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We consider operator-valued boundary-value problems in (0, 2π)n with periodic or,
more generally, ν-periodic boundary conditions. Using the concept of discrete
vector-valued Fourier multipliers, we give equivalent conditions for the unique
solvability of the boundary-value problem. As an application, we study vector-valued
parabolic initial boundary-value problems in cylindrical domains (0, 2π)n × V with
ν-periodic boundary conditions in the cylindrical directions. We show that, under
suitable assumptions on the coefficients, we obtain maximal Lq-regularity for such
problems. For symmetric operators such as the Laplacian, related results for mixed
Dirichlet–Neumann boundary conditions on (0, 2π)n × V are deduced.

1. Introduction

In this paper we first study boundary-value problems with operator-valued coeffi-
cients of the form

P (D)u + Q(D)Au = f in (0, 2π)n, (1.1)

Dβu|xj=2π − e2πνj Dβu|xj=0 = 0 (j = 1, . . . , n, |β| < m1). (1.2)

Here, P (D) is a partial differential operator of order m1 acting on u = u(x) with
x ∈ (0, 2π)n, Q(D) is a partial differential operator of order m2 � m1, A is a
closed linear operator acting in a Banach space X, and ν := (ν1, . . . , νn)T ∈ C

n.
We refer to the boundary conditions as ν-periodic. Note that for νj = 0 we have
periodic boundary conditions in direction j, whereas for νj = i/2 we have antiperi-
odic boundary conditions in this direction. In general, we have different boundary
conditions (i.e. different νj) in different directions.

As a motivation for studying problem (1.1), (1.2), we mention two classes of
problems. First, the boundary-value problem (1.1), (1.2) includes equations of the
form

ut(t) + Au(t) = f(t) (t ∈ (0, 2π)) (1.3)

and

utt(t) − aAut(t) − αAu(t) = f(t) (t ∈ (0, 2π)) (1.4)

with periodic or ν-periodic boundary conditions. Equations of the form (1.3), (1.4)
were considered in [1] and [19], respectively. These equations fit into our context
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by taking n = 1, P (D) = ∂t and Q(D) = 1 for (1.3) and by taking P (D) = ∂2
t ,

Q(D) = −a∂t − α for (1.4).
As a second motivation for studying (1.1), (1.2), we consider a boundary-value

problem of cylindrical type where the domain is of the form Ω = (0, 2π)n ×V , with
V ⊂ R

nV being a sufficiently smooth domain with compact boundary. The operator
is assumed to split in the sense that

A(x, D) = P (x1, D1) + Q(x1, D1)AV (x2, D2), (1.5)

where the differential operators P (x1, D1) and Q(x1, D1) act on x1 ∈ (0, 2π)n only
and the differential operator AV (x2, D2) acts on x2 ∈ V only. The boundary con-
ditions are assumed to be ν-periodic in the x1-direction, whereas in V the oper-
ator AV (x2, D2) of order 2mV may be supplemented with general boundary con-
ditions B1(x2, D2), . . . , BmV

(x2, D2). The simplest example of such an operator is
the Laplacian in a finite cylinder (0, 2π)n × V with ν-periodic boundary conditions
in the cylindrical directions and Dirichlet boundary conditions on (0, 2π)n × ∂V .

Our first main result (theorem 3.6) gives, under appropriate assumptions on P , Q
and A, equivalent conditions for the unique solvability of (1.1), (1.2) in Lp-Sobolev
spaces. This result generalizes results from [1] and [19] on (1.3) and (1.4), respec-
tively.

In particular, in connection with operators of the form (1.5) in cylindrical do-
mains, one is also interested in parabolic theory. Therefore, in § 4 we study problems
of the form

ut + A(x, D)u = f (t ∈ [0, T ], x ∈ (0, 2π)n × V ),
Bj(x, D)u = 0 (t ∈ [0, T ], x ∈ (0, 2π)n × ∂V,

j = 1, . . . , mV ),

(Dβu)|xj=2π − e2πνj (Dβu)|xj=0 = 0 (j = 1, . . . , n; |β| < m1),
u(0, x) = u0(x) (x ∈ (0, 2π)n × V ).

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(1.6)

Here, A(x, D) is defined as in (1.5). If (AV , B1, . . . , BmV
) is a parabolic boundary-

value problem in the sense of parameter-ellipticity (see [10, § 8]), we obtain, under
suitable assumptions on P and Q, maximal Lq-regularity for (1.6) (see theorems 4.3
and 4.6). The proof of maximal regularity is based on the R-boundedness of the
resolvent related to (1.6).

Periodic boundary values appear, for instance, in the study of the formation of
keratin networks, which are a component of the cytoskeleton of biological cells. In [3]
the evolution of a pool of soluble polymers fuelling network growth is modelled by
the Laplace operator with periodic boundary conditions.

Apart from being of interest in itself, the consideration of ν-periodic boundary
conditions also allows us to address boundary conditions of mixed type. As the
simplest example, when a = 0 we can analyse (1.4) with Dirichlet–Neumann-type
boundary conditions

u(0) = 0, ut(π) = 0.

The connection to periodic and antiperiodic boundary conditions is given by suit-
able extensions of the solution. This was also considered in [1], where, starting from
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periodic boundary conditions, the pure Dirichlet and the pure Neumann case could
be treated.

The main tool to address problems (1.1), (1.2) and (1.6) is the theory of dis-
crete vector-valued Fourier multipliers. Taking the Fourier series in the cylindrical
directions, we are faced with the question of under which conditions an operator-
valued Fourier series defines a bounded operator in Lp. This question was answered
by Arendt and Bu in [1] for the one-dimensional case n = 1, where a discrete
operator-valued Fourier multiplier result for UMD spaces and applications to peri-
odic Cauchy problems of first and second order in Lebesgue and Hölder spaces can
be found. For general n, the main result on vector-valued Fourier multipliers is
contained in [7]. A shorter proof of this result by means of induction, based on the
result for n = 1 in [1], is given in [6]. As pointed out by Arendt and Bu in [1] and
Bu and Kim in [7], the results can also be deduced from [24, theorems 3.7 and 3.8].

A generalization of the results in [1] to periodic first-order integro-differential
equations in Lebesgue, Besov and Hölder spaces is given in [18]. Here the concept
of 1-regularity in the context of sequences is introduced (see remark 2.11).

In [19] one finds a comprehensive treatment of periodic second-order differential
equations of type (1.4) in Lebesgue and Hölder spaces. In particular, the special case
of a Cauchy problem of second order, i.e. α = 0, a = 1, where A is the generator of a
strongly continuous cosine function, is investigated. In [20] more general equations
are treated in the aforementioned spaces as well as in Triebel–Lizorkin spaces.
Moreover, applications to nonlinear equations are presented.

Maximal regularity of second-order initial-value problems of the type

utt(t) + But(t) + Au(t) = f(t) (t ∈ [0, T )),
u(0) = ut(0) = 0

is treated in [8] and [9]. In particular, p-independence of maximal regularity for
second-order problems of this type is shown. The same equation involving dynamic
boundary conditions is studied in [27]. The non-autonomous second-order problem,
involving t-dependent operators B(t) and A(t), is treated in [5]. We also refer the
reader to [26] for the treatment of higher-order Cauchy problems.

