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In a recent paper devoted to the study of the superheating field attached to a semi-infinite

superconductor, Chapman [1] constructs a family of approximate solutions of the Ginzburg–

Landau system. This construction, based on a matching procedure, implicitly uses the

existence of a family of solutions depending on a parameter c ∈ IR of the Painlevé equation

in a semi-infinite interval (0,+∞)

u′′(t) + (t− c)u(t)− u(t)3 = 0,

with a Neumann condition at 0

u′(0) = 0,

and having a prescribed behaviour at +∞

u(t) ∼
√
t.

In this paper we prove the existence of such a family of solutions and investigate its properties.

Moreover, we prove that the second coefficient in Chapman’s expansion of the superheating

field is finite.

1 Introduction

In a recent paper devoted to the study of the superheating field attached to a semi-

infinite superconductor, Chapman [1] constructed a family of approximate solutions of

the Ginzburg–Landau system using a procedure of matching so-called inner and outer

solutions. The details of this construction will be presented later, but let us just emphasize

that the inner solutions, up to rescaling, turn out to be solutions of the Painlevé equation

in a semi-infinite interval (0,+∞)

u′′(t) + (t− c)u(t)− u(t)3 = 0, (1.1)

(depending on c ∈ IR) with a Neumann condition

u′(0) = 0, (1.2)

and having a prescribed behaviour at +∞

u(t) ∼
√
t. (1.3)
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Although a sizable literature has been devoted to the study of the Painlevé equation

[2, 3], we understand that the solution of this problem is not explicitly known. The

only case of the above problem which has been rigorously analysed is in fact the limit

case, corresponding to the construction by Hastings and McLeod [4] of a unique strictly

positive solution of u′′(t) + tu(t)− u(t)3 = 0 in IR such that limt→−∞ u(t) = 0, and such that

u(t) ∼
√
t at +∞.

We prove here, with similar techniques, the existence of a unique solution satisfying

(1.2) and (1.3). This will be the object of § 2. In § 3, we investigate the dependence of these

solutions on the parameter c. In particular, we analyse a certain integral (3.5) related to

these solutions. Also, we show that the Hastings–McLeod solution is indeed the limit

as c goes to infinity of the solutions constructed in this paper. In § 4, we discuss the

origin of the problem and explain how the present work relates to Chapman’s interesting

contribution. The main achievement of our analysis is to prove that the coefficient of the

second term of Chapman’s formal expansion for the superheating field is well defined.

(See Remark 2.17, Proposition 3.2 and formulas (4.19) and (4.20) below.)

2 Shooting method for the Painlevé equation

We consider the following initial value problem:
u′′(t) + (t− c)u(t)− u(t)3 = 0,

u(0) = α > 0,

u′(0) = 0,

(2.1)

where c is an arbitrary but fixed real number. For each α > 0, there exists a unique

maximal solution u : [0, T ∗(α)) 7→ IR. This solution u is of class C2 on [0, T ∗(α)), and

in fact C∞ since u 7→ u3 is C∞. Also, the existence time of the maximal solution is

characterized by the fact that if T ∗(α) < ∞, then

lim
t→T ∗(α)

[|u(t)|+ |u′(t)|] = ∞.

To show the dependence of the solution on α, we sometimes write u(t , α). Our goal is to

prove the following theorem.

Theorem 2.1 For each c ∈ IR, there exists a unique α > 0 such that u = u(· , α) has the

following properties:

(1) u(t) > 0 for all t ∈ [0, T ∗(α)),

(2) T ∗(α) = ∞,

(3) limt→+∞(u(t)−
√
t) = 0.

We prove the theorem using a shooting argument. Before describing the details of

this argument, we make a few preliminary observations concerning the solutions to the

problem (2.1). Throughout this section, f : [0,∞) 7→ IR denotes the function given by

f(t) =

{
0 , if t > 0 and t < c,√

(t− c) , if t > 0 and t > c.
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Clearly, if c 6 0, the first condition is vacuous. Note that the differential equation in (2.1)

can be rewritten as

u′′(t) = u(t)[u(t)2 − (t− c)]. (2.2)

The following lemma is therefore immediate.

Lemma 2.2 Let t ∈ [0, T ∗(α)) and u(t) > 0.

(1) If u(t) > f(t), then u is strictly convex in a neighbourhood of t.

(2) If u(t) < f(t), then u is strictly concave in a neighbourhood of t.

The following lemma is also easy to prove, and will play a central role in the analysis.

Lemma 2.3 Suppose there exists t0 ∈ [0, T ∗(α)) such that

(1) t0 > c,

(2) u(t0) > f(t0) =
√

(t0 − c),

(3) u′(t0) > f′(t0) = (2
√

(t0 − c))−1.

It follows that u(t) > f(t) for all t ∈ (t0 , T
∗(α)). In particular, u(t) is strictly convex on

(t0 , T
∗(α)).

Proof Since u(t0) >
√

(t0 − c), it follows from (2.2) that u′′(t0) > 0. On the other hand,

f′′(t0) < 0, so f′′(t0) < u′′(t0). It follows that f(t) < u(t) for t in some small interval

(t0 , t0 + ε), where ε > 0.

Suppose there exists t1 ∈ (t0, T
∗(α)) such that f(t) < u(t) for all t ∈ (t0, t1) and

f(t1) = u(t1). On the interval (t0, t1), u is strictly convex and f is strictly concave. Since

u′(t0) > f′(t0), it follows that u′(t) > f′(t) on (t0 , t1), i.e. u(t) − f(t) is an increasing,

positive function. Thus, it is impossible that f(t1) = u(t1). This proves that f(t) < u(t) on

(t0 , T
∗(α)). q

Corollary 2.4 If u(t) > 0 for all t ∈ [0, T ∗(α)), then the set

{t ∈ [0, T ∗(α)) : u(t) 6 f(t)}

is an interval.

Proof This an immediate consequence of Lemma 2.3. q

Lemma 2.5 If T ∗(α) < ∞ and u(t) > 0 for all t ∈ [0, T ∗(α)), then limt→T∗(α) u(t) = ∞.

