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SUMMARY
Inverse kinematics solutions are the basis for position and orientation control of automated machines
in their Cartesian workspace. This paper presents an efficient and robust inverse kinematics algorithm
for a new circumferential drilling machine for aircraft fuselage assembly. After a brief introduction
to the circumferential drilling machine and its forward kinematics, the paper discusses the nonlinear
optimization method for solving inverse kinematics problems. The objective function is defined
as a weighted combination of a position error function and an orientation error function. By
representing orientation error as the geodesic distance between two points on a unit sphere, the paper
proposes to define the orientation error function by using faithful geodesic distance functions, which
are accurate approximations to the geodesic distance when it is small. For increased efficiency,
robustness, and easy setting of initial values, the inverse kinematics problem is decomposed into
two subproblems. The revolute joint coordinates are obtained by nonlinear optimization, and the
prismatic joint coordinates are calculated with closed-form formulas. Numerical experiments show
that the objective function defined with faithful geodesic distance functions is effective, and the
proposed algorithm is efficient, robust, and accurate. The algorithm has been successfully integrated
into the control system of the circumferential drilling machine. Preliminary drilling experiments
show that the position accuracy of drilled holes is within ±0.5 mm, which is acceptable for the
assembly of large aircrafts.

KEYWORDS: Inverse kinematics; Nonlinear optimization; Orientation error function; Geodesic
distance; Drilling machine; Aircraft assembly.

1. Introduction
In aircraft manufacturing, the fuselage of a large aircraft is assembled using several fuselage
sections. In the assembly process, fuselage sections are first aligned with each other using numerical
positioners,1–2 then fastener holes are drilled in the circumferential splice region and adjacent sections
are joined together using rivets or bolts. Due to the difficult-to-cut materials used in aircraft structures
and high quality standard in aircraft manufacturing, the task of drilling fastener holes is labor
intensive and costly. For improved efficiency, higher quality, and clean manufacturing, automated
drilling machines must be employed in this task. Traditional gantry-type drilling machines require
large investment, and furthermore, the deployment of these machines in the fuselage assembly station
is often prevented by existing assembly fixtures. Therefore, an automated, low-cost, flexible, and
small-size drilling machine is desirable for aircraft fuselage assembly. Electroimpact Inc. developed
several flexible automated drilling machines based on the flex track technology, and successfully
applied them to the manufacturing of the B777.3–4 However, the cost of these machines is high
(about $ 750, 000), and they are not suitable for drilling fastener holes on double-curved aircraft
structures. To meet the challenges of low-cost and flexible drilling for aircraft fuselage assembly, a
circumferential drilling machine was recently developed at Zhejiang University, which is shown in
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Fig. 1. The circumferential drilling machine developed at Zhejiang University.

Fig. 1. The drilling machine has six numerical control axes and is suitable for drilling fastener holes
on double-curved surfaces, e.g., the splice region of forward and central fuselage.

In the drilling process, the joint coordinates of the machine’s axes must be determined in order
to put the drilling tool at the correct position and orientation in the machine’s Cartesian workspace.
This problem is known as the inverse kinematics problem, which has been extensively studied in
the robotics community for several decades.5–11 For a serial-type machine, it is straightforward
to compute the pose (position and orientation) in the Cartesian space when joint coordinates
are given. However, the inverse kinematics problem requires the solution of nonlinear sets of
equations. Closed-form and numerical solutions are two major categories of solutions for inverse
kinematics problems. Closed-form solutions are desirable because they are exact and faster to
compute, and all possible solutions can be identified when multiple solutions exist. However, closed-
form solutions are only available for a few special kinematic structures,12−17, e.g., when three
consecutive revolute joint axes intersect at a common point or three consecutive revolute joint axes
are parallel. Moreover, closed-form solutions are subject to uncertainty due to manufacturing errors.18

Therefore, numerical algorithms are frequently employed to solve inverse kinematics problems. In
the literature,19–20 the Newton–Raphson method was used to solve the nonlinear kinematic equations.
This method is unstable near singularities and cannot converge to exact singular configurations, and
its stability strongly depends on the quality of the initial estimation of the solution. The damped
Newton–Raphson methods, in which the Newton correction is modified using a damping factor
λ, have been proposed to overcome these problems.6,21–25 However, when the TCP (tool center
point) is near the workspace boundary, these methods may generate solutions oscillating about
the desired position. In addition to the Newton-Raphson methods, inverse kinematics problems have
also been transformed into least-squares minimization problems and solved by nonlinear optimization
algorithms.21,26–28 Since the inverse Jacobian matrix is not used in these methods, they are numerically
more stable than the Newton–Raphson methods. Typical nonlinear optimization methods such as
the Levenberg–Marquardt method, steepest descent method, and variable metric method can be
applied to solve minimization problems.8,27,29–30 Among them, the Levenberg–Marquardt method is
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Fig. 2. Structure of the circumferential drilling machine.

more preferable because of its high stability and satisfactory convergence performance in numerical
optimization.31

