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Abstract

Let f be analytic in the unit disk D = {z ∈ C : |z| < 1} and S be the subclass of normalised univalent
functions given by f (z) = z +

∑∞
n=2 anzn for z ∈ D. We give sharp upper and lower bounds for |a3| − |a2|

and other related functionals for the subclass FO(λ) of Ozaki close-to-convex functions.
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1. Introduction

Let A denote the class of analytic functions f in the unit disk D = {z ∈ C : |z| < 1}
normalised by f (0) = 0 = f ′(0) − 1. Then, for z ∈ D, a function f ∈ A has the
representation

f (z) = z +

∞∑
n=2

anzn. (1.1)

Let S denote the subclass of all univalent (that is, one-to-one) functions inA.
In 1985, de Branges [4] solved the famous Bieberbach conjecture by showing that if

f ∈ S, then |an| ≤ n for n ≥ 2 with equality when f (z) = k(z) := z/(1 − z)2 or a rotation
of it. It was therefore natural to ask if for f ∈ S, the inequality ||an+1| − |an|| ≤ 1 is
true when n ≥ 2. This was shown not to be the case even when n = 2 [5] and that the
following sharp bounds hold.

−1 ≤ |a3| − |a2| ≤
3
4 + e−λ0 (2e−λ0 − 1) = 1.029 . . . ,

where λ0 is the unique value of λ in 0 < λ < 1 satisfying the equation 4λ = eλ.
Hayman [7] showed that if f ∈ S, then ||an+1| − |an|| ≤ C, where C is an absolute

constant. The exact value of C is unknown, the best estimate to date being C = 3.61 . . .
[6], which because of the sharp estimate above when n = 2 cannot be reduced to 1.
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Denote by S∗ the subclass of S consisting of starlike functions, that is, functions f
which map D onto a set which is star-shaped with respect to the origin. Then it is well
known that a function f ∈ S∗ if and only if, for z ∈ D,

Re
{z f ′(z)

f (z)

}
> 0.

We also recall the class S∗(α) of starlike functions of order α, defined for 0 ≤ α < 1 by

Re
{z f ′(z)

f (z)

}
> α.

It was shown in [9] that when f ∈ S∗, then ||an+1| − |an|| ≤ 1 is true when n ≥ 2.
Next denote by K the subclass of S consisting of functions which are close-to-

convex, that is, functions f which map D onto a close-to-convex domain. Then again
it is well known that a function f ∈ K if and only if there exists g ∈ S∗ such that, for
z ∈ D,

Re
{z f ′(z)

g(z)

}
> 0.

Extending the result ||an+1| − |an|| ≤ 1 for n ≥ 2 to close-to-convex functions remains
an open problem. However, Koepf [8] has shown that if f ∈ K , then ||a3| − |a2|| ≤ 1.

The class C(α) for 0 ≤ α < 1 of convex functions of order α consisting of functions
f satisfying

Re
{
1 +

z f ′′(z)
f ′(z)

}
> α

for z ∈ D is well known and has been widely studied.
Finding the sharp upper and lower bounds for |an+1| − |an|, when f ∈ C(0), that is,

for the convex functions, appears to be a difficult problem, with the only significant
results to date due to Ming and Sugawa [10], where sharp upper bounds have been
found for n ≥ 2 and sharp lower bounds when n = 2 and 3. For n ≥ 4, finding the sharp
lower bounds is an open problem.

Little attention has been given to the case when α < 0, but several authors have
considered the class C(−1/2), consisting of functions satisfying

Re
{
1 +

z f ′′(z)
f ′(z)

}
> −

1
2

for z ∈ D, whose members are known to be close-to-convex. In particular, in a recent
paper, Arora et al. [2] showed that if f ∈ C(−1/2), then |a3| − |a2| ≤ 1, but this bound
is not sharp.

