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We study the asymptotic behaviour, as p → ∞, of the least energy solutions of the
problem{−(Δp + Δq(p))u = λp|u(xu)|p−2u(xu)δxu in Ω

u = 0 on ∂Ω,

where xu is the (unique) maximum point of |u|, δxu is the Dirac delta distribution
supported at xu,

lim
p→∞

q(p)

p
= Q ∈

{
(0, 1) if N < q(p) < p
(1,∞) if N < p < q(p)

and λp > 0 is such that

min

{ ‖∇u‖∞
‖u‖∞

: 0 �≡ u ∈ W 1,∞(Ω) ∩ C0(Ω)

}
� lim

p→∞(λp)1/p < ∞.

Keywords: Asymptotic behaviour; dirac delta; infinity Laplacian; Nehari set;
viscosity solution
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1. Introduction

In this paper, we first study in § 2 the existence of nonnegative least energy solutions
for the Dirichlet problem{−(Δp + Δq)u = λ‖u‖p−r

r |u|r−2u in Ω
u = 0 on ∂Ω, (1.1)

where Ω is a smooth bounded domain of R
N , N � 2,

(Δp + Δq)u := div[(|∇u|p−2 + |∇u|q−2)∇u]
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is the (p, q)-Laplacian operator, λ > 0 and 1 � r <∞. (In the whole paper we
denote by ‖ · ‖s the standard norm of the Lebesgue space Ls(Ω), with 1 � s � ∞).

Our main results, inspired by the recent papers [3,9], are presented in §§ 3 and 4.
In § 3, we show the limit problem of (1.1) as r → ∞ is the following{−(Δp + Δq)u = λ|u(xu)|p−2u(xu)δxu

in Ω
u = 0 on ∂Ω, (1.2)

where xu is the (unique) maximum point of |u| and δxu
is the Dirac delta

distribution supported at xu.
More precisely, we prove in proposition 3.6 that if λ > λ∞(p), where

λ∞(p) := min
{‖∇u‖p

p

‖u‖p∞
: u ∈W 1,p

0 (Ω) \ {0}
}
, (1.3)

and un denotes a nonnegative least energy solution of (1.1) for r = rn → ∞, then
there exists a subsequence of {un} converging strongly in Xp,q := W

1,max{p,q}
0 (Ω)

to a nonnegative least energy solution of (1.2).
Least energy solutions for (1.2) are defined in this paper as the minimizers of the

energy functional

Jλ(u) =
1
p
‖∇u‖p

p +
1
q
‖∇u‖q

q −
λ

p
‖u‖p

∞,

either on W 1,q
0 (Ω), if N < p < q <∞, or on the ‘Nehari set’

Nλ,∞ := {u ∈W 1,p
0 (Ω) : ‖∇u‖p

p + ‖∇u‖q
q = λ‖u‖p

∞},
if N < q < p <∞.

Although not differentiable, the functional u �→ ‖u‖p
∞ has right Gateaux deriva-

tive at any u ∈ C(Ω). Using this fact we show in proposition 3.5 that the least
energy solutions of (1.2) are weak solutions of this problem. It is simple to verify
(see remark 3.2) that (1.2) cannot have weak solutions when λ � λ∞(p).

In § 4, we consider q = q(p), with

lim
p→∞

q(p)
p

=: Q ∈
{

(0, 1) if N < q(p) < p
(1,∞) if N < p < q(p), (1.4)

and fix Λ � Λ∞, where

Λ∞ := min
{‖∇u‖∞

‖u‖∞ : 0 �≡ u ∈W 1,∞(Ω) ∩ C0(Ω)
}

(1.5)

and

C0(Ω) := {u ∈ C(Ω) : u = 0on ∂Ω}.
Then, taking λp > 0 satisfying

lim
p→∞(λp)1/p = Λ � Λ∞
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we study the asymptotic behaviour, as p→ ∞, of the least energy solutions up of{−(Δp + Δq(p))u = λp|u(xu)|p−2u(xu)δxu
in Ω

u = 0 on ∂Ω. (1.6)

After deriving suitable estimates for up in W 1,m
0 (Ω), for each m > N, we use

the compactness of the embedding W 1,m
0 (Ω) ↪→ C(Ω) to prove that any sequence

{upn
}, with pn → ∞, admits a subsequence converging uniformly in Ω to a function

uΛ ∈W 1,∞(Ω) ∩ C0(Ω), which is strictly positive in Ω and attains its (unique)
maximum point at xΛ ∈ Ω.

Moreover, we prove that uΛ is ∞-harmonic in the punctured domain Ω \ {xΛ},
meaning that it satisfies, in the viscosity sense,

Δ∞uΛ = 0 in Ω \ {xΛ},
where

Δ∞u :=
1
2
∇u · ∇ |∇u|2

denotes the ∞-Laplacian.
In addition, we show that if either Λ = Λ∞ or Λ > Λ∞ and Q ∈ (0, 1), then uΛ

realizes the minimum in (1.5) and satisfies

‖uΛ‖∞ =
1

Λ∞

(
Λ∞
Λ

)((1)/(1−Q))

and ‖∇uΛ‖∞ =
(

Λ∞
Λ

)((1)/(1−Q))

.

Hence, taking into account that Λ∞ = (‖ρ‖∞)−1, where ρ : Ω → [0,∞) denotes the
distance function to the boundary ∂Ω, we conclude that

0 � uΛ(x) �
(

Λ∞
Λ

)((1)/(1−Q))

ρ(x), ∀x ∈ Ω

and

ρ(xΛ) = ‖ρ‖∞.
These results are gathered in theorems 4.3 and 4.14, and their corollaries. In

order to show how they fit into the recent literature, let us provide a brief review
on some related problems, involving exponents p and q(p), with p→ ∞.

We start with a case involving the p-Laplacian operator and a simpler dependence
q(p) = p, considered by Juutinen, Lindqvist, and Manfredi in [13]. In that paper,
the authors studied the limit problem, as p→ ∞, of{−Δpu = λp(p)|u|p−2u in Ω

u = 0 on ∂Ω, (1.7)

where according to the notation we use in this paper (see (2.1)),

λp(p) := min
{‖∇u‖p

p

‖u‖p
p

: u ∈W 1,p
0 (Ω) \ {0}

}
.
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They first showed that,

lim
p→∞(λp(p))1/p = Λ∞

and then, denoting by up the positive, Lp-normalized weak solution of (1.7), proved
that any sequence {upn

}, with pn → ∞, admits a subsequence converging uniformly
in Ω to a function u∞ which is positive in Ω, L∞-normalized and solves, in the
viscosity sense, the problem{

min{|∇u| − Λ∞u,−Δ∞u} = 0 in Ω
u = 0 on ∂Ω. (1.8)

These results were independently obtained by Fukagai, Ito and Narukawa in [10],
where the asymptotic behaviour, as p→ ∞, of the higher (variational) eigenvalues
of the Dirichlet p-Laplacian were also studied. Furthermore, in the recent paper
[8], da Silva, Rossi and Salort showed that (1.8) has a unique (up to scalar multi-
plication) maximal solution v̂ ∈W 1,∞(Ω) ∩ C0(Ω) in the following sense: if u is a
nonnegative, L∞-normalized viscosity solution of (1.8), then u � v̂.

Charro and Peral in [4] (q(p) < p), and Charro and Parini in [5] (q(p) > p),
studied the asymptotic behaviour, as p→ ∞, of the positive weak solutions up of
the problem {−Δpu = λp|u|q(p)−2u in Ω

u = 0 on ∂Ω,

where λp > 0 is such that limp→∞(λp)1/p = Λ ∈ (0,∞). A consequence of the results
proved in these papers is that the limit functions of the family {up}, as p→ ∞, are
viscosity solutions of the problem{

min
{|∇u| − Λ(uQ),−Δ∞u

}
= 0 in Ω

u = 0 on ∂Ω,

where here and in what follows Q is given by (1.4).
In [6] Charro and Parini proved that any uniform limit, as p→ ∞, of a sequence

of positive weak solutions of the problem{−Δpu = λp|u|p−2u+ |u|q(p)−2u in Ω
u = 0 on ∂Ω,

where λp > 0 is such that limp→∞(λp)1/p = Λ ∈ [0,Λ∞], must be a viscosity
solution of the problem{

min{|∇u| − max{Λu, (uQ)},−Δ∞u} = 0 in Ω
u = 0 on ∂Ω.

Bocea and Mihăilescu considered in [3] the family {up} of nonnegative least
energy solutions of the problem{−(Δp + Δq(p))u = λp|u|p−2u in Ω

u = 0 on ∂Ω,
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where λp > 0 is such that limp→∞(λp)1/p = Λ � Λ∞. They proved that the uniform
limit, as p→ ∞, of a sequence of {up} solves, in the viscosity sense, the problem{

min{max{|∇u|, |∇u|Q} − Λu,−Δ∞u} = 0 in Ω
u = 0 on ∂Ω.