Proof We first show that sup[0,T ∗(α)) u(t) = ∞. Suppose not. Multiplying the equation in

(2.1) by u′(t), we see that

E′(t) =
u(t)2

2
, (2.3)
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where

E(t) =
u′(t)2

2
+

(t− c)u(t)2

2
− u(t)4

4
. (2.4)

If sup[0,T ∗(α)) u(t) < ∞, then E′(t) is bounded on [0, T ∗(α)). Since T ∗(α) < ∞, it follows that

E(t) is bounded on [0 , T ∗(α)). This in turn implies that u′(t)2 is bounded on [0 , T ∗(α)),

which contradicts the basic property of T ∗(α). This shows that supt∈[0,T ∗(α)) u(t) = ∞.

It therefore follows from Corollary 2.4 and the hypothesis T ∗(α) < ∞ that there exists

t0 ∈ [0, T ∗(α)) such that u(t) > f(t) for all t ∈ (t0 , T
∗(α)). Since sup[0,T ∗(α)) u(t) = ∞ and u

is convex on (t0 , T
∗(α)), it follows that limt→T ∗(α) u(t) = ∞. q

Lemma 2.6 Let 0 < α < β, and let u(t) = u(t , α) and v(t) = u(t , β). Suppose T > 0 is such

that

(1) T < T ∗(α) and T < T ∗(β),

(2) u(t) > 0 and v(t) > 0 on [0, T ].

It follows that u(t) < v(t) on [0, T ]. In other words, two different solutions of (2.1) cannot

cross as long as they both remain positive.

Proof Let W (t) = v′(t)u(t)− v(t)u′(t). Then

W ′(t) = v′′(t)u(t)− v(t)u′′(t) = u(t)v(t)[v(t)2 − u(t)2]. (2.5)

We note that W (0) = 0, since u′(0) = v′(0) = 0. Also, since α < β, u(t) < v(t) for t > 0 in

some interval t ∈ (0, ε).

We argue by contradiction, and so we suppose there exists t1 ∈ [0, T ] such that

u(t) < v(t), t ∈ [0, t1),

u(t1) = v(t1).

It follows that u′(t1) > v′(t1), and so

W (t1) = v′(t1)u(t1)− v(t1)u′(t1) = [v′(t1)− u′(t1)]v(t1) 6 0.

On the other hand, it follows from (2.5) that W ′(t) > 0 on [0, t1), and so W (t1) > 0. This

contradiction establishes the lemma. q

We now begin the shooting argument. We consider the following two sets:

A =
{α > 0: there exists t0 ∈ (0, T ∗(α))

such that u(t, α) > 0 for all t ∈ [0, t0) and u(t0 , α) = 0}.

B =
{α > 0: u(t, α) > 0 for all t ∈ [0, T ∗(α)) and there exists t0 ∈ (0, T ∗(α))

such that u(t, α) > f(t) on (t0 , T
∗(α))}.

It is clear that A and B are disjoint. We first turn our attention to the set A.

Proposition 2.7 A is open.

Proof This is an immediate consequence of continuous dependence of u(t , α) on α. Let

α ∈ A and let t0 be as in the definition of A. It follows that u′(t0) < 0, for if u′(t0) = 0,
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then u(t) would be identically zero by uniqueness of solutions to (2.1). Thus, u(t) < 0 for

t in some interval (t0 , t0 + ε). By continuous dependence on the initial value, it follows

that u(t , β) must take on some negative values for β close enough to α. Evidently, such

values of β belong to A. q

Proposition 2.8 A in an interval.

Proof This is an immediate consequence of Lemmas 2.5 and 2.6. q

Proposition 2.9 A is non-empty. More precisely, A includes all sufficiently small α > 0.

Proof We first consider the solution to the following linear initial value problem:

w′′(t) + (t− c)w(t) = 0,

w(0) = 1,

w′(0) = 0.

 (2.6)

Multiplying the above equation by sin(t− τ) for large τ and integrating by parts over the

interval [τ, τ+ π] one sees that the solution of (2.6) cannot remain positive for all t > 0.

Let t0 be the smallest positive zero of w. Clearly, then, w′(t0) < 0, and so w(t) < 0 for t

in some interval (t0 , t0 + ε).

Now set v(t , α) = α−1 u(t , α). Then v = v(· , α) satisfies

v′′(t) + (t− c)v(t)− α2 v(t)3 = 0,

v(0) = 1,

v′(0) = 0.

 (2.7)

By the continuous dependence on the parameter α, it follows that if α2 is sufficiently small,

then the solution of (2.7) must have a zero. Therefore, if α > 0 is sufficiently small, then

u(t , α) has a zero, i.e. α ∈ A. q

Next, we give a characterization of A in terms of the whether or not u(t , α) has a local

maximum.

Proposition 2.10

(1) If c > 0, then A = {α > 0 : u( · , α) has at least one positive local maximum at some

t0 > 0}.
(2) If c < 0, then A = (0,

√
−c ] ∪ {α >

√
−c : u( · , α) has at least one positive local

maximum at some t0 > 0}.

Proof We note first that if c < 0 and α <
√
−c, then u′′(0) < 0. Thus, u is strictly

concave and decreasing on some interval (0, ε), where ε > 0. Since u(0) < f(0) and f(t) is

increasing, an easy argument shows that u(t) remains strictly concave and decreasing as

long as it is positive. Therefore, it must have a positive zero.

If c < 0 and α =
√
−c , then u(t) is the limit of the concave, decreasing functions u(· , β)

as β → α−, at least on some interval (0, ε). Thus, u is concave and non-increasing on some
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interval (0, ε). Since u(0) = f(0) and f(t) is increasing, one can show as above that u(·, α)
must have a zero. Thus, if c < 0, then (0,

√
−c ] is a subset of A.

Let c now be arbitrary, and suppose that α >
√
−c in case c < 0. It follows that

u′′(0) > 0, and so u is strictly convex and increasing on some interval (0, ε). Thus, if α ∈ A,

i.e. if u(· , α) has a zero, it must first have a positive local maximum.

Finally, suppose that u(· , α) has a positive local maximum at some t0 > 0. Clearly

u(t0) 6 f(t0), for if not u′′(t0) > 0. We claim in fact that u(t0) < f(t0). Suppose to the

contrary that u(t0) = f(t0). Since f(t0) = u(t0) > 0, we must have t > c. Since u′(t0) = 0

and f′(t0) > 0, it follows that u(t) > f(t) for t in some interval (t0 − ε, t0). It follows that

u is strictly convex on the interval (t0 − ε, t0), which makes it impossible for u to have a

maximum at t0.

