ IT �T∗(w′, z′), which is a contradiction.

Subcase 1.1.2. vi ∈ I(vp, vp′). If v∗
k
∈ I(v∗q, v∗q′) in P∗, then z ∈ IT �T∗(w, w′) by

Lemma 2.3, which is a contradiction. Assume instead that v∗
k

is closer than v∗q, v∗q′
to the leaf of P∗. Since |S∗| = ℓ(T∗) ≥ 3, there is a vertex z′ = (vi, v∗

k′
) ∈ {vi} × S∗ such

that v∗q, v∗q′ ∈ I(v∗
k
, v∗

k′
) in T∗. Let v∗

k′
be on a branching path P′∗ in T∗, where P′∗ , P∗.

Note that ℓ(T) + 1 ≥ 3. There exists at least one vertex a = (vx, v∗y) ∈ R2 \ {w, w′}. Next
we consider the positions of vx, v∗y in T , T∗, respectively.

Suppose first that v∗y ∈ V(P∗ ∪ P′∗). If vx, vp, vp′ and vi lie on a path in T , then
there are five vertices w, w′, z, z′ and a in R2, three of which lie on a common
geodesic in T �T∗, which is a contradiction. Note that if T is a path, then we are
done as above. Therefore, we can assume that T is not isomorphic to a path and
the root of P has degree at least 3. (Otherwise, vx < P and vx, vp lie on a common
branching path in T .) Let Vs be the set of vertices of T not contained in Tip′ , where
Tip′ is the subtree of T − vp containing vi and vp′ . If there is a vertex a′ = (vs, v∗

l
) ∈ R2

with vs ∈ Vs, then R2 contains w, w′, z, z′ and a′, three of which are on a common
geodesic, which is a contradiction. Therefore, the first coordinate of any vertex in R2

cannot be in Vs. Assume that P′ , P is any branching path containing vp and a leaf in
both Tip′ and T . Then, besides w, P′ �T∗ contains at most one vertex in R2 of T �T∗.
Otherwise, P′ �T∗ contains two vertices h, h′ in R2. Then there exist two vertices
h0, h′0 ∈ {vi} × S∗ such that three vertices from {h, h′, h0, h′0, w} lie on some geodesic in
T �T∗, which is a contradiction. (Here h0 may be equal to h′0.) Note that Vs contains
at least two leaves of T since the root of P (just in Vs) has degree at least 3. Then
Tip′ has at most ℓ(T) − 2 leaves in T . Since P�T∗ contains two vertices w and w′
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in R2, we have |R2| ≤ ℓ(T) − 2 + 1 < ℓ(T) = gp(T), which is a contradiction with the
assumption.

Assume now that v∗y < V(P∗ ∪ P′∗). Then there is a vertex z′′ = (vi, v∗
k′′

) in {vi} × S∗

such that v∗y, v∗
k′′

lie on a common branching path in T∗. If v∗y is closer to the leaf of
the branching path than v∗

k′′
in T∗, then vi ∈ I(vx, vi) and v∗

k′′
∈ I(v∗y, v∗

k
). Therefore, by

Lemma 2.3, z′′ ∈ IT �T∗(a, z), which is a contradiction. If v∗
k′′

is closer to the leaf of
the branching path than v∗y in T∗, we consider the positions of vx, vp, vp′ and vi in T .
Let V1 = {z, z′, w, w′, a, z′′}. Then V1 ⊆ R2. If vx, vp, vp′ and vi lie on a path in T , then
there exist three vertices in V1 lying on a common geodesic in T �T∗, which is again
a contradiction. Otherwise, vx < P and vx, vp lie on a common branching path in T . In
the same way as above, this leads to a a contradiction.

Subcase 1.1.3. vp ∈ I(vi, vp′). Since ℓ(T∗) ≥ 3, there is a vertex z′ = (vi, v∗
k′

) ∈ {vi} × S∗

such that v∗
k′
< P∗ and v∗q ∈ I(v∗

k′
, v∗q′) in T∗. Since

d(z′, w′) = dT (vi, vp′) + dT∗(v
∗
k′ , v∗q′)

= dT (vi, vp) + dT∗(v
∗
k′ , v∗q) + dT (vp, vp′) + dT∗(v

∗
q, v∗q′)

= d(z′, w) + d(w, w′),

we have w ∈ IT �T∗(z′, w′), which is a contradiction.

