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SUMMARY
We present a visual feedback method for closed loop
control of automated microassembly. A CAD model based
multi-camera visual tracking system that is well suited for
flexible automation and assembly of complex 3D geometries
was developed. The system is capable of providing six
degree-of-freedom pose feedback on the observed micro-
components in real-time (30 Hz). Using CAD models of the
observed objects, a complete description of the observed
scene, including the effect of occlusions, is available and
dependence on distinctive visual features such as fudicial
marks is avoided.

KEYWORDS: Visual tracking; Visual servoing; CAD;
Microassembly; Micromanipulation.

1. INTRODUCTION

1.1. Motivation
There is a growing interest in MEMS devices that are
built by assembling individual microcomponents. A strong
motive for microassembly is the demand for hybrid MEMS
that can combine incompatible materials or manufacturing
processes (e.g. CMOS, MOEMS). Microassembly can also
overcome the planar, 2.5D shape limitations of standard
MEMS manufacturing processes and create complex 3D
geometries. In addition, microassembly can increase the
overall yield as the number of layers and manufacturing steps
grow for a complex device. For example, the electromagnetic
MEMS linear actuator described in reference [1] uses an
externally wound 400 turn microcoil with an electroplated
structure to achieve high force and displacement capability.
Traditional coilwinding methods provide greater yield than
a potential multilayer MEMS process would for producing
such high winding density microcoils due to the defects that
arise in microfabricating the coil.

The majority of robotic assembly operations in the macro-
world rely on accurate robots that play back recorded
motions. However, this form of open-loop manipulation
is not suitable at the microscale due to the increased
precision requirements and the vastly different mechanics
of manipulation. While gravity is the dominant force in the
macro domain, electrostatic forces, surface tension effects
due to humidity and intermolecular Van der Waals forces

become dominant at the microscale, acting as external
disturbances to the microassembly process.2 Closed-loop
control through computer vision feedback has been applied
to overcome some of these problems and various methods
and systems for visually guided microassembly have been
presented in the literature.

In this paper, we present an alternative method for visual
tracking of MEMS micro-components using a CAD model
based multi-camera vision approach. Our goal is to develop
a generally applicable feedback method that is better suited
for the flexible automation of microassembly processes.
Section 1.2 reviews the previous research on the topic.
Section 2.1 discusses the advantages of the model based
approach for micro-scale vision. Section 2.2 presents the
algorithm in detail and Section 3 presents the experimental
results.

1.2. Previous research
The guidance of robots through real-time and continuous
visual feedback is generally known as visual servoing, and
the continuous observation of the objects of interest is
referred to as visual tracking. Visual tracking of an object
involves the detection of some known object features in the
acquired images and the estimation of the object position
and orientation using these features. A feature can be a
distinctive part of the object and can exist naturally as part
of the geometry (i.e. a corner, an edge), or as a deliberately
fabricated marking on the surface (i.e. a fudicial mark).3

Various systems have been presented in the literature
for visually guided microassembly;4–14 however, few
are intended for industrial level, flexible automation of
microassembly.15 In the majority of these, features are user-
selected from images and stored as templates during an
initialization stage, although methods for automatic selection
of features have also been suggested.6,16–18 In reference [4],
a detailed model of the microscope optics was used together
with CAD models of the objects to create synthetic images
which were then used for automatic selection of features.
During the tracking stage, the locations of features are
typically found by matching the previously stored feature
templates to the current images using correlation based
techniques, such as SSD.19

As will be discussed in more detail in Section 2.1,
microscope optics approximate an orthographic projection
system and do not reflect changes in the image scale as objects
move along the view axis. Therefore, only three degrees of
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Fig. 1. Closed-loop control of microassembly through visual feedback.

freedom (translations parallel to the image plane and rotation
about the optical axis) of object motion are observable. A
common approach in microscopic vision to resolve depth
along the view axis is the depth from defocus method.6,8,20

This method uses a visual metric of image sharpness to
detect, whether points or areas of interest are in focus, as
the focus point of the lens is moved along the optical axis in
controlled increments. This way the relative distance of two
points at different depths can be found by determining where
along this “focal-scan” the points are in best focus. However,
the focal-scan method is time-consuming and prevents real-
time application. A structured illumination method suitable
for planar components has also been investigated as an
alternative to depth from defocus.7

Virtually, all examples in the literature have focused on
4-DOF (degree-of-freedom) tracking where a single, top-
view microscope observes the position and orientation of
the components on a plane (Figure 1) and the depth from
defocus technique is used to resolve depth. However, even
with planar manipulation tasks, the effects of microscale
forces were shown to create out-of-plane rotation errors.8 For
this reason, 6-DOF manipulation and feedback requirements
can be expected in order to build complex, 3D hybrid MEMS
devices.

