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ABSTRACT
A folding wing is a tactical missile launching device that needs to be miniaturised to facilitate
storage, transportation, and launching; save missile and transportation space; and improve the
combat capability of weapon systems. This study investigates the aeroelastic characteristics
of the secondary longitudinal folding wing during the unfolding process. First, the Lagrange
equation is used to establish the structural dynamics model of the folding wing, the kinematics
characteristics during the deformation process are analysed, and the unfolding movement of
the folding wing is obtained using the dynamic equations in the process. Then, the generalised
unsteady aerodynamic force is calculated using the dipole grid method, and the multi-body
dynamics equation of the folding wing is obtained. The initial angular velocity required for
the deployment of the folding wing is analysed through structural model simulation, and the
influence of the initial angular velocity on the opening process is studied. Finally, aeroelastic
flutter analysis is performed on the folding wing, and the physical model of the folding wing
verified experimentally. Results show that the type of aeroelastic response is sensitive to the
initial conditions and the way the folding wing opens.

Keywords: pneumatic elastic; Lagrange equation; multibody dynamics; generalised
unsteady aerodynamics; flutter

NOMENCLATURE

α1 The angle of rotation of the projectile around the x axis

θ1 The angle between the x axis and x1 axis on the inner wing

θ2 The angle between the x axis and x2 axis on the outer wing
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�q Position constraint equation

η the acceleration tilt to the right

ρ air density

f aerodynamic force

J Moment of inertia

K stiffness factor

t time

T kinetic energy

U Potential energy

v the speed tilt to the right

V air velocity

ω oscillation frequency

1.0 INTRODUCTION
With the development of technology, more types of folding mechanisms are used in various
fields. A folding wing is a type of missile wing connected to the body of the missile through
a folding mechanism and can be folded in or on the surface of the body before the missile is
launched. Folding wing technology has been used more frequently in recent years(1). Folding
wings have been widely used in projectile weapons because of their simple structure and
small space requirement. During the storage, transportation, and launch of projectiles and
arrows, the structural design of the projectile is usually changed to meet certain mechani-
cal properties during the deployment process to reduce the lateral size of the projectile. The
opening movement of the wing is a key factor to ensure that the projectile can achieve flight
control. The spreading movement of the wing has two main forms: horizontal and vertical
spreading. The former installs another wing surface in the axial direction at the root of the
wing surface, enabling the outer wing portion to be folded and opened around the axis. The
latter installs a rotation axis perpendicular to the surface near the root of the airfoil, enabling
the wing to rotate around the axis. For some missiles, such as tactical and cruise missiles,
box-type launching is used, that is, the wing is folded into the launch box before launching,
and the wing is opened immediately after launch. Two methods for the missile folding wing
deployment mechanism are currently used worldwide. The first one is divided into a gas-
actuated cylinder type, an elastic drive type, and a motor-driven type according to the driving
method, such as the folding type, the one-piece rotating type, the V-shaped rotating type, the
cross-folding type, and flexible variant.

Many studies on the deployment of conventional wings have been conducted. For example,
Dai(2) studied the entire process of the rudder wing mechanism of the guided projectile ini-
tiation to open and lock the wing and performed dynamic analysis on the movement process
of the rudder wing opening. Zhen(3) investigated the expansion of the folded wing during
missile launch, established the mathematical model of aerodynamic drag and friction, and
simulated the unfolding and locking process of the folding wing. Zhang(4) conducted an inno-
vative design and mechanics study of the unfolding mechanism of the folding wing surface.
Ding(5) analysed and calculated the structural composition of a foldable tail of an aerial bomb
and the deployment process of its components and studied the working stress level of the com-
ponents and the dynamic behaviour of the deployment process. Wei studied the wing in the
quasi-steady state (at a fixed angle) and in the deformed state, used the non-linear aeroelastic
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characteristics of Lagrangian equation to establish the structural model of the flap, and used
the constraint equation to describe the deformation strategy of the flap. Keisuke Otsuka(6)

used a two-dimensional aerodynamic nonlinear flap model based on multi-body dynamics,
absolute node coordinate formulas, and strip theory to simulate the unfolding motion of the
aircraft in the time domain and studied the structural flexibility and aerodynamic instability
impact on the time-domain deployment simulation. Within the scope of our knowledge, there
are very few studies on the longitudinal secondary folding wing. Most of the studies are on
the lateral secondary folding wing, and the lateral folding wing is widely used in aerospace
and other fields, but for small and medium tactical missiles, the horizontal folding wing is not
suitable for storage and launching, so it is necessary to study a longitudinal folding wing to
meet the needs.

The dynamic process of folding wings opening is the research object of wings opening
frequency from low to high. As the simulation steps are refined, the test factors to consider
increase accordingly as well as the similarity of the test results. The low similarity model
has a low computational cost and certain reference value for conceptual design, and it also
paves the way for future practical design because the generation of real objects needs the
support of conceptual design, which requires experimental simulation. The low-similarity
model research developed a deployment system based on the conceptual design of the folding
wing model. Given the limitations of the conditions, the system design was only implemented
in the simulation environment, so the model ignored structural flexibility and aerodynamic
instability, while the calculation amount was small. The accuracy of the test is lost, but the
low-similarity model is necessary for data reference.