In [2] various properties such as, for example, the Fredholmness of the operator
∂t − A(·) associated with the non-autonomous periodic first-order Cauchy prob-
lem in the Lp-context are investigated. Results on this operator based on Floquet
theory are obtained in [14]. We remark that in Floquet theory ν-periodic (instead
of periodic) boundary conditions appear in a natural way.

For the treatment of boundary-value problems in (0, 1) with operator-valued
coefficients subject to numerous types of homogeneous and inhomogeneous bound-
ary conditions, we refer the reader to [11–13] and the references therein. Their
approaches rely mainly on semigroup theory and do not allow for an easy general-
ization to (0, 1)n. In [13], however, applications to boundary-value problems in the
cylindrical space domain (0, 1) × V can be found.

The use of operator-valued multipliers to treat cylindrical-in-space boundary-
value problems was first carried out in [15, 16] in a Besov space setting. In these
papers, Guidotti constructs semi-classical fundamental solutions for a class of ellip-
tic operators on infinite cylindrical domains R

n × V . This proves to be a strong
tool for the treatment of related elliptic and parabolic (see [15] and [16]), as well
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as hyperbolic (see [16]), problems. Operators in cylindrical domains with a similar
splitting property to those in the present paper were, in the case of an infinite
cylinder, also considered in [22].

2. Discrete Fourier multipliers and R-boundedness

In the subsequent lines, let X and Y be Banach spaces, let 1 � p < ∞, let n ∈ N and
let Qn := (0, 2π)n. By L(X, Y ) we denote the space of all bounded linear operators
from X to Y , and we set L(X) := L(X, X). By Lp(Qn, X) we denote the standard
Bochner space of X-valued Lp-functions defined on Qn (see, for example, [4]). For
f ∈ Lp(Qn, X) and k ∈ Z

n, the kth Fourier coefficient of f is given by

f̂(k) :=
1

(2π)n

∫
Qn

e−ik·xf(x) dx. (2.1)

By Fejer’s theorem we see that f(x) = 0 almost everywhere if f̂(k) = 0 for all
k ∈ Z

n, and that f(x) = f̂(0) almost everywhere if f̂(k) = 0 for all k ∈ Z
n \ {0}.

Moreover, for f, g ∈ Lp(Qn, X) and a closed operator A in X it holds that f(x) ∈
D(A) and Af(x) = g(x) almost everywhere if and only if f̂(k) ∈ D(A) and Af̂(k) =
ĝ(k) for all k ∈ Z

n. We will make frequent use of these observations without further
comment.

Definition 2.1. A function M : Z
n → L(X, Y ) is called a (discrete) Lp-multiplier

if for each f ∈ Lp(Qn, X) there exists a g ∈ Lp(Qn, Y ) such that

ĝ(k) = M(k)f̂(k) (k ∈ Z
n).

In this case there exists a unique operator TM ∈ L(Lp(Qn, X), Lp(Qn, Y )) associ-
ated with M such that

(TMf)̂(k) = M(k)f̂(k) (k ∈ Z
n). (2.2)

The property of being a Fourier multiplier is closely related to the concept of
R-boundedness. Here, we give only the definition and some properties that will be
used later on; as references for R-boundedness we mention [21] and [10].

Definition 2.2. A family T ⊂ L(X, Y ) is called R-bounded if there exist a C > 0
and a p ∈ [1,∞) such that, for all N ∈ N, Tj ∈ T , xj ∈ X and all independent
symmetric {−1, 1}-valued random variables εj on a probability space (Ω, A, P )
(e.g. the Rademacher sequence) for j = 1, . . . , N , we have that∥∥∥∥ N∑

j=1

εjTjxj

∥∥∥∥
Lp(Ω,Y )

� Cp

∥∥∥∥ N∑
j=1

εjxj

∥∥∥∥
Lp(Ω,X)

. (2.3)

The smallest Cp > 0 such that (2.3) is satisfied is called the Rp-bound of T and
denoted by Rp(T ).

By Kahane’s inequality, (2.3) holds for all p ∈ [1,∞) if it holds for one p ∈ [1,∞).
Therefore, we will drop the p-dependence of Rp(T ) in the notation and write R(T ).
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Lemma 2.3.

(a) Let Z be a third Banach space and let T ,S ⊂ L(X, Y ) and U ⊂ L(Y, Z) be
R-bounded. Then, T + S, T ∪ S and UT are R-bounded as well and we have
that

R(T + S),R(T ∪ S) � R(S) + R(T ), R(UT ) � R(U)R(T ).

Furthermore, if T̄ denotes the closure of T with respect to the strong operator
topology, then we have that R(T̄ ) = R(T ).

(b) Contraction principle of Kahane. Let p ∈ [1,∞). Then, for all N ∈ N, xj ∈ X,
εj as above, and for all aj , bj ∈ C with |aj | � |bj | for j = 1, . . . , N , we have
that ∥∥∥∥ N∑

j=1

ajεjxj

∥∥∥∥
Lp(Ω,X)

� 2
∥∥∥∥ N∑

j=1

bjεjxj

∥∥∥∥
Lp(Ω,X)

. (2.4)

For M : Z
n → L(X, Y ) and 1 � j � n we inductively define the differences

(discrete derivatives)

∆�
jM(k) := ∆�−1

j M(k) − ∆�−1
j M(k − ej) (� ∈ N, k ∈ Z

n),

where ej denotes the jth unit vector in R
n, and where we have set ∆0

jM(k) :=
M(k)(k ∈ Z

n). As ∆γi

i and ∆γj

j commute for 1 � i, j � n, for a multi-index γ ∈ N
n
0

the expression
∆γM(k) := (∆γ1

1 · · ·∆γn
n M)(k) (k ∈ Z

n)

is well defined. Given α, β, γ ∈ N
n
0 , we write α � γ � β if αj � γj � βj for all

1 � j � n. We also set |α| := α1 + · · · + αn, 0 := (0, . . . , 0) and 1 := (1, . . . , 1). We
agree to write 0 < γ if 0 � γ and 0 < γj for at least one 1 � j � n.

We recall that a Banach space X is called a UMD space, or a Banach space of class
HT , if for some q ∈ (1,∞) (equivalently, if for all q ∈ (1,∞)) the Hilbert transform
defines a bounded operator in Lq(R, X). Thus, Hilbert spaces are UMD spaces. For
1 < p < ∞ and an arbitrary domain G ⊂ R

n the spaces X := Lp(G, E) are UMD
spaces, provided the Banach space E has the UMD property. In particular, Lp(G)
is a UMD space. A Banach space X is said to have the property (α) if there exists
a C > 0 such that for all N ∈ N, all αij ∈ C with |αij | � 1, all xij ∈ X and
all independent symmetric {+1,−1}-valued random variables ε

(1)
i on a probability

space (Ω1,A1, P1) and ε
(2)
j on a probability space (Ω2,A2, P2) for i, j = 1, . . . , N ,

we have that∥∥∥∥ N∑
i,j=1

αijε
(1)
i ε

(2)
j xij

∥∥∥∥
L2(Ω1×Ω2,X)

� C

∥∥∥∥ N∑
i,j=1

ε
(1)
i ε

(2)
j xij

∥∥∥∥
L2(Ω1×Ω2,X)

.