2. CAD MODEL BASED MULTI-CAMERA VISUAL
TRACKING WITH MICROSCOPES

2.1. Advantages of the CAD model based approach
The visual feedback system that is presented here was
developed as an essential component of a flexible automation
system for microassembly. A CAD model based multi-
camera tracking approach was taken to overcome the
difficulties associated with similar systems in the literature,
as reviewed above. There are several advantages to using
CAD models as a standard form of input for a flexible
automation system and a CAD model based vision has been
applied to macro-scale robotics.21–24 In general, the CAD
model of a MEMS component is readily available from
its design phase. More importantly, CAD models provide

3D information on component geometry so that appearance
can be predicted for any viewpoint while considering the
effect of occlusions. This is essential for a visual tracking
system that can handle translations and rotations about an
arbitrary axis. In addition to these advantages, by using object
edges (contours) as visual features to be observed, the CAD
model based approach avoids the need for fudicial marks or
other distinctive features to be present on the object. CAD
models of the components and the assembly have also been
used for automated path and assembly planning for macro-
scale robotics.25 A CAD model representation is a natural
choice of input for a similar automated planning system
for microassembly, which could also include the effects of
microscale forces in planning.

An important but not obvious advantage of the model
based multi-camera approach, especially in comparison
to stereo vision, becomes more significant when working
with microscopes. This advantage is the possibility of
positioning multiple microscopes around the workspace
without constraints on their relative locations. The concept
of visual resolvability26 indicates the effect of camera
placement in a multi-camera system. A camera projects the
3D features Pi of an object onto the image plane and presents
them as 2D image features pi , which can be modelled by
perspective projection

Pi = [Xi Yi Zi]
T pi = [ui vi]

T =
[
f Xi

Zi

f Yi

Zi

]T

(1)

where f is the focal length of the camera lens system.
Although the depth information is lost for a single 3D
feature point, object pose can be determined using three
or more features. However, not all degrees of freedom of
the object can be resolved equally well. In other words, the
vision system is not equally sensitive to motion along any
direction. With n features of an object being observed by all
cameras, the 2n× 6 image Jacobian matrix J , which defines
the mapping between a given 6 DOF differential motion
vector ∂h of an object and the resulting differential motion ∂p

of 2D features on the image planes of the cameras, represents
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Fig. 2. (a) Visual resolvability ellipsoids show the relative sensitivity of a system along different directions in the task space. Ellipsoids for
translations with (b) one microscope and (c) two microscopes.

this anisotropic sensitivity.
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By separating the Jacobian into translational and rotational
parts as J = [Jv Jω], two 3D visual resolvability ellip-
soids can be generated to picture this direction-dependent
sensitivity. Let Jv = U�V T be the singular value decompo-
sition (SVD) of the 2n× 3 Jacobian for translations. U2n×2n

and V3×3 contain the unit length eigenvectors of JvJ
T
v and

J T
v Jv , respectively, and � is a diagonal matrix containing

the squareroots of the eigenvalues of JvJ
T
v and J T

v Jv , also
called the singular values of Jv , in descending order such
that σ1 > σ2 > σ3 ≥ 0. Notice that by this representation a
given 3D velocity vector of the object is decomposed into
three orthogonal components along the columns v1, v2, v3,
of V , and each component is scaled by the singular values
σ1, σ2, σ3, respectively. Therefore, the largest image-space
motion is generated by motion of the object along v1, and
similarly, v3 is the direction along which the vision system
is least sensitive. A visual resolvability ellipsoid (Figure 2a)
with primary axes along σ1v1, σ2v2, and σ3v3 represents this
direction dependent sensitivity. A similar ellipsoid can be
generated for rotations of the object using Jω.