Ercole and Pereira, in [9], showed that

lim
p→∞(λ∞(p))1/p = Λ∞

and proved that any positive minimizer up in (1.3) has a unique maximum point
xp and is a weak solution of the problem{−Δpu = λ∞(p)|u(xp)|p−2up(xp)δxp

in Ω
u = 0 on ∂Ω,

where δxp
denotes the Dirac delta distribution supported at xp (note that

q(p) = p). Furthermore, they proved that any normalized sequence {upn
/‖upn

‖∞},
with pn → ∞, admits a subsequence converging uniformly in Ω to a function
w∞ ∈W 1,∞(Ω) ∩ C0(Ω), which is positive in Ω and assumes its maximum value 1
at a unique point x∗ ∈ Ω. Moreover, w∞ realizes the minimum in (1.5) and satisfies{

Δ∞u = 0 in Ω \ {x∗}
u = ρ/‖ρ‖∞ on ∂(Ω \ {x∗}) = ∂Ω ∪ {x∗}

in the viscosity sense.

2. Existence for 1 � r < q� and λ > λr(p)

We recall that the embedding W 1,m
0 (Ω) ↪→ Lr(Ω) is compact whenever

1 � r < m� :=
{

Nm
N−m if 1 < m < N

∞ if N � m.

Thus, the Rayleigh quotient associated with this embedding assumes its minimum
value, which is positive:

0 < λr(m) := min
{‖∇u‖m

m

‖u‖m
r

: u ∈W 1,m
0 (Ω) \ {0}

}
, 1 � r < m�. (2.1)

In this section, we consider in the Sobolev space

Xp,q := W
1,max{p,q}
0 (Ω),

the boundary value problem{−(Δp + Δq)u = λ‖u‖p−r
r |u|r−2u in Ω

u = 0 on ∂Ω, (2.2)

where 1 � p, q <∞, p �= q and 1 � r < q�.
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The energy functional Iλ,r : Xp,q → R associated with (2.2) is given by

Iλ,r(u) :=
1
p
‖∇u‖p

p +
1
q
‖∇u‖q

q −
λ

p
‖u‖p

r .

It belongs to C1(Xp,q) and its Gateaux derivative is expressed as

〈I ′λ,r(u), v〉 :=
∫

Ω

(|∇u|p−2 + |∇u|q−2)∇u · ∇vdx− λ‖u‖p−r
r

∫
Ω

|u|r−2uvdx,

∀v ∈ Xp,q.

Definition 2.1. We say that u ∈ Xp,q is a weak solution of (2.2) if

〈I ′λ,r(u), v〉 = 0 ∀v ∈ Xp,q.

We remark that a nontrivial weak solution of (2.2) cannot exist if λ � λr(p). In
fact, such a weak solution u would satisfy

λ‖u‖p
r = ‖∇u‖p

p + ‖∇u‖q
q > ‖∇u‖p

p � λr(p)‖u‖p
r ,

so that (λ− λr(p))‖u‖p
r > 0.

We show in the sequel that the functional Iλ,r has a global minimizer whenever
1 < p < q <∞. Thus, it is clear that such a minimizer is a weak solution of (2.2),
since it must be a critical point of Iλ,r.

In the case 1 < q < p <∞ the functional Iλ,r is not globally bounded from below.
In fact, if er ∈W 1,p

0 (Ω) is such that

‖er‖r = 1 and ‖∇er‖p
p = λr(p), (2.3)

then

Iλ,r(ter) =
tq

q
‖∇er‖q

q − tp
(λ− λr(p))

p
→ −∞ as t→ ∞.

However, as we will see soon, in this case the functional Iλ,r assumes the minimum
value on the Nehari manifold defined by

Nλ,r := {u ∈ Xp,q \ {0} : 〈I ′λ,r(u), u〉 = 0} = {u ∈ Xp,q \ {0} : ‖∇u‖p
p + ‖∇u‖q

q

= λ‖u‖p
r}.

Note that if u ∈ Nλ,r then

Iλ,r(u) =
1
p
‖∇u‖p

p +
1
q
‖∇u‖q

q −
λ

p
‖u‖p

r

=
1
p
‖∇u‖p

p +
1
q
‖∇u‖q

q −
1
p
(‖∇u‖p

p + ‖∇u‖q
q)

=
(

1
q
− 1
p

)
‖∇u‖q

q.
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Moreover, it follows from the identity

〈I ′λ,r(tv), tv〉 = tq[‖∇v‖q
q − tp−q(λ‖v‖p

r − ‖∇v‖p
p)], v ∈ Xp,q, t > 0,

that if v ∈ Xp,q \ {0}, then tv ∈ Nλ,r (for some t > 0) if, and only if,

‖∇v‖p
p < λ‖v‖p

r and t =
( ‖∇v‖q

q

λ‖v‖p
r − ‖∇v‖p

p

)((1)/(p−q))

. (2.4)

A first consequence of this fact is that Nλ,r is not empty, since

‖∇er‖p
p = λr(p) < λ = λ‖er‖p

r .

For the sake of completeness, we show now that a minimizer of Iλ,r on Nλ,r is
also a weak solution of (2.2) whenever 1 < q < p <∞.

Proposition 2.2. Suppose that 1 < q < p <∞ and that uλ ∈ Nλ,r is such that
Iλ,r(uλ) � Iλ,r(v) for all v ∈ Nλ,r. Then uλ is a weak solution of (2.2).

Proof. Since uλ ∈ Nλ,r we have ‖∇uλ‖p
p < ‖∇uλ‖p

p + ‖∇uλ‖q
q = λ‖uλ‖p

r . Hence, for
a fixed v ∈ Xp,q we can take δ > 0 such that uλ + sv �≡ 0 and

‖∇(uλ + sv)‖p
p < λ‖uλ + sv‖p

r , ∀s ∈ (−δ, δ).
Let τ : (−δ, δ) → (0,∞) be the differentiable function given by

τ(s) =
( ‖∇(uλ + sv)‖q

q

λ‖uλ + sv‖p
r − ‖∇(uλ + sv)‖p

p

)((1)/(p−q))

.

We can see from (2.4) that τ(s)(uλ + sv) ∈ Nλ,r for all s ∈ (−δ, δ) and that τ(0) = 1
(since uλ ∈ Nλ,r).

Taking into account that the differentiable function γ : (−δ, δ) → R, defined by

γ(s) = Iλ,r(τ(s)(uλ + sv)),

attains its minimum value at s = 0, we have

0 = γ′(0)

= 〈I ′λ,r(uλ), τ ′(0)uλ + τ(0)v)〉 = τ ′(0)〈I ′λ,r(uλ), uλ)〉 + τ(0)〈I ′λ,r(uλ), v)〉
= 〈I ′λ,r(uλ), v)〉.

�

Definition 2.3. We say that a function u ∈ Xp,q is a least energy solution of (2.2)
if it minimizes the functional Iλ,r either on Xp,q \ {0} in the case 1 < p < q <∞,
or on Nλ,r in the case 1 < q < p <∞.

Our main goal in this section is to prove that (2.2) has at least one nonnegative
least energy solution. We assume that 1 � r < q� and λ > λr(p).
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Proposition 2.4. Suppose that 1 < p, q <∞ (p �= q), 1 � r < q� and λ > λr(p).
The problem (2.2) has at least one nonnegative least energy solution uλ.

Proof. We start with the case 1 < p < q <∞, in which Xp,q = W 1,q
0 (Ω). It is simple

to verify that Iλ,r is bounded from below and coercive. In fact,

Iλ,r(u) =
1
p
‖∇u‖p

p +
1
q
‖∇u‖q

q −
λ

p
‖u‖p

r

� 1
q
‖∇u‖q

q −
λ

p
‖u‖p

r

� 1
q
‖∇u‖q

q −
λ

p
(λr(q))−p/q‖∇u‖p

q = g(‖∇u‖q),

where the function g : [0,∞) −→ R, given by g(t) := 1/qtq − ((λ(λr(q))−p/q)/(p))tp,
satisfies

−∞ < inf{g(t) : t ∈ [0,∞)} and lim
t→∞ g(t) = ∞.