Although methods based on numerical optimization are quite general for solving inverse kinematics
problems, there is still no general method that is efficient and robust for all kinematic structures. The
complexity of the minimization problem is highly dependent on the formulation of the objective
function,26 and it has been shown in literature that the combination of closed-form solutions of
partial kinematic chains with numerical algorithms is advantageous for robustness and efficiency
in solving inverse kinematics problems.6,32–33 In this paper, for increased robustness, efficiency,
and easy assignment of initial values, the inverse kinematics problem of the circumferential drilling
machine is decomposed into two subproblems by exploring the characteristics of the machine’s
kinematic structure. The revolute joint coordinates are found using nonlinear optimization, and the
prismatic joint coordinates are computed with closed-form formulas. The objective function to be
minimized in solving the inverse kinematics problem is typically composed of a position error
function and an orientation error function. While the Euclidean distance has been commonly used in
formulating the position error function of two points, there is no such common view in formulating the
orientation error function of two vectors. Various orientation error functions have been proposed in
literature,8,27–28,31,34 however, there still lacks a suitable method to analyze their performance. In this
paper, the orientation error function is deduced from a geometric point of view. By representing the
orientation error as the geodesic distance between two points on a unit sphere, the paper proposes to
use faithful geodesic distance functions to formulate the orientation error function. Furthermore, the
concept of faithful geodesic distance can be used to predict the performance of different orientation
error functions proposed in literature.

This paper is organized as follows: Section 2 discusses the forward kinematics model after a
brief introduction to the circumferential drilling machine. Section 3 discusses the framework to
solve the inverse kinematics problem with nonlinear optimization methods. Section 4 discusses the
representation of orientation errors as geodesic distances on the unit sphere, the definition of faithful
geodesic distance functions, and the formulation of orientation error function with faithful geodesic
distance functions. Section 5 presents the method to decompose the original inverse kinematics
problem into two subproblems. Section 6 describes the numerical experiments in detail, including
the weighting methods, initial values, convergence criteria, experimental procedure, and the analysis
of the results. Preliminary drilling experiments with the circumferential drilling machine are also
discussed. Finally, conclusions are drawn in Section 7.

2. Kinematic Model of the Circumferential Drilling System
The circumferential drilling machine mainly consists of a supporting bracket, two circumferential
rails, and an arc-base drilling unit, as shown in Fig. 2.
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Fig. 3. The arc-base drilling unit.

Fig. 4. Numerically controlled motion axes of arc-base drilling unit.

The supporting bracket is used to partially support the weight of the circumferential drilling
machine for better stability and safety in drilling. Both circumferential rails are attached to the
aircraft structure with vacuum cups, forming a solid structure for mounting the arc-base drilling
unit. Before drilling, the arc-base drilling unit is moved to the targeted region and fixed to the
circumferential rails by the operator. Then, the arc-base drilling unit can perform automated drilling
within the span of an arc. The arc-base drilling unit consists of an arc base, X-, Y-, Z1-, and Z2-axis
supporting carriages, A- and B-axis turntables, a tool holder, a pressure foot, a normality sensing unit,
and a vision unit (refer to Fig. 3). The pressure foot is used to eliminate the gap between the stacks of
the aircraft structure, and keep the drilling process stable. The normality sensing unit measures the
orientation error of the drill and provides feedback information for controlling the drill so that it is
perpendicular to the workpiece surface before drilling. The vision unit detects reference holes online
for calibrating base frame position of the arc-base drilling unit with respect to the aircraft structure.
Thus, the position accuracy of the drilled fastener holes is largely determined by the positioning
accuracy of the arc-base drilling unit.

The arc-base drilling unit has six numerically controlled motion axes, as shown in Fig. 4, in
which the X- and Y-axis use rack and pinion transmissions and other axes use ball screw and nut
transmissions. The X- and Y-axis are used to position the drill along circumferential and longitudinal
directions, respectively. The rotational A- and B-axis are controlled coordinately to achieve the
normality of the drill relative to the surface of the aircraft structure. The Z1- and Z2-axis are two
parallel linear axes along the drilling direction. They are designed for different purposes: the Z1-axis
with larger motion range is mainly for obstacle avoidance, providing space for tool exchange, and
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Fig. 5. Kinematic structure of the arc-base drilling unit.

adapting to the curvature of aircraft structures, while the Z2-axis provides feed motion along the
drilling direction.

All axes use conventional mechanism to realize prismatic (linear guideway/bearing) or revolute
(shaft/bearing) joints except the X-axis of the drilling unit, which uses an arc-shaped guideway and
offers motion along a circular trajectory. Consequently, the X-axis is modeled as a revolute joint.
The arc length traveled along the arc-shaped guideway is related to the rotation angle by θ1 = L/R,
where L is the arc length along the arc-shaped guideway, and R is the radius of the motion trajectory.
The parameter R is an internal modeling parameter for the revolute joint and is measured to be
2425.02 mm.