Again, the spaces X := Lp(G, E) enjoy the property (α), provided that E has this
property. Here we do not have to exclude p = 1. Since C is known to have property
(α), this extends to the space Lp(G). The following result from Bu and Kim [7]
provides a sufficient condition for discrete Fourier multipliers by R-boundedness.
Here and henceforth we are confined to the range 1 < p < ∞.
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Theorem 2.4 (Bu and Kim [7]).

(a) Let 1 < p < ∞, let X, Y be UMD spaces and let T ⊂ L(X, Y ) be R-bounded.
If M : Z

n → L(X, Y ) satisfies

{|k||γ|∆γM(k) : k ∈ Z
n \ [−1, 1]n, 0 < γ � 1}∪{M(k) : k ∈ Z

n} ⊂ T , (2.5)

then M defines a Fourier multiplier.

(b) If X, Y additionally enjoy property (α), then

{kγ∆γM(k) : k ∈ Z
n \ [−1, 1]n, 0 < γ � 1} ∪ {M(k) : k ∈ Z

n} ⊂ T (2.6)

is sufficient. In this case the set

{TM : M satisfies condition (2.6)} ⊂ L(Lp(Qn, X), Lp(Qn, Y ))

is again R-bounded.

Remark 2.5. In [7], theorem 2.4 is stated with discrete derivatives ∆̃ defined in
such a way that ∆γM(k + γ) = ∆̃γM(k). However, as for fixed 0 � γ � 1 there
exist c, C > 0 such that c|k − γ| � |k| � C|k − γ| for k ∈ Z

n \ [−1, 1]n, lemma 2.3
shows our formulation to be equivalent to the one in [7]. Throughout this article,
we make frequent use of this estimate without any further comment. Furthermore,
Bu and Kim [7] chose the slightly stronger conditions

{|k||γ|∆γM(k) : k ∈ Z
n, 0 � γ � 1} ⊂ T (2.7)

and
{kγ∆γM(k) : k ∈ Z

n, 0 � γ � 1} ⊂ T (2.8)

in their article. However, the proof is the same and conditions (2.5) and (2.6) are
more convenient to verify.

The following lemma states some properties for discrete derivatives, where

(Sk)k∈Zn and (Tk)k∈Zn

denote arbitrary commuting sequences in L(X). An introduction to difference oper-
ators including the subsequent Leibniz rule can be found in [23]. For α ∈ N

n
0 \ {0},

let

Zα :=
{

W = (ω1, . . . , ωr); 1 � r � |α|, 0 � ωj � α, ωj �= 0,

r∑
j=1

ωj = α

}
denote the set of all additive decompositions of α into r = rW multi-indices, and
set Z0 := {∅} and r∅ := 0. For W ∈ Zα we set ω∗

j :=
∑r

l=j+1ω
l. In the following,

cα,β and cW denote integer constants depending on α and β and W, respectively.

Lemma 2.6.

(a) Leibniz rule. For α ∈ N
n
0 and k ∈ Z

n we have that

∆α(ST )(k) =
∑

0�β�α

cα,β(∆α−βS)(k − β)(∆βT )(k).
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(b) Let (S−1)(k) := (Sk)−1 exist for all k ∈ Z
n. Then, for α ∈ N

n
0 and k ∈ Z

n

we have that

∆α(S−1)(k) =
∑

W∈Zα

cW(S−1)(k − α)
rW∏
j=1

((∆ωj

S)S−1)(k − ω∗
j ).

Proof. We show both assertions by induction on |α|, the case |α| = 0 being obvious.
For part (a) see also [23, lemma 3.3.6].

(a) By definition, we have that

(∆ej (ST ))(k) = (ST )(k) − (ST )(k − ej) = S(k − ej)(∆ej T )(k) + (∆ej S)(k)T (k),

and for α′ := α − ej , where αj �= 0, we obtain that

(∆α(ST ))(k) = ∆ej

∑
β�α′

cα′β(∆α′−βS)(k − β)(∆βT )(k)

=
∑
β�α

cαβ(∆α−βS)(k − β)(∆βT )(k).

(b) For |α| � 1, we apply (a) to SS−1 and get that

0 = (∆α(SS−1))(k)

= S(k − α)(∆αS−1)(k) +
∑
β<α

cαβ(∆α−βS)(k − β)(∆βS−1)(k).

Hence,

(∆αS−1)(k) = −S−1(k − α)
∑
β<α

cαβ(∆α−βS)(k − β)(∆βS−1)(k)

= −
∑
β<α

∑
W∈Zβ

cWS−1(k − α)((∆α−βS)S−1)(k − β)

×
rW∏
j=1

((∆ωj

S)S−1)(k − ω∗
j )

=
∑

W∈Zα

cWS−1(k − α)((∆ω1
S)S−1)(k − ω∗

1)

×
rW∏
j=2

((∆ωj

S)S−1)(k − ω∗
j ).

Definition 2.7. Consider a polynomial P : R
n → C; ξ �→ P (ξ) and let P# denote

its principal part.

(a) P is called elliptic if P#(ξ) �= 0 for ξ ∈ R
n \ {0}.

(b) Let φ ∈ (0, π) and let Σφ := {λ ∈ C \ {0} : | arg(λ)| < φ} be the open
sector with opening angle 2φ. Then, P is called parameter-elliptic in Σ̄π−φ if
λ + P#(ξ) �= 0 for (λ, ξ) ∈ Σ̄π−φ × R

n \ {(0,0)}. In this case,

ϕP := inf{φ ∈ (0, π) : P is parameter-elliptic in Σ̄π−φ}

is called the angle of parameter-ellipticity of P .
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Remark 2.8.

(a) By quasi-homogeneity of (λ, ξ) �→ λ+P#(ξ), we easily see that P is parameter-
elliptic in Σ̄π−φ if and only if, for all polynomials N with deg N � deg P ,
there exist C > 0 and a bounded subset G ⊂ R

n such that the estimate
|ξ|m|N(ξ)| � C|λ + P (ξ)| holds for all λ ∈ Σ̄π−φ, all 0 � m � deg P − deg N
and all ξ ∈ R

n \ G (see, for example, [17, theorem 3.3.6]).

(b) In the same way, P is elliptic if and only if the assertion in (a) is valid for
λ = 0.

(c) By induction, one can see that for |α| � deg P the discrete polynomial
∆αP (k) defines a polynomial of degree not greater than deg P − |α|. If P
is elliptic, by (b) this implies that |k||α||∆αP (k)| � C|P (k)|(k ∈ Z

n \ G) for
some finite set G ⊂ Z

n.

In what follows the assumption that (λ + µA)−1 exists for λ, µ ∈ C is meant
to imply both that (λ + µA)−1 ∈ L(X) and that (λ + µA)−1(X) = D(A). Hence,
µ �= 0 and λ ∈ ρ(−µA).

Proposition 2.9. Let A be a closed linear operator in a UMD space X. Consider
polynomials P, Q : Z

n → C such that

(i) P and Q are elliptic,

(ii) (P (k) + Q(k)A)−1 exists for all k ∈ Z
n,

(iii) {P (k)(P (k) + Q(k)A)−1 : k ∈ Z
n} is R-bounded.