In this paper, a brand-new longitudinal secondary folding wing structure model is designed,
and its aerodynamic characteristics in the unfolding process are studied. Firstly, the kine-
matic characteristics in the deformation process are analysed, and the dynamic equation is
obtained; secondly, the generalised unsteady aerodynamic force is calculated, and the multi-
body dynamic equation of the structure is obtained; then the flutter analysis of the folding
wing is performed, and a vertical excitation is applied to a certain point of the folding wing
to analyse its displacement response, acceleration response and angular freedom response
during the unfolding process. Finally, the rationality of its structural design is verified by the
combination of simulation experiment and physical experiment. The test data shows that the
aeroelastic system of the folding wing will present different states. The aeroelastic response
is not only sensitive to the initial conditions, but also sensitive to the folding angle.

2.0 STRUCTURE DYNAMICS MODELING
Figure 1 shows the schematic of the secondary longitudinal folding wing studied in this paper.
In the theoretical modeling stage, the folding wing is simplified into two rigid parts(7), namely,
the inner and outer wings. Coordinate systems O1x1y1z1 and O2x2y2z2 are attached to the
inner and outer wing shafts, respectively, and the corresponding origins (O1 and O2) located
at the centres of the two shafts can rotate universally. The Oxyz coordinate system is a ground
coordinate system located at the centre of the mass of the missiles. In the initial state, the
apexes of the inner and outer wings are in contact with each other, that is, the inner and outer
wings are folded into one.

Impulse is applied to the inner wing part so that it can rotate around the z1 axes, the
inner wing drives the outer wing to rotate around the z2 axis, and a rotating torsion spring
is added along the z2 axis. Under the action of external load, the folding wing makes a torsion
movement around the x axis at the same time. θ1 is defined as the angle between the x and
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Figure 1. Secondary longitudinal folding wing sketch.

Figure 2. Diagram of rotating motion of the inner and outer wings.

x1 axes on the inner wing; α1 is defined as the angle of rotation of the projectile about the x1

axis; θ2 is defined as the angle between the x and x2 axes on the outer wing, around the z1 axis
the angle of rotation, so that the angle of the outer wing relative to the inner wing is θ2−θ1

as shown in the Fig. 2; and c1 and c2 are defined as the centroids of the inner and outer wing
sections, respectively(8). The initial power source for the folding wing to expand is the gas
produced by the combustion of the gunpowder acting on the piston, which causes the piston
to advance and hit the edge of the inner wing. The mechanism model is simplified here, and
the piston impact force is regarded as an impulse. If the inner and outer wings make rota-
tional movements under the action of impulse and the Lagrange equation is used to establish
the dynamic model of the folded wings, the specific process is as follows:

2.1 Kinetic energy and potential energy of folding wing movement
The rotational inertia of the inner wing around the z1 axis is

J1z1 =
∫ l

0

∫ c
2

− c
2

(
x2 + y2

)m

lc
dxdy = m

3
l2 + m

12
c2 · · · (1)

The rotational inertia of the inner wing around the x1 axis is

J1x1 = m

12
c2 · · · (2)
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The rotational inertia of the outer wing around the z2 axis is

J2z2 =
∫ l

0

∫ c
2

− c
2

(
x2 + y2

)m

lc
dxdy = m

3
l2 + m

12
c2 · · · (3)

The rotational inertia of the inner wing around the x2 axis is

J2x2 = m

12
c2 · · · (4)

The rotational inertia of the inner wing around the y2 axis is

J2x2 = m

12
l2 · · · (5)

The fin can be regarded as a rigid body rotating around an axis, as shown in Fig. 2. Thus, the
kinetic energy of the system can be expressed as follows:

Tθ = 1

2
J1z1 θ̇

2
1 + 1

2
m
(

ẋ2
c1

+ ẏ2
c1

)
+ 1

2
J2z2

(
θ̇2 − θ̇1

)2 + 1

2
m
(

ẋ2
c2

+ ẏ2
c2

)

Tα = 1

2
J1xα̇

2
1 + 1

2
J2x2 [α̇1 cos (θ2 − θ1)]

2 + 1

2
J2y2 [α̇1 sin (θ2 − θ1)]

2 · · · (6)

The equation above shows that the folding wing is two simplified rigid components, and the
coordinates of the two centroids of the inner and outer wings are known. The coordinates are
as follows:

xc1 = 1

2
l cos θ1

yc1 = 1

2
l sin θ1

xc2 = l cos θ1 + 1

2
l cos (θ2 − π) = l cos θ1 − 1

2
l cos θ2

yc2 = l sin θ1 + 1

2
l sin (θ2 − π) = l sin θ1 − 1

2
l sin θ2 · · · (7)

where ẋc1 , ẏc1 , ẋc2 , and ẏc1 can be obtained by differentiating the above equation:

ẋc1 = −1

2
lθ̇1 sin θ1

ẏc1 = 1

2
lθ̇1 cos θ1

ẋc2 = −lθ̇1 sin θ1+1

2
lθ̇2 sin θ2

ẏc2 = lθ̇1 cos θ1 − 1

2
lθ̇2 cos θ2 · · · (8)
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Thus,

ẋ2
c2

+ ẏ2
c2

= l2θ̇2
1 + 1

4
l2θ̇2

2 − l2θ̇1θ̇2 cos (θ2 − θ1) · · · (9)

Substituting Eq. (9) into Eq. (6) yields

Tθ = 1

2
J1z1 θ̇

2
1 + 1

8
ml2θ̇2

1 + 1

2
J2z2

(
θ̇2 − θ̇1

)2 + 1

2
ml2θ̇2

1 + 1

8
ml2θ̇2

2 − 1

2
ml2θ̇1θ̇2 cos (θ2 − θ1)