In kinematic modeling, the six joints of the arc-base drilling unit are denoted as jointi , i =
1, 2, . . . , 6, where jointi generates motion between linki−1 and linki . And the links are numbered
from 0 to 6 starting from the arc base, which is denoted as link0. Each link is attached with a
proper coordinate frame so that the pose (position and orientation) of the link with respect to its
adjacent link(s) can be described mathematically, e.g., linki is assigned with frame {OiXiYiZi}
(refer to Fig. 5). When assigning a right-hand orthogonal coordinate frame to a link, the Z-axis,
origin, and X-axis are determined according to the geometric configurations of the machine, while
the Y-axis is determined with the right-hand rule. The Z-axis of frame {OiXiYiZi} assigned to linki

coincides with the motion direction of jointi . Frame {OiXiYiZi} is determined according to the
D–H (Denavit–Hartenberg) method when the common perpendicular between adjacent axes can be
determined uniquely; otherwise, it is determined using a modified version of the Hayati method,35

in which the origin is defined by intersecting jointi with a coordinate plane (XYor XZ) of frame
{Oi−1Xi−1Yi−1Zi−1}. The kinematic model of the arc-base drilling unit is constructed using a sequence
of homogeneous transformation matrices from its base frame to the TCP frame. The determination
of link frames and transformation matrices between adjacent links are discussed as follows:

(1) Frame {O0X0Y0Z0} and 2) Frame {O1X1Y1Z1}.
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The base frame {O0X0Y0Z0} is defined to be coincident with frame {O1X1Y1Z1} when joint1 is
at zero position. joint1 and joint2 are revolute joints perpendicular to each other, frame {O1X1Y1Z1}
can be determined unambiguously using the D–H method. Its Z-axis is chosen along the positive
direction of joint1, its origin is placed at the intersection of joint1 and the common perpendicular
between joint1 and joint2, and its X-axis is chosen along the common perpendicular, pointing from
joint1 to joint2. The pose of frame {O1X1Y1Z1} with respect to the base frame is

T01 = Rz(θ1) =

⎡
⎢⎣

Cθ1 −Sθ1 0 0
Sθ1 Cθ1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦ , (1)

where θ1 is the rotation angle of joint1.

(3) Frame {O2X2Y2Z2}
The origin of {O2X2Y2Z2} is defined as the intersection of joint2 and the common perpendicular

between joint1 and joint2. The Z-axis of {O2X2Y2Z2} is defined along the positive direction of
joint2, and the X-axis of {O2X2Y2Z2} is defined to be parallel to the X-axis of frame {O1X1Y1Z1}
when joint2 is at zero position. The pose of frame {O2X2Y2Z2} with respect to frame {O1X1Y1Z1}
is

T12 = Tx(a2)Rx(−90◦)Rx(α2)Rz(θ2) =

⎡
⎢⎣

Cθ2 −Sθ2 0 a2

Sα2Sθ2 Sα2Cθ2 Cα2 0
−Cα2Sθ2 −Cα2Cθ2 Sα2 0

0 0 0 1

⎤
⎥⎦ , (2)

where θ2 is the rotation angle of joint2, a2 is the length of the common perpendicular between joint1
and joint2, α2 − 90◦ is the angle between the Z-axes of frame {O1X1Y1Z1} and frame {O2X2Y2Z2}.
(4) Frame {O3X3Y3Z3}

The prismatic joint3 is defined as a line intersecting the XZ plane of frame {O2X2Y2Z2} at
(c31, 0, c32), where c31, c32 are arbitrary constants. Then, by applying rules similar to the Hayati
method, frame {O3X3Y3Z3} can be obtained by the following steps:

a) Translate the origin of frame {O2X2Y2Z2} to (c31, 0, c32);
b) Rotate the resulting frame around its X-axis by 90◦ so that its Z-axis is nominally aligned with

the Z-axis of {O3X3Y3Z3};
c) Rotate the resulting frame around its X-axis by α3, then rotate the resulting frame around its Y-axis

by β3 to align with frame {O3X3Y3Z3} when joint3 is at zero position;
d) Translate the resulting frame along its Z-axis by d to acquire frame {O3X3Y3Z3}, where d is the

displacement of joint3.

Thus, the pose of frame {O3X3Y3Z3} with respect to frame {O2X2Y2Z2} is

T23 = Tx(c31)Tz(c32)Rx(90◦)Rx(α3)Ry(β3)Tz(d3)

=

⎡
⎢⎣

Cβ3 0 Sβ3 c31 + d3Sβ3

Cα3Sβ3 −Sα3 −Cα3Cβ3 −d3Cα3Cβ3

Sα3Sβ3 Cα3 −Sα3Cβ3 c32 − d3Sα3Cβ3

0 0 0 1

⎤
⎥⎦ . (3)

(5) Frame {O4X4Y4Z4}
The revolute joint4 is nominally parallel to the prismatic joint3. Frame {O4X4Y4Z4} is determined

as follows:
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a) Place the origin of the {O4X4Y4Z4} at the intersection of joint4 and the XY plane of {O3X3Y3Z3}.
This is achieved by translating {O3X3Y3Z3} along its X- and Y-axis by a4 and d4, respectively;

b) Rotate the resulting frame around Z-axis by -90◦ so that the resulting X-axis points from joint4 to
joint5;

c) Rotate the resulting frame around X-axis by α4 and Y-axis by β4 to align the Z-axis with that of
frame {O4X4Y4Z4};

d) Finally, rotate around the Z-axis by θ4 to obtain frame {O4X4Y4Z4}.
Hence, the pose of frame {O4X4Y4Z4} with respect to {O3X3Y3Z3} is