Then, for every polynomial N with deg N � deg P , the map

M : Z
n → L(X); k �→ N(k)(P (k) + Q(k)A)−1

defines an Lp-multiplier for 1 < p < ∞.

Proof. Lemma 2.6 yields that

|k||γ|∆γM(k)

=
∑
β�γ

∑
W∈Zβ

cW |k||γ−β|(∆γ−βN)(k − β)(P (k − β) + Q(k − β)A)−1

×
rW∏
j=1

|k||ωj |(∆ωj

P (k − ω∗
j ) + ∆ωj

Q(k − ω∗
j )A)(P (k − ω∗

j ) + Q(k − ω∗
j )A)−1.

By remark 2.8, we know that deg(∆γ−βN) � deg N−|γ−β|. This and the ellipticity
of P imply that |k||γ−β||∆γ−βN(k)| � C|P (k)| for k ∈ Z

n \ G with a finite set
G ⊂ Z

n. By Kahane’s contraction principle, we obtain the R-boundedness of

{|k||γ−β|∆γ−βN(k − β)(P (k − β) + Q(k − β)A)−1 : k ∈ Z
n \ G}.

Since
Q(k)A(P (k) + Q(k)A)−1 = idX −P (k)(P (k) + Q(k)A)−1,
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in the same way the R-boundedness of

{|k||ωj |∆ωj

Q(k − ω∗
j )A(P (k − ω∗

j ) + Q(k − ω∗
j )A)−1 : k ∈ Z

n \ G}

follows from the ellipticity of Q. Now, the assertion follows from lemma 2.3 and
theorem 2.4.

Proposition 2.9 is closely related to the concept of 1-regularity of complex-valued
sequences, introduced in [18] for the one-dimensional case n = 1. In fact, if Q(k) �= 0
for all k ∈ Z

n, we may write

M(k) =
N(k)
Q(k)

(
P (k)
Q(k)

+ A

)−1

.

Hence, for n = 1 we enter the framework of [20, proposition 5.3], i.e. M(k) =
ak(bk − A)−1, with (ak)k∈Z, (bk)k∈Z ⊂ C. We give a generalization of this concept
to arbitrary n and briefly indicate the connection to the results above.

Definition 2.10. We call a pair of sequences (ak, bk)k∈Zn ⊂ C
2 1-regular if for all

0 � γ � 1 there exist a finite set K ⊂ Z
n and a constant C > 0 such that

|kγ | max{|(∆γa)k|, |(∆γb)k|} � C|bk| (k ∈ Z
n \ K). (2.9)

We say that the pair (ak, bk)k∈Zn is strictly 1-regular if |kγ | can be replaced by
|k||γ| in (2.9). A sequence (ak)k∈Zn is called (strictly) 1-regular if (ak, ak)k∈Zn has
this property.

Remark 2.11.

(a) In the case n = 1, a sequence (ak)k∈Z ⊂ C \ {0} is 1-regular in Z in the sense
of definition 2.10 if and only if the sequence (k(ak+1 − ak)/ak)k∈Z is bounded.
Hence, our definition extends the one from [18] for a sequence (ak)k∈Z.

(b) With γ = 0, the definition especially requests that |ak| � C|bk| for k ∈ Z
n\K.

(c) Strict 1-regularity implies 1-regularity. If n = 1, both concepts are equivalent.

(d) Under the assumptions of proposition 2.9, if Q(k) �= 0 for k ∈ Z
n, then

the pair (ak, bk)k∈Zn , with ak := N(k)/Q(k), bk := P (k)/Q(k), is strictly
1-regular.

(e) Again from lemma 2.6, we deduce the following variant of proposition 2.9.
Let bk ∈ ρ(A) for all k ∈ Z

n, let R({bk(bk − A)−1 : k ∈ Z
n \ G}) < ∞ for

some finite subset G ⊂ Z
n, and let (ak, bk)k∈Zn be strictly 1-regular. Then,

M(k) := ak(bk − A)−1 defines a Fourier multiplier.

3. ν-periodic boundary-value problems

Definition 3.1. Let X be a Banach space, let m ∈ N0, n ∈ N and ν ∈ C
n. We set

Dα := Dα1
1 · · ·Dαn

n , with Dj = −i∂/∂j, and denote by Wm,p
ν,per(Qn, X) the space of

all u ∈ Wm,p(Qn, X) such that for all j ∈ {1, . . . , n} and all |α| < m it holds that

(Dαu)|xj=2π = e2πνj (Dαu)|xj=0.

For the sake of convenience we set Wm,p
per (Qn, X) := Wm,p

0,per(Qn, X).
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We give some useful characterizations of the space Wm,p
ν,per(Qn, X) where we omit

the rather simple proof.

Lemma 3.2. The following assertions are equivalent:

(i) u ∈ Wm,p
ν,per(Qn, X);

(ii) u ∈ Wm,p(Qn, X) and for all |α| � m it holds that

(e−ν·Dαu)̂(k) = (k − iν)α(e−ν·u)̂(k)

for all k ∈ Z
n;

(iii) there exists v ∈ Wm,p
per (Qn, X) such that u = eν·v.

The following lemma characterizes multipliers such that the associated operators
map Lp(Qn, X) into Wα,p

per (Qn, X). The proof follows that for the case n = 1 of [1,
lemma 2.2].

Lemma 3.3. Let 1 � p < ∞, m ∈ N and M : Z
n → L(X). Then, the following

assertions are equivalent:

(i) M is an Lp-multiplier such that the associated operator TM ∈ L(Lp(Qn, X))
maps Lp(Qn, X) into Wm,p

per (Qn, X);

(ii) Mα : Z
n → L(X); k �→ kαM(k) is an Lp-multiplier for all |α| = m.

Let X be a UMD space and let A be a closed linear operator in X. With n ∈ N

and ν ∈ C
n we consider the boundary-value problem in Qn given by

A(D)u = f (x ∈ Qn),

(Dβu)|xj=2π − e2πνj (Dβu)|xj=0 = 0 (j = 1, . . . , n; |β| < m1).

}
(3.1)

In view of the boundary conditions, we refer to the boundary-value problem (3.1)
as ν-periodic. Here,

A(D) := P (D) + Q(D)A :=
∑

|α|�m1

pαDα +
∑

|α|�m2

qαDαA,

with m1, m2 ∈ N, m2 � m1 and pα, qα ∈ C. In what follows, with m := m1, we
frequently write

A(D) =
∑

|α|�m

(pαDα + qαDαA),

where additional coefficients qα are understood to be equal to zero, that is, where
m2 < |α| � m1. We also consider the complex polynomials

P (z) :=
∑

|α|�m1

pαzα and Q(z) :=
∑

|α|�m2

qαzα for z ∈ C
n.

Definition 3.4. A solution of the boundary-value problem (3.1) is understood as
a function u ∈ Wm1,p

ν,per (Qn, X) ∩ Wm2,p(Qn, D(A)) such that A(D)u(x) = f(x) for
almost every x ∈ Qn.
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Remark 3.5. Since the trace operator with respect to one direction and the tan-
gential derivation commute, the ν-periodic boundary conditions as imposed in (3.1)
are equivalent to

(D�
ju)|xj=2π − e2πνj (D�

ju)|xj=0 = 0 (j = 1, . . . , n, 0 � � < m1).