The class FO(λ) of Ozaki close-to-convex functions, defined for z ∈ D and 1
2 ≤ λ ≤ 1

by

Re
{
1 +

z f ′′(z)
f ′(z)

}
>

1
2
− λ, (1.2)

was formally introduced in [1] and is also known to be a subclass of the close-to-
convex functions. We note that clearly FO(1/2) = C and FO(1) = C(−1/2).
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In this paper we give sharp upper and lower bounds for |a3| − |a2| when f ∈ FO(λ),
which in particular solves the problem when f ∈ C(−1/2), and also find sharp upper
and lower bounds for other related functions concerning coefficient differences.

2. Preliminary lemmas
Denote by P the class of analytic functions p with positive real part on D given by

p(z) = 1 +

∞∑
n=1

pnzn. (2.1)

We will use the following properties for the coefficients of functions in P, given by
(2.1).

Lemma 2.1 [5, page 41]. For p ∈ P and ν ∈ C,∣∣∣∣∣p2 −
ν

2
p2

1

∣∣∣∣∣ ≤ 2 max{|ν − 1|, 1}.

The inequality is sharp.

Lemma 2.2 [3]. If p ∈ P, then

p1 = 2ζ1,

p2 = 2ζ2
1 + 2(1 − |ζ1|

2)ζ2

and

p3 = 2ζ3
1 + 4(1 − |ζ1|

2)ζ1ζ2 − 2(1 − |ζ1|
2)ζ̄1ζ

2
2 + 2(1 − |ζ1|

2)(1 − |ζ2|
2)ζ3

for some ζi ∈ D, i ∈ {1, 2}.
For ζ1 ∈ T, the boundary of D, the unique function p ∈ P with p1 as above is

p(z) =
1 + ζ1z
1 − ζ1z

(z ∈ D).

For ζ1 ∈ D and ζ2 ∈ T, the unique function p ∈ P with p1 and p2 as above is

p(z) =
1 + (ζ1ζ2 + ζ1)z + ζ2z2

1 + (ζ1ζ2 − ζ1)z − ζ2z2
(z ∈ D).

For ζ1 ∈ D, ζ2 ∈ T and ζ3 ∈ T, the unique function p ∈ P with p1, p2 and p3 as above
is

p(z) =
1 + (ζ2ζ3 + ζ1ζ2 + ζ1)z + (ζ1ζ3 + ζ1ζ2ζ3 + ζ2)z2 + ζ3z3

1 + (ζ2ζ3 + ζ1ζ2 − ζ1)z + (ζ1ζ3 − ζ1ζ2ζ3 − ζ2)z2 − ζ3z3
(z ∈ D).

We also note that from (1.2), we can write

1 +
z f ′′(z)
f ′(z)

+ λ −
1
2

= p(z) (2.2)

for some p ∈ P and so, equating coefficients,

a2 = 1
4 (1 + 2λ)p1,

a3 = 1
12 (1 + 2λ)(p2 −

1
2 (1 − 2 − 2λ)p2

1).
(2.3)
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3. Main results

In order to prove the upper bound in our first result concerning the difference of
coefficients, we use the following simple Fekete–Szegö inequality, which is an easy
consequence of Lemma 2.1 (we omit the proof).

Theorem 3.1. Let f ∈ FO(λ) and be given by (1.1). Then

|a3 − µa2
2| ≤

1
6 (1 + 2λ) when 2

3 ≤ µ ≤
10
9 .

We first prove the following sharp inequalities for f ∈ FO(λ).

Theorem 3.2. Let f ∈ FO(λ) and be given by (1.1). Then

−
1 + 2λ

2
√

3 + 2λ
≤ |a3| − |a2| ≤

1
6

(1 + 2λ). (3.1)

Both inequalities are sharp.

Proof. Note first that using Theorem 3.1 when µ = 2/3,

|a3| − |a2| ≤ |a3 −
2
3 a2

2| +
2
3 |a2|

2 − |a2| ≤
1
6 (1 + 2λ) + 2

3 |a2|
2 − |a2|.

Since |p1| ≤ 2, from (2.3), we have |a2| ≤
1
2 (1 + 2λ) and a simple exercise shows that

the maximum value of the right-hand side of the above is 1
6 (1 + 2λ), as required.