Thus, taking into account that Iλ,r is also weakly sequentially lower semi-
continuous, there exists uλ ∈ Xp,q such that

Iλ,r(uλ) = min{Iλ,r(u) : u ∈ Xp,q}.
Noting that Iλ,r(uλ) = Iλ,r(|uλ|) we can assume that uλ � 0 in Ω. In order to

show that uλ �≡ 0 it is sufficient to check that Iλ,r assumes negative values in Xp,q

(note that Iλ,r(0) = 0). For this, by using a function er ∈ C1(Ω) ∩W 1,p
0 (Ω) ⊂ Xp,q

satisfying (2.3), we have

Iλ,r(ter) =
tq

q
‖∇er‖q

q − tp
(λ− λr(p))

p
< 0

for all positive t sufficiently small.
Now, we study the case 1 < q < p <∞ in which Xp,q = W 1,p

0 (Ω).
Since 1 � r < q� � p� (the latter inequality is an equality only in the case N �

q < p) we have

‖u‖q
r � 1

λr(q)
‖∇u‖q

q � 1
λr(q)

(‖∇u‖q
q + ‖∇u‖p

p) =
λ

λr(q)
‖u‖p

r , ∀u ∈ Nλ,r,

implying that

‖u‖r �
(
λr(q)
λ

)((1)/(p−q))

> 0, ∀u ∈ Nλ,r. (2.5)

It follows that Iλ,r restricted to Nλ,r is bounded from below by a positive constant:

Iλ,r(u) =
(

1
q
− 1
p

)
‖∇u‖q

q

�
(

1
q
− 1
p

)
λr(q)‖u‖q

r �
(

1
q
− 1
p

)
λr(q)

(
λr(q)
λ

)((q)/(p−q))

> 0.
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Let us show that

mλ := inf{Iλ,r(u) : u ∈ Nλ,r}

is attained in Nλ,r. Let {un} ⊂ Nλ,r be a minimizing sequence, that is,

Iλ,r(un) =
(

1
q
− 1
p

)
‖∇un‖q

q → mλ.

It follows that {un} is bounded in W 1,q
0 (Ω) and hence, taking into account that

‖∇un‖p
p � ‖∇un‖p

p + ‖∇un‖q
q = λ‖un‖p

r � λ

λr(q)p/q
‖∇un‖p

q ,

we conclude that {un} is also bounded in W 1,p
0 (Ω). Thus, we can assume that, up

to a subsequence, {un} converges to a function uλ, weakly in both spaces W 1,p
0 (Ω)

and W 1,q
0 (Ω), and strongly in Lr(Ω).

It follows from (2.5) that

‖uλ‖r = lim
n→∞ ‖un‖r �

(
λr(q)
λ

)((1)/(p−q))

> 0,

so that uλ �≡ 0.
Moreover,

‖∇uλ‖p
p < ‖∇uλ‖p

p + ‖∇uλ‖q
q

� lim inf
n→∞ (‖∇un‖p

p + ‖∇un‖q
q) = lim inf

n→∞ λ‖un‖p
r = λ‖uλ‖p

r .

Hence, tλuλ ∈ Nλ,r where

tλ =
( ‖∇uλ‖q

q

λ‖uλ‖p
r − ‖∇uλ‖p

p

)((1)/(p−q))

� 1.

It follows that

mλ � Iλ,r(tλuλ)

= (tλ)q

(
1
q
− 1
p

)
‖∇uλ‖q

q

� (tλ)q

(
1
q
− 1
p

)
lim inf
n→∞ ‖∇un‖q

q = (tλ)q lim inf
n→∞ Iλ,r(un) = (tλ)qmλ � mλ.

Consequently, tλ = 1, uλ ∈ Nλ,r and, Iλ,r(uλ) = mλ.
Since |uλ| ∈ Nλ,r and Iλ,r(|uλ|) = Iλ,r(uλ) = mλ, we can assume that uλ is

nonnegative. �
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3. The limit problem as r → ∞
In this section, we fix p, q > N, p �= q, and study the following Dirichlet problem{−(Δp + Δq)u = λ|u(xu)|p−2u(xu)δxu

in Ω
u = 0 on ∂Ω, (3.1)

where xu is a maximum point of |u| (so that |u(xu)| = ‖u‖∞) and δxu
is the delta

Dirac distribution supported at xu.
As we will see in the sequel (3.1) is the limit problem of (1.1) as r → ∞.

Definition 3.1. We say that u ∈ Xp,q is a weak solution of (3.1) if |u(xu)| = ‖u‖∞
and∫

Ω

(|∇u|p−2 + |∇u|q−2)∇u · ∇vdx = λ|u(xu)|p−2u(xu)v(xu), ∀ v ∈ Xp,q. (3.2)

Let us recall the Morrey’s inequality, valid if m > N :

C‖u‖m
0,αm

� ‖∇u‖p
m, ∀u ∈W 1,m

0 (Ω),

where ‖u‖0,s denotes the standard norm in the Hölder space C0,s(Ω), αm = 1 −
N/m and the positive constant C depends only on Ω,m and N.

Morrey’s inequality implies that the embedding W 1,m
0 (Ω) ↪→ C(Ω) is compact

and this fact guarantees that the infimum of the Rayleigh quotient ‖∇v‖m
m/‖v‖m

∞
is attained in W 1,m

0 (Ω) \ {0}. From now on, we make use of the additional notation

λ∞(m) := min
{‖∇v‖m

m

‖v‖m∞
: v ∈W 1,m

0 (Ω) \ {0}
}
, m > N.

As it is shown in [9],

lim
r→∞λr(m) = λ∞(m). (3.3)

Remark 3.2. A nontrivial weak solution for (3.1) cannot exist if λ � λ∞(p). Indeed,
taking v = u in (3.2) one has

(λ− λ∞(p))‖u‖p
∞ = ‖∇u‖p

p + ‖∇u‖q
q − λ∞(p)‖u‖p

∞ > ‖∇u‖p
p − λ∞(p)‖u‖p

∞ � 0.

So, we assume in the rest of this section that λ > λ∞(p).
We define the energy functional Jλ : Xp,q → R associated with (3.1) by

Jλ(u) :=
1
p
‖∇u‖p

p +
1
q
‖∇u‖q

q −
λ

p
‖u‖p

∞

and the Nehari set associated with Jλ by

Nλ,∞ :=
{
u ∈ Xp,q \ {0} : ‖∇u‖p

p + ‖∇u‖q
q = λ‖u‖p

∞
}
.

Note that

u ∈ Nλ,∞ =⇒ Jλ(u) =
(

1
q
− 1
p

)
‖∇u‖q

q.
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Moreover, the identity

‖∇(tu)‖p
p + ‖∇(tu)‖q

q − λ‖tu‖p
∞ = tq[‖∇u‖q

q − tp−q(λ‖u‖p
∞ − ‖∇u‖p

p)],

v ∈ Xp,q, t > 0,

allows us to derive the following equivalence, valid for the case N < q < p <∞ :

tu ∈ Nλ,∞ ⇐⇒ λ‖u‖p
∞ > ‖∇u‖p

p and t =
( ‖∇u‖q

q

λ‖u‖p∞ − ‖∇u‖p
p

)((1)/(p−q))

. (3.4)

Hence, by taking a function e ∈ Xp,q \ {0} such that ‖∇e‖p
p = λ∞(p)‖e‖p

∞ we can
see that Nλ,∞ �= ∅ when N < q < p <∞.

Remark 3.3. In the case N < q < p <∞ we also have

μλ := inf
u∈Nλ,∞

Jλ(u) �
(

1
q
− 1
p

)
(λ−1(λ∞(q))p/q)((q)/(p−q)) > 0.

Indeed, this follows from the estimates

‖∇u‖q
q � ‖∇u‖p

p + ‖∇u‖q
q = λ‖u‖p

∞ � λ(λ∞(q))−p/q‖∇u‖p
q ,

valid for any u ∈ Nλ,∞.

Definition 3.4. We say that u ∈ Xp,q is a least energy solution of (3.1) if u min-
imizes the functional Jλ either on Xp,q in the case N < p < q <∞ or on Nλ,∞ in
the case N < q < p <∞.

The functional Jλ is not differentiable because of the term involving the L∞ norm.
Even though we are able to show that least energy solutions are weak solutions.
Indeed, this fact is a consequence of the following identity (see [1, Chapter 11] and
[11]) valid for all u ∈ C(Ω) and that provides the right Gateaux derivative for the
functional u �→ ‖u‖p

∞ :

lim
ε→0+

‖u+ εv‖p
∞ − ‖u‖p

∞
ε

= pmax{|u(x)|p−2u(x)v(x) : x ∈ Γu}, ∀ v ∈ C(Ω),

(3.5)
where

Γu := {x ∈ Ω : |u(x)| = ‖u‖∞}.