We conclude that u(t0) < f(t0). Thus, u is strictly concave in a neighbourhood of t0.

Since f(t) is increasing, u(t) is strictly concave and decreasing for t > t0 as long as it

remains positive. It must therefore have a zero. q

We now turn our attention to the set B. It is not immediately clear that B is open.

However, we first show that B is non-empty.

Proposition 2.11 B is non-empty. In fact, if α > 0 satisfies

α(α2 + c) > 1, (2.8)

then u(t) > f(t) for all t ∈ [0, T ∗(α)).

Proof Suppose this condition is satisfied, and so in particular α2 + c > 0. We claim that

u(t) is strictly convex on the interval [0,min(T ∗(α), α2 + c)). Indeed,

u′′(0) = u(0)[u(0)2 + c] = α(α2 + c) > 0

and u′(0) = 0, so u is strictly convex and increasing on some interval (0, ε). Since f(t) < α

for all t ∈ [0, α2 + c), it follows that u(t) remains strictly convex and increasing on

[0, T ∗(α)) ∩ [0, α2 + c). In particular, u(t) > u(0) = α on this interval.

Observing that the lemma is proved in the case when T ∗(α) 6 α2 + c, we may now

suppose that T ∗(α) > α2 + c. Therefore, for all t ∈ [0, α2 + c],

u′′(t) = u(t)[u(t)2 − (t− c)] > α (α2 − t+ c) > 0.

It follows that u′(t) > α((α2 + c)t− t2/2) on this interval, and in particular that u′(α2 + c) >
α
2
(α2 + c)2. On the other hand, f′(α2 + c) = 1

2α
. The condition (2.8) gives exactly that

f′(α2 + c) < u′(α2 + c). By Lemma 2.3, it follows that u(t) > f(t) for all t ∈ (α2 + c, T ∗(α)).

q

Proposition 2.12 B is an interval.

Proof Let α ∈ B and suppose β > α. We will show that β ∈ B. Let u(t) = u(t, α)

and v(t) = u(t, β) . Lemma 2.6 implies that u(t) < v(t) for all t < min[T ∗(α), T ∗(β)].

It follows that T ∗(β) 6 T ∗(α). Indeed, if T ∗(α) < T ∗(β), then T ∗(α) < ∞ and so
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limt→T ∗(α) u(t) = ∞ by Lemma 2.5. It then follows that limt→T ∗(α) v(t) = ∞, which is

impossible if T ∗(β) > T ∗(α).

Thus, T ∗(β) 6 T ∗(α). Since α ∈ B, there exists t0 ∈ (0, T ∗(α)) such that u(t) > f(t) for

all t ∈ (t0 , T
∗(α)). If t0 < T ∗(β), then v(t) > u(t) > f(t) for all t ∈ (t0 , T

∗(β)), and so

β ∈ B. On the other hand, if T ∗(β) 6 t0 , then T ∗(β) < ∞, and so limt→T ∗(β) v(t) = ∞ by

Lemma 2.5. Thus, v(t) > f(t) for t sufficiently close to T ∗(β), i.e. β ∈ B. q

Lemma 2.13 If α ∈ B, then there exists t1 ∈ (0, T ∗(α)) such that u(·, α) is strictly convex

and increasing on the interval (t1 , T
∗(α)).

Proof By the definition of B, there exists t0 ∈ (0 , T ∗(α)) such that u(· , α) is strictly convex

on the interval (t0 , T
∗(α)). To prove the lemma, it suffices to show that u(t) cannot be

decreasing on (t0 , T
∗(α)). If u(t) is decreasing on (t0 , T

∗(α)), then Lemma 2.5 implies that

T ∗(α) = ∞. In this case, the fact that u(t) is decreasing on (t0 , ∞) implies that u(t) < f(t)

for large t. This contradicts the hypothesis that α ∈ B. q

Proposition 2.14 B is open.

Proof Let α ∈ B, and let u(t) = u(t , α). We need to prove that if β is in a small enough

neighbourhood of α, then β ∈ B.

We distinguish two cases, T ∗(α) > c and T ∗(α) 6 c, and we suppose first that T ∗(α) > c.

Since α ∈ B, there exists t0 > c such that u(t) > f(t) for all t ∈ (t0 , T
∗(α)). We claim that

there exists t1 ∈ (t0 , T
∗(α)) such that u′(t1) > f′(t1). If not, then

u′(t) 6 (2
√

(t− c))−1

for all (t0 , T
∗(α)). Integrating this inequality, we see that for some K > 0,

u(t) 6
√

(t− c) +K (2.9)

for all (t0 , T
∗(α)). By Lemma 2.5, this implies that T ∗(α) = ∞. In this case, formula (2.9)

is incompatible with the fact that u(t) is strictly convex and increasing for large t. This

proves that there exists t1 > t0 such that u′(t1) > f′(t1).

Thus, the number t1 > c is such that u(t1) > f(t1) and u′(t1) > f′(t1). By continuous

dependence, if β is close enough to α, and if v(t) denotes the solution of (2.1) with initial

value β, then v(t1) > f(t1) and v′(t1) > f′(t1). Lemma 2.3 then implies that β ∈ B.

Next suppose that T ∗(α) 6 c (and in particular that c > 0.) By Lemma 2.5, we know

that u(t)→∞ as t→ T ∗(α). Since T ∗(α) < ∞, it follows also that u′(t)→∞ as t→ T ∗(α).

Indeed, u′(t) must be unbounded on [0, T ∗(α)), for otherwise u(t) would be bounded on

that interval. Since u′(t) is increasing on [0, T ∗(α)), it follows that u′(t)→∞ as t→ T ∗(α).

Fix b > 0 such that (t − c) + b > f(t) for all t > c. Choose t1 ∈ [0, T ∗(α)) such that

u′(t1) > 1 and u(t1) > b. By continuous dependence on the initial value, for β close enough

to α, we have that v′(t1) > 1 and v(t1) > b. Since t1 < c, v(t1) > f(t1), and so v(t) is convex
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in a neighbourhood of t1. Thus, as long as v(t) remains convex for t > t1, it follows that

v(t) > v′(t1)(t− t1) + v(t1)

> (t− t1) + b

> t− c+ b

> f(t).