We next prove the lower bound in (3.1). Write

|a2| − |a3| =
1
6 (1 + 2λ)Ψ, (3.2)

where
Ψ = 3|ζ1| − |2(1 + λ)ζ2

1 + (1 − |ζ1|
2)ζ2|.

Since both FO(λ) and P are rotationally invariant, we may assume that ζ1 ∈ [0, 1].
Write ζ2 = seiϕ with s ∈ [0, 1] and ϕ ∈ R, so that

Ψ = 3ζ1 − |2(1 + λ)ζ2
1 + (1 − ζ2

1 )seiϕ|.

Then

Ψ = 3ζ1 −

√
4(1 + λ)2ζ4

1 + 4(1 + λ)ζ2
1 (1 − ζ2

1 )s cosϕ + (1 − ζ2
1 )2s2

≤ 3ζ1 − |2(1 + λ)ζ2
1 − (1 − ζ2

1 )s| (3.3)

with equality when cosϕ = −1.
Suppose that 2(1 + λ)ζ2

1 − (1 − ζ2
1 )s ≤ 0. Then ζ1 ≤

√
s/(2 + 2λ + s) =: η1 and so,

by (3.3),

Ψ ≤ (2 + 2λ + s)ζ2
1 + 3ζ1 − s ≤ (2 + 2λ + s)η2

1 + 3η1 − s

= 3
√

s
2 + 2λ + s

≤
3

√
3 + 2λ

since s ≤ 1.
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If 2(1 + λ)ζ2
1 − (1 − ζ2

1 )s ≥ 0, then ζ1 ≥ η1. Define φ by

φ(x) = −(2 + 2λ + s)x2 + 3x + y

and let
η2 =

3
2(2 + 2λ + s)

be the unique critical point of φ. Then, by (3.3),

Ψ ≤ φ(ζ1). (3.4)

The condition η1 ≤ η2 is equivalent to the inequality 4s2 + 8(1 + λ)s − 9 ≤ 0, which
holds for 0 ≤ s ≤ κ, where

κ = 1
2 (
√

13 + 8λ + 4λ2 − 2(1 + λ)).

It is easily seen that 0 < κ < 1.
When 0 ≤ s ≤ κ, (3.4) implies that

Ψ ≤ φ(η2) =
9

4(2 + 2λ + s)
+ s =: h(s). (3.5)

Differentiating h gives

4(2 + 2λ + y)2h′(s) = 4s2 + 16(1 + λ)s + (16λ2 + 32λ + 7) > 0,

so that h is increasing on the interval [0, κ]. So, from (3.5),

Ψ ≤ h(s) ≤ h(κ) =
9

4(2 + 2λ + κ)
+ κ =

9
4(2 + 2λ + κ)

. (3.6)

Next we note that
9

4(2 + 2λ + κ)
≤

3
√

3 + 2λ
. (3.7)

Indeed, (3.7) is equivalent to

4(2 + 2λ + κ) ≥
√

3 + 2λ

and, since 0 < κ < 1,

16(2 + 2λ + κ)2 − 3(3 + 2λ) ≥ 16(2 + 2λ)2 − 3(3 + 2λ) = 64λ2 + 122λ + 55 > 0

for all λ ∈ [1/2, 1]. Thus, it follows from (3.6) and (3.7) that

Ψ ≤
3

√
3 + 2λ

.

When s ∈ [κ, 1], we have η1 ≥ η2 and a similar method to that used in the case
ζ1 ≤ η1 gives

Ψ ≤ φ(η1) = 3
√

s
2 + 2λ + s

≤
3

√
3 + 2λ

,

which completes the proof of the first inequality in (3.1).
In order to show that the inequalities are sharp, first let the function f1 be defined

by (2.2) with p(z) = (1 + z2)/(1 − z2). Then f1 ∈ FO(λ) with

f (z) = z + 1
6 (1 + 2λ)z3 + · · · .
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Next put ζ1 = 1/
√

2λ + 3 and ζ2 = −1. Then

Ψ2 = 3|ζ1| − |2(1 + λ)ζ2
1 + (1 − |ζ1|

2)ζ2| =
3

√
2λ + 3

. (3.8)