Figures 2b and 2c show the resolvability ellipsoids
for translations for one microscope and two identical
microscopes with 2X magnification observing a square
shaped object with 500 µm sides. In the single microscope
case the length of axis of the ellipsoid along the view axis
approaches zero indicating insensitivity along that direction
due to orthographic projection properties of microscope
lenses. Unlike perspective projection, the orthographic
projection of a feature point is not sensitive to changes in
depth, and, therefore, motion along the view axes is not
observable. Numerically, this can be simulated by using a
large focal length and camera distance compared to the size

of the object that is observed. With two cameras, however,
the sensitivity is much more uniform and motion along
any direction can be observed. In effect, each microscope
compensates for the other’s insensitivity along the view
axis. However, the microscope view-axes have to be largely
separated to achieve this quality. This is why the model-
based approach is advantageous over stereo vision since
it does not restrict the relative positioning of the cameras.
In stereo vision (Figure 3a), a correspondence match is
made for the same feature between different images and the
feature’s 3D location is solved by triangulation. Therefore, it
is necessary to have the same features visible in both views,
restricting how much the cameras can be separated. The
model based method (Figure 3b), on the other hand, makes
matches between 3D model points and 2D image features
independently for each camera image. For this reason, it
is possible to separate the viewpoints of the cameras by a
relatively large amount in order to maximize resolvability.

2.2. The tracking algorithm
Figure 4 illustrates the steps of the CAD model based visual
tracking method performed on a single object. The same
steps are repeated for each modeled object. Note that all
the computationally expensive model and image processing
steps are done independently for each camera, until the final
pose estimation step where the point data from multiple
cameras are combined. Since the large image data is not
shared, this method is suitable for parallel implementation
and the number of cameras simultaneously observing the
scene can be easily increased to improve the robustness and
precision of the overall system.

The CAD models that are input to the system are boundary
representation (BREP) models drawn in a commercial CAD
package. The BREP model consists of a mesh of triangular
patches that cover the outer surface of the solid object.
At the vision preprocessing step, performed off-line, the
model is translated into an internal format that also classifies
the triangle edges as “invisible”, “silhouette” or “sharp”
according to the surface curvature of the object at the edge
location. Invisible edges are frequently encountered when a
triangular mesh representation of a flat surface is generated
whereas sharp edges typically occur between the top and side
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Fig. 3. (a) Stereo (b) model based multi-camera vision.

Fig. 4. Steps of the CAD model based tracking method.

faces of planar MEMS components. Notice that the triangular
mesh representation and the edges are an approximation of
surfaces/contours with smooth curvatures, and the level of
approximation is adjustable by the user. Therefore, the model
based method is not specific to polyhedral objects, and round
objects like glass fibers can also be tracked.

The tracking cycle begins with the rendering of the CAD
model using the previously calibrated camera parameters
and the initial estimates of their poses. These estimates can
be the result of an initial object recognition/localization step
if the tracking cycle is just starting, or they can be the results
from the previous cycle. The next step is the determination of
visible edge segments that will be used for tracking. For each
object, the list of edges is processed and the edges that are
within the field of view and are potentially visible (i.e. a sharp
edge or a silhouette edge that is actually part of the object
silhouette) are determined. Some of these edges that are on
the back side of the object and, therefore, are self-occluded

are eliminated using the backface culling method.27 A final
visible edge detection is performed using the z-buffer (depth
buffer) algorithm27 taking advantage of specialized hardware
support for this method offered by most commercial graphics
cards. The z-buffer algorithm uses a depth buffer in addition
to the color buffer for the image to store a depth value (i.e.
distance to the image plane along the camera view axis)
associated with every pixel. The visibility of a 3D model
point can be determined by comparing its depth value to
the corresponding value in the buffer. Those edges that were
not eliminated by back-face culling are divided into small
(e.g. ∼5 pixel long) edge segments that are represented by a
control point (CPi) at the middle of the segment (Figure 5a).
While CPO

i , described in the object local coordinate frame, is
the 3D control point, CPI

i is its 2D image space counterpart
found by projecting the CPO

i according to the last known
pose of the object. The visibility of the control point CPi is
assumed to indicate the visibility of the ith edge segment.

https://doi.org/10.1017/S0263574704000840 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574704000840


Microassembly 413

Fig. 5. (a) Visible edge segments are represented by control points (b) Search line for a control point along the normal to the edge in the
image.