Recall that the existence of (λ + µA)−1 implies both µ �= 0 and λ ∈ ρ(−µA).

Theorem 3.6. Let 1 < p < ∞, and assume that P and Q are elliptic. The following
assertions are then equivalent:

(i) For each f ∈ Lp(Qn, X) there exists a unique solution of (3.1);

(ii) (P (k − iν) + Q(k − iν)A)−1 exists for all k ∈ Z
n, and

Mα(k) := kα(P (k − iν) + Q(k − iν)A)−1

defines a Fourier multiplier for every |α| = m1;

(iii) (P (k − iν) + Q(k − iν)A)−1 exists for all k ∈ Z
n, and for all |α| = m1 there

exists a finite subset G ⊂ Z
n such that the sets {Mα(k); k ∈ Z

n \ G} are
R-bounded.

Proof. (i) ⇒ (ii). Let f ∈ Lp(Qn, X) be arbitrary and let u be a solution of (3.1)
with right-hand side eν·f . Then, e−ν·A(D)u = f .

To compute the Fourier coefficients, we first remark that

(e−ν·P (D)u)̂(k) = P (k − iν)(e−ν·u)̂(k) (k ∈ Z
n)

by lemma 3.2. Concerning e−ν·Q(D)Au, note that by definition of a solution we have
Au ∈ Wm2,p(Qn, X). Due to the closedness of A, we obtain that DαAu = ADαu
for |α| � m2, and, consequently, Au ∈ Wm2,p

ν,per (Qn, X). We can now apply lemma 3.2
to see that

(e−ν·Q(D)Au)̂(k) = Q(k − iν)(e−ν·Au)̂(k) = Q(k − iν)A(e−ν·u)̂(k).

Writing kν := k − iν for short, we obtain that

(P (kν) + Q(kν)A)(e−ν·u)̂(k) = f̂(k) (k ∈ Z
n). (3.2)

For arbitrary y ∈ X and k ∈ Z
n, the choice f := eik·y shows (P (kν) + Q(kν)A) to

be surjective. Let z ∈ D(A) such that (P (kν) + Q(kν)A)z = 0. For fixed k ∈ Z
n

set v := eik·z and u := eν·v. Then,

P (kν)(e−ν·u)̂(k) + Q(kν)A(e−ν·u)̂(k) = 0.

As (e−ν·u)̂(m) = 0 for all m �= k, this gives A(D)u = 0; hence, v = u = 0 and
z = 0.

Altogether, we have shown bijectivity of P (kν)+Q(kν)A for k ∈ Z
n. The closed-

ness of A yields that (P (kν) + Q(kν)A)−1 ∈ L(X).
For f ∈ Lp(Qn, X) let u be a solution of (3.1) with right-hand side eν·f and

v := e−ν·u. Then, v ∈ Wm1,p
per (Qn, X), and (3.2) implies that

v̂(k) = (P (kν) + Q(kν)A)−1f̂(k) (k ∈ Z
n).
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This shows

M0 : Z
n → L(Lp(Qn, X)); k �→ (P (kν) + Q(kν)A)−1

to be a Fourier multiplier such that TM0 maps Lp(Qn, X) into Wm1,p
per (Qn, X). Due

to lemma 3.3, we have that Mα is a Fourier multiplier for all |α| = m1.

(ii) ⇒ (iii). This follows as in [1, proposition 1.11].

(iii) ⇒ (i). For k �= 0 it holds that

P (kν)(P (kν) + Q(kν)A)−1 =
P (kν)∑n

j=1 km1ej

( n∑
j=1

km1ej (P (kν) + Q(kν)A)−1
)

,

and as there exists C > 0 such that |P (kν)| � C|
∑n

j=1k
m1ej | for k ∈ Z

n \ G with
suitably chosen finite G ⊂ Z

n, lemma 2.3 shows that the set

{P (kν)(P (kν) + Q(kν)A)−1 : k ∈ Z
n \ G}

is R-bounded as well. By proposition 2.9 it follows that Mα for |α| = m1 and
P (· − iν)M0 are Fourier multipliers. For arbitrary f ∈ Lp(Qn, X), we therefore get
that v := TM0(e

−ν·f) ∈ Wm1,p
per (Qn, X). As

Q(kν)A(P (kν) + Q(kν)A)−1 = idX −P (kν)(P (kν) + Q(kν)A)−1, (3.3)

Q(· − iν)AM0 is also a Fourier multiplier. Once more by the ellipticity of Q and
lemma 2.3, the same holds for kαA(P (kν) + Q(kν)A)−1, |α| � m2.

Set u := eν·v = eν·TM0e
−ν·f . Then, u solves (3.1) by construction, and lemma 3.3

yields u ∈ Wm1,p
ν,per (Qn, X) and Au ∈ Wm2,p

ν,per (Qn, X). Finally, the uniqueness of u
follows immediately from the uniqueness of the representation as a Fourier series.

Remark 3.7. We have seen in the proof that if one of the equivalent conditions in
theorem 3.6 is satisfied, we have Au ∈ Wm2,p

ν,per (Qn, X). In particular, we get

(DβAu)|xj=2π − e2πνj (DβAu)|xj=0 = 0 (j = 1, . . . , n; |β| < m2)

as additional boundary conditions in (3.1).

Theorem 3.6 enables us to treat Dirichlet–Neumann-type boundary conditions on
Q̃n := (0, π)n for symmetric operators, provided that P and Q are of appropriate
structure. More precisely, we call a differential operator

A(D) =
∑

|α|�m

(pαDα + qαDαA)

symmetric if for all |α| � m either pα = qα = 0 or α ∈ 2N
n
0 . In particular, m1 is

even. As examples, the operators A(Dt) := D2
t +A and A(D1, D2) := (D2

1 +D2
2)

2 +
(D4

1 +D4
2)A are symmetric and satisfy the conditions on P and Q from theorem 3.6.
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In each direction j ∈ {1, . . . , n}, we will consider one of the following boundary
conditions:

(i) D�
ju|xj=0 = D�

ju|xj=π = 0 (� = 0, 2, . . . , m1 − 2),

(ii) D�
ju|xj=0 = D�

ju|xj=π = 0 (� = 1, 3, . . . , m1 − 1),

(iii) D�
ju|xj=0 = D�+1

j u|xj=π = 0 (� = 0, 2, . . . , m1 − 2),

(iv) D�+1
j u|xj=0 = D�

ju|xj=π = 0 (� = 0, 2, . . . , m1 − 2).

Note that, for a second-order operator, (i) is of Dirichlet type, (ii) is of Neumann
type, and (iii) and (iv) are of mixed type. For instance, in case (iii) we have that
u|xj=0 = 0 and Dju|xj=π = 0. Therefore, we refer to these boundary conditions
as conditions of Dirichlet–Neumann type. Note that the types may be different in
different directions.