· · · (10)

By combining Eqs. (6) and (10), the kinetic energy equation of the system is obtained as
follows(9):

T = Tθ + Tα

= 1

2
J1z1 θ̇

2
1 + 1

8
ml2θ̇2

1 + 1

2
J2z2

(
θ̇2 − θ̇1

)2 + 1

2
ml2θ̇2

1 + 1

8
ml2θ̇2

2 − 1

2
ml2θ̇1θ̇2 cos (θ2 − θ1)

+ 1

2
J1x1 α̇

2
1 + 1

2
J2x2 [α̇1 cos (θ2 − θ1)] + 1

2
J2y2 [α̇1 sin (θ2 − θ1)] · · · (11)

The potential energy of the outer wing rotating motion caused by the torsion spring is

U = 1

2
K2(θ2−θ1)

2 · · · (12)

where the stiffness of K2 is assumed as

K2 = k2 × [
1 + η2(θ2 − θ1)

2
]

· · · (13)

2.2 Dynamic equation of opening motion
Let q = {θ1, θ2, α1}T, then

d

dt

(
∂T

∂q̇

)

=

⎧⎪⎪⎨
⎪⎪⎩

J1z1 θ̈1 + 1
4 ml2θ̈1 + J2z2

(
θ̈2 − θ̈1

)+ ml2θ̈1 − 1
2 ml2θ̈2 cos (θ2 − θ1) + 1

2 ml2
(
θ̇2

2 − θ̇2θ̇1

)
sin (θ2 − θ1)

J2z2

(
θ̈2 − θ̈1

)+ 1
4 ml2θ̈2 − 1

2 ml2θ̈1 cos (θ2 − θ1) + 1
2 ml2

(
θ̇2θ̇1 − θ̇2

1

)
sin (θ2 − θ1)

J1x1 α̈1 + J2x2 α̈1cos2 (θ2 − θ1) + J2y2 α̈1 sin (θ2 − θ1) + (
J2x2 + J2y2

)
α̇1

(
θ̇2 − θ̇1

)
sin (2θ2 − 2θ1)

⎫⎪⎪⎬
⎪⎪⎭

· · · (14)

∂T

∂q
=

⎧⎪⎪⎨
⎪⎪⎩

− 1
2 ml2θ̇1θ̇2 sin (θ2 − θ1) + 1

2

(
J2x2 − J2y2

)
α̇2

1 sin (2θ2 − 2θ1)

1
2 ml2θ̇1θ̇2 sin (θ2 − θ1) − (

J2x2 − J2y2

)
α̇2

1 sin (2θ2 − 2θ1)

0

⎫⎪⎪⎬
⎪⎪⎭ · · · (15)
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∂U

∂q
=

⎧⎪⎪⎨
⎪⎪⎩

−k2 × [
(θ2 − θ1) + 2η2(θ2 − θ1)

3
]

k2 × [
(θ2 − θ1) + 2η2(θ2 − θ1)

3
]

0

⎫⎪⎪⎬
⎪⎪⎭ · · · (16)

The change function of the folding angle can be defined as 
θ (t), and then the deformation
equation of the folding angle is established as follows:

θ (t) = θ2 (t) − θ1 (t) = θ2 (0) − θ1 (0) + 
θ (t) · · · (17)

Considering the kinematics analysis, driving constraints must be imposed on the system to
have a definite motion if the actual degree of freedom of the system is zero. Given that the
analysis of the rotating motion of the folding wing is the position, speed, acceleration, and
restraint reaction force of the system, the restraint equation of the system is expressed as

�q (q, t) = {[θ2 (t) − θ1 (t)] − [θ2 (0) − θ1 (0)] − 
θ (t)} = 0 · · · (18)

Eq. (18) of the Lagrangian multiplier theorem is used for processing. Assume q ∈ Rn M ∈
Rn×n, factuator, faero �q ∈ Rm×n, then there is the Lagrange Multiplier Vector λ ∈ Rm.

By combining Eqs. (14), (16), and (18), we can obtain the dynamic equation of the folding
wings during the opening movement:

M (q, t) q̈ + K (q, t) + �T
q (q, t) λ = factuator + faero

� (q, t) = 0
· · · (19)

where M and K are the mass and stiffness matrices, respectively, which are functions of q;
� is the Lagrange multiplier; factuator is generated by the movement of the outer wing and a
function of q and q̇; and �q is the constrained Jacobian matrix. The matrix is the position
constraint equation.

M =

⎡
⎢⎢⎣

J1z1 + 5
4 ml2 − 1

2 ml2 cos (θ2 − θ1) 0

−J2z2 − 1
2 ml2 cos (θ2 − θ1) J2z2 + 1

4 ml2 0

0 0 J1x1 + J2x2 cos2 (θ2 − θ1) + J2y2 sin (θ2 − θ1)

⎤
⎥⎥⎦

K =

⎡
⎢⎢⎣

k2 × [
1 + η2(θ2 − θ1)

2
]

o o

0 k2 × [
1 + η2(θ2 − θ1)

2
]

0

0 0 0

⎤
⎥⎥⎦

�q = {−1, 1, 0}

factuator =

⎧⎪⎪⎨
⎪⎪⎩

− 1
2 ml2θ̇2θ̇1 sin (θ2 − θ1) + 1

2

(
J2x2 − J2y2

)
α̇2

1 sin (2θ2 − 2θ1) − 1
2 ml2

(
θ̇ 2

2 − θ̇2θ̇1

)
sin (θ2 − θ1)

− 1
2 ml2θ̇ 2

1 sin (θ2 − θ1) − 1
2

(
J2x2 − J2y2

)
α̇2

1 sin (2θ2 − 2θ1)

− (
J2x2 + J2y2

)
α̇1

(
θ̇2 − θ̇1

)
sin (2θ2 − 2θ1)

⎫⎪⎪⎬
⎪⎪⎭

· · · (20)
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faero is the aerodynamic vector, which is provided in the next section. Eq. (19) obtains the first
and second derivatives of time to obtain the constraint equations for speed and acceleration.