The next step in the tracking cycle is local edge detection
to find matches between visible edge segments and their
correspondences in the video image. The edge segment is
represented in the image by CPI

i . Since the location of CPI
i

in the current video frame is assumed to be within a close
neighborhood of its last known location (i.e. its location in
the previous video frame), the edge detection and matching
step can be narrowed to a small search window around the
edge segment. The search window is further reduced to a line
by taking advantage of the aperture problem which states
that the component of motion of an edge that is tangential
to itself is not locally observable (i.e. observable at a point
on the edge). Only the component along the normal to the
edge can be detected. Therefore, the search for the matching
edge segment is done along a 1D search path normal to the
segment. Figure 5b illustrates an edge segment and the search
line along the normal. In actual implementation, a quasi-
normal direction chosen among four principle directions
at 45◦ intervals is used instead of the actual normal for
computational efficiency.

The edge detection process is similar to the one used in
reference [23]. The search line consists of m pixels along
the quasi-normal ⇀n, centered at the CPI

i (3),(4) (Figure 5b).
At each pixel ek along the search line (4), the normal
and tangential components of the image gradient are found
using the 1-dimensional [−1 0 1] kernel. A gradient index
Gk is computed by subtracting the absolute value of the
normal component from the absolute value of the tangential
component (5). If the gradient index value is higher than a
positive threshold, that pixel’s location on the searchline is
added to a list Li of possible matches for CPI

i (6). After all
pixels of the search line are processed, the mean M(Li) (7)
and standard deviation σ (Li) (8) of the elements of Li are
found. The mean is assigned as the matching image point
CP′I

i for the model control point CPI
i (9).

CPI
i = [u v]T (3)

ek = CPI
i + k⇀n, k = −(m/2) . . . (m/2) (4)

Gk =
∣∣∣∣ ∂

∂⇀n
I (ek)

∣∣∣∣ −
∣∣∣∣ ∂

∂
⇀
t
I (ek)

∣∣∣∣ (5)

Gk > Threshold ⇒ k ∈ Li (6)

M(Li) =

size(Li )∑
s=1

Li(s)

size(Li)
(7)

σ (Li) =

size(Li )∑
s=1

|M(Li) − Li(s)|

size(Li)
(8)

CP′I
i = CPI

i + M(Li)
⇀n (9)

wi = 1

σ (Li)
(10)

The scalar weight wi , calculated from the standard deviation
(10), is later used as a measure of confidence at the pose
estimation step. A high standard deviation indicates that
multiple locations on the search line not clustered together
had gradient values above the threshold, possibly indicating
another nearby and parallel edge. Figure 6 shows a MEMS

Fig. 6. Image space errors along the edge normals.
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Fig. 7. Object space error definition for multi-camera tracking.

component with its CAD model superimposed. The short
lines indicate the image space errors between the model
points and the corresponding edge points detected in the
image.

The last step of the tracking cycle is the pose estimation
which is performed after all correspondences between 3D
model points CPO

i and their matching 2D image points
CP′I

i are established. Various methods for pose estimation
from 3D-2D correspondences have been reported.28 The
method used here transforms the image space matches CP′I

i

to appropriate object space data points and performs a 3D-3D
fitting of the corresponding model and data points in object
space.22,29 Figure 7 shows the geometry of the problem. Let
rotation matrix RW

Cj and translation vector T W
Cj describe the

pose of the j th camera with respect to the world coordinate
frame, while fj is the corresponding focal length. Similarly,
the last known pose of the object is described by RW

O and T W
O .