Theorem 3.8. Let A(D) be symmetric, with P and Q being elliptic, and let the
boundary conditions be of Dirichlet–Neumann type, as explained above. Define ν ∈
C

n by setting νj := 0 in cases (i) and (ii) and νj := i/2 in cases (iii) and (iv).
If, for this ν, one of the equivalent conditions of theorem 3.6 is satisfied, then for
each f ∈ Lp(Q̃n, X) there exists a unique solution u ∈ Wm,p(Q̃n, X) of A(D)u = f
satisfying the boundary conditions.

Proof. Following an idea from [1], the solution is constructed by a suitable even
or odd extension of the right-hand side from (0, π)n to (−π, π)n. For simplicity of
notation, we first consider the case n = 2 and boundary conditions of type (ii) in
direction x1 and of type (iii) in direction x2. By definition, this leads to ν1 = 0 and
ν2 = i/2.

Let f ∈ Lp(Q̃2, X) be arbitrary. Considering the even extension of f to the
rectangle (−π, π) × (0, π) and then its odd extension to (−π, π) × (−π, π), we end
up with a function F which satisfies F (x1, x2) = F (−x1, x2) as well as F (x1, x2) =
−F (x1,−x2) almost everywhere in (−π, π)2.

We can now apply theorem 3.6 with ν = (ν1, ν2)T, as above. (Here and in the
following, the result of theorem 3.6 has to be shifted from the interval (0, 2π)n to
the interval (−π, π)n.) This yields a unique solution U of

A(D)UF in (−π, π) × (−π, π),

D�
1U |x1=−πD�

1U |x1=π (� = 0, . . . , m1 − 1),

−D�
2U |x2=−πD�

2U |x2=π (� = 0, . . . , m1 − 1).

⎫⎪⎬⎪⎭ (3.4)

Symmetry of A(D) now shows that V1(x1, x2) := U(−x1, x2) and V2(x1, x2) :=
−U(x1,−x2) (x ∈ (−π, π)2) are also solutions of (3.4). By uniqueness, V1 = U = V2
follows.

Hence, Ux2 := U(·, x2) ∈ Wm,p((−π, π), X) ⊂ Cm−1((−π, π), X) for almost
every (a.e.) x2 ∈ (−π, π) is even. Together with the symmetry of Ux2 due to (3.4),
this yields that

U (�)
x2

(0) = U (�)
x2

(π) = 0 (� = 1, 3, . . . , m1 − 1).
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Accordingly, for a.e. x1 ∈ (−π, π) we have that Ux1 is odd, and antisymmetry due
to (3.4) gives

U (�)
x1

(0) = U (�+1)
x1

(π) = 0 (� = 0, 2, . . . , m1 − 2).

Therefore, u := U |(0,π)2 solves A(D)u = f with boundary conditions (ii) for j = 1
and (iii) for j = 2.

For arbitrary n ∈ N and arbitrary boundary conditions of Dirichlet–Neumann
type, the construction of the solution follows on the same lines. Here we choose even
extensions in the cases (ii) and (iv) and odd extensions in the cases (i) and (iii).

On the other hand, let u be a solution of A(D)u = f satisfying boundary con-
ditions of Dirichlet–Neumann type. We extend u and f to U and F on (−π, π)n,
as described above. Then, U ∈ Wm,p((−π, π)n, X), Q(D)AU ∈ Lp((−π, π)n, X)
and due to symmetry of A(D) we see that, apart from a shift, U solves (3.1) with
right-hand side F and ν defined as above. Thus, the uniqueness of U yields the
uniqueness of u and the proof is complete.

Remark 3.9. In the case n = 1 the ellipticity of P no longer forces P to be of
even order. Hence, the same results can be achieved if A(D) is antisymmetric in
the obvious sense, e.g. A(Dt) := D3

t + Dt + DtA.

4. Maximal regularity of cylindrical boundary-value problems with
ν-periodic boundary conditions

Let F be a UMD space and let Ω := Qn×V ⊂ R
n+nV , with V ⊂ R

nV . For x ∈ Ω we
write x = (x1, x2) ∈ Qn × V whenever we want to refer to the cylindrical geometry
of Ω. Accordingly, we write α = (α1, α2) ∈ N

n
0 × N

nV
0 for a multi-index α ∈ N

n+nV
0

and Dα = D(α1,α2) =: Dα1

1 Dα2

2 .
In the following we investigate the vector-valued parabolic initial boundary-value

problem

ut + Aδ(x, D)u = f (t ∈ J, x ∈ Qn × V ),
Bj(x, D)u = 0 (t ∈ J, x ∈ Qn × ∂V,

j = 1, . . . , mV ),

(Dβu)|xj=2π − e2πνj (Dβu)|xj=0 = 0 (j = 1, . . . , n; |β| < m1),
u(0, x) = u0(x) (x ∈ Qn × V ).

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(4.1)

Here J := [0, T ), 0 < T � ∞, denotes a time interval, and the differential operator
Aδ(x, D) has the form

Aδ(x, D) = P (x1, D1) + Qδ(D1)AV (x2, D2)

:= P (x1, D1) + (Q(D1) + δ)AV (x2, D2)

:=
∑

|α1|�m1

pα1(x1)Dα1

1 +
∑

|α1|�m2

qα1Dα1

1 AV (x2, D2) + δAV (x2, D2),

where δ � 0 is to be specified. The operator AV (x2, D2) is assumed to be of order
2mV and is supplemented with boundary conditions

Bj(x, D) = Bj(x2, D2) (j = 1, . . . , mV ),
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with operators Bj(x2, D2) of order mj < 2mV acting on the boundary of V . We
want to restrict ourselves to ν = 0 or to purely imaginary components of ν, since
in that case iν ∈ R

n. In view of the boundary conditions, it is sufficient to consider
ν ∈ i(−1, 1)n. Note that periodic, as well as antiperiodic, boundary conditions are
still captured.

This class of equations fits into the framework of § 3 if we define the operator
A = AV in § 3 as the Lp-realization of the boundary-value problem

(AV (x2, D2), B1(x2, D2), . . . , BmV
(x2, D2)).

More precisely, for 1 < p < ∞ we define the operator AV in Lp(V, F ) by

D(AV ) := {u ∈ W 2m,p(V, F ) : Bj(x2, D2)u = 0 (j = 1, . . . , mV )},

AV u := AV (x, D)u := AV (x2, D2)u (u ∈ D(AV )).

Throughout this section, we assume that the boundary-value problem (AV , B1, . . . ,
BmV

) satisfies standard smoothness and parabolicity assumptions as given in [10,
theorem 8.2], for example. In particular, V is assumed to be a domain with com-
pact C2mV -boundary, and (AV , B1, . . . , BmV

) is assumed to be parameter-elliptic
with angle ϕAV

∈ [0, π). For the notion of parameter-ellipticity of a boundary-value
problem, we refer the reader to [10, § 8.1].