�̇ (q, q̇, t) = �q (q, t) q̇ − v (q, t) = 0

�̈ (q, q̇, q̈, t) = �q (q, t) q̈ − η (q,q̇, t) = 0 · · · (21)

where v = −�t (q, t) is called the speed tilt to the right, and η = −(�q,q̇
)

q − 2�qtq̇ − �tt is
called the acceleration tilt to the right. Given the initial conditions of the equation,

q (0) = q0

q̇ (0) = q̇0

}
· · · (22)

3.0 AERODYNAMICS MODEL

3.1 Unsteady aerodynamic model
During the opening movement of the folding wing mechanism, the wing will change with
the movement of the air, causing the system to generate additional unsteady aerodynamic
forces, which affect the stability of the structure(10). The geometric position and geometry
of the inner and outer wings will also exhibit relative change. The influence of aerodynamic
force will become very small when the deformation rate is small. To study the aeroelastic
response of the folding wings during the expansion process, the aerodynamic model must
be effectively reconstructed. In this study, the dipole grid method is used to calculate the
generalised unsteady aerodynamic force(11). The wing surface is divided into grids, the lifting
surface is discretised, and the area fraction is converted into a line integral. The following
linear equation can be obtained, that is, the entire wing surface downwashing speed of the ith

grid control point:

Wi =
∑

j

1

8π

cpj
xj cos Xj

∫
lj

kijdl · · · (23)

In the formula, k is the kernel function, subscript i indicates the ith grid, subscript j indicates
the jth grid, 
cpj is the difference between the pressure coefficients on the jth grid, and 
xj is
the jth grid. The average chord length of the lattice, Xj is the sweep angle of the jth grid dipole
line, and li is the length of the ith grid dipole line.

All control points are expressed in matrix form as follows:

{W} = [D]
{

cp

}
· · · (24)

In the formula, [D] is the aerodynamic influence coefficient matrix, that is, [D] =
1

8π

xj cos Xj

∫
lj kijdl.

The physical conditions at this time are expressed as

W =
(

i
k

b
f + ∂ f

∂x

)
· · · (25)
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where b is the reference length, and f is the vibration mode corresponding to the aerodynamic
model, which can be obtained from the principle of modal superposition:

f = [�H ] {y} · · · (26)

In the formula, [�H ] is the vibration mode corresponding to each control point on the pneu-
matic panel, which can be obtained by surface spline interpolation; and {y} is the generalised
coordinate.

According to Eq. (23) to Eq. (26), pressure coefficient difference 
cp is expressed as


cp = [D]−1

(
i
k

b
[�H ] + ∂ [�H ]

∂x

)
{y} · · · (27)

Both ends are divided by the generalised displacement vector {y} to obtain the expression of
dimensionless pressure coefficient difference 
cp :


cp = [D]−1

(
i
k

b
[�H ] + ∂ [�H ]

∂x

)
· · · (28)

According to the relationship between the pressure and the pressure coefficient difference
and the pressure coefficient difference expressed as Eq. (27), the generalised unsteady
aerodynamic force can be obtained as

f = 1

2
ρV 2AIC (k) y · · · (29)

In the formula, AIC (k) is the matrix of the unsteady aerodynamic influence coefficient and
expressed as follows:

AIC (k) = [�H ]T [S] [D]−1

(
i
k

b
[�H ] + ∂ [�H ]

∂x

)
· · · (30)

The aerodynamic mesh is divided on the inner and outer wing surfaces, and the aerodynamic
mesh and structural nodes do not overlap; therefore, it is necessary to use spline interpolation
technology(12) to realise the interpolation relationship between the displacement of the aero-
dynamic mesh node and the structural mesh node displacement. After obtaining the unsteady
aerodynamic influence coefficient matrix, derive it in the frequency domain and then obtain
the aerodynamic force at the structural grid point. Using the dipole grid method(13), a fixed
angle is selected, and unsteady aerodynamic influence coefficient matrix AIC (k) is repre-
sented by A (ω). Then, it can be derived in the frequency domain, and then the folding wing
displacement. The aerodynamics of the folding wings are linked as(14)

f = 1

2
ρV 2A (ω) y · · · (31)

where ρ is the air density, V is the air velocity, and ω is the oscillation frequency, which is
used to indicate that the unsteady aerodynamic influence coefficient matrix is in the frequency
domain. f and y are the gas and displacement vectors of the folded wings, respectively.
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If the inner and outer wings are rectangular rigid bodies, the aerodynamic model can be
interpolated to the four vertices of each section according to the spline interpolation tech-
nique. Spline matrix Gs is a transformation from structural grid point ys to aerodynamic grid
point displacement y, and the spline interpolation technique connects the four vertex deflec-
tors of the inner and outer wing sections with the deflectors of the aerodynamic grid points
through spline matrix Gs, that is,

y = Gsys · · · (32)

According to the principle of virtual displacement, the aerodynamic force (f) and equivalent
value (fs) acting on the structural grid points should be equal to the work done at a certain
virtual displacement to obtain

δyTf = δyT
s fs · · · (33)

where fs is the force vector of the interpolated structural node perpendicular to the surface.
Eq. (32) is introduced into Eq. (33) to obtain Eq. (34):

δyT
s

(
GT

s f − fs
)= 0 · · · (34)

Thus,

fs = GT
s f · · · (35)

Eqs. (32) and (35) are introduced into Eq. (31) to obtain a simplified aerodynamic model:

fs = 1

2
ρV 2Ass (ω) ys · · · (36)

where Ass (ω) = GT
s A (ω) Gs.