For a given 3D model point CPO
i that is observed by the j th

camera, the matching 3D point CP′W
i is found by projecting

the model point onto the line-of-sight vector qi defined by
CP′I

i . The orthogonal projection Qi ∈ R
n×n that projects a

vector onto the space spanned by qi ∈ Rn is given by

Qi = qiq
T
i

qT
i qi

(11)

The line of sight vector, expressed in the world coordinate
frame is

CP′I
i = [u′ v′]T qi = RW

Cj [u′ v′ fj ]T (12)

The matching 3D point and the object space error term Ei

are given by

CPW
i = RW

O CPO
i + T W

O CP′W
i = Qi

(
CPW

i − T W
Cj

) + T W
Cj

(13)
Ei = CPW

i − CP′W
i = (I3 − Qi)

(
CPW

i − T W
Cj

)

The remaining problem is to find a rotation and translation of
the CAD model that minimizes the errors in a least squares
manner. Various closed form solutions to this problem
have been proposed30 that use quarternion representation of
rotations,31,32 polar decomposition33 or the singular value
decomposition method34 to compute the rotation matrix R∗W

O

directly. An experimental comparison of these methods35 has
shown that the SVD method provides the best overall stability
against degenerate point data sets (i.e. as all points approach
to a plane, line or point) and the best accuracy and is the
method used here.

In the SVD method, a correlation matrix K is calculated
as

K =
n∑

i=1

wi

(
CP′W

i − CP′W )T (
CPW

i − CP
W )

(14)

where wi is the weighting term (10) that was found during

the edge detection step, and, CP′W and CP
W

are the centroids
of the n pairs of 3D points collected from all cameras. Let
K =U�V T be the SVD of K . The best fitting rotation matrix
R∗W

O and translation vector T ∗W
O are then found by

R∗W
O = UVT T ∗W

O = CP′W − R∗W
O CP

W
(15)
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Fig. 8. (a) Experimental set-up (b) Screen capture of the visual tracking program.

Note that the 3D matching points CP′W
i were not measured

by any form of range sensing but were estimated by the
projection of model points CPO

i onto the line-of sight vectors
qi . Therefore, after the best fitting R∗W

O and T ∗W
O are found,

a new set of CP′W
i are calculated using the same CPO

i and qi .
The above steps for pose estimation are then repeated until a
measure of convergence for R∗W

O and T ∗W
O is satisfied.

3. EXPERIMENTAL RESULTS

3.1. Experimental set-up
Figure 8a shows the experimental set-up used to implement
the CAD model based tracking method. Two cameras with
variable zoom microscope lenses (Edmund Scientific VZM-
300i) observe the MEMS components. These lenses were
chosen for their large depth of field (∼500 µm at 3X

Fig. 9. Standard deviations of the position parameters along x, y, z axes with changing magnification. Measured values are shown
by *, estimated values by +.

magnification). MEMS components are placed on a platform
attached to a three axis micropositioning stage (Sutter MP-
285). A reflective dome is placed over the transparent
platform for diffuse illumination of the scene by the light
source under the platform. A single PC (Pentium IV, 2.4 GHz)
with two framegrabbers (Sensoray 611) is used to acquire
and process the video images. The tracking software and the
user interface were written in C++ and OpenGL. Figure 8b
shows a screen capture of the program. The video images
from both cameras are displayed along with CAD models
superimposed on the objects. The system processes both
images at 30 frames/sec.

Throughout the experiments, the spacing of control points
on the model edges were set to 7 pixels and the search lines
along the edge normals were set to 21 pixels length. These
settings resulted in about 500 control points tracked by two
cameras. The gradient threshold for edge detection was set
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Fig. 10. Deviation of the measured position of a static object from
the mean position.

to 40% of the difference between the highest and lowest
intensities in each search line. These values were determined
empirically and were found to be adequate for the single CPU
system to achieve 30 frames/sec performance.

3.2. Precision
A set of experiments was performed to determine the
precision of the visual tracking system. The precision of
measurements is dependent on various factors including the
overall geometry of the scene and the quality of the image.
The combined geometrical factors, such as the magnification
of the microscope-camera system, the size, shape and pose of
the observed objects and the relative positions of the cameras,
result in the final set of observed control points on the model
edges. The uncertainty of the final pose measurement can
also be related to noise in the image space measurements at

Fig. 11. Results of accuracy experiments.

each control point through the image Jacobian matrix J (2).