Recall that a densely defined operator A is called R-sectorial if there exists a
θ ∈ (0, π) such that

R({λ(λ + A)−1 : λ ∈ Σπ−θ}) < ∞. (4.2)

For an R-sectorial operator, φR
A := inf{θ ∈ (0, π) : (4.2) holds} is called the R-angle

of A (see [10, p. 42]). We mention that we do not impose injectivity for R-sectoriality
of an operator A. In the study of time-dependent problems, R-sectoriality of an
operator is closely related to maximal regularity. Recall that a closed and densely
defined operator in a Banach space X has maximal Lq-regularity if for each f ∈
Lq((0,∞), X) there exists a unique solution w : (0,∞) → D(A) of the Cauchy
problem

wt + Aw = f in (0,∞),
w(0) = 0

satisfying the estimate

‖wt‖Lq((0,∞),X) + ‖Aw‖Lq((0,∞),X) � C‖f‖Lq((0,∞),X),

with a constant C independent of f . By a well-known result due to Weis [25,
theorem 4.2], R-sectoriality in a UMD space with R-angle less than π/2 is equivalent
to maximal Lq-regularity for all 1 < q < ∞. In [10] it was shown that standard
parameter-elliptic problems lead to R-sectorial operators.

Proposition 4.1 (Denk et al . [10, theorem 8.2]). Under the assumptions above,
for each φ > ϕAV

there exists a δV = δV (φ) � 0 such that AV + δV is R-sectorial
with R-angle φR

AV +δV
� φ. Moreover,

R({λ1−|α2|/2mV Dα2
(λ + AV + δV )−1; λ ∈ Σπ−φ, 0 � |α2| � 2mV }) < ∞. (4.3)
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We show that, under suitable assumptions on P and Q, R-sectoriality of AV

implies R-sectoriality of the operator related to the cylindrical problem (4.1). For
this, consider the resolvent problem corresponding to (4.1), which is given by

λu + Aδ(x, D)u = f (x ∈ Qn × V ),
Bj(x, D)u = 0 (x ∈ Qn × ∂V, j = 1, . . . , mV ),

(Dβu)|xj=2π − e2πνj (Dβu)|xj=0 = 0 (j = 1, . . . , n, |β| < m1).

⎫⎪⎬⎪⎭ (4.4)

For the sake of readability, we assume that m1 = 2mV . The Lp(Ω, F )-realization
of the boundary-value problem (4.4) is defined as

D(Aδ) := {u ∈ Wm1,p(Ω, F ) ∩ Wm1,p
ν,per (Qn, Lp(V, F )) :

Bj(x, D)u = 0 (j = 1, . . . , mV ), AV (x, D)u ∈ Wm2,p(Qn, Lp(V, F ))},

Aδu := Aδ(x, D)u (u ∈ D(Aδ)).

Remark 4.2.

(a) Since m2 � m1, it holds that

D(Aδ) = Wm1,p(Ω, F ) ∩ Wm1,p
ν,per (Qn, Lp(V, F )) ∩ Wm2,p(Qn, D(AV )).

(b) The following techniques also apply to equations with mixed orders m1 �=
2mV . In that case, in the definition of D(Aδ), the space Wm1,p(Ω, F ) has to
be replaced by{

u ∈ Lp(Ω, F ) : Dαu ∈ Lp(Ω, F ) for
|α1|
m1

+
|α2|
2mV

� 1
}

.

4.1. Constant coefficients

As is assumed for Q(D1), within this section we first assume that P (x1, D1) =
P (D1) also has constant coefficients, and set

Aδ,0 := Aδ,0(x2, D) := P (D1) + Qδ(D1)(AV + δV ).

With Aδ,0u := Aδ,0u for u ∈ D(Aδ,0) := D(Aδ), we formally get that (λ+Aδ,0)−1 =
eν·TMλ

e−ν· where TMλ
denotes the associated operator to

Mλ(k) := (λ + P (k − iν) + Qδ(k − iν)(AV + δV ))−1.

More generally, the Leibniz rule shows that

Dα(λ + Aδ,0)−1 = Dαeν·TMλ
e−ν· =

∑
β�α

gβ(ν)eν·TMβ
λ
e−ν·,

where gβ is a polynomial depending on β. Here, TMβ
λ

denotes the associated operator
to

Mβ
λ (k) := kβ1Dβ2(λ + P (k − iν) + Qδ(k − iν)(AV + δV ))−1,

where β = (β1, β2)T � α. In the case ν = 0 we simply have that

Dα(λ + Aδ,0)−1 = TMα
λ
.
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Theorem 4.3. Let 1 < p < ∞, let F be a UMD space enjoying the property (α),
let ν ∈ i(−1, 1)n and let the boundary-value problem (AV , B) satisfy the conditions
of [10, theorem 8.2] with angle of parameter-ellipticity ϕAV

.
For P and Q assume that

(i) P is homogeneous and parameter-elliptic with angle ϕP ∈ [0, π),

(ii) Q is homogeneous and parameter-elliptic with angle ϕQ ∈ [0, π),

(iii) ϕP + ϕQ + ϕAV
< π.

Set ϕ0 := max{ϕP , ϕQ + ϕAV
}.

Then, for each δ > 0 the Lp-realization Aδ,0 of Aδ,0 is R-sectorial with R-angle
φR

Aδ,0
� ϕ0. Moreover, for each φ > ϕ0 it holds that

R({λ1−|α|/m1Dα(λ+Aδ,0)−1 : λ ∈ Σπ−φ, α ∈ N
n+nv
0 , 0 � |α| � m1}) < ∞. (4.5)

In particular, if ϕ0 < π/2, then Aδ,0 has maximal Lq-regularity for every 1 < q <
∞, i.e. the initial boundary-value problem (4.1) is well posed in Lq([0, T ), Lp(Ω, F )).

If ν �= 0 or Q ≡ c, c �= 0, the assertion remains valid for δ = 0.

Proof. Let φ > ϕ0. Due to conditions (i)–(iii) on ϕP , ϕQ and ϕAV
, there exists

ϑ > ϕAV
such that

λ + P (ξ)
Q(ξ)

∈ Σπ−ϑ (λ ∈ Σπ−φ, ξ ∈ R
n \ {0}).

First consider ν �= 0 and δ = 0. Let α ∈ N
n+nV
0 , 0 � |α| � m1 = 2mV , 0 � β � α

and 0 � γ � 1. For sake of convenience we drop the shift of AV , i.e. we assume that
δV = 0. To prove (4.5) we apply lemma 2.6 in order to calculate kγ∆γMβ

λ+δ(k). In
what follows we again write kν := k − iν for short. Recall that iν ∈ (−1, 1)n \ {0}.
As in the proof of proposition 2.9, it suffices to show that the operator families

{λ1−|α|/m1kω∆ωN(k)Dβ2(λ + P (kν) + Q(kν)AV )−1 : λ ∈ Σπ−φ, k ∈ Z
n} (4.6)

with N(k) := kβ1 and arbitrary ω � γ,

{kω∆ωP (kν)(λ + P (kν) + Q(kν)AV )−1 : λ ∈ Σπ−φ, k ∈ Z
n} (4.7)

with 0 < ω � γ, and

{kω∆ωQ(kν)AV (λ + P (kν) + Q(kν)AV )−1 : λ ∈ Σπ−φ, k ∈ Z
n} (4.8)

with 0 < ω � γ are R-bounded. Due to our assumptions and proposition 4.1, in
particular (4.3), for 0 � |β2| � m1 = 2mV the set{(

λ + P (kν)
Q(kν)

)1−|β2|/m1

Dβ2

(
λ + P (kν)