In this study, genetic algorithms can be used to optimise the position of the interpolated
structural nodes. When performing aeroelastic analysis, it is necessary to provide a way of
interconnection between structure and aerodynamic force. In order to connect the aerody-
namic grid with the structural grid, the displacement at the structural grid point needs to be
transformed into the displacement at the aerodynamic grid point. Design variable P is the
identification number of the structural node, which is used to describe the position of each
structural node. The optimisation problem is mathematically defined as follows(15):

Minimize :
∑θn

θ=θ0

(∣∣∣∣∣Vf − Vf

Vf

∣∣∣∣∣+
∣∣∣∣ωf − ωf

ωf

∣∣∣∣
)

θ

Subject to

{
node_IDmin < Pi < node_IDmax

Pi �= Pj

(1 ≤ i �= j ≤ Ns) · · · (37)

θ is the rotation angle, Vf and Vf are the respective flutter speeds before and after simplifica-
tion, and ωf and ωf are the flutter frequencies before and after simplification, respectively.
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Using the common denominator root can more effectively approximate the aerodynamic
impact coefficient.

[
Aap

]= [P0] + [P1] s + [P2] s2 +
∑N

j=3

[
Pj
]

sj

j + γj−2
· · · (38)

The value of γj−2 is selected within the reduced frequency range of interest. Real coefficient
matrix [P] is obtained by setting s = ik and fitting the table-column oscillation coefficient
matrix item by item using the least squares(16). Then,

[
Aap

]= (s [I] − [R])−1
(
[P1] s2 + [P2] s + [P3]

)
· · · (39)

After obtaining the simplified aerodynamic model in the frequency domain, the aerodynamic
model is transformed into the time domain using the minimum state (Eqs. (37), (38), (39)),
and the unsteady aerodynamic model can be expressed as

Ass (ω) = A0 + b

V
A1s + b2

V 2
A2s2 +

∑l

j=1

DjEjs

s + V
b γj

· · · (40)

where Dj is a matrix; Ej is a row matrix; s is a pull-type complex variable; and A0, A1, A2, and
Dj, Ej are the matrices to be obtained. The aerodynamic model of Eq. (36) can be transformed
into a time-domain aerodynamic model by approximating the rational function.

fs = 1

2
ρV 2

[
A0 + b

V
A1s + b2

V 2
A2s2

]
ys + 1

2
ρV 2D

[
sI − V

b
R

]−1

Esys · · · (41)

As shown in Eq. (41), the aerodynamic model of the folded wing at a fixed rotation angle can
be expressed by a coefficient matrix.

3.2 Aeroelastic system modeling
If the structural model is connected with the aerodynamic model, then the relationship
between faero, fs, ys, and q must be established. The aeroelastic problem involves the inter-
action between aerodynamics and the structure. Spline technology is used to connect the
structural and aerodynamic models. The steady aerodynamic force is coupled with the struc-
tural model, bringing Eq. (41) into Eq. (20)(17). The aerodynamic model simplifies the airfoil
surface into a lifting surface. Based on its own dynamics and kinematics equations, this article
describes the relationship between the motion parameters and the projectile body and flight
control variables, while the structural model is a simplified rigid body that simulates the
stiffness and weight distribution.

Assuming that torsion angle α1 and rotation angle θ1, θ2 are very small during the opening
of the folding wing, relative folding angle θ2−θ1 is also very small. Thus, sin θ1 ≈ θ1, sin α1 ≈
α1, and tan α1 ≈ α1. The displacement coordinate of the ith vertex of the normal surface of the
inner wing can be expressed as

ys1i = x1iθ1 − z1iα1 (i = 1, 2, 3, 4) · · · (42)
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In the formula, i denotes the different inner side coordinate points, and x1i and z1i are the
coordinate values of the ith coordinate point in the local coordinate system.

The displacement coordinates of the jth vertex of the outer wing normal surface can be
expressed as

ys2j = lθ1 − x2j cos θ2 − z2jα1 (j = 1, 2, 3, 4) · · · (43)

where lθ1 is the displacement value change caused by the rotation of a node on the inner wing
surface around the z1 axis, x2j cos θ2 is the displacement value change caused by the rotation
of a node on the outer wing surface around the z2 axis, and z2iα1 is the displacement value
change caused by the torsional movement of a node on the outer wing surface around the x1

axis. x2j and z2j are the coordinate values of the jth vertex in local coordinate system x2y2z2.
Therefore, the relationships between q and ys and between faero and fs can be obtained by

introducing Eqs. (42) and (43) into Eq. (41):

faero = STfs

= 1

2
ρV 2STA0ys+1

2
bρVSTA1ẏs + 1

2
b2ρSTA2ÿs

+ 1

2
ρV 2STD

[
sI − V

b
R̂

]−1

Eẏs · · · (44)