It follows that v(t) remains convex throughout the interval [0, T ∗(β)), and so β ∈ B. q

To summarize what has been proved, A and B are two open sets of the form

A = (0, a), B = (b,∞),

where 0 < a < b, and (if c < 0) a >
√
−c.

We now need to do two things:

• examine the asymptotic behaviour of u(t, α) for α > 0 belonging to neither A nor

B, and

• show that there is only one such α > 0.

Proposition 2.15 Let α > 0 be such that α ^ A and α ^ B, and let u = u(· , α). It follows

that

(1) u(t) > 0 for all t ∈ [0, T ∗(α)),

(2) u′(t) > 0 for all t ∈ (0, T ∗(α)),

(3) there exists t0 such that u(t) < f(t) for all t ∈ (t0 , T
∗(α)),

(4) T ∗(α) = ∞,

(5) limt→+∞ u
′(t) = 0,

(6) limt→+∞ u(t) = ∞,

(7) 0 < α(α2 + c) 6 1.

Proof Statement (1) is a consequence of the definition of the set A. Statement (2) is a

consequence of Proposition 2.10. Indeed, u(t) > f(t) for t in some small interval (0, ε), and

so u is strictly convex and increasing on (0, ε). If statement (2) is false, let t1 be the first

positive zero of u′. Thus u′(t) > 0 on (0, t1). It follows that u cannot be strictly convex on

(0, t1); and so (by Lemma 2.3), there exists t0 ∈ (0 , t1) such that u(t) < f(t) on (t0 , t1).

Moreover, u(t1) < f(t1), since u′(t1) = 0 < f′(t1) and u(t) < f(t) on (t0 , t1). Thus, u has

a strict local maximum at t1, which is impossible by Proposition 2.10 since α ^ A. This

proves (2).

Statement (3) follows from Lemma 2.3 (and Corollary 2.4) since α ^ B. Statement (4) is

a consequence of statement (3) and Lemma 2.5.

To prove statement (5), we note that by statements (2), (3) and (4), u′ is a positive

function, decreasing for large values of t. Thus, limt→+∞ u
′(t) = L > 0 exists. If L > 0,

then u is bounded below by some linear function of t, for large t, contradicting statement

(3). Thus, L = 0, which proves statement (5).
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To prove statement (6) we observe that u is a positive, increasing function, and so

limt→+∞ u(t) = L > 0 exists, where L might be infinite. Suppose L < ∞. It follows from

the equation in (2.1) that limt→+∞ u
′′(t) = −∞ , which is impossible for a positive function

defined for all t > 0.

Finally, (7) is an immediate consequence of Propositions 2.10 and 2.11. q

Proposition 2.16 Let α > 0 be such that α ^ A and α ^ B, and let u = u(· , α). It follows

that limt→+∞(f(t)− u(t)) = 0.

Proof From the definition of f(t) and (2.2), it follows that if t > 0 and t > c, then

u′′(t) = u(t)[u(t)2 − f(t)2]. (2.10)

Integrating from τ to ρ, where τ < ρ and u(t) < f(t) for all t > τ, we obtain

u′(ρ)− u′(τ) =

∫ ρ

τ

u(t)[u(t)2 − f(t)2]dt. (2.11)

Since, limρ→∞ u
′(ρ) = 0, and since u(t)[u(t)2 − f(t)2] < 0 for all t > τ, it follows that there

exists a sequence tk →∞ such that

lim
k→∞

(f(tk)− u(tk)) = 0.

Suppose it is false that limt→+∞ (f(t)− u(t)) = 0. Then there exists another sequence

yk →∞ such that

infk[f(yk)− u(yk)] > 0,

f′(yk)− u′(yk) = 0,

f′′(yk)− u′′(yk) 6 0.

 (2.12)

In other words, the yk form a sequence of local maxima of f(t)− u(t) out to infinity. This

last relation says simply that

u′′(yk) >
−1

4(yk − c)3/2
=

−1

4f(yk)3
,

Substituting this inequality into (2.10), we see that

u(yk)[f(yk)
2 − u(yk)2] 6

1

4f(yk)3
,

which clearly implies that limk→∞(f(yk)− u(yk)) = 0, contradicting (2.12). This proves the

proposition. (The last part of our proof was adapted from Hastings & McLeod [4, pp.

36–37], but without using the change of variables.) q

Remark 2.17 We deduce in particular from (2.11) the property that the ultimately positive

function

t 7→ f(t)2 − u(t)2 belongs to L1 ((0,+∞)) . (2.13)

This property is also needed in the construction of Chapman [1] as we shall see in § 4.

Proposition 2.18 There is only one positive real number α belonging to neither A nor B.
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Proof Suppose 0 < α < β and that α ^ A, α ^ B and β ^ A, β ^ B. Let u(t) = u(t , α) and

v(t) = u(t , β). By Lemma 2.6, u(t) < v(t) for all t > 0. Furthermore, by formula (2.5), it

follows that W ′(t) > 0 for all t > 0, where W (t) = v′(t)u(t)− v(t)u′(t). Since W (0) = 0, it

follows that

lim
t→+∞

W (t) > 0. (2.14)

Also,

f(t)[v′(t)− u′(t)] = W (t) + v′(t)[f(t)− u(t)]− [f(t)− v(t)]u′(t). (2.15)

Since

lim
t→+∞

v′(t) = lim
t→+∞

u′(t)

= lim
t→+∞

(f(t)− u(t))
= lim

t→+∞
(f(t)− v(t)) = 0,

formulas (2.14) and (2.15) imply that

lim
t→+∞

f(t)[v′(t)− u′(t)] > 0.

In other words, there exists K > 0 such that

v′(t)− u′(t) > K√
t− c

for all large t. Integrating this inequality, we see that there exist K1 > 0 and K2 such that

v(t)− u(t) > K1

√
t− c+K2,

for all large t. On the other hand,

lim
t→+∞

[v(t)− u(t)] = lim
t→+∞

[v(t)− f(t)− (u(t)− f(t))] = 0.