T34 = Tx(a4)Ty(d4)Rz(−90◦)Rx(α4)Ry(β4)Rz(θ4)

=

⎡
⎢⎣

Cα4Sθ4 + Sα4Sβ4Cθ4 Cα4Cθ4 − Sα4Sβ4Sθ4 −Sα4Cβ4 a4

−Cβ4Cθ4 Cβ4Sθ4 −Sβ4 d4

Sα4Sθ4 − Cα4Sβ4Cθ4 Sα4Cθ4 + Cα4Sβ4Sθ4 Cα4Cβ4 0
0 0 0 1

⎤
⎥⎦ . (4)

(6) Frame {O5X5Y5Z5}
joint5 is a prismatic joint and is defined as a line intersecting the XZ plane of {O4X4Y4Z4} at

(c51, 0, c52), where c51, c52 are arbitrary constants. Frame {O5X5Y5Z5} can be acquired as follows:

a) Translate {O4X4Y4Z4} along the X-axis and Z-axis by c51 and c52, respectively;
b) Rotate around the Z-axis by 180◦ so that the resulting X-axis nominally points in the direction

from joint5 to joint6;
c) Rotate around the resulting X-axis to nominally align the Z-axis with the positive direction of

joint5;
d) Rotate around the X- and Y-axis by α5 and β5, respectively, to align its Z-axis with the positive

direction of joint5;
e) Translate along the Z-axis by d5 to acquire frame {O5X5Y5Z5}.

The pose of frame {O5X5Y5Z5} with respect to {O4X4Y4Z4} is

T45 = Tx(c51)Tz(c52)Rz(180◦)Rx(90◦)Rx(α5)Ry(β5)Tz(d5)

=

⎡
⎢⎣

−Cβ5 0 −Sβ5 c51 − d5Sβ5

−Cα5Sβ5 Sα5 Cα5Cβ5 d5Cα5Cβ5

Sα5Sβ5 Cα5 −Sα5Cβ5 c52 − d5Sα5Cβ5

0 0 0 1

⎤
⎥⎦ . (5)

(7) Frame {O6X6Y6Z6}
joint6 is a prismatic joint, which is defined as a line intersecting the XY plane of {O5X5Y5Z5} at

(c61, c62, 0), where c61, c62 are arbitrary constants. Frame {O6X6Y6Z6} is determined in the same way
as frame {O5X5Y5Z5} as follows:

a) Translate frame {O5X5Y5Z5} along the X-axis and Y-axis by c61 and c62, respectively.
b) Rotate around the X-axis and Y-axis to align the Z-axis with joint6
c) Translate along the Z-axis by d6 to represent the linear motion along joint6

The pose of frame {O6X6Y6Z6} with respect to frame {O5X5Y5Z5} is

T56 = Tx(c61)Ty(c62)Rx(α6)Ry(β6)Tz(d6)

=

⎡
⎢⎣

Cβ6 0 Sβ6 c61 + d6Sβ6

Sα6Sβ6 Cα6 −Sα6Cβ6 c62 − d6Sα6Cβ6

−Cα6Sβ6 Sα6 Cα6Cβ6 d6Cα6Cβ6

0 0 0 1

⎤
⎥⎦ . (6)
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(8) TCP frame

Since the drilling tool axis is parallel to joint6, the TCP is defined as a translated frame of
{O6X6Y6Z6} along three coordinate axes as follows:

T67 = Tx(x7)Ty(y7)Tz(z7) =

⎡
⎢⎣

1 0 0 x7

0 1 0 y7

0 0 1 z7

0 0 0 1

⎤
⎥⎦ , (7)

where x7, y7, z7 are translations along the X-, Y- and Z-axis, respectively.
After assigning a coordinate frame to each link, a forward kinematic model of the 6-DOF arc-base

drilling unit is formulated as

T07 = T01T12T23T34T45T56T67, (8)

where q = [θ1, θ2, d3, θ4, d5, d6] are joint variables, p = [a2, α2, α3, β3, a4, d4, α4, β4, α5, β5, α6, β6,

x7, y7, z7] are kinematic parameters, and c = [c31, c32, c51, c52, c61, c62] are arbitrary constants used
in the modeling of prismatic joints joint3, joint5, and joint6.

3. Inverse Kinematics Solution Based on Nonlinear Minimization
For a serial-type machine, the forward kinematics can be represented by the following equation:

T (q) =

⎡
⎢⎣

r11(q) r12(q) r13(q) px(q)
r21(q) r22(q) r23(q) py(q)
r31(q) r32(q) r33(q) pz(q)

0 0 0 1

⎤
⎥⎦ , (9)

where q = [q1, q2, . . . , qn] is the vector of joint variables, and T (q) is the homogeneous
transformation matrix representing the position and orientation of TCP with respect to the machine
base frame.