Let

xa =
[

sI − V

b
R̂

]−1

E (Sq̇ + SFAα̇FA) · · · (45)

Bringing Eq. (44) and Eq. (45) into Eq. (20), the aeroelastic equation of folding wings is
obtained as follow(18):

M (q, t) q̈ + K (q, t) q + �T
q (q, t) λ = factuator + Ã0q + Ã1q̇ + Ã1α̇FA + Ã2q̈+�

A2α̈FA

+ D̃xa� (q, t) = 0 · · · (46)

To solve the algebraic differential equation of Eq. (46), Eq. (46) is transformed into multibody
dynamic Eq. (47)(19):

[
M �T

q

�q 0

] {
q̈

λ

}
=
{

−Kq + factuator + Ã0q + Ã1q̇ + Ã1α̇FA + Ã2q̈ + �

A2α̈FA + D̃xa

γ

}

· · · (47)

According to constrained Jacobian matrix Eq. (18),

�qq̇ = −�t · · · (48)

where �q and �t are the partial derivatives of � with respect to q and t, respectively.
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Table 1
Simulation conditions

Parameters Value and Unit

Chord 50mm
Span 150mm
Thickness 3mm
Young’s modulus 230GPa
Poisson’s ratio 0.3
Spring stiffness 30 Nm/rad

By deriving t for Eq. (48), we can obtain Eq. (49):

�qq̈ = −�tt − 2�qt�tt −
(
�qq̇

)
qq̇ · · · (49)

where �tt is the second-order partial derivative of � on t, �qt is the partial derivative of � on
q and t, and

(
�qq̇

)
q is the partial derivative of �qq̇ on q. Let γ = −�tt − 2�qt�tt −

(
�qq̇

)
qq̇,

then M and K are mass and stiffness matrices, which are functions of q.
Multiply the left side of Eq. (45) by

(
sI − V

b Ṙ
)
, and after conversion, we get

ẋa = V

b
R̂xa + ÊSq̇ + ÊSFAα̇FA · · · (50)

Construct a state vector ẋ = [q̇, q̈, ẋa]T, which can be obtained by definite integral

x = [q̇, q̈, xa] · · · (51)

Then, the flutter analysis of the aeroelastic response during the deformation of the folding
wing is carried out.

4.0 NUMERICAL SIMULATION AND PHYSICAL
EXPERIMENT

The sketch of the folded wing is shown in Fig. 1. If the inner and outer wings have the same
mass and shape, then the length is 230 mm, the width is 100 mm, the thickness is 3 mm,
kα1 = 3 × 105Nm/Rad, kθ1 = 4 × 103Nm/Rad, ηα1 = 0, ηθ1 = 120, and the air density is ρ =
1.224kg/m3. Table 1 lists the simulation conditions for the deployment motion.

4.1 Opening motion simulation analysis
Figure 3 shows the deployment sequence, and also shows the timing diagram of the folding
wing opening process, where the inner wing and outer wing are overlapped in the initial state.
The deflection angle of the inner wing is defined as θ1, and the deflection angle of the outer
wing is defined as θ2. The deployment sequence is as follows. First, the system is in the initial
state, the inner wing deflection angle is θ1 = 0◦, the outer wing deflection angle is θ2 = 0◦, and
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Figure 3. Deployment sequence.

Figure 4. Folding wing motion system.(a)Folded wings low frequency expanded view,(b)High frequency
expanded view of folded wings,(c)Folding angle of inner wing: θ1,(d)Outer wing folding angle θ2−θ1.

the relevant folding angle is θ2−θ1. Second, the inner wing rotates the system around the axis
under the action of an impulse, and the outer wing rotates around the axis under the action of
torsion spring and inertial force. Finally, when the two members are in the first parallel state,
the action is terminated, and related folding angle θ2−θ1 = 180◦.

Figure 4 shows the deployment motion simulation results after the rigid and aerodynamic
models are decoupled, the spatial step size of the motion process is set to 1,101, and the
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Figure 5. Folding wing angular velocity.

time step size is 0.1249 s. Figure 4 (a) presents the schematic of a low-frequency-simulated
motion sequence image. The image sequence has 6 frames, and each frame has a spatial
step size of 200 and a time step of approximately 0.02s. Figure 4(b) presents the schematic
of a high-frequency-simulated motion sequence image. The image sequence has 11 frames,
and each frame has a spatial step size of 100, and the time step size is approximately 0.01 s.
Both are 3D views of the entire deployment movement. Figure 4(c) shows that Angle1 (θ1)

starts to move from 0 and changes with time. No obvious change in the folding angle can
be observed before 0.0042 s. This period is the process where the gunpowder begins to burn
and produce gas to act on the piston, causing the piston to hit the inner wing. When the inner
wing rotates through 119.5◦, the inner wing is fully opened. Figure 4(d) shows that the relative
folding angle (θ2−θ1) also starts from 0 and changes with time. Initially, the two wings move
together. After 0.044 s, the outer wing is separated from the inner wing under the action of
torsion spring and inertial force. Unfolding exercises are performed. When the two wings
coincide in a straight direction, that is, θ2−θ1 = 180◦, the system is fully opened, indicating
that the system ends the movement after 0.1249 s, and the type of aeroelastic response is
sensitive to the initial conditions and the opening mode of the folded wing.