This contradiction proves that there is only one α > 0 not in A or B, and concludes the

proof of the theorem. q

3 On the asymptotic behaviour of the solutions with respect to t or c

3.1 Presentation

We denote by u = uc(t) the solution of (1.1)–(1.3) which was constructed in § 2. Recall

that (see point (5) in Proposition 2.15 and Proposition 2.16)

uc(t)−
√
t→ 0 as t→ +∞, (3.1)

and that also

u′c(t)→ 0 as t→ +∞. (3.2)

It is an interesting problem in itself to improve these asymptotic formulae. Also, we

need to improve these estimates in order to analyse
∫ ∞

0 (uc(t)
2 − (t− c))dt and to compare

the various solutions discussed in this paper. For this purpose, it is better to consider the

function

t 7→ vc(t) = uc(t+ c) for t ∈ (−c,+∞). (3.3)
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Of course, this family of solutions is not defined on a fixed interval, but this translation

has the advantage that all the functions vc are solutions of the same equation

v′′ + tv − v3 = 0. (3.4)

As we shall see, this will make the comparison of the solutions for different values of

c easier (see § 3.4), and we shall prove that all the expansions at ∞ are the same for all

solutions. Section 3.3 is devoted to a careful study of the function

IR 3 c 7→ η(c) :=

∫ +∞

0

(uc(t)
2 − (t− c))dt − c2

2
, (3.5)

whose physical interpretation is explained in § 4.

3.2 Sharper asymptotics of the solution as t→ +∞

It is ‘well known’ [2]1 that

vc(t) ∼
√
t+ γ5t

− 5
2 +

∑
j>5

γjt
− j

2 , (3.6)

where the γj are independent of c. Since we have no references for the proof of this

‘standard’ result, we present here a proof of a slightly weaker result, inspired partially by

an L2-proof suggested by Pierre Bolley on the basis of Bolley & Camus [5] or Bolley et

al. [6], but combined with an argument used in a similar context by Hervé & Hervé [7].

More precisely, we prove the following proposition:

Proposition 3.1 The solution vc(t) has, for any c, the following behaviour at +∞
√
t− vc(t) = O

(
t−

5
2

)
. (3.7)

Similarly,

2−
1
2 t−

1
2 − v′c(t) = O

(
t−2
)
. (3.8)

Proof We analyse the equation satisfied by w(t) :=
√
t− vc(t), i.e.(

d2

dt2
− 2t

)
w = −1

4
t−

3
2 − 3t

1
2 w2 + w3, (3.9)

in [T ,+∞). Note that the left-hand side corresponds to Airy’s equation.

Our starting point is that

lim
t→+∞

w(t) = 0 , lim
s→+∞

w′(t) = 0.

The change of variables s = t
3
2 leads to the following equation for y(s) = w(s

2
3 ):

Ay :=

(
9

4

d2

ds2
− 2

)
y = h, (3.10)

with

h(s) = −3

4
s−1y′(s)− 1

4
s−

5
3 − 3s−

1
3 y2 + s−

2
3 y3.

1 As also confirmed by N. Joshi, this behaviour at ∞ is well known to the specialists in the Painlevé equation.
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We observe for future use that

y′(s) =
2

3
s−

1
3w′(s

2
3 ).

The lemma of Hervé & Hervé [7, p. 435], which is a consequence of the explicit expression

for the solution using the variation of constants formula, says simply that if y tends to 0

and if h = Ay in (3.10) is either o(sk) or O(sk) for some negative k, then y and y′ have the

same property.

Consequently, we know right away that y(s) = o(1), y′(s) = o(1), and consequently

h(s) = o(s−
1
3 ) as s → +∞. The above-mentioned lemma of Hervé and Hervé gives that

y(s) = o(s−
1
3 ) and y′(s) = o(s−

1
3 ). This implies first that h(s) = o(s−1), and applying the

lemma again, that y(s) = o(s−1) and y′(s) = o(s−1). We now get that h(s) = O(s−
5
3 ) and the

lemma gives y(s) = O(s−
5
3 ) and y′(s) = O(s−

5
3 ). To complete the proof of the proposition

it suffices to translate these estimates in terms of the original variables. q

Similar arguments can probably be used to prove the existence of the complete expansion

(3.6) announced above.

3.3 On the variation of the energy

We wish to analyse η(c), defined by (3.5). This expression corresponds to β(c)− c2/
√

2 in

§ 4. In terms of the function vc, given by (3.3), the formula for η(c) becomes

η(c) =

∫ +∞

−c
(vc(t)

2 − t)dt− c2

2
. (3.11)

The local energy E of u was introduced in (2.4) and can be expressed (with E(t; c)) =

E(t+ c; c)) as

E(t; c) =
v′c(t)

2

2
+
tvc(t)

2

2
− vc(t)

4

4
. (3.12)

The corresponding derivative (see (2.3)) is

E′(t; c) = (∂tE)(t; c) =
vc(t)

2

2
. (3.13)

Let us now give the formula for η(c):

η(c) = lim
A→+∞

∫ A

−c
(vc(t)

2 − t)dt− c2/2

= −2E(−c; c) + 2 lim
A→+∞

(E(A; c)− A2/4).

The function η(c) thereby appears as (twice) the renormalized variation of the energy

E(t; c) between 0 and +∞.

By the definition of E, we have that

−2E(−c; c) =
1

2
vc(−c)2(2c+ vc(−c)2).

We now study the asymptotic behaviour of E(A; c) as A→ +∞. The asymptotic analysis
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(Proposition 3.1) of vc(t) and v′c(t) as t→ +∞ gives

E(A; c) =
A2

4
+ O(A−1).

We finally obtain the following simple formula:

η(c) =
1

2
vc(−c)2(2c+ vc(−c)2) =

1

2
uc(0)2(2c+ uc(0)2) =

1

2
α2
c(2c+ α2

c), (3.14)

where αc is defined by

αc = uc(0) = vc(−c).
We have seen in Propositions 2.10 and 2.15 that

0 < αc(α
2
c + c) 6 1. (3.15)

When c > 0, this immediately implies that

0 6 c αc 6 1 ,

and

lim
c→+∞

η(c) = 0.