Subcase 1.1.4. vi < V(P) such that vi, vp lie on the same branching path in T . Since
ℓ(T∗) ≥ 3, there is a vertex z′ = (vi, v∗

k′
) ∈ {vi} × S∗ such that v∗q ∈ I(v∗

k′
, v∗

k
) in T∗. If

v∗
k
∈ I(v∗q, v∗q′) , then obviously v∗

k
∈ I(v∗q, v∗

k′
) and, therefore,

d(w′, z′) = dT (vp′ , vi) + dT∗(v
∗
q′ , v∗k′)

= dT (vp′ , vi) + dT∗(v
∗
q′ , v∗k) + dT∗(v

∗
k, v∗k′)

= d(w′, z) + d(z, z′) .

We conclude that z ∈ IT �T∗(w′, z′), which is a contradiction. On the other hand, if v∗
k

is
closer to the leaf of P∗ than v∗q, v∗q′ , then we get a contradiction as in Subcase 1.1.2.

Case 1.2. v∗q and v∗q′ do not lie on the same branching path in T∗. We may assume that
v∗q and v∗q′ lie on distinct branching paths P∗ and P′∗ in T∗, respectively. Since ℓ(T∗) ≥ 3
and T∗ is not isomorphic to a path, there exist two vertices z = (vi, v∗

k
) and z′ = (vi, v∗

k′
)

from {vi} × S∗ such that v∗
k
∈ P∗ and v∗

k′
∈ P′∗. We consider four subcases based on the

positions of vp, vp′ and vi in T .

Subcase 1.2.1. vp′ ∈ I(vi, vp). If v∗
k′

is closer than v∗q′ to the leaf of P′∗, then vp′ ∈

I(vp, vi) and v∗q′ ∈ I(v∗q, v∗
k′

). Lemma 2.3 gives w′ ∈ IT �T∗(w, z′), which is a contradic-
tion. On the other hand, if v∗q′ is closer than v∗

k′
to the leaf of P′∗, then vi ∈ I(vi, vp′)

and v∗
k′
∈ I(v∗

k
, v∗q′) and hence Lemma 2.3 gives z′ ∈ IT �T∗(w′, z), which is again a

contradiction.

Subcase 1.2.2. vi ∈ I(vp, vp′). We first assume that v∗q′ is closer than v∗
k′

to the leaf of
P′∗. Then vi ∈ I(vi, vp′) and v∗

k′
∈ I(v∗

k
, v∗q′). Therefore, by Lemma 2.3, z′ ∈ IT �T∗(z, w′)
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which is a contradiction. Otherwise, v∗
k′

is closer than v∗q′ to the leaf of P′∗. If v∗q is closer
than v∗

k
to the leaf of P∗, then vi ∈ I(vp, vi) and v∗

k
∈ I(v∗q, v∗

k′
). Therefore, by Lemma 2.3,

z ∈ IT �T∗(w, z′), which is a contradiction. If v∗
k

is closer than v∗q to the leaf of P∗, we
reach a contradiction in the same way as in the proof of Subcase 1.1.2.

Subcase 1.2.3. vp ∈ I(vi, vp′). If v∗
k

is closer than v∗q to the leaf of P∗, then vp ∈ I(vi, vp′)
and v∗q ∈ I(v∗

k
, v∗q′). So, Lemma 2.3 gives w ∈ IT �T∗(z, w′), which is a contradiction.

If v∗q is closer than v∗
k

to the leaf of P∗, then vi ∈ I(vi, vp) and v∗
k
∈ I(v∗

k′
, v∗q) and so

z ∈ IT �T∗(z′, w).

Subcase 1.2.4. vi < V(P) such that vi, vp lie on the same branching path in T . First
suppose that v∗q is closer to the leaf than v∗

k
in P∗. Then we have vi ∈ I(vi, vp) and

v∗
k
∈ I(v∗q, v∗

k′
). Thus, by Lemma 2.3, z ∈ IT �T∗(w, z′).

Assume that v∗
k

is closer than v∗q to the leaf of P∗. If v∗q′ is closer to the leaf than v∗
k′

,
then vi ∈ I(vi, vp′) and v∗

k′
∈ I(v∗

k
, v∗q′), which gives z′ ∈ IT �T∗(z, w′). If v∗

k′
is closer than

v∗q′ to the leaf of P′∗, we can proceed in the same way as in Subcase 1.1.4.

Case 2. |R ∩ V(vk T∗)| < ℓ(T∗) for any k ∈ [n], and |R ∩ V(Tv∗t )| < ℓ(T) for any t ∈ [n∗].
Let vi T∗ be a layer with |R ∩ V(vi T∗)| = max{|R ∩ V(vk T∗)| : k ∈ [n]}. Let R = R1 ∪ R2,
where R1 = R ∩ V(vi T∗) and R2 = R \ R1 =

⋃

k∈[n]\{i}(V(vk T∗) ∩ R). Further, set S∗ =

{v∗
j

: (vi, v∗
j
) ∈ R1}. Then 1 ≤ |S∗| ≤ ℓ(T∗) − 1.