Proposition 3.5. Least energy solutions of (3.1) are weak solutions of this
problem.
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Proof. First we consider the case N < p < q <∞. We have, for each v ∈ Xp,q ↪→
C(Ω),

lim
ε→0+

Jλ(u+ εv) − Jλ(u)
ε

= lim
ε→0+

(A(ε) −B(ε)) (3.6)

where

A(ε) :=
1
p

‖∇(u+ εv)‖p
p − ‖∇u‖p

p

ε
+

1
q

‖∇(u+ εv)‖q
q − ‖∇u‖q

q

ε

and

B(ε) :=
λ

p

‖u+ εv‖p
∞ − ‖u‖p

∞
ε

.

Taking into account that the first limit in (3.6) is nonnegative (because u
minimizes Jλ) and still considering that

lim
ε→0+

A(ε) =
∫

Ω

(|∇u|p−2 + |∇u|q−2)∇u · ∇vdx

and that, according to (3.5),

lim
ε→0+

B(ε) = λmax{|u(x)|p−2u(x)v(x) : x ∈ Γu},

we conclude that

λmax{|u(x)|p−2u(x)v(x) : x ∈ Γu} �
∫

Ω

(|∇u|p−2∇u+ |∇u|q−2∇u) · ∇vdx.

The arbitrariness of v ∈ Xp,q allows us to replace v with −v in the above
inequality and also get

λmin
{|u(x)|p−2u(x)v(x) : x ∈ Γu

}
�

∫
Ω

(|∇u|p−2∇u+ |∇u|q−2∇u) · ∇vdx.

These last two inequalities lead us to the following identity

|u(x)|p−2u(x)v(x) =
∫

Ω

(|∇u|p−2 + |∇u|q−2)∇u · ∇vdx, ∀ v ∈ Xp,q and

∀x ∈ Γu,

which implies that Γu is a singleton, say

Γu = {xu}
for some xu ∈ Ω. Consequently,∫

Ω

(|∇u|p−2 + |∇u|q−2)∇u · ∇vdx = |u(xu)|p−2u(xu)v(xu), ∀ v ∈ Xp,q,

which is (3.2) for u.
We now analyse the case N < q < p <∞. Let us take an arbitrary function

v ∈ Xp,q.
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Since u ∈ Nλ,∞ we have ‖∇u‖p
p < λ‖u‖p

∞. Hence, we can take δ > 0 such that
u+ sv �≡ 0 and

‖∇(u+ sv)‖p
p < λ‖u+ sv‖p

∞, ∀s ∈ (−δ, δ).

Let τ : (−δ, δ) → (0,∞) be the function given by

τ(s) =
( ‖∇(u+ sv)‖q

q

λ‖u+ sv‖p∞ − ‖∇(u+ sv)‖p
p

)((1)/(p−q))

,

which is right differentiable at s = 0.
We can see from (3.4) that τ(s)(u+ sv) ∈ Nλ,∞ for all s ∈ (−δ, δ) and

that τ(0) = 1.
Now, let us consider the function γ : (−δ, δ) → R defined by

γ(s) = Jλ(τ(s)(u+ sv)) =
τ(s)p

p
‖∇(u+ sv)‖p

p +
τ(s)q

q
‖∇((u+ sv))‖q

q

− λτ(s)p

p
‖u+ sv‖p

∞.

According to (3.5) this function is right differentiable at s = 0 and

γ′(0+) = τ ′(0+)(‖∇u‖p
p + ‖∇u‖q

q) +
∫

Ω

(|∇u|p−2 + |∇u|q−2)∇u · ∇vdx

− λmax{|u(x)|p−2u(x)v(x) : x ∈ Γu} − τ ′(0+)λ‖u‖p
∞

=
∫

Ω

(|∇u|p−2 + |∇u|q−2)∇u · ∇vdx− λmax{|u(x)|p−2u(x)v(x) : x ∈ Γu},

where we have used that τ(0) = 1 and ‖∇u‖p
p + ‖∇u‖q

q − λ‖u‖p
∞ = 0.

Since γ attains its minimum value at s = 0 we have

γ′(0+) = lim
s→0+

γ(s) − γ(0)
s

� 0.

Hence,

λmax{|u(x)|p−2u(x)v(x) : x ∈ Γu} �
∫

Ω

(|∇u|p−2 + |∇u|q−2)∇u · ∇vdx.

Taking into account the arbitrariness of v we replace v with −v to get

λmin{|u(x)|p−2u(x)v(x) : x ∈ Γu} �
∫

Ω

(|∇u|p−2 + |∇u|q−2)∇u · ∇vdx

� λmax{|u(x)|p−2u(x)v(x) : x ∈ Γu},

so that

min{|u(x)|p−2u(x)v(x) : x ∈ Γu} = max{|u(x)|p−2u(x)v(x) : x ∈ Γu},
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implying both that Γu = {xu}, for some xu ∈ Ω, and that∫
Ω

(|∇u|p−2 + |∇u|q−2)∇u · ∇vdx = λ|u(xu)|p−2u(xu)v(xu).

�

Now we are ready to show that in both casesN < p < q <∞ andN < q < p <∞
a nonnegative least energy solution of (3.1) can be obtained from the least energy
solutions of (1.1) by a limit process, by making as r → ∞. For this we observe
from (3.3), with m = p, that if λ > λ∞(p) and rn → ∞, then there exists n0 ∈ N

such that λrn
(p) < λ for all n � n0. Therefore, for each n � n0 the boundary value

problem {−(Δp + Δq)u = λ‖u‖p−rn
rn

|u|rn−2u in Ω
u = 0 on ∂Ω (3.7)

has at least one nonnegative least energy solution un. Having this in mind, we can
assume that n0 = 1 in the next proposition.

Proposition 3.6. Let λ > λ∞(p) and rn → ∞. Denote by un a nonnegative least
energy solution of (3.7). There exists a subsequence of {un} converging strongly in
Xp,q to a nonnegative least energy solution u of (3.1).

Proof. First we consider N < p < q <∞, so that Xp,q = W 1,q
0 (Ω). Since

‖∇un‖q
q � ‖∇un‖q

q + ‖∇un‖p
p

= λ‖un‖p
rn

� λ

λrn
(p)

‖∇un‖p
p � λ

λrn
(p)

‖∇un‖p
q |Ω| q−p

q ,

we have

‖∇un‖q � |Ω|1/q

(
λ

λrn
(p)

)((1)/(q−p))

,

implying thus that {un} is bounded in Xp,q. Therefore, up to relabelling the
sequence {rn}, we can assume that there exists a nonnegative function u ∈ Xp,q

such that un ⇀ u in Xp,q and un → u uniformly in Ω.
In order to prove that u minimizes Jλ globally, we fix an arbitrary function

v ∈ Xp,q ↪→ C(Ω). We know that

1
p
‖∇un‖p

p +
1
q
‖∇un‖q

q −
λ

p
‖un‖p

rn
� 1
p
‖∇v‖p

p +
1
q
‖∇v‖q

q −
λ

p
‖v‖p

rn
,

so that

Jλ(un) =
1
p
‖∇un‖p

p +
1
q
‖∇un‖q

q −
λ

p
‖un‖p

∞

� 1
p
‖∇v‖p

p +
1
q
‖∇v‖q

q −
λ

p
‖v‖p

rn
+
λ

p
‖un‖p

rn
− λ

p
‖un‖p

∞
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� 1
p
‖∇v‖p

p +
1
q
‖∇v‖q

q −
λ

p
‖v‖p

rn
+
λ‖un‖p

∞
p

(|Ω|((p)/(rn)) − 1)

= Jλ(v) +
λ

p
‖v‖p

∞ − λ

p
‖v‖p

rn
+
λ‖un‖p

∞
p

(|Ω|((p)/(rn)) − 1).

Since v ∈ C(Ω) we have ‖v‖p
rn

→ ‖v‖p
∞. This fact and the convergences un ⇀ u

and un → u in C(Ω)) imply that

Jλ(u) = lim inf
n→∞ Jλ(un)

� Jλ(v) +
λ

p
lim

n→∞(‖v‖p
∞ − ‖v‖p

rn
) + lim

n→∞
λ‖un‖p

∞
p

(|Ω|((p)/(rn)) − 1) = Jλ(v).

That is, u minimizes Jλ globally.
Now, let us consider the case N < q < p <∞, so that Xp,q = W 1,p

0 (Ω) and(
1
q
− 1
p

)
‖∇un‖q

q = Iλ,rn
(un) � Iλ,rn

(v) =
(

1
q
− 1
p

)
‖∇v‖q

q, ∀ v ∈ Nλ,rn
.

(3.8)
In order to show that {un} is bounded in Xp,q we pick en ∈ Xp,q \ {0} satisfying

(2.3) with r = rn, that is, such that

‖en‖rn
= 1 and ‖∇en‖p

p = λrn
(p).