When c < 0, we get, from (3.15) and the fact that αc >
√
−c, the inequality

0 6 α2
c + c 6

1

αc
6

1√
−c

.

We observe also that

η(c) +
c2

2
=

1

2
(α2
c + c)2,

and so

η(c) +
c2

2
= O((−c)−1), as c→ −∞. (3.16)

We have now almost completely proved the following result.

Proposition 3.2 The function c 7→ η(c) introduced in (3.5) is a continuous function and has

the following behaviour:

lim
c→+∞

η(c) = 0, (3.17)

lim
c→−∞

η(c) = −∞, (3.18)

and

η(c) > 0, ∀c > 0. (3.19)

In particular, η(c) has a positive global maximum.

Proof It remains only to prove the continuity of c 7→ αc. Coming back to the proofs in § 2,

we indicate the dependence of the sets A and B on the parameter c by writing A = A(c)

and B = B(c). Recall that αc = supA(c) = inf B(c). Let

A = {(α, c) ∈ (0,+∞)× IR : α ∈ A(c)},

B = {(α, c) ∈ (0,+∞)× IR : α ∈ B(c)}.
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Obvious modifications of the proofs of Propositions 2.7 and 2.14 show that A and B are

open in (0,+∞)× IR. Consequently,

{(αc, c) : c ∈ IR} = (0,∞)× IR \ (A∪B),

is closed in (0,∞)× IR.

Let ck be a sequence tending to c as k → +∞. We have to show that αck → αc.

If β is a limit point of αck with 0 < β < ∞, then by closure we have

(β, c) ∈ (0,+∞)× IR \ (A ∪B). Thus β = αc.

To complete the proof, we need to show that αck cannot have a subsequence tending

to +∞ or a subsequence tending to 0. However, (3.15) shows that αck cannot have a

subsequence tending to +∞. Also, the proof of Proposition 2.9, where the continuous

dependence of the solution of (2.7) on α and c is used, shows that αck cannot having a

subsequence tending to 0. q

3.4 Comparison with the solution of Hastings–McLeod

The goal of this subsection is to compare the family vc introduced in the preceding

subsection with the solution constructed by Hastings & McLeod [4].

Let us first recall the result obtained by these authors:

Theorem 3.3 There exists a unique solution u of the equation

u′′(t) + tu− u3 = 0, (3.20)

in IR with

u(t) ∼
√
t as t→ +∞, (3.21)

and

lim
t→−∞

u(t) = 0. (3.22)

Moreover, this solution has the following properties:

u(t) > 0, (3.23)

and

u′(t) > 0. (3.24)

We shall denote this solution by v∞. In fact, as t → +∞, v∞ has the same asymptotic

properties as do the functions vc.

Proposition 3.4 There exists t0 such that

v∞(t) 6
√
t for t ∈ [t0,+∞). (3.25)

Moreover, v∞ has the following behaviour, as t→ +∞,

v∞(t)−
√
t = O(t−

5
2 ), (3.26)
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and

v′∞(t)− 1

2

1√
t

= O(t−2). (3.27)

Proof Starting with Theorem 3.3, in particular that v∞(t) ∼
√
t as t → +∞, we see that

v∞ cannot be ultimately strictly convex. To prove that this solution satisfies v(t) 6
√
t for

t large enough and limt→+∞ v
′(t) = 0, we argue essentially as in the proof of Proposition

2.15 ((3) and (5)) observing that (1), (2) and (4) were established through Theorem 3.3.

The asymptotic estimates can now be obtained by the same arguments as in the proof of

Proposition 3.1. q

Our main result in this subsection is the following:

Theorem 3.5 The family c 7→ vc(t) is a monotonic decreasing sequence of functions converg-

ing uniformly on any compact set to v∞ as c goes to +∞.

The proof of the theorem is based on two lemmas which are quite similar in spirit to

Lemma 2.6.

Lemma 3.6 Let c1 < c2 and vc1
and vc2

the corresponding solutions respectively defined on

[−c1,+∞) and [−c2,+∞). Then

vc2
(t) < vc1

(t), ∀t ∈ [−c1,+∞).

Proof This comparison is based on the study of the Wronskian

W (t) := v′c1
(t)vc2

(t)− vc1
(t)v′c2

(t). (3.28)

We first observe that, as a consequence of Proposition 3.1, we have

lim
t→+∞

W (t) = 0. (3.29)

We recall also that

W ′(t) = vc1
(t)vc2

(t)
(
vc1

(t)2 − vc2
(t)2
)
. (3.30)

An immediate computation gives

W (−c1) = −vc1
(−c1)v′c2

(−c1),

which implies

W (−c1) < 0. (3.31)

Step 1 We first prove that

vc2
(−c1) < vc1

(−c1). (3.32)

Suppose not. Since v′c2
(−c1) > 0, there exists ε > 0 such that vc2

(t) > vc1
(t), for t ∈

(−c1,−c1 + ε). In this interval, we have W ′(t) < 0. We first observe that it is impossible

that ε = +∞ (contradiction between (3.29), (3.31) and W ′(t) < 0 on (−c1,+∞)).

Let t0 the smallest t > −c1 such that vc1
(t0) = vc2

(t0). At this point, we would have
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v′c2
(t0) 6 v′c1

(t0) and this would give W (t0) > 0. This is again a contradiction with (3.29)

and W ′(t) 6 0 on (−c1, t0). This proves (3.32).

Step 2 We now prove that

vc2
(t) < vc1

(t), ∀t ∈ (−c1,+∞). (3.33)

Suppose not. Then there exists t1 > −c1 such that
vc2

(t1) = vc1
(t1),

vc2
(t) < vc1

(t) , ∀t ∈ (−c1, t1),

v′c2
(t1) > v′c1

(t1).

Moreover, by the Cauchy uniqueness, we have actually

v′c2
(t1) > v′c1

(t1).

But we then have W (t1) < 0, and the argument we have used in Step 1 still works if we

replace −c1 by t1. q

Lemma 3.7 For any c1 ∈ IR, we have

v∞(t) < vc1
(t), ∀t ∈ [−c1,+∞).