The inverse kinematics problem is to find the corresponding set of joint coordinates for the desired
TCP pose with respect to the base frame,

Td =

⎡
⎢⎣

ux vx wx ox

uy vy wy oy

uz vz wz oz

0 0 0 1

⎤
⎥⎦ . (10)

This problem can be formulated as a matrix equation

T (q) = Td, (11)

which yields 12 nontrivial scalar equations in the unknown variables q. As discussed in Section 1,
this set of nonlinear equations can be solved with iterative numerical algorithms, e.g., the Newton–
Raphson method. For better numerical stability and robustness,31 this root finding problem can be
transformed into a minimization problem

J (q) = ω1Jpos(q) + ω2Jori(q) → min, (12)

where Jpos(q) is a scalar function reflecting the position errors between the current origin
[px(q), py(q), pz(q)]T and the desired origin [ox, oy, oz]T of the TCP; Jori(q) is a scalar function
reflecting the orientation errors between the current coordinate axes [r11(q), r21(q), r31(q)]T ,
[r12(q), r22(q), r32(q)]T , [r13(q), r23(q), r33(q)]T and the desired coordinate axes [ux, uy, uz],
[vx, vy, vz], [wx, wy, wz]; and ω1, ω2 are weights balancing position errors and orientation errors.
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Fig. 6. Presentation of orientation error by faithful geodesic distance.

Functions Jpos(q) and Jori(q) are nonnegative functions that attain their minimum values at joint
coordinates q∗ satisfying Eq. (11). The detailed definitions of these functions are postponed to later
sections.

4. Formulation of the Orientation Error Function
Let V1 = [x1, y1, z1]T and V2 = [x2, y2, z2]T be two unit vectors, then the orientation error between
them can be defined as the subtended angle of the two vectors,

ε = arccos (V1 · V2) . (13)

However, this definition does not lead to an efficient orientation error function for solving the inverse
kinematics problem. In this paper, we investigate the orientation error between two vectors from the
geometric point of view.

Let’s represent V1 and V2 as points A and B on the unit sphere, respectively (refer to Fig. 6).
Thus, the orientation error between two vectors can be defined as the geodesic distance between the
corresponding points on the unit sphere, which is the length of arc ACB of the great circle passing
through points A and B.

Let δ denote the Euclidean distance between points A and B

δ = ‖V1 − V2‖ =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2. (14)

It can be seen that δ is a function of the geodesic distance s between A and B on the unit sphere

δ = 2 sin(s/2) ≈ s − s3/24 + s5/1920. (15)

In the inverse kinematics problem, s is a small value when reasonable initial values of the joint
coordinates are provided, and it gets smaller and smaller as the nonlinear optimization algorithm
iterates. Hence, higher order terms in Eq. (15) can be neglected, and the geodesic distance s can be
faithfully represented by

sF = δ =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (16)

In this paper, the function sF is called a faithful geodesic distance function. It satisfies two properties:

Property 1: sF is zero if and only if s is zero;

Property 2: dsF

ds
|s=0 = lims−>0

sF

s
= 1, i.e., the first-order approximation to sF is equal to s.

In literature,8,34 the function h = 1 − V1 · V2 was used to formulate the orientation error function.
When geometrically represented (refer to Fig. 7), h is the length of the line segment BD, its relationship
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Fig. 7. Presentation of orientation error in refs. [8, 34] (a) ω1 = ω2 = 1; (b) ω1 = (180/π)2, ω2 = 1.

with the geodesic distance s between A and B is

h = 1 − cos(s) ≈ s2/2 − s4/24. (17)

The function h satisfies Property 1, but does not satisfy Property 2. Hence, from the viewpoint of this
paper, it is not a faithful geodesic distance function and should not be used to formulate the orientation
error function. This statement is confirmed by numerical experiments discussed in Section 6.

5. Decomposition of the Inverse Kinematic Problem
In the kinematic modeling stage, coordinate frames for prismatic joints are defined according to
their physical positions in order to be intuitive, and arbitrary constants are introduced in the forward
kinematic model. However, the arbitrary constants c = [c31, c32, c51, c52, c61, c62] do not actually
affect the kinematic relationship, and are set to zero for computational efficiency.

The inverse kinematics problem of the nominal kinematic model is first studied, where parameters
a2, a4, d4, x7, y7, z7 are nonzero values, and parameters α2, α3, β3, α4, β4, α5, β5, α6, β6 are zero
values. The solution to the nominal kinematics can be used as good initial values for solving the inverse
kinematics problem when manufacturing and assembly errors of machine need to be considered.

The nominal kinematic model is represented as follows:

T07(θ1, θ2, d3, θ4, d5, d6) =

⎡
⎢⎣

Cθ4Sθ1 + Cθ1Cθ2Sθ4 −Cθ1Sθ2 Cθ1Cθ2Cθ4 − Sθ1Sθ4 px

Cθ1Cθ4 − Cθ2Sθ1Sθ4 Sθ1Sθ2 −Cθ1Sθ4 − Cθ2Cθ4Sθ1 py

Sθ2Sθ4 Cθ2 Cθ4Sθ2 pz

0 0 0 1

⎤
⎥⎦ ,

(18)
where S(•) and C(•) are sine and cosine functions, respectively, θ1, θ2, d3, θ4, d5, d6 are joint variables,
and px, py, pz are

px = (d6 − d5)(Sθ1Sθ4 − Cθ1Cθ2Cθ4) + x7(Cθ4Sθ1 + Cθ1Cθ2Sθ4) − z7(Sθ1Sθ4 − Cθ1Cθ2Cθ4)