Since λrn
(p) < λ, we have ‖∇en‖p

p < λ‖en‖p
rn

and tnen ∈ Nλ,rn
, where

tn =
( ‖∇en‖q

q

λ‖en‖p
rn − ‖∇en‖p

p

)1/(p−q)

=
‖∇en‖q/(p−q)

q

(λ− λrn
(p))1/(p−q)

.

Hence, applying (3.8), exploring the expression of tn and using the Hölder
inequality we obtain

‖∇un‖q
q � ‖∇(tnen)‖q

q

=
‖∇en‖q2/(p−q)

q ‖∇en‖q
q

(λ− λrn
(p))q/(p−q)

=
(‖∇en‖q

q)
p/(p−q)

(λ− λrn
(p))q/(p−q)

�
(|Ω|(p−q)/p‖∇en‖q

p)
p/(p−q)

(λ− λrn
(p))q/(p−q)

= |Ω|
(

λrn
(p)

λ− λrn
(p)

)q/(p−q)

.

Recalling that un ∈ Nλ,rn
we have

‖∇un‖p
p � ‖∇un‖p

p + ‖∇un‖q
q

= λ‖un‖p
rn

� λ(λrn
(q))−p/q‖∇un‖p

q � λ(λrn
(q))−p/q|Ω|

(
λrn

(p)
λ− λrn

(p)

)p/(p−q)

,
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which gives us the boundedness of {un} in Xp,q since

(λrn
(q))−p/q

(
λrn

(p)
λ− λrn

(p)

)p/(p−q)

→ (λ∞(q))−p/q

(
λ∞(p)

λ− λ∞(p)

)p/(p−q)

.

Thus, up to relabelling the sequence {rn} we can assume that there
exists a nonnegative function u ∈ Xp,q such that un ⇀ u in Xp,q and un → u
uniformly in Ω.

We recall from (2.5) that

‖un‖rn
�

(
λrn

(q)
λ

)1/(p−q)

.

Since ‖un‖rn
� ‖un‖∞|Ω|1/rn , we have

‖u‖∞ = lim
n→∞ |Ω|1/rn‖un‖∞ � lim

n→∞(
λrn

(q)
λ

)1/(p−q) =
(
λ∞(q)
λ

)1/(p−q)

> 0,

that is, u �≡ 0. Using this fact and

‖∇un‖q
q + ‖∇un‖p

p = λ‖un‖p
rn

� λ‖un‖p
∞ |Ω|p/rn

we obtain

‖∇u‖p
p < ‖∇u‖q

q + ‖∇u‖p
p

� lim inf
n→∞ (‖∇un‖q

q + ‖∇un‖p
p) � lim

n→∞(λ‖un‖p
∞|Ω|p/rn) = λ‖u‖p

∞.

It follows that tu ∈ Nλ,∞ where

0 < t =
( ‖∇u‖q

q

λ‖u‖p∞ − ‖∇u‖p
p

)1/(p−q)

� 1.

Let us fix an arbitrary function v ∈ Nλ,∞. We know that

lim
n→∞λ‖v‖p

rn
= λ‖v‖p

∞ and ‖∇v‖p
p < ‖∇v‖q

q + ‖∇v‖p
p = λ‖v‖p

∞.

Consequently, there exists n0 such that

‖∇v‖p
p < λ‖v‖p

rn
, ∀n � n0.

This implies that tnv ∈ Nλ,rn
for all n � n0, where

tn :=
( ‖∇v‖q

q

λ‖v‖p
rn − ‖∇v‖p

p

)1/(p−q)

→
( ‖∇v‖q

q

λ‖v‖p∞ − ‖∇v‖p
p

)1/(p−q)

= 1.

Thus,(
1
q
− 1
p

)
‖∇un‖q

q = Iλ,rn
(un) � Iλ,rn

(v) =
(

1
q
− 1
p

)
‖∇(tnv)‖q

q, ∀n � n0,
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so that

‖∇u‖q
q � lim inf

n→∞ ‖∇un‖q
q � lim

n→∞(tn)q‖∇v‖q
q = ‖∇v‖q

q.

Therefore,

Jλ(tu) = tq
(

1
q
− 1
p

)
‖∇u‖q

q � tq
(

1
q
− 1
p

)
‖∇v‖q

q = tqJλ(v), ∀ v ∈ Nλ,∞. (3.9)

Let {vn} ⊂ Nλ,∞ be such that

lim
n→∞ Jλ(vn) = μλ = inf

u∈Nλ,∞
Jλ(u).

According to remark 3.3, μλ > 0. Thus, taking into account (3.9) we obtain

0 < μλ � Jλ(tu) � lim
n→∞ tqJλ(vn) = tqμλ � μλ.

These inequalities imply that: t = 1, u ∈ Nλ,∞ and Jλ(u) = μλ.We have then shown
that u is a nonnegative least energy solution of (3.1).

In order to conclude this proof we show that, in both cases above considered,
un → u strongly in Xp,q, up to a subsequence. In fact, recalling that∫

Ω

(|∇un|p−2 + |∇un|q−2)∇un · ∇vdx = λ‖un‖p−rn
rn

∫
Ω

|un|rn−1vdx, ∀ v ∈ Xp,q,

(3.10)
un ⇀ u and un → u uniformly, we can see that

|λ‖un‖p−rn
rn

∫
Ω

|un|rn−1(un − u)dx| � λ‖un‖p−1
∞ |Ω|((p)/(rn))‖un − u‖∞ → 0.

That is, the right-hand side of (3.10), with v = un − u, goes to zero as n→ ∞.
It follows that

An :=
∫

Ω

(|∇un|p−2 + |∇un|q−2
)∇un · ∇(un − u)dx→ 0. (3.11)

The weak convergence un ⇀ u in Xp,q also implies that

Bn :=
∫

Ω

(|∇u|p−2 + |∇u|q−2)∇u · ∇(un − u)dx→ 0. (3.12)

Hence, taking into account (3.11)–(3.12), noting that∫
Ω

(|∇un|p−2∇un − |∇u|p−2∇u+ |∇un|q−2∇un − |∇u|q−2∇u) · ∇(un − u)dx

= An −Bn

and recalling the following well-known inequality, valid for all ξ, η ∈ R
N and m � 2,∫

Ω

(|∇ξ|m−2∇ξ − |∇η|m−2∇η) · ∇(ξ − η)dx � 22−m

∫
Ω

|ξ − η|mdx (3.13)

we conclude that

‖∇(un − u)‖q → 0 and ‖∇(un − u)‖p → 0.

Thus, un → u strongly in Xp,q. �
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4. The limit problem as p → ∞
It is proved in [9] that

lim
m→∞(λ∞(m))1/m = Λ∞,

where Λ∞ is defined in (1.5). We recall that (see [13])

Λ∞ = ‖ρ‖−1
∞

where ρ : Ω → R denotes the distance function to the boundary, given by

ρ(x) = inf {|x− y| : y ∈ ∂Ω} .

We recall two well-known facts: |∇ρ| = 1 almost everywhere in Ω and ρ ∈
W 1,∞(Ω) ∩ C0(Ω) ⊂W 1,m

0 (Ω) for all m ∈ [1,∞).

Lemma 4.1. Let λ > λ∞(p) and consider u a nonnegative least energy solution of
the boundary value problem{−(Δp + Δq)u = λ‖u‖p−1

∞ δxu
in Ω

u = 0 on ∂Ω.

Then

‖∇u‖q � |Ω|1/q

(
λ∞(p)

λ− λ∞(p)

)((1)/(p−q))

, if N < q < p, (4.1)

and

‖∇u‖q � |Ω|1/q

(
λ

λ∞(p)

)((1)/(q−p))

, if N < p < q. (4.2)

Proof. First we consider the case N < q < p. Let e ∈ Xp,q = W 1,p
0 (Ω) be such that

‖e‖∞ = 1 and ‖∇e‖p
p = λ∞(p).

Since

λ‖e‖p
∞ − ‖∇e‖p

p = λ− λ∞(p) > 0

we have te ∈ Nλ,∞, where

t :=
( ‖∇e‖q

q

λ‖e‖p∞ − ‖∇e‖p
p

)1/(p−q)

=
( ‖∇e‖q

q

λ− λ∞(p)

)1/(p−q)

.

Noting that

0 <
(

1
q
− 1
p

)
‖∇u‖q

q = Iλ,∞(u) � Iλ,∞(te) =
(

1
q
− 1
p

)
‖∇(te)‖q

q
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we obtain (by exploring the expression of t and using the Hölder inequality)

‖∇u‖q
q � ‖∇(te)‖q

q

=
‖∇e‖q2/(p−q)

q ‖∇e‖q
q

(λ− λ∞(p))q/(p−q)

=
(‖∇e‖q

q)
p/(p−q)

(λ− λ∞(p))q/(p−q)
�

(|Ω|(p−q)/p‖∇e‖q
p)

p/(p−q)

(λ− λ∞(p))q/(p−q)

= |Ω|
(

λ∞(p)
λ− λ∞(p)

)q/(p−q)

.