Proof The proof of this lemma is essentially the same as the proof of the previous lemma,

using the asymptotic properties of v∞ proved in Proposition 3.4. q

Proof of Theorem 3.5 We first observe that, for any t ∈ IR, vc(t) is a decreasing family

(c > −t) bounded from below by v∞(t) and consequently converges to some limit w∞(t)

satisfying w∞(t) > v∞(t). The function t 7→ w∞(t) is measurable, monotonically increasing

and locally in L∞.

Let us also observe the identity

vc(x+ 2a)− 2vc(x+ a) + vc(x) =

∫ x+a

x

∫ s+a

s

v′′c (t)dtds

=

∫ x+a

x

∫ s+a

s

[vc(t)
3 − tvc(t)]dtds,

which is valid for any c, x, and a such that x > −c and x+ 2a > −c.
By the Dominated Convergence Theorem, we obtain, taking the limit c→ +∞,

w∞(x+ 2a)− 2w∞(x+ a) + w∞(x) =

∫ x+a

x

∫ s+a

s

[w∞(t)3 − tw∞(t)]dtds. (3.34)

We note that the right-hand side in (3.34) tends to 0 as a → 0 (for fixed x). It follows,

since w∞ is a monotone function, that w∞ is in fact continuous. Indeed, (3.34) implies

easily that

lim
a→0±

w∞(x+ a) = w∞(x),

since the two limits (corresponding to ±) are known to exist.

By Dini’s theorem (which can be applied because the limit is continuous), the decreasing

family vc(t) converges uniformly on any compact set to the limit w∞(t). But for −c < a,
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all the functions vc are solutions of the same equation in (a,+∞). It is then clear that the

function w∞ satisfies in the distributional sense the equation

u′′ + tu− u3 = 0

in IR, and using the ellipticity of the operator u 7→ u′′ and a bootstrap argument, we get

that w∞ is a C∞ solution of the same equation.

Moreover, the function w∞ satisfies

v∞(t) 6 w∞(t) 6 v0(t).

According to the properties of v∞ and v0, it is then clear that

w∞ ∼
√
t,

as t→ +∞.

We now observe that, for any t ∈ IR

w∞(t) 6 v−t(t),

and that according to Eq. (3.15) (and its consequence for c > 0), v−t(t) → 0 as t → −∞.

We have therefore shown that

lim
t→−∞

w∞(t) = 0.

By uniqueness, it follows that w∞ = v∞ and the theorem is proved.

4 Connection with superconductivity

4.1 The Ginzburg–Landau functional

As mentioned in the introduction, our problem concerning the Painlevé equation comes

from superconductivity. The starting point is the study of the so-called Ginzburg–

Landau functional defined in a suitable domain Ω. In the case when the domain is a

film, a standard (heuristic) reduction leads to the study of a reduced Ginzburg–Landau

functional corresponding to one-dimensional problems in an interval. One then obtains,

when considering the limiting case of the infinite interval and when restricting the analysis

to symmetric solutions, the following variational problem.

Consider the local minima of the following functional:

ε∞(f, A; h) =

∫ +∞

0

[
1
2
(f2 − 1)2 + κ−2f′2 + f2A2 + A′2

]
dx+ 2hA(0), (4.1)

which is defined on the set of the pairs (f, A) such that (1−f) ∈ H1(IR+) and A ∈ H1(IR+).

The corresponding Ginzburg–Landau equations, which are simply the Euler–Lagrange

equations for this functional, are then:

− κ−2 f′′ − f + f3 + A2 f = 0 on (0, +∞) (4.2)

− A′′ + f2 A = 0 on (0, +∞) (4.3)

f′(0) = 0, lim
x→+∞

f(x) = 1, (4.4)
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A′(0) = h, lim
x→+∞

A(x) = 0 (4.5)

with A ∈ H2(]0, +∞[) and (1− f) ∈ H2(]0, +∞[).

The superheating field hsh(κ) is defined as follows. Let Hsh(κ) be the set of h > 0 such

that there exists a solution of the Ginzburg–Landau equations corresponding to local

minima of the functional. The superheating field is then defined as the supremum of

Hsh(κ). While it is well-known (see de Gennes, 1966) that

lim
κ→+∞

hsh(κ) =
1√
2
, (4.6)

to our knowledge, the first rigorous proof was given by Bolley & Helffer [8]. Chapman

[1] proposes a much more precise formula:

hsh(κ) =
1√
2

+ Cκ−
4
3 + o(κ−

4
3 ) (4.7)

with an inspired heuristic proof.

The mathematical proof of this formula, however, is open. The goal of this section is

to analyse what is missing in this direction, and to show how the results of the present

article fill in some of the gaps.

To this end, we note the following:

• Chapman constructs formal solutions to the Ginzburg–Landau equations via an

expansion in κ−1. However, the construction of solutions can only give a lower

bound on the superheating field hsh(κ). We recall that upper bounds are available

by a priori estimates and give (see Bolley & Helffer [8]) for the moment the weaker

result

hsh(κ) 6
1√
2

+ O(κ−
2
3 ). (4.8)

• Once a ‘formal’ solution, which is at best an approximate solution, is constructed,

one would like to prove that there exists a real solution near the formal solution.

In some cases, this can be done by suitable constructions of subsolutions (see, for

example, Bolley & Helffer [8]).

• The formal construction by Chapman assumes the existence of a family of solutions

of the Painlevé equation.

• Once the solutions to the Painlevé equation are proved to exist, it is still not clear

that the value of C in (4.7) proposed by Chapman is well-defined.

As mentioned in the introduction, our contribution concerns the latter two points.

4.2 On formal computations of Chapman

In this section we recall the basic elements of Chapman’s formal construction of the

superheating field, and show how the results of § 2 and § 3 give rigorous meaning to the

second term of the expansion. Chapman uses a technique of matching so-called outer

solutions and inner solutions. An ‘inner’ solution corresponds to a solution near 0, and an

‘outer’ solution corresponds to a solution at ∞. The matching procedure leads to a family
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of ‘approximate’ pairs (f, A) of the Ginzburg–Landau system and the maximal value of

A′(0) over the family will give a candidate for the superheating field.