+ a2Cθ1 + d4Sθ1 + a4Cθ1Cθ2 + d3Cθ1Sθ2 − y7Cθ1Sθ2, (19)

py = (d6 − d5)(Cθ1Sθ4 + Cθ2Cθ4Sθ1) + x7(Cθ1Cθ4 − Cθ2Sθ1Sθ4)

− z7(Cθ1Sθ4 + Cθ2Cθ4Sθ1) + d4Cθ1 − a2Sθ1 − a4Cθ2Sθ1 − d3Sθ1Sθ2 + y7Sθ1Sθ2, (20)

pz = y7Cθ2 − d3Cθ2 + a4Sθ2 − (d6 − d5)Cθ4Sθ2 + z7Cθ4Sθ2 + x7Sθ2Sθ4. (21)
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In the inverse kinematics for drilling, the corresponding joint coordinates should be determined for
desired position [ox, oy, oz]T and orientation [wx, wy, wz]T of the hole axis.

From Eqs. (18)–(21), it can be observed that prismatic variables d3, d5, d6 do not affect the
orientation of the TCP. Hence, their coordinates should be determined from the position Eqs. (19)–
(21), which are represented in matrix form as follows:

A

⎡
⎣

d3

d5

d6

⎤
⎦ =

⎡
⎣

b1

b2

b3

⎤
⎦ , (22)

where

A =
⎡
⎣

Cθ1Sθ2 −Sθ1Sθ4 + Cθ1Cθ2Cθ4 Sθ1Sθ4 − Cθ1Cθ2Cθ4

−Sθ1Sθ2 −Cθ1Sθ4 − Cθ2Cθ4Sθ1 Cθ1Sθ4 + Cθ2Cθ4Sθ1

−Cθ2 Cθ4Sθ2 −Cθ4Sθ2

⎤
⎦ ,

b1 = ox − x7(Cθ4Sθ1 + Cθ1Cθ2Sθ4) + z7(Sθ1Sθ4 − Cθ1Cθ2Cθ4) − a2Cθ1 − d4Sθ1 − a4Cθ1Cθ2

+ y7Cθ1Sθ2,

b2 = oy − x7(Cθ1Cθ4 − Cθ2Sθ1Sθ4) + z7(Cθ1Sθ4 + Cθ2Cθ4Sθ1) − d4Cθ1 + a2Sθ1 + a4Cθ2Sθ1

− y7Sθ1Sθ2,

b3 = oz − y7Cθ2 − a4Sθ2 − z7Cθ4Sθ2 − x7Sθ2Sθ4.

It can be observed that the second and third columns of matrix A are dependent, i.e., rank(A) = 2.
Hence, only variable d3 and the difference of d5 and d6 can be determined from Eq. (22). This can
be explained from the fact that joint5 and joint6 are two prismatic joints parallel to each other, which
only provide one degree of motion freedom in the Cartesian space.

From Eqs. (19) and (21), d3 and d6 − d5 can be obtained as follows:

d3 = − (x7Sθ1Sθ2 − oxCθ4Sθ2 − y7Cθ1Cθ4 − ozSθ1Sθ4 + ozCθ1Cθ2Cθ4 + a2Cθ1Cθ4Sθ2

+ d4Cθ4Sθ1Sθ2 + y7Cθ2Sθ1Sθ4 + a4Sθ1Sθ2Sθ4)/(Cθ1Cθ4 − Cθ2Sθ1Sθ4), (23)

d6 − d5 = (a4Cθ1 − oxCθ2 + a2Cθ1Cθ2 + z7Cθ1Cθ4 + d4Cθ2Sθ1 + x7Cθ1Sθ4

− ozCθ1Sθ2 + x7Cθ2Cθ4Sθ1 − z7Cθ2Sθ1Sθ4)(Cθ1Cθ4 − Cθ2Sθ1Sθ4). (24)

Referring to Eqs. (19)–(21), component position error can be defined as

Ex = (d6 − d5)(Sθ1Sθ4 − Cθ1Cθ2Cθ4) + x7(Cθ4Sθ1 + Cθ1Cθ2Sθ4) − z7(Sθ1Sθ4 − Cθ1Cθ2Cθ4)

+ a2Cθ1 + d4Sθ1 + a4Cθ1Cθ2 + d3Cθ1Sθ2 − y7Cθ1Sθ2 − ox, (25)

Ey = (d6 − d5)(Cθ1Sθ4 + Cθ2Cθ4Sθ1) + x7(Cθ1Cθ4 − Cθ2Sθ1Sθ4)

− z7(Cθ1Sθ4 + Cθ2Cθ4Sθ1) + d4Cθ1 − a2Sθ1 − a4Cθ2Sθ1 − d3Sθ1Sθ2 + y7Sθ1Sθ2 − oy,

(26)

Ez = y7Cθ2 − d3Cθ2 + a4Sθ2 − (d6 − d5)Cθ4Sθ2 + z7Cθ4Sθ2 + x7Sθ2Sθ4 − oz. (27)

The position error function can be defined as

Jpos = E2
x + E2

y + E2
z . (28)

By substituting Eqs. (23) and (24) into Eq. (28), it can be seen that Jpos is a function of joint variables
θ1, θ2, θ4 only.
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Table I. Identified kinematic parameters
of the circumferential drilling machine.