This leads to the estimate in (4.1).
The estimate in (4.2) is a direct consequence of the following

‖∇u‖q
q � ‖∇u‖q

q + ‖∇u‖p
p

= λ‖u‖p
∞ � λ

λ∞(p)
‖∇u‖p

p � λ

λ∞(p)
|Ω|((q−p)/(q))‖∇u‖p

q .

�

We recall that

lim
p→∞

q(p)
p

=
{
Q ∈ (0, 1) if N < q < p
Q ∈ (1,∞) if N < p < q.

Lemma 4.2. Let Λ > Λ∞ and m > N be fixed. Take λp > 0 satisfying

lim
p→∞(λp)1/p = Λ

and denote by up a nonnegative least energy solution of{−(Δp + Δq(p))u = λp‖u‖p−1
∞ δxu

in Ω
u = 0 on ∂Ω. (4.3)

We affirm that

lim sup
p→∞

‖∇up‖m � |Ω| 1
m

(
Λ∞
Λ

)((1)/(1−Q))

(4.4)

and

lim inf
p→∞ ‖up‖∞ �

⎧⎨
⎩

(Λ∞)−1(Λ∞/Λ)((1)/(1−Q)) if Q ∈ (0, 1)

(Λ∞)−1 if Q ∈ (1,∞).
(4.5)

Proof. Since

lim
p→∞(λ∞(p))1/p = Λ∞ < Λ = lim

p→∞(λp)1/p,

we can see that λ∞(p) < λp for all p large enough. Therefore, the existence of a
least energy solution up follows from proposition 3.6.
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Let us fix pn → ∞ and simplify the notation by defining

un := upn
, qn := q(pn) and λn := λpn

.

Let n0 ∈ N such that m < min{qn, pn} for all n � n0. Now, fix 0 < ε < (Λ/Λ∞) − 1
and consider n1 � n0 such that

1 < aε :=
Λ

Λ∞
− ε �

(
λn

λ∞(pn)

)((1)/(pn))

� Λ
Λ∞

+ ε =: bε, ∀n � n1.

First we prove (4.4) in the case Q ∈ (0, 1), so that N < qn < pn. Thus, according
to (4.1), with λ = λn, we have

‖∇un‖qn
� |Ω|1/qn

(
λ∞(pn)

λn − λ∞(pn)

)1/(pn−qn)

= |Ω|1/qn

(
1

(λn/λ∞(pn)) − 1

)1/(pn−qn)

. (4.6)

Applying the Hölder inequality in (4.6)

‖∇un‖m � |Ω|1/m−1/qn ‖∇un‖qn

� |Ω|1/m−1/qn |Ω|1/qn

(
1

(λn/λ∞(pn)) − 1

)1/(pn−qn)

� |Ω|1/m

(
1

(aε)pn − 1

)1/(pn−qn)

, ∀n � n1,

Hence,

lim sup
n→∞

‖∇un‖m � |Ω|1/m lim
p→∞((aε)pn − 1)−1/(pn−qn)

= |Ω|1/m lim
p→∞((aε)pn − 1)−((1)/(pn))((1)/(1−(qn/pn)))

= |Ω|1/m(aε)1/(1−Q)

since

lim
p→∞((aε)p − 1)−1/p = lim

p→∞ exp
(
−1
p

log((aε)p − 1)
)

= aε.

Letting ε→ 0, we obtain (4.4) when Q ∈ (0, 1).
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Now, we prove (4.4) when Q ∈ (1,∞), in which case N < pn < qn. By the Hölder
inequality and (4.2), with λ = λn, we have

‖∇un‖m � |Ω|1/m−1/qn‖∇un‖qn

� |Ω|1/m−1/qn |Ω|1/qn

(
λn

λ∞(pn)

)((1)/(qn−pn))

� |Ω|1/m(bε)pn((1)/(qn−pn)), ∀n � n1.

Therefore,

lim sup
n→∞

‖∇un‖m � |Ω|1/m lim
n→∞(bε)pn((1)/(qn−pn)) = |Ω|1/m lim

n→∞(bε)((1)/((qn/pn)−1))

= |Ω|1/m(bε)1/Q−1.

Letting ε→ 0, we also obtain (4.4) when Q ∈ (1,∞).
Let us pass to the proof of (4.5). In the case Q ∈ (0, 1), in which N < qn < pn,

we have

‖un‖qn∞ � 1
λ∞(qn)

‖∇un‖qn
qn

� 1
λ∞(qn)

(‖∇un‖qn
qn

+ ‖∇un‖pn
pn

)

=
λn

λ∞(qn)
‖un‖pn∞ � (bε)pn

λ∞(pn)
λ∞(qn)

‖un‖pn∞ .

It follows that

lim inf
n→∞ ‖un‖∞ � lim

n→∞

(
(bε)−pn

λ∞(qn)
λ∞(pn)

)1/(pn−qn)

= lim
n→∞(bε)−((1)/(1−(qn/pn))) lim

n→∞(λ∞(qn)((1)/(qn)))qn/(pn−qn)

lim
n→∞(λ∞(pn)−((1)/(pn)))pn/(pn−qn)

= (bε)−((1)/(1−Q))(Λ∞)Q/(1−Q)(Λ∞)−1/(1−Q)

= (bε)−((1)/(1−Q))(Λ∞)−1.

Thus, making ε→ 0 we obtain (4.5) in the case Q ∈ (0, 1).
As for the case Q ∈ (1,∞), in which N < pn < qn, we have

(
1
qn

− 1
pn

)
‖∇un‖qn

qn
= Iλn,∞(un) � Iλn,∞(ρ) =

|Ω|
qn

+
|Ω|
pn

− λn

pn
‖ρ‖pn∞

since ρ ∈ Xpn,qn
= W 1,qn

0 (Ω) and |∇ρ| = 1 almost everywhere.
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Since ‖∇un‖qn
qn

� ‖∇un‖pn
pn

+ ‖∇un‖qn
qn

= λn‖un‖pn∞ and ‖ρ‖−1
∞ = Λ∞, we obtain

λn

pn(Λ∞)pn
� |Ω|

(
1
pn

+
1
qn

)
+

(
1
pn

− 1
qn

)
λn‖un‖pn∞ ,

so that

‖un‖pn∞ �
(

1 − pn

qn

)−1 [
1

(Λ∞)pn
− |Ω|
λn

(
1 +

pn

qn

)]
.

Since pn/qn → Q−1 ∈ (0, 1) and (|Ω|/λn)1/pn → Λ−1 we can assume that

pn

qn
+ 1 � 2 and

|Ω|
λn

� 2
Λ
, ∀n � n1.

Hence, redefining n1 if necessary we conclude that

‖un‖pn∞ �
(

1 − pn

qn

)−1 (
1

(Λ∞)pn
− 4

Λpn

)
> 0, ∀n � n1.

Therefore,

lim inf
p→∞ ‖un‖∞ � lim

p→∞

(
1 − pn

qn

)−((1)/(pn)) (
1

(Λ∞)pn
− 4

Λpn

)((1)/(pn))

=
1
Λ

lim
p→∞

[(
Λ

Λ∞

)pn

− 4
]((1)/(pn))

=
1
Λ

Λ
Λ∞

=
1

Λ∞
.

�

Theorem 4.3. Let Λ > Λ∞ be fixed and take λp > 0 satisfying

lim
p→∞(λp)1/p = Λ.

Denote by up a nonnegative least energy solution of (4.3) and by xp the only max-
imum point of up (that is xp := xup

). There exists a sequence pn → ∞, a point
xΛ ∈ Ω and a function uΛ ∈W 1,∞(Ω) ∩ C0(Ω) such that xpn

→ xΛ and upn
→ uΛ

uniformly in Ω. Moreover,

‖∇uΛ‖∞ �
(

Λ∞
Λ

)((1)/(1−Q))

(4.7)

and

uΛ(xΛ) = ‖uΛ‖∞ �

⎧⎨
⎩

(Λ∞)−1(Λ∞/Λ)((1)/(1−Q)) if Q ∈ (0, 1)

(Λ∞)−1 if Q ∈ (1,∞).
(4.8)

Proof. Let pn → ∞ and N < m <∞. It follows from the previous lemma that
{upn

} is bounded in W 1,m
0 (Ω). Thus, up to a subsequence, upn

converges weakly
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in W 1,m
0 (Ω) and uniformly in Ω to a nonnegative function uΛ ∈W 1,m

0 (Ω) ∩ C(Ω).
Therefore, in view of (4.4) we have

‖∇uΛ‖m � lim inf
n→∞ ‖∇upn

‖m � lim sup
n→∞

‖∇upn
‖m � |Ω|((1)/(m))

(
Λ∞
Λ

)((1)/(1−Q))

.