Outer Solution

One formally expands solutions in powers of ε = 1/κ, giving

fo = f(0)
o + εf(1)

o + · · · ,
Ao = A(0)

o + εA(1)
o + · · · ,

Ho = H (0)
o + εH (1)

o + · · · ,

where Ho = A′o and H(0) = h. Substituting these expansions into the Ginzburg–Landau

equations, one obtains, after easy computations, the a-dependent family defined for

−1−
√

2 6 a 6 −1 by

A(0)
o (x) =

2
√

2a exp x

1 + a2 exp 2x
. (4.9)

The function f(0)
o is then defined by the equation

f(0)
o (x)2 + A(0)

o (x)2 = 1. (4.10)

So

H (0)
o (x) =

2
√

2a exp x(1− a2 exp 2x)

(1 + a2 exp 2x)2
. (4.11)

This gives the leading outer solution, which corresponds to the formal limiting case

κ = +∞. One verifies that

H (0)
o (0) =

2
√

2 a (1− a2)

(1 + a2)2
. (4.12)

As a result of Chapman’s analysis, the first term in (4.7) is given by the maximal value of

H (0)
o (0) over a in the appropriate range. This value is precisely 1/

√
2, with a = −(1 +

√
2).

Inner Solution

To carry out the matching procedure for the outer solution with h = 1/
√

2, Chapman

first remarks that as x→ 0, we have the expansion

f(0)
o (x) ∼ 2

1
4 x

1
2 . (4.13)

He then defines the new variable x = ε
2
3 t and introduces the functions fi = ε

1
3 f̂i and

Ai = −1 + ε
2
3 Âi. In these new coordinates the Ginzburg–Landau system is written as:

(a) f̂′′i = f̂3
i − 2f̂iÂi + ε

2
3 f̂iÂ

2
i ,

(b) Â′′i = −ε 4
3 f̂2
i + ε2f̂2

i Âi,

(c) Hi = Â′i.

 (4.14)

We now expand f̂i, Âi and Hi in powers of ε
2
3 :

(a) f̂i = f̂
(0)
i + ε

2
3 f̂

(1)
i + ε

4
3 f̂

(2)
i + · · · ,

(b) Âi = Â
(0)
i + ε

2
3 Â

(1)
i + ε

4
3 Â

(2)
i + · · · ,

(c) Hi = H
(0)
i + ε

2
3H

(1)
i + ε

4
3H

(2)
i + · · · .

 (4.15)

Substituting these expansions into the above system and equating powers of ε
2
3 yields at

https://doi.org/10.1017/S0956792598003428 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792598003428


242 B. Helffer and F. B. Weissler

leading order

(a) (f̂(0)
i )′′ = (f̂(0)

i )3 − 2f̂(0)
i (Â(0)

i ),

(b) (Â(0)
i )′′ = 0,

(c) H
(0)
i = (Â(0)

i )′.

 (4.16)

Since Chapman starts with H (0)
i = 1/

√
2, it follows that

Â
(0)
i =

t− c√
2
. (4.17)

The equation for f̂
(0)
i is now the equation for the second Painlevé transcendent (see

Hastings & McLeod [4] and Levi & Winternitz [3]). We observe indeed that up to the

scaling f̂(0)
i (t) = 2

1
6 u(2

1
6 t), this equation is the same as (1.1). The Neumann condition at 0,

i.e. (1.2), corresponds to the first part of (4.4).

To match with the outer solution, Chapman requires (according to (4.13)) the following

condition:

f̂
(0)
i ∼ 2

1
4 t

1
2 , as t→ +∞ , (4.18)

which gives the boundary condition (1.3) under the same change of variables given just

above. It is now clear that the family of solutions constructed in § 2 are precisely those

required by Chapman (up to a change of variables).

As a result of a rather complicated ‘matching’ procedure based on the formal ‘Van

Dyke’ rule [9], he then gets the following candidate for the superheating field:

hsh(κ) =
1√
2

+ κ−
4
3 sup

c

(
β(c)− c2

√
2

)
+ o(κ−

4
3 ), (4.19)

where β(c) is defined by

β(c) =

∫ ∞
0

[(f̂(0)
i )2 −

√
2(t− c)]dt. (4.20)

By the same rescaling as above, one can check that

β(c)− c2

√
2

= 2
1
6 η(2

1
6 c) ,

where η was defined by (3.5). Proposition 3.2 therefore shows that the supremum in

formula (4.19) is finite and positive, and is achieved at a finite value of c.

Numerical computations give

sup
c

(
β(c)− c2

√
2

)
∼ 0.326. (4.21)

(See Chapman [1] or Dolgert et al. [10], who refer to an unpublished computation by A.

Dolgert and S. J. Di Bartolo.) Chapman also observes that numerically

lim
c→+∞

(
β(c)− c2

√
2

)
= 0, (4.22)

lim
c→−∞

(
β(c)− c2

√
2

)
= −∞, (4.23)
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and that the maximum of β(c)− c2
√

2
is obtained for

c ∼ 0.3. (4.24)

We recall that Eqs. (4.22) and (4.23) are proved rigorously in § 3.3. The mathematical

proof that c 7→ (β(c)− c2/
√

2) has a unique maximum is still open.

5 Conclusion

Chapman’s formal contruction of solutions to the Ginzburg–Landau equations and the

resulting asymptotic expansion he obtains for the superheating field leave open a number

of interesting mathematical questions. In this paper, we have focused on two such issues:

the existence of ‘inner’ solutions, and the finiteness of the coefficient of the second term

in the asymptotic expansion. A next logical step in the analysis would be to provide good

estimates of this coefficient. In any case, it seems that there is considerable work left to

do to rigorously justify Chapman’s calculations.
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applications. NATO ASI Series, Series B: Physics. 278.

[4] Hastings, S. P. & McLeod, J. B. (1980) A boundary value problem associated with the second
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11(4), 427–440.

[8] Bolley, C. & Helffer, B. (1996) Upper bounds for the solutions of the Ginzburg–Landau

equations in a semi-infinite superconducting field and applications to the superheating field

in the large κ regime. Euro. J. Appl. Math. (to appear).

[9] Van Dyke, M. (1964) Perturbation Methods in Mechanics. Academic Press.

[10] Dolgert, A. J., Di Bartolo, S. J. & Dorsey, A. T. (1995) Superheating fields of supercon-

ductors: asymptotic analysis and numerical results. Preprint.

https://doi.org/10.1017/S0956792598003428 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792598003428