Q(kν)
+ AV

)−1

: λ ∈ Σπ−φ, k ∈ Z
n

}
is R-bounded. For β2 = 0 this yields the R-boundedness of

{(λ + P (kν))(λ + P (kν) + Q(kν)AV )−1 : λ ∈ Σπ−φ, k ∈ Z
n} (4.9)
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and with it the R-boundedness of

{Q(kν)AV (λ + P (kν) + Q(kν)AV )−1 : λ ∈ Σπ−φ, k ∈ Z
n}. (4.10)

Since ν is supposed to have at least one non-zero component, there exists ε > 0
such that |kν | > ε holds true for all k ∈ Z

n. Moreover, there exists C > 0 such that

λ1−|α|/m1 |k||ω||∆ωN(k)||Q(kν)|1−|β2|/m1

|λ + P (kν)|1−|β2|/m1 |Q(kν)| � C and
|k||ω||∆ωP (kν)|

|λ + P (kν)| � C

for all k ∈ Z
n and all λ ∈ Σπ−φ, due to the parameter-ellipticity of P and the

ellipticity of Q. (In the case δ > 0, the parameter-ellipticity of Q has to be used.)
Again we apply the contraction principle of Kahane to prove (4.6) and (4.7).
Similarly, the ellipticity of Q proves (4.8) as well as DαAV (λ + Aδ,0)−1f ∈

Lp(Ω, F ) for |α| � m2.
Now, consider the case ν = 0. Note that the ideas of the first part of the proof

carry over to this situation only if k �= 0. Two R-boundedness statements have to
be proven in order to apply the multiplier theorem. First, the R-boundedness of

{λ1−|α|/m1Mα
λ : λ ∈ Σπ−φ, k ∈ Z

n}.

This follows immediately due to homogeneity arguments. Recall the structure of
Mα

λ , in particular the fact that we no longer have to consider Mβ
λ with |β| < |α|,

and that

λ1−|α|/m1Mα
λ (0) =

{
0, α1 �= 0
λ1−|α2|/m1Dα2(λ + δAV )−1, α1 = 0.

Second, we have to prove the R-boundedness of (4.6)–(4.8), this time, however,
with k ∈ Z

n \{0} instead of k ∈ Z
n. Hence, k �= 0 and part one of the proof applies

verbatim.
The last claim on maximal Lq-regularity now follows from [25, theorem 4.2].

Remark 4.4. We have seen in the proof that AV u ∈ Wm2,p
ν,per (Qn, Lp(V, F )), i.e. the

solution u of (4.4) satisfies the further boundary condition

(DβAV u)|xj=2π − e2πνj (DβAV u)|xj=0 = 0 (j = 1, . . . , n; |β| < m2)

(see remark 3.7). Additionally, we have seen in the proof that

R({DαAV (λ + Aδ,0)−1 : λ ∈ Σπ−φ, 0 � |α| � m2}) < ∞. (4.11)

Note that the shift δ > 0 cannot be neglected in the case Q �≡ c, c ∈ R, and
ν = 0. To see this, take a right-hand side f ∈ Lp(Ω, F ), which is given as a
constant extension of a function in g ∈ Lp(V, F ) \D(AV ). If λu+A(D)u = f , then
λû(0) = f̂(0) = g by the parameter-ellipticity of P and Q. Hence, u /∈ D(A0).

Remark 4.5. Consider again the boundary-value problems in (0, π)n × V with
Dirichlet–Neumann-type boundary conditions and a symmetric setting with respect
to (0, π)n. As the extension and restriction operators defined above are bounded,
we can immediately see from theorem 3.8 the related result for Dirichlet–Neumann-
type boundary conditions. In particular, we obtain maximal regularity results also
for boundary conditions of mixed type (iii) and (iv); see the text before theorem 3.8.
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4.2. Non-constant coefficients of P

In this subsection, P (x1, D1) is allowed to have non-constant coefficients, where
we assume that

pα1 ∈ Cper(Qn) for |α1| = m1,

pα1 ∈ Lrη (Qn) for |α1| = η < m1, rη � p,
m1 − η

n − k
>

1
rη

.

⎫⎬⎭ (4.12)

Here Cper(Qn) := {f ∈ C([0, 2π]n) : f |xj=0 = f |xj=2π (j = 1, . . . , n)}. However, in
order to apply perturbation results similar to [10] or [22], we assume that Q ≡ 1,
i.e. we consider

A(x, D) := P (x1, D1) + AV (x2, D2).

Theorem 4.6. Let 1 < p < ∞, let F be a UMD space enjoying the property (α),
let Ω := Qn × V and let the boundary-value problem (AV , B) satisfy the conditions
of [10, theorem 8.2] with angle of parameter-ellipticity ϕAV

.
For P assume that

(i) the coefficients satisfy (4.12) and

(ii) P is parameter-elliptic with angle ϕP ∈ [0, π − ϕAV
) uniformly in x ∈ Q̄n.

Set ϕ0 := max{ϕP , ϕAV
}. Then, for each φ > ϕ0 there exists µ = µ(φ) � 0 such

that the Lp-realization A + µ of A + µ is R-sectorial with R-angle φR
A+µ � φ.

Moreover, we have that

R({λ1−|α|/m1Dα(λ + A + µ)−1 : λ ∈ Σπ−φ, α ∈ N
n+nv
0 , 0 � |α| � m1}) < ∞.

(4.13)
In particular, if ϕ0 < π/2, then there exists µ > 0 such that A + µ has maximal
Lq-regularity for every 1 < q < ∞.

Proof. As a first step, we consider P (x, D) to be a homogeneous differential operator
with slightly varying coefficients. That is, we consider

Ava(x, D) := P0(D1) + R(x1, D1) + AV (x2, D2),

where
P0(D1) :=

∑
|α1|=2m

pα1Dα1

1

is assumed to have constant coefficients and

R(x1, D1) :=
∑

|α1|=2m

rα1(x1)Dα1

1

satisfies ∑
|α1|=2m

‖rα1‖∞ � η

with η > 0 sufficiently small. The claim then follows due to perturbation results for
R-sectorial operators (see [10,22]) from theorem 4.3.
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As a second step, we choose a finite but sufficiently fine open covering of Qn.
In view of the periodicity of the top-order coefficients, we may assume every open
set of the covering that intersects with R

n \ Qn to be cut at the boundary of Qn

and continued within Qn on the opposite side. By means of reflection and cut-off
techniques, this enables us to define local operators with slightly varying coefficients.
With the help of a partition of the unity and perturbation results for lower-order
terms subject to condition (4.12), just as in [22], the claim follows.

References

1 W. Arendt and S. Bu. The operator-valued Marcinkiewicz multiplier theorem and maximal
regularity. Math. Z. 240 (2002), 311–343.

2 W. Arendt and P. J. Rabier. Linear evolution operators on spaces of periodic functions.
Commun. Pure Appl. Analysis 8 (2009), 5–36.

3 W. Arendt, M. Beil, F. Fleischer, S. Lück, S. Portet and V. Schmidt. The Laplacian in a
stochastic model for spatio-temporal reaction systems. Ulmer Seminare 13 (2008), 133–144.

4 W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander. Vector-valued Laplace transforms
and Cauchy problems, Monographs in Mathematics, vol. 96, 2nd edn (Birkhäuser, 2011).
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