Hence, noting that m ∈ (N,∞) is arbitrary, we conclude that uΛ ∈W 1,∞(Ω) and

‖∇uΛ‖∞ � lim
m→∞ |Ω|1/m

(
Λ∞
Λ

)((1)/(Q−1))

=
(

Λ∞
Λ

)((1)/(1−Q))

,

which is (4.7).
The uniform convergence and (4.5) imply (4.8), which in turn, shows that

‖uΛ‖∞ > 0. Taking into account that {xpn
} is bounded, we can assume (up to

relabelling the sequence {pn}) that xpn
→ xΛ for some xΛ ∈ Ω. The uniform con-

vergence also implies that uΛ(xΛ) = ‖uΛ‖∞ > 0 so that xΛ ∈ Ω (note that uΛ ≡ 0
on ∂Ω). �

The next corollary shows that in the case Q ∈ (0, 1) the function uΛ, such as ρ,
minimizes the Rayleigh quotient ‖∇v‖∞/‖v‖∞ in (W 1,∞(Ω) ∩ C0(Ω)) \ {0}.

Corollary 4.4. If Q ∈ (0, 1), then

‖uΛ‖∞ =
1

Λ∞

(
Λ∞
Λ

)((1)/(1−Q))

and Λ∞ =
‖∇uΛ‖∞
‖uΛ‖∞ , ∀Λ > Λ∞. (4.9)

Therefore, xΛ is also a maximum point of the distance function to the boundary ρ
and

0 � uΛ(x) �
(

Λ∞
Λ

)((1)/(1−Q))

ρ(x) ∀x ∈ Ω, (4.10)

with the equality holding in ∂Ω ∪ {xΛ}.

Proof. According to (4.8) and (4.7) we have,

1
Λ∞

(
Λ∞
Λ

)((1)/(1−Q))

� ‖uΛ‖∞ � ‖∇uΛ‖∞
Λ∞

� 1
Λ∞

(
Λ∞
Λ

)((1)/(1−Q))

,

which gives (4.9).
Taking into account that ‖∇uΛ‖∞ = Λ∞‖uΛ‖∞ = ‖ρ‖−1

∞ ‖uΛ‖∞ we have

0 � uΛ(x) = uΛ(x) − uΛ(y) � ‖∇uΛ‖∞|x− y| = ‖ρ‖−1
∞ ‖uΛ‖∞|x− y|

for each x ∈ Ω and y ∈ ∂Ω. It follows that

0 � ‖ρ‖∞
‖uΛ‖∞uΛ(x) � ρ(x) � ‖ρ‖∞, ∀x ∈ Ω.

https://doi.org/10.1017/prm.2018.111 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.111


1516 C. O. Alves, G. Ercole and G. A. Pereira

Since u(xΛ) = ‖uΛ‖∞ we conclude that ρ(xΛ) = ‖ρ‖∞. Noting that

‖uΛ‖∞
‖ρ‖∞ = ‖uΛ‖∞Λ∞ =

(
Λ∞
Λ

)((1)/(1−Q))

we obtain (4.10), with the equality holding at xΛ and also on ∂Ω (since uΛ = ρ = 0
on ∂Ω). �

Corollary 4.5. Lemma (4.2), theorem (4.3) and corollary (4.4) remain true for
Λ = Λ∞ in both cases Q ∈ (0, 1) and Q ∈ (1,∞), if one takes λp = c|Ω|(Λ∞)p, with
c > 1.

Proof. It is proved in [9] that the function (N,∞) � m �→ (|Ω|−1λ∞(m))1/m is
increasing. It follows that

(|Ω|−1λ∞(p))1/p � lim
m→∞(|Ω|−1λ∞(m))1/m = Λ∞.

Hence, by taking λp = c|Ω|(Λ∞)p with c > 1 we have limp→∞(λp)1/p = Λ∞ and

(|Ω|−1λ∞(p))1/p � Λ∞ < c1/pΛ∞,

so that λ∞(p) < λp. Proposition 3.6 then guarantees that (4.3) has a nonnega-
tive least energy solution up. Following the proofs of lemma 4.2, theorem 4.3 and
corollary 4.4, we obtain a nonnegative function uΛ∞ ∈W 1,∞(Ω) ∩ C0(Ω) as the
uniform limit in Ω of a sequence {upn

}, with pn → ∞. Moreover, such a function
satisfies

uΛ∞(xΛ∞) = ‖uΛ∞‖∞ =
1

Λ∞
, ‖∇uΛ∞‖∞ = 1

and

0 � uΛ∞(x) � ρ(x) ∀x ∈ Ω,

so that xΛ∞ is also a maximum point of ρ. �

Remark 4.6. Recalling that limp→∞(λ∞(p))1/p = Λ∞, one can see that if λp is
such that limp→∞(λp)1/p = Λ < Λ∞, then λp < λ∞(p) for all p large enough. Thus,
according to remark 3.2, if Λ < Λ∞ the problem (4.3) has no weak solution for all
p large enough.

Before determining the equation satisfied by uΛ, let us recall some definitions. In
what follows D denotes a bounded domain of R

N , N � 2. Further up we will take
D = Ω \ {xΛ}.
Definition 4.7. Let u ∈ C(D), φ ∈ C2(Ω) and x0 ∈ D. We say that φ touches u
at x0 from below if

φ(x) − u(x) < 0 = φ(x0) − u(x0), ∀x ∈ D \ {x0}.
Analogously, we say that φ touches u at x0 from above if

φ(x) − u(x) > 0 = φ(x0) − u(x0), ∀x ∈ D \ {x0}.
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In the sequel we recall the concept of viscosity solution for an equation in the
form

F (u,∇u,D2u) = 0 inD. (4.11)

The differential operator F (u,∇u,D2u) includes two operators we are interested
in, which are the ∞-Laplacian

Δ∞u :=
1
2
∇u · ∇ |∇u|2 =

N∑
i,j=1

uxi
uxjuxixi

and the (p, q)-Laplacian

(Δp + Δq)u := (|∇u|p−4 + |∇u|q−4)|∇u|2Δu+ ((p− 2)|∇u|p−4

+ (q − 2)|∇u|q−4)Δ∞u,

where Δu =
∑N

i=1 uxixi
is the Laplacian.

Definition 4.8. We say that u ∈ C(D) is a viscosity subsolution of (4.11) if

F (φ(x0),∇φ(x0),D2φ(x0)) � 0

whenever x0 ∈ D and φ ∈ C2(D) are such that φ touches u from above at x0.
Analogously, we say that u is a viscosity supersolution of (4.11) if

F (φ(x0),∇φ(x0),D2φ(x0)) � 0

whenever x0 ∈ D and φ ∈ C2(D) are such that φ touches u from below at x0.

Definition 4.9. Let u ∈ C(D). We say that u is viscosity solution of (4.11) if u is
both a viscosity subsolution and a viscosity supersolution of (4.11).

Definition 4.10. We say that u ∈ C(D) is (p, q)-subharmonic (respectively, (p, q)-
superharmonic and (p, q)-harmonic) inD if u is a viscosity subsolution (respectively,
supersolution and solution) of

(Δp + Δq)u = 0 inD.

Definition 4.11. We say that u ∈ C(D) is ∞-subharmonic (respectively, ∞-
superharmonic and ∞-harmonic) in D if u is a viscosity subsolution (respectively,
supersolution and solution) of

Δ∞u = 0 inD.

The next lemma is adapted from [14].
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Lemma 4.12. Let N < m < p, q <∞ and suppose that u ∈ C(D) ∩W 1,m
0 (D) is a

weak solution of

(Δp + Δq)u = 0 inD,

that is, ∫
D

(|∇u|p−2 + |∇u|q−2)∇u · ∇ηdx = 0, ∀ η ∈ C∞
0 (D). (4.12)

Then u is (p, q)-harmonic in D.