Parameter name Identified value

a2 2509.819 mm
α2 −0.468◦
α3 0.499◦
β3 −0.117◦
a4 199.305 mm
d4 7.294 mm
α4 −0.033◦
β4 −0.179◦
α5 −0.056◦
β5 0.200◦
α6 −0.061◦
β6 0.121◦
x7 99.999 mm
y7 0.233 mm
z7 −408.968 mm

Since only the Z-axis direction is important in drilling, the orientation objective function is defined
by using the faithful geodesic distance as

Jori = (Cθ1Cθ2Cθ4 − Sθ1Sθ4 − wx)2 + (−Cθ1Sθ4 − Cθ2Cθ4Sθ1 − wy)2 + (Cθ4Sθ2 − wz)
2,

(29)

where S(•) and C(•) are sine and cosine functions, respectively, θ1, θ2, θ4 are revolute joint variables,
and [wx, wy, wz]T is a unit vector representing the desired Z-axis direction.

The objective function for the inverse kinematics problem is defined as

J = ω1Jori + ω2Jpos. (30)

By minimizing the objective function J , joint coordinates for θ1, θ2, θ4 can be found. After that, d3

and d6 − d5 can be determined in closed-form as shown in Eqs. (23) and (24).

6. Experiments

6.1. Numerical experiments with the nominal model
In the nominal model, parameters α2, α3, β3, α4, β4, α5, β5, α6, β6 are set to zero, and parameters
a2, a4, d4, x7, y7, z7 use values from kinematic calibration (refer to Table I).

In the experiments, suitable values for the weights ω1, ω2 in Eq. (30) should be assigned. Since the
orientation errors evaluated with the faithful geodesic distance function are in the unit of radian and
position errors evaluated with the Euclidean distance are in the unit of millimeter, to determine the
weights for the position error function and orientation error function, we should answer the question:
how many radians in orientation error are equally intolerable as one millimeter in position error? This
may be answered according to the accuracy requirements of the specific engineering applications.

For example, for the circumferential drilling machine for aircraft assembly in this research,
the required position and orientation accuracy of drilled holes are ±0.5 mm and ±0.5 degree,
respectively. Thus, π/180 radian in orientation error is equally intolerable as one millimeter in
position error, and weights can be set to ω1 = (180/π)2, ω2 = 1. When this kind of engineering
information is not available, weighting of the position error and orientation error becomes a matter
of choice, and the weights can be simplify set to ω1 = ω2 = 1.

Since prismatic joint variables are not involved in the optimization process, only initial values
for the revolute joint variables θ1, θ2, θ4 should be provided to start the optimization. For the
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Table II. Motion range of the machine joints.

Joint index Joint type Range

1 Revolute −36◦ ∼ 36◦
2 Revolute −5◦ ∼ 5◦
3 Prismatic −205 ∼ 205 mm
4 Revolute −10◦ ∼ 10◦
5 Prismatic −190 ∼ 190 mm
6 Prismatic −265 ∼ 265 mm

circumferential drilling machine, the motion range of the revolute joints is relatively small (refer
to Table II), hence the initial values can be set to θ1 = θ2 = θ4 = 0. The convergence criteria
for nonlinear optimization are defined as: minimum variation on joint parameters TolX = 10−8,
maximum allowable variation of the objective function TolFun = 10−8, maximum number of
iterations MaxIter = 100. The optimization process stops if any of the three criteria is met.

The procedure to carry out the numerical experiment is as follows:

(1) Randomly choose a set of joint parameters [θ1, θ2, d3, θ4, d5, d6] from the machine’s joint space
(refer to Table I);

(2) Compute the TCP pose using the joint coordinates [θ1, θ2, d3, θ4, d5, d6] and forward kinematics
Eq. (18), and denote it as the homogeneous transformation matrix;

Td =

⎡
⎢⎣

ux vx wx ox

uy vy wy oy

uz vz wz oz

0 0 0 1

⎤
⎥⎦ .

(3) Take [wx, wy, wz]T and [ox, oy, oz]T as the desired orientation and position of the tool axis;
(4) Find the revolute joint coordinates θ∗

1 , θ∗
2 , θ∗

4 to the inverse kinematics problem by minimizing
Eq. (30) with the Levenberg–Marquardt nonlinear optimization method. And then find the
prismatic joint coordinates with Eqs. (23) and (24)

[θ∗
1 , θ∗

2 , d∗
3 , θ∗

4 , d∗
6 − d∗

5 ].

(5) Calculate the error vector of the joint coordinates found by the algorithm

[
1, 
2, 
3, 
4, 
5] = [θ∗
1 − θ1, θ

∗
2 − θ2, d

∗
3 − d3, θ

∗
4 − θ4, d

∗
6 − d∗

5 − (d6 − d5)]. (31)

For convenience, the Euclidean norm of this vector can be used as an index to evaluate the accuracy
of the proposed method.