Assume first that |S∗| = 1. Therefore, |R ∩ V(vk T∗)| ≤ 1 for any k ∈ [n]. Next we
only need to consider |R ∩ V(Tv∗

j )| ≤ 1 for any j ∈ [n∗]. (If |R ∩ V(Tv∗
j )| ≥ 2 for

some j ∈ [n∗], by commutativity of T �T∗, the proof is similar to the subcase
in which 2 ≤ |S∗| ≤ ℓ(T∗) − 1.) So, suppose |R ∩ V(Tv∗

j )| ≤ 1 for any j ∈ [n∗].
Then |R| ≤ min{n, n∗}. We now claim that |R| ≤ ℓ(T) + ℓ(T∗). If not, then, since
|R| ≥ ℓ(T) + ℓ(T∗) + 1 ≥ 6, there exist three vertices u = (vp, v∗

j
), v = (vp′ , v∗q) and

w = (vs, v∗
ℓ
) from R such that vp, vp′ lie on the same branching path in T , and v∗

j
, v∗
ℓ

lie on a common branching path in T∗. Note that we may have p′ = s, q = ℓ. But we
can always select a vertex h ∈ R \ {u, v, w} such that u, v, h or u, w, h lie on the same
geodesic in T �T∗, which is a contradiction. So, our result holds when |S∗| = 1.

Suppose next that 2 ≤ |S∗| ≤ ℓ(T∗) − 1. Since |R1| = |S
∗|, we need to prove that

|R2| ≤ ℓ(T) + ℓ(T∗) − |S∗|. Assume on the contrary that |R2| ≥ ℓ(T) + ℓ(T∗) − |S∗| + 1.
Since |S∗| ≥ 2, there are two distinct vertices w = (vi, v∗

j
) and w′ = (vi, v∗

j′
) from

{vi} × S∗. We distinguish the following cases based on the positions of v∗
j
, v∗

j′
in T∗.

Case 2.1. v∗
j

and v∗
j′

lie on the same branching path P∗ of T∗. Without loss of generality,
we may assume that v∗

j′
is closer than v∗

j
to the leaf of P∗. Let T∗

v∗
j′

be the maximal

subtree of T∗ − v∗
j

containing v∗
j′

and let Vs∗ = V(T∗) \ V(T∗
v∗

j′
). In addition, introduce

S∗1 = {v
∗
q : v∗q ∈ I(v∗

j
, v∗
ℓ
), v∗
ℓ
∈ S∗ ∩ V(T∗

v∗
j′
)}. Now we prove the following claim.

Claim 1. If z = (vp, v∗t ) ∈ R2, then v∗t ∈ S∗1.
If not, suppose first that v∗t ∈ V(P∗) is closer than v∗

j′
to the leaf of P∗. Then vi ∈

I(vi, vp) and v∗
j′
∈ I(v∗t , v∗

j
). Hence, w′ ∈ IT �T∗(w, z). On the other hand, if v∗t ∈ Vs∗ , then
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v∗
j
∈ I(v∗t , v∗

j′
). Combining this fact with vi ∈ I(vi, vp), we have w ∈ IT �T∗(w′, z). This

proves Claim 1.
By Claim 1, |

⋃

v∗t ∈S
∗
1
(V(Tv∗t ) ∩ R)| ≥ ℓ(T) + ℓ(T∗) − |S∗| + 1 ≥ ℓ(T) + 1. So, there

exist two vertices z = (vp, v∗
ℓ
) and z′ = (vp′ , v∗

ℓ′
) from

⋃

v∗t ∈S
∗
1
(V(Tv∗t ) ∩ R) such that

v∗
ℓ
, v∗
ℓ′
∈ S∗1 and vp, vp′ lie on the same branching path P in T . Without loss of generality,

let vp′ be closer than vp to the leaf of P and let v∗
ℓ
, v∗
ℓ′
∈ I(v∗

j
, v∗

j′
) (by the definition of

S∗1). We consider four subcases according to the positions of vi, vp, vp′ in T .