Proof. Suppose, by contradiction, that u is not (p, q)-superharmonic in D. Then,
there exist x0 ∈ D and φ ∈ C2(D) touching u at x0 from below such that (Δp +
Δq)φ(x0) > 0. By continuity, this strict inequality holds in ball B2ε(x0) ⊂ D, that
is,

(|∇φ|p−4 + |∇φ|q−4)|∇φvert2Δφ+ ((p− 2)|∇φ|p−4

+ (q − 2)|∇φ|q−4)Δ∞φ > 0 inB2ε(x0). (4.13)

Define

ψ(x) = φ(x) +
α

2
, x ∈ Bε(x0),

where

α := min{u(x) − φ(x) : x ∈ ∂Bε(x0)}.
Note that α > 0 since u(x) > φ(x) for all x ∈ D \ {x0}. Hence, ψ(x0) = u(x0) +
α/2 > u(x0) and

ψ(x) = u(x) − (u(x) − φ(x)) +
α

2
� u(x) − α

2
< u(x) ∀x ∈ ∂Bε(x0).

Let Dε be a subdomain of Bε(x0) such that ψ > u in Dε and ψ = u on ∂Dε. In
view of (4.13) we have

div[(|∇ψ|p−2 + |∇ψ|q−2)∇ψ] = div[(|∇φ|p−2 + |∇φ|q−2)∇φ] > 0 inB2ε(x0),

so that∫
Dε

(|∇ψ|p−2 + |∇ψ|q−2)∇ψ · ∇ηdx � 0, ∀ η ∈ C∞
0 (Bε(x0)), η � 0.

Combining this inequality with (4.12) and recalling that (ψ − u)+ ∈
W 1,m

0 (Bε(x0)) can be approximated in W 1,m
0 (Bε(x0)) by functions in C∞

0 (Bε(x0))
we obtain∫

Bε(x0)

[(|∇ψ|p−2∇ψ − |∇u|p−2∇u) + (|∇ψ|q−2∇ψ − |∇u|q−2∇u)]

· ∇(ψ − u)+dx � 0.

Taking (3.13) into account, we conclude that ψ � u in Bε(x0), which contradicts
the fact that ψ > u in a neighbourhood of x0 (recall that ψ(x0) > u(x0)).

https://doi.org/10.1017/prm.2018.111 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.111


Asymptotic behaviour as p→ ∞ of least energy solutions 1519

Analogously, we arrive at a contradiction if we assume that u is not (p, q)-
subharmonic in D. �

The following lemma is taken from [14].

Lemma 4.13. Suppose that fn → f uniformly in D, fn, f ∈ C(D). If φ ∈ C2(D)
touches f from below at x0, then there exists xnj

→ x0 such that

f(xnj
) − φ(xnj

) = min
D

{fnj
− φ}.

In the sequel, uΛ denotes the function obtained in theorem 4.3, for Λ > Λ∞, and
uΛ∞ denotes the function described in corollary 4.5 (for Λ = Λ∞).

Theorem 4.14. The function uΛ is ∞-harmonic in D = Ω \ {xΛ}. Therefore, uΛ

is strictly positive in Ω and attains its maximum point only at xΛ.

Proof. Let x0 ∈ D and take φ ∈ C2(D) touching uΛ from below at x0. Thus,

φ(x) − uΛ(x) < 0 = φ(x0) − uΛ(x0), if x �= x0.

If |∇φ(x0)| = 0 then we trivially have

Δ∞φ(x0) =
N∑

i,j=1

∂φ

∂xi
(x0)

∂φ

∂xj
(x0)

∂2φ

∂xi∂xj
(x0) = 0.

So, we assume that |∇φ(x0)| �= 0. Let Bε(x0) ⊂ D be a ball centred at x0 with
radius ε > 0 such that |∇φ| > 0 in Bε(x0).

Let un, pn and xpn
given in theorem 4.3. Since xpn

→ xΛ �= x0 we can take n0 > N

such that xpn
�∈ Bε(x0) for all n > n0. Consequently,∫

Bε(x0)

(|∇upn
|pn−2 + |∇upn

|q(pn)−2)∇upn
· ∇ϕdx = 0,

∀ϕ ∈ C∞
0 (Bε(x0)) and n � n0. (4.14)

We recall that upn
∈W 1,m

0 (Ω) for all n sufficiently large, where m > N is fixed.
Thus, combining (4.14) and lemma 4.12 we conclude that upn

is a viscosity solution
of

(Δpn
+ Δq(pn))u = 0 inBε(x0), ∀n � n0.

Applying lemma 4.13 we can take {xnj
} ⊂ Bε(x0) such that xnj

→ x0 and

αj := min
Bε(x0)

{upnj
− φ} = uΛ(xnj

) − φ(xnj
) � upnj

(x) − φ(x), x �= xnj
.

The function ψ(x) := φ(x) + αj − |x− xnj
|4 belongs to C2(Bε(x0)) and

ψ(x) − upnj
(x) = φ(x) − upnj

(x) + αj − |x− xnj
|

� −|x− xnj
|4 < 0 = ψ(xnj

) − upnj
(xnj

), x �= xnj
.
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That is, ψ touches unj
from below at xnj

. It follows that

(Δpnj
+ Δq(pnj

))ψ(xnj
) � 0.

Since |∇ψ(xnj
)| = |∇φ(xnj

)| > 0 and

(Δpnj
+ Δq(pnj

))ψ(xnj
) = (|∇ψ(xnj

)|pnj
−4 + |∇ψ(xnj

)|q(pnj
)−4)

|∇ψ(xnj
)|2Δψ(xnj

)

+ ((pnj
− 2)|∇ψ(xnj

)|pnj
−4 + (q(pnj

) − 2)

|∇ψ(xnj
)|q(pnj

)−4)Δ∞ψ(xnj
)

we obtain

Δ∞ψ(xnj
) � − (|∇ψ(xnj

)|pnj
−4 + |∇ψ(xnj

)|q(pnj
)−4)|∇ψ(xnj

)|2Δψ(xnj
)

(pnj
− 2)|∇ψ(xnj

)|pnj
−4 + (q(pnj

) − 2)|∇ψ(xnj
)|q(pnj

)−4
. (4.15)

Noting that

lim
j→∞

|∇ψ(xnj
)|2Δψ(xnj

) = lim
j→∞

|∇φ(xnj
)|2Δφ(xnj

) = |∇φ(x0)|2Δφ(x0)

and

0 �
(|∇ψ(xnj

)|pnj
−4 + |∇ψ(xnj

)|q(pnj
)−4)

(pnj
− 2)|∇ψ(xnj

)|pnj
−4 + (q(pnj

) − 2)|∇ψ(xnj
)|q(pnj

)−4

� max
{

1
pnj

− 2
,

1
q(pnj

) − 2

}

we can see that the right-hand side of (4.15) tends to zero as j → ∞. Therefore,
letting j → ∞ in (4.15) we arrive at

Δ∞φ(x0) = lim
j→∞

Δ∞ψ(xnj
) � 0,

concluding thus that uΛ is ∞-superharmonic in D.
Analogously, we can prove that uΛ is also ∞-subharmonic in D.
As in [9] we can apply the Harnack inequality (see [15]) and the comparison

principle (see [2,7,12]), both for ∞-harmonic functions, to prove, respectively,
that uΛ is strictly positive in Ω and that its maximum point is attained only
at xΛ. The comparison principle is used to compare uΛ with the function v(x) :=
‖uΛ‖∞(1 − ((1)/(β))|x− xΛ|), where β = max{|x− xΛ| : x ∈ ∂Ω}. This function is
∞-harmonic in D = Ω \ {xΛ} and such that v � uΛ on ∂D = ∂Ω ∪ {xΛ}. Hence,

uΛ(x) � v(x) = ‖uΛ‖∞
(

1 − 1
β
|x− xΛ|

)
< ‖uΛ‖∞, ∀x ∈ D.

�

The following result applies when Ω is a ball, a square and many other symmetric
domains, even nonconvex ones.
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Corollary 4.15. Suppose that Ω is such that the distance function to its boundary
has a unique maximum point xρ. If Λ > Λ∞ and Q ∈ (0, 1), then

uΛ = (Λ∞/Λ)((1)/(1−Q))uΛ∞ .

Proof. Let v := (Λ∞/Λ)1/(1−Q)uΛ∞ where uΛ∞ is the function described in the
corollary 4.5. Taking into account corollaries 4.4 and 4.5 we have xΛ = xρ and

v(xρ) = ‖v‖∞ = (Λ∞/Λ)((1)/(1−Q))‖uΛ∞‖∞
= (Λ∞/Λ)((1)/(1−Q))(1/Λ∞) = uΛ(xρ), Λ � Λ∞.

It follows that both v and uΛ are functions in C(Ω) that solve, in the viscosity
sense, the problem⎧⎨

⎩
Δ∞u = 0 in Ω \ {xρ}
u = 0 on ∂Ω
u(xρ) = (Λ∞/Λ)1/(1−Q)(1/Λ∞).

Therefore, by uniqueness (see [2,7,12]) we have v ≡ uΛ. �
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