Figure 8 shows the results of 10,000 random tests performed on a personal computer (2.0 GHz
CPU, 4 GB memory). The maximum error of the found solution is below 1.35 × 10−7, average
running time is 8 ms. The experiments show that both weighting methods lead to similar results.

As a comparison, numerical experiments have also been conducted with the orientation error
function defined according to literature8,34

Jori = ((Cθ1Cθ2Cθ4 − Sθ1Sθ4)wx + (−Cθ1Sθ4 − Cθ2Cθ4Sθ1)wy + (Cθ4Sθ2)wz − 1)2. (32)

Different weights for the objective function have been tried, and the results are shown in Fig. 9.
Although the average running time is comparable to the results obtained with the proposed method,
none of these experiments generate accurate solutions to the inverse kinematics problem. Therefore,
it can be concluded that orientation error functions like Eq. (32) should be avoided in the formulation
of the objective function for solving inverse kinematics problems.
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Fig. 8. Numerical experiments in which the orientation error function (Eq. (29)) is defined with faithful geodesic
distance. (a) ω1 = ω2 = 1; (b) ω1 = (180/π )2, ω2 = 1; (c) ω1 = 104, ω2 = 1; (d) ω1 = 108, ω2 = 1.

6.2. Numerical experiments with the identified kinematic model
In order to achieve high positioning accuracy, manufacturing and assembly errors of the machine need
to be considered. In this case, all kinematic parameters should use values obtained from kinematic
calibration of the machine (refer to Table I). In this case, partially closed-form solution of the inverse
kinematics problem is no longer possible, and all joint coordinates should be identified with nonlinear
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Fig. 9. Numerical experiments in which the orientation error function (Eq. (32)) is defined as in literature.8,34

(a) ω1 = ω2 = 1; (b) ω1 = (180/π )2, ω2 = 1.

optimization. However, the inverse kinematic solution to the nominal inverse kinematics model is still
very important, because it can be used as good initial values for nonlinear optimization in solving the
inverse kinematics of the identified kinematic model. Ten thousand random experiments have been
performed, and the results are shown in Fig. 10. It can be seen that both weighting methods lead to
similar results. Average run time is less than 20 ms, and the largest Euclidean norm of the solution
vector is less than 2 × 10−4, which suggests that the inverse kinematic solver meets the speed and
accuracy requirement for position control of the circumferential drilling machine.

6.3. Drilling experiments of the circumferential drilling machine
The proposed inverse kinematics algorithm has been integrated into the control system of the
circumferential drilling machine, as shown in Fig. 11. Actual drilling experiments have been
performed at different quadrants on simulated fuselage sections. The automated drilling process
was controlled with NC programs generated in an off-line programming environment, in which the
path of the drilling tool is described with position and orientation information in the machine’s
Cartesian space. Figure 12 shows the experimental system and drilled holes at the top quadrant of
the simulated fuselage section. The position errors of the drilled holes with respect to the predefined
reference holes were checked with a caliper and were found to be within ±0.5 mm, which is acceptable
according to the accuracy requirement for fastener holes of large aircrafts.
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Fig. 10. Numerical experiments with the identified kinematic model. (a) Control software of the circumferential
drilling machine; (b) Control system structure of the circumferential drilling machine

7. Conclusions
In this paper, an efficient and robust inverse kinematics algorithm has been proposed for a new
circumferential drilling machine for aircraft fuselage assembly. The forward kinematic model of the
drilling machine is developed by combining the Denavit–Hartenberg and modified Hayati methods.
The inverse kinematics problem is formulated as a nonlinear minimization problem. The faithful
geodesic distance function has been proposed to represent the orientation part of the objective function.
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Fig. 11. Control system of the circumferential drilling machine.
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Fig. 12. Drilling experiments performed at different quadrants on simulated fuselage sections.

Theoretical analysis and numerical experiments suggest that orientation error functions formulated
with faithful geodesic distance functions have better performance in solving the inverse kinematics
problem. Compared with the orientation error functions in literature, the proposed orientation error
function defined with faithful geodesic distance is more effective, which leads to more accurate
solutions to the inverse kinematics problem. The inverse kinematic problem is decomposed into two
subproblems by exploring the characteristics of the circumferential drilling machine. The revolute
joint coordinates are found by solving one subsystem with nonlinear optimization, and the prismatic
joint coordinates are calculated with closed-form formulas. When the manufacturing and assembly
errors of the machine are significant, a partially closed-form solution of the inverse kinematics problem
is no longer possible. However, the proposed method can be used to acquire good initial guesses for
nonlinear optimization in solving the inverse kinematic problem. Numerical experiments of the
proposed algorithm show that when the faithful geodesic distance function is used in formulating
the orientation error function, accurate inverse kinematic solutions can be obtained regardless of
the weighting methods. The proposed algorithm has been integrated into the control system of the
circumferential drilling system, which was successfully used to control the position and orientation
of the drill in the machine’s workspace. Drilling experiments show that position accuracy of drilled
holes is within ±0.5 mm, which is acceptable for the assembly of large aircrafts.
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