Ch = (J T J )−1J T Ce((J T J )−1J T )T (16)

where Ch is the covariance matrix for the final estimated
pose vector and Ce is the combined covariance matrix
for the image space measurements. To test the precision
of the system, a stationary, square shaped object 970 µm
on a side was observed for 1000 frames under different
magnifications of the zoom microscope lenses. The spacing
of the control points was fixed at 7 pixels, therefore,
the number of control points increases with increasing
magnification. Figure 9 shows the observed and estimated
1σ deviation of the measured position vector at increasing
magnifications selected within a practical range. The range
of magnifications is limited by the object size in the
image and depth-of-field of the camera lens system. The
estimated values assume that the noise at each control
point is independent from others and is normally distributed
with σu,v = 1.0 pixel. An average precision of 1.0 µm was
achieved. The estimated precision values are close to the
observed values, showing that the system performance can
be predicted using the CAD models. This ability is valuable
for task/sensor planning. Figure 10 shows the collected data
from one of the experiments along with the resolvability
ellipsoid and the directions of the camera view axes. The
deviations of the position vectors are largely spread along
the shortest axis of the ellipsoid, as expected, since that is the
direction of lowest resolvability.

3.3. Accuracy
To test the accuracy of the visual tracking system a
square shaped object, 970 µm on a side, was translated by
known amounts using the manipulator, and the measured
displacement was compared to the commanded translation.
The Sutter MP-285 manipulator is an open-loop device
that uses a stepping motor in microstepping mode and a
proprietary worm gear driven capstan drive along each axis
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of motion. The command resolution of the manipulator is
0.040 µm. However, backlash and runout errors limit the
accuracy. Backlash errors happen only when the drive axes
change directions and are estimated to be “on the order
of 1–2 µm” by the manufacturer. The manufacturer also
estimated the runout errors for less than one revolution of the
worm gear (corresponding to 800 µm travel along any axis)
to be “less than 1% of travel.” The travel distance during
the accuracy tests was always less than 800 µm and “anti-
backlash” moves were executed whenever the direction was
reversed to eliminate the effect of backlash. To minimize
the precision errors in measurements, the measured position
vectors at the beginning and the end of the travel were
averaged for 100 video frames. Each experiment consisted
of 50 relative position measurements made after translations
of 20, 50, 100, 200, and 300 µm along a fixed direction.
Two directions of travel were used, one along the shortest
axis of the resolvability ellipsoid, and the other along the
longest axis. These steps were repeated for three different
magnifications of the microscope lenses at 0.18, 0.15 and
0.12 pixels/µm. The results are plotted in Figure 11.

On the average, an accuracy better than 2% was achieved.
The results for 0.18 pixels/magnification show a larger
error for distances above 200 µm compared to smaller
magnifications. At higher magnifications the object gets
close to the depth of field limits of the lens after a large
travel and part of the edges are effected from the reduced
image sharpness increasing the errors. The measurements for
translations along the minor and major axes of resolvability
were not consistently better or worse than the other. This can
be explained as the effect of averaging the measured position
at the beginning and end of travel to minimize the precision
errors which are directionally dependent.

4. CONCLUSIONS
A robust and cost effective microassembly process
is essential for the development of advanced hybrid
MEMS devices. While the difficulties of manipulation at
the microscale make traditional open-loop manipulation
unsuitable for microassembly, closed-loop control through
visual feedback overcomes many of these difficulties and
corrects for the positioning errors. A CAD model based
approach to visual tracking is particularly suitable for flexible
automation of microassembly.

The advantages of using CAD models for part/task
description apply equally well to micro-scale visual servoing
and common macro-scale automation tasks. However, the
increased visual resolvability of the model based multi-
camera tracking method becomes essential in micro-scale
vision to overcome the insensitivity of microscope lenses
along the view axis. Our experimental system has achieved
6-DOF tracking of MEMS components in real-time (30 Hz).
A 1σ precision of 1.0 µm and a relative position accuracy of
2% was demonstrated.

The ability to achieve 6-DOF tracking in real-time makes
the CAD model based method a viable alternative to the
depth-from-defocus techniques commonly applied in micro-
scale vision. Whereas the typically low depth of field of
microscope lenses provide advantage for the depth-from-

defocus method, the model based approach can still be used
with high depth of field microscope lenses, as well as with
other imaging methods such as SEM or Wavefront Coding36

that provide increased depth of field in real-time.
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