Since ζ1 ∈ D and ζ2 ∈ T, it follows from Lemma 2.2 that the function p̂ defined by

p̂(z) =
1 − z2

1 − 2ζ1z + z2

belongs to P. Now let the function f2 be defined by (2.2) with p = p̂. Then f2 ∈ FO(λ)
and so, from (3.2) and (3.8),

|a2| − |a3| =
1
6

(1 + 2λ)Ψ2 =
1 + 2λ

2
√

2λ + 3
,

which shows that the left-hand equality in (3.1) is sharp. This completes the proof of
Theorem 3.2. �

We next note that f ∈ C(α) for α ∈ R if and only if z f ′ ∈ S∗(α). In [2], it was shown
that if f ∈ S∗(α) for α ≤ 0, then

||an+1| − |an|| ≤
Γ(1 − 2α + n)

Γ(1 − 2α)Γ(n + 1)
(3.9)

with equality for f (z) = z(1 − z)2(α−1). Using (3.9), we are now able to deduce the
following theorem, thereby extending a result for C(−1/2) proved in [2] to FO(λ).

Theorem 3.3. Let f ∈ FO(λ) and be given by (1.1). Then

|n|an| − m|am|| ≤
1

Γ(2λ)

n−1∑
k=m

Γ(2λ + k)
Γ(1 + k)

.

The inequalities are sharp.

Proof. Let f ∈ FO(λ). Then, since z f ′ ∈ S∗((1/2) − λ), we deduce from (3.9) that

|(k + 1)|ak+1| − k|ak|| ≤
Γ(2λ + k)

Γ(2λ)Γ(k + 1)
, k ∈ N.

Here a1 = 1. Using the triangle inequality, it follows that for n ≥ m,

|n|an| − m|am|| =

∣∣∣∣∣n−1∑
k=m

(k + 1)|ak+1| − k|ak|

∣∣∣∣∣
≤

n−1∑
k=m

∣∣∣∣∣(k + 1)|ak+1| − k|ak|

∣∣∣∣∣
≤

1
Γ(2λ)

n−1∑
k=m

Γ(2λ + k)
Γ(1 + k)

.
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Clearly equality holds for f ∈ FO(λ) defined by

1 +
z f ′′(z)
f ′(z)

=
1 + 2λz

1 − z
, z ∈ D.

�

Theorem 3.4. Let f ∈ FO(λ) and be given by (1.1). Then

|a3 − a2| ≤
1
6 (1 + 2λ)(5 + 2λ). (3.10)

The inequality is sharp.

Proof. Let f ∈ FO(λ) and be given by (1.1). Then, since

a2 = 1
4 p1(1 + 2λ) and a3 = 1

12 (1 + 2λ)[p2 + 1
2 p2

1(1 + 2λ)],

from Lemma 2.2,

a3 − a2 = 1
12 (1 + 2λ)[p2 + 1

2 p2
1(1 + 2λ) − 3p1]

= 1
6 (1 + 2λ)Ψ(ζ1, ζ2), with ζ1, ζ2 ∈ D, (3.11)

where
Ψ(ζ1, ζ2) = 2(1 + λ)ζ2

1 − 3ζ1 + (1 − |ζ1|
2)ζ2.

Since ζ1, ζ2 ∈ D,

|Ψ(ζ1, ζ2)| ≤ 2(1 + λ)|ζ1|
2 + 3|ζ1| + (1 − |ζ1|

2)
= (1 + 2λ)|ζ1|

2 + 3|ζ1| + 1
≤ 5 + 2λ. (3.12)

Thus, from (3.11) and (3.12), we obtain (3.10).
To see that (3.10) is sharp, consider f1 : D→ R defined so that

1 +
z f ′′1 (z)
f ′1(z)

=

(1
2

+ λ
)1 − z
1 + z

+
1
2
− λ, z ∈ D.

Then f1 ∈ FO(λ), with expansion

f1(z) = z − ( 1
2 + λ)z2 + 1

3 (1 + λ)(1 + 2λ)z3 + · · · , z ∈ D,

which gives equality in (3.10) for f1. �
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