Subcase 2.1.1. vp′ ∈ I(vi, vp). If v∗
ℓ′

is closer than v∗
ℓ

to v∗
j′

in P∗, then vp′ ∈ I(vi, vp) and
v∗
ℓ′
∈ I(v∗

ℓ
, v∗

j′
). Therefore, z′ ∈ IT �T∗(z, w′). And, if v∗

ℓ
is closer than v∗

ℓ′
to v∗

j′
in P∗, then

vp′ ∈ I(vi, vp) and v∗
ℓ′
∈ I(v∗

ℓ
, v∗

j
) and so z′ ∈ IT �T∗(z, w).

Subcase 2.1.2. vi ∈ I(vp, vp′). Note that ℓ(T) + ℓ(T∗) − |S∗| + 1 ≥ 4, so there is at least
one vertex a = (vx, v∗y) in

⋃

v∗t ∈S
∗
1
(V(Tv∗t ) ∩ R) different from z and z′. Based on the

position of v∗y (v∗y ∈ P∗ or v∗y < P∗) in T∗, and the positions of vx, vi, vp and vp′ in
T , we get contradictions in the same way as in Subcase 1.1.2.

Subcase 2.1.3. vp ∈ I(vi, vp′). If v∗
ℓ′

is closer than v∗
ℓ

to v∗
j′

in T∗, then vp ∈ I(vi, vp′) and
v∗
ℓ
∈ I(v∗

j
, v∗
ℓ′

); therefore, z ∈ IT �T∗(w, z′). And, if v∗
ℓ

is closer than v∗
ℓ′

to v∗
j′

in T∗, then
vp ∈ I(vi, vp′) and v∗

ℓ
∈ I(v∗

j′
, v∗
ℓ′

) and hence z ∈ IT �T∗(w, z′).

Subcase 2.1.4. vi < V(P) such that vi, vp lie on the same branching path in T .
Since ℓ(T) + ℓ(T∗) − |S∗| + 1 ≥ 4, there exists a vertex (vx, v∗y) ∈

⋃

v∗t ∈S
∗
1
(V(Tv∗t ) ∩ R). By

arguments similar to those in Subcase 1.1.4, we reach a contradiction. But this implies
that |

⋃

v∗t ∈S
∗
1
(V(Tv∗t ) ∩ R)| ≤ ℓ(T) + ℓ(T∗) − |S∗|, contrary to the assumption.

Case 2.2. v∗
j
, v∗

j′
lie on different branching paths P∗, P′∗ in T∗, respectively. Let S∗2 be

the set of vertices of vi T∗ closer to the leaf of a branching path than v∗g for any v∗g ∈ S∗.
Note that S∗ ∩ S∗2 = ∅. We prove the following claim.

Claim 2. If (vp, v∗t ) in R2, then v∗t ∈ V(T∗) \ (S∗ ∪ S∗2).
Lemma 2.4 implies that v∗t < S∗. Assume that v∗t ∈ S∗2 lies on the same branching

path as some v∗g in T∗. Note that |S∗| ≥ 2. Then there exists another vertex v∗g′ such
that v∗g ∈ I(v∗t , v∗g′). Combining this fact with vi ∈ I(vi, vp), we arrive at a contradiction:
w ∈ IT �T∗(z, w′). This proves Claim 2.

Now let S∗1′ = {v
∗
q : v∗q ∈ I(v∗g, v∗g′), v∗g, v∗g′ ∈ S∗}. Reasoning as in Subcase 2.1 and

using Claim 2, we infer that |
⋃

v∗t ∈S
∗

1′
(V(Tv∗t ) ∩ R)| ≤ ℓ(T).

Let S = {vk : (vk, v∗t ) ∈
⋃

v∗t ∈S
∗

1′
(V(Tv∗t ) ∩ R)} and set S∗∗ = V(T∗) \ (S∗ ∪ S∗1′). From

the assumption, |
⋃

v∗t ∈S
∗∗(V(Tv∗t ) ∩ R)| ≥ ℓ(T) + ℓ(T∗) − |S| − |S∗| + 1. So, there exists a

vertex z = (vp, v∗
ℓ
) ∈
⋃

v∗t ∈S
∗∗(V(Tv∗t ) ∩ R) and we can always select two distinct vertices

u = (vh, v∗g) and v = (vh′ , v∗g′) from R such that vp and vh lie on the same branching path
in T , while v∗

ℓ
and v∗g′ lie on a common branching path in T∗. But then we can choose

another vertex w ∈ R such that either u, w, z or u, v, z lie on the same geodesic in T �T∗,
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which is a contradiction. Therefore, |
⋃

v∗t ∈S
∗∗(V(Tv∗t ) ∩ R)| ≤ ℓ(T) + ℓ(T∗) − |S| − |S∗|.

This completes the proof.
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