In the initial stage, the outer wing rotates around the o1 axis and moves in close contact
with the inner wing. After 0.044 s, it expands and rotates around the o2 axis, as shown in the
following Fig. 5.

Figure 5 shows that the curve PART4 is the inner wing opening angular velocity, and the
curve PART5 is the outer wing opening angular velocity. It also shows that before 0.0042 s,
the system angular velocity is in the zero state. At 0.0042 s, the system starts to move, and the
angular velocity is −190◦/s. Afterward, the two wings make rotational movements. At the ter-
mination time, the two wings have the same angular velocity. During the deformation process,
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Figure 6. Folding wing coordinate system.(a)Inner wing centre of mass coordinates,(b)Outer wing centroid
coordinates.

a change in the type of motion is observed, and the aeroelastic response at certain folding
corners may exhibit different types of motion.

Eq. (7) indicates that combined with the inner and outer wing folding angles (θ1 and θ2−θ1)
shown in Fig. 4, the coordinates of the centroids of wings c1 and c2 can be obtained, as shown
in Fig. 6.

4.2 Vibration simulation analysis
After the dynamics and flutter analysis of the folding wing, the speed-time-curve graph is
obtained, and the time-domain graph is converted into a frequency-domain graph, which can
more intuitively observe the frequency distribution of vibration energy.

From the time domain to the frequency domain analysis, the abscissa is the frequency,
and the data acquisition rate is 300Hz. The time domain function signal is converted into
the corresponding amplitude at different frequencies by the fast Fourier transform (FFT).
The characteristics of the frequency domain can more intuitively understand the frequency
distribution of vibration energy when the folding wing is opened and grasp the vibration
characteristics of the system. The analysis is carried out by the FFT graph. The upper graph
is the speed-time function graph, and the lower graph is the frequency domain graph after
fast Fourier transform. Figure 7 shows that the peak of the spectral density amplitude in
the frequency characteristics of the inner wing’s x-direction speed occurs near 0 Hz, when
the speed is 1410mm/s2; Fig. 8 shows the frequency characteristics of the inner wing’s y-
direction speed. The peak value of the amplitude occurs near 0Hz, and the speed is 827mm/s2

at this time. As the frequency increases, the speed gradually decreases; Fig. 9 shows the peak
value of the spectral density amplitude in the frequency characteristics of the outer wing
x-direction speed occurs at about 7.875Hz, at this time the speed is 1913mms2, as the fre-
quency increases, the speed gradually decreases; Fig. 10 shows that the peak of the spectral
density amplitude in the frequency characteristics of the outer wing y-direction acceleration
occurs near 0Hz, at this time, the speed is 3907mm/s2. Through the above analysis, it is found
that all the vibration energy of the folding wing occurs at low frequencies. The vibration
energy of the system is determined by the vibration state of the system. Due to the conserva-
tion of mechanical energy, the vibration energy of the folding wing system is determined by
the initial state of vibration.
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Figure 7. FFT curve of inner wing x−axis direction.

Figure 8. FFT curve of inner wing y−axis direction.

Figure 9. FFT curve of outer wing x−axis direction.
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Figure 10. FFT curve of outer wing y−axis direction.

Figure 11. The z -direction displacement response of the inner wing centre of mass.

In order to analyse the amplitude of the folding wing during unfolding, at the beginning
of the simulation, a vertical pulse excitation is applied to the edge point of the outer wing
tail, then get the z -direction displacement response, z -direction acceleration response and
z-direction angular freedom response of a node of the inner and outer wings, as shown in the
Figs. 11– 16.

According to the analysis, the inner and outer wings show different characteristics under
the action of excitation. Since the folding wing is a rigid-flexible coupling structure, and the
wing is a flexible body, under the action of excitation, the displacement freedom and the angu-
lar freedom will all have a certain dynamic response. It can be seen from the comparison of
Figs. 11 and 12 that the inner and outer wings show different displacement responses. The
maximum z-direction displacement distance of the inner wing centre of mass is 0.03mm, and
the maximum z-direction displacement distance of the outer wing centre of mass is close to
1.0E-004mm; from the comparison of Figs. 13 and 14, it can be seen that the maximum
z-direction acceleration response of the inner wing centre of mass is close to 1.0E +
007mm/s2, and the maximum z-direction acceleration response of the outer wing centre of
mass is close to 3500mm/s2, it can be seen that the amplitude and acceleration of the structure
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Figure 12. The z -direction displacement response of the outer wing centre of mass.

Figure 13. The z -direction acceleration response of the inner wing centre of mass.

show a trend of simple harmonic change under the action of excitation. From the comparison
of Figs. 15 and 16, it can be seen that the maximum z-direction angular freedom response
of the inner wing centre of mass is about 0.065◦, and the maximum z-direction angular free-
dom response of the outer wing centre of mass is about 2.25E-005◦, the frequency of the
z-direction angular degree of freedom response is unstable. This phenomenon-is caused by
the change of the natural frequency of the folding wing structure with the folding angle. The
results show that Adams software is feasible to simulate the displacement and forced vibra-
tion of the structure with simple harmonic excitation. The displacement and angular degrees
of freedom of the structure are both small and can be ignored, so the opening motion has little
influence. In addition, the amplitude variation curve of the folding wing with time, the z-
direction acceleration curve of the wings centre of mass, and the degree of freedom response
curve of the wings centre of mass, can provide references for the analysis of the unfolding
motion characteristics of the folding wing.

4.3 Analysis of aeroelastic properties
Flutter is a dynamic aeroelastic stability problem; as long as the appropriate aerodynamic
theory is selected, flutter analysis can be performed. Flutter analysis is a double eigenvalue
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Figure 14. The z -direction acceleration response of the outer wing centre of mass.

Figure 15. The z -direction angular freedom response of the inner wing centre of mass.

Figure 16. The z -direction angular freedom response of the outer wing centre of mass.
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Figure 17. The relationship between flutter velocity and damping under different folding angles.

Figure 18. Flutter speed of folding wings at different folding angles.

problem of frequency and speed, which is solved by the iterative method, and the assumed
simple harmonic motion frequency reduction is used as the iterative parameter to obtain
the moderately stable conditions (flutter frequency and speed) without artificial damping. In
flutter analysis, the flutter solution can be easily expressed by a special frequency branch
crossing the real axis. When the damping of the system passes through the x−axis, the speed
at this time is the critical speed — that is, the flutter critical speed — and the frequency
corresponding to the critical speed is the flutter frequency.

Figure 17 shows the critical velocity diagram of a certain order of flutter in aerodynamic
analysis under different folding angles. Finally, the flutter speed and frequency curves of the
folding wings under different folding angles are drawn by the V-g and V-f methods.

Figures 18 and 19 respectively show the flutter speed and frequency obtained by MSC
Nastran at different folding angles during the opening of the folding wings. Since there is a
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Figure 19. Flutter frequency of folding wings at different folding angles.

phase difference between the instantaneous aerodynamic force and the elastic displacement
on the folding wing, the vibrating folding wing absorbs energy from the airflow to expand
the displacement amplitude of a node of the folding wings. In addition to energy input, due
to the instability of atmospheric environment, the relative flow of gases occurs, which causes
the folding wing to vibrate. In the case of low speed, the energy absorbed by the folding wing
will be consumed by damping without fluttering. Only when the speed exceeds at a certain
value, chattering occurs.

The comparison of the changes in the flutter characteristics of the models in Figs. 18 and
19 at different folding angles shows that when relative folding angle θ2−θ1 changes between
0◦ ∼ 180◦, the flutter velocity is between 258m/s ∼ 847m/s. When the relative folding angle
changes between 0◦ ∼ 120◦, the flutter speed decreases monotonously as the angle increases,
and the flutter speed increases monotonously when the relative folding angle continues to
increase to 180◦. The flutter speed is the lowest when the relative folding angle is approx-
imately 120◦, that is, approximately 258m/s, and the flutter speed is the highest when the
relative folding angle is about 180◦, that is, approximately 847m/s. Therefore, when the fold-
ing wing is fully opened, its critical flutter velocity is 847 m/s. Analysis shows that due to the
uncertainty of the atmospheric environment, the aeroelastic system of the folding wing will
appear stable and unstable, respectively; flutter frequency and speed have different trends and
show a monotonous decreasing trend as the relative folding angle increases.

4.4 Physical experiment verification
The physical model of the folded wing is placed on the test bench. The inner wing passes
through a vertical metal shaft. The model material is aluminum alloy. If the main charge is
2/1 camphor single-base propellant, the inner theoretical peak of the bore pressure of the main
charge of 200mg introduced by the ballistic program is about 10MPa, the cross-sectional area
of the piston is 100mm2, and the starting pressure of the piston end is about 1000N , which
will be offset by friction during the movement of the piston. A part of the force is applied to
the impact of the inner wing, and the folding wing will rotate and open around the axis.
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Figure 20. Sequence diagram of simulation and experiment.

As shown in Fig. 20, (a) is the timing diagram of dynamic simulation, and (b) is the timing
diagram of physical model experiment. The simulation and experiment process are divided
into four time sequences. When the simulation and experiment are the same time sequence,
the wing is folded. The corresponding positions are roughly the same. Because the physical
model is placed on a static vertical axis, all external factors such as the actual flight speed and
rotation speed of the projectile are not considered, which makes the result deviate from the
simulation, but it can be proved that the folding wings can be rotated and opened.

5.0 CONCLUSIONS
In the process of opening the folding wing, the structural model of the longitudinal double-
folding wing was established by using Lagrange equation, and the kinematic characteristics
of the multi-body motion were analysed, and the dynamic model of the folding wing in the
impact ejection stage was constructed using a dipole. The grid method was used to calculate
the generalised unsteady aerodynamic force, the aerodynamic model was converted into the
time domain by the minimum state method, and the aerodynamic model was converted into
the time domain dynamic model by the rational number function approximation. Finally, the
aeroelastic equation of the folded wing was obtained.

Meanwhile, the opening angular velocity required during the movement of the folding wing
under a certain impulse was analysed, and the 3D sequence image of the opening movement of
the folding wing was obtained through the kinematic equation simulation. The opening angle
and the centroid position of the inner and outer wings were obtained, the vibration energy of
the folding wing system is determined by the initial state of the vibration, the law of time
changes, aeroelastic analysis was performed on the folding wing under different relative fold-
ing angles, and the change trend of the flutter speed and frequency was obtained. The results
show that due to the uncertainty of the atmospheric environment and the changes in missile
flight speed and folding wing opening speed, the aeroelastic system of the folding wing will
appear stable and unstable, respectively. The aeroelastic response is not only sensitive to initial
conditions, but also the folding angle. Therefore, when designing the folding wing system, it
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is necessary to choose the power source for the initial opening of the folding wing to ensure
that the folding wing is opened quickly within a certain period of time.
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