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Abstract The splitting number of a link is the minimal number of crossing changes between different
components required, on any diagram, to convert it to a split link. We introduce new techniques to
compute the splitting number, involving covering links and Alexander invariants. As an application,
we completely determine the splitting numbers of links with nine or fewer crossings. Also, with these
techniques, we either reprove or improve upon the lower bounds for splitting numbers of links computed
by Batson and Seed using Khovanov homology.
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1. Introduction

Any link in S3 can be converted to the split union of its component knots by a sequence
of crossing changes between different components. Following Batson and Seed [2], we
define the splitting number of a link L, denoted by sp(L), as the minimal number of
crossing changes in such a sequence.

We present two new techniques for obtaining lower bounds for the splitting number.
The first approach uses covering links, and the second method arises from the multivari-
able Alexander polynomial of a link.

Our general covering link theorem is stated as Theorem 3.2. Theorem 1.1 gives a special
case that applies to two-component links L with unknotted components and odd linking
number. Note that the splitting number is equal to the linking number modulo 2. If we
take the two-fold branched cover of S3 with branching set a component of L, then the
preimage of the other component is a knot in S3, which we call a two-fold covering knot
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of L. Also recall that the slice genus of a knot K in S3 is defined to be the minimal genus
of a surface F smoothly embedded in D4 such that ∂(D4, F ) = (S3, K).

Theorem 1.1. Suppose that L is a two-component link with unknotted components.
If sp(L) = 2k + 1, then any two-fold covering knot of L has slice genus at most k.

Theorem 3.2 also has other useful consequences, given in Corollaries 3.5 and 3.6, dealing
with the case of even linking numbers, for example. Three covering link arguments that
use these corollaries are given in § 7.

Our Alexander polynomial method is efficacious for two-component links when the
linking number is 1 and at least one component is knotted. By looking at the effect of a
crossing change on the Alexander module, we obtain the following result.

Theorem 1.2. Suppose that L is a two-component link with Alexander polynomial
ΔL(s, t). If sp(L) = 1, then ΔL(s, 1) · ΔL(1, t) divides ΔL(s, t).

We will use elementary methods explained in Lemma 2.1 and our techniques from
covering links and Alexander polynomials to obtain lower bounds on the splitting number
for links with nine or fewer crossings. Together with enough patience with link diagrams,
this is sufficient to determine the splitting number for all of these links. Our results for
links with up to nine crossings are summarized by Table 3 in § 6.

In [2], Batson and Seed defined a spectral sequence from the Khovanov homology
of a link L that converges to the Khovanov homology of the split link with the same
components as L. They showed that this spectral sequence gives rise to a lower bound on
sp(L), and by computing it for links with up to 12 crossings, they gave many examples
for which this lower bound is strictly stronger than the lower bound coming from linking
numbers. They determined the splitting number of some of these examples, while some
were left undetermined.

We revisit the examples of Batson and Seed and show that our methods are strong
enough to recover their lower bounds. Furthermore, we show that for several cases our
methods give more information. In particular, we completely determine the splitting
numbers of all the examples of Batson and Seed. We refer the reader to § 5 for more
details.

Organization of the paper

We start out, in § 2, with some basic observations on the splitting number of a link. In
§ 3.1 we prove Theorem 3.2, which is a general result on the effect of crossing changes on
covering links, and then we provide an example in § 3.2. We give a proof of Theorem 1.2 in
§§ 4.1 and 4.2 and we illustrate its use with an example in § 4.3. The examples of Batson
and Seed are discussed in § 5, with § 5.1 focusing on examples that use Theorem 1.2, and
§ 5.2 on examples that require Theorem 1.1. A three-component example of Batson and
Seed is discussed in § 5.3. Next, our results on the splitting numbers of links with nine
crossings or fewer are given in § 6, with some particular arguments used to obtain these
results described in § 7.
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L1 L3

Figure 1. The link L9a54.

2. Basic observations

A link is split if it is a split union of knots. We recall from the introduction that the
splitting number sp(L) of a link L is defined to be the minimal number of crossing changes
that one needs to make on L, each crossing change between different components, in order
to obtain a split link.

We note that this differs from the definition of ‘splitting number’ that occurs in [1,17];
in these papers, crossing changes of a component with itself are permitted.

Given a link L we say that a non-split sublink with all of the linking numbers zero is
obstructive. (All obstructive sublinks that occur in the applications of this paper will be
Whitehead links.) We then define c(L) to be the maximal size of a collection of distinct
obstructive sublinks of L such that any two sublinks in the collection have at most one
component in common. Note that c is zero for trivial links.

As another example consider the link L9a54 shown in Figure 1. The sublink L1 �L3 is
an unlink, while both L1�L2 and L2�L3 are Whitehead links, and hence are obstructive.
Thus, c(L) = 2.

Finally, we discuss the link J in Figure 17. It has four components J1, J2, J3, J4, and
J1 ∪ J3 and J2 ∪ J4 each form a Whitehead link. It follows that c(J) = 2.

In practice it is straightforward to obtain lower bounds for c(L). In most cases it is
also not too hard to determine c(L) precisely.

Now we have the following elementary lemma.

Lemma 2.1. Let L = L1 � · · · � Lm be a link. Then

sp(L) ≡
∑
i>j

lk(Li, Lj) mod 2

and

sp(L) �
∑
i>j

|lk(Li, Lj)| + 2c(L).

Proof. Given a link L we write

a(L) =
∑
i>j

|lk(Li, Lj)|.
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Note that a crossing change between two different components always changes the value
of a by precisely 1. Since a of the unlink is zero we immediately obtain the first statement.

If we do a crossing change between two components with non-zero linking number,
then a goes down by at most 1, whereas c stays the same or increases by 1. On the other
hand, if we do a crossing change between two components with zero linking number,
then a goes up by 1 and c decreases by at most 1, since the two components belong to at
most one obstructive sublink in any maximal collection whose cardinality realizes c(L).
It now follows that a(L) + 2c(L) decreases with each crossing change between different
components by at most 1. �

The right-hand side of the second inequality is greater than or equal to the lower bound
blk(L) of [2, § 5]. In some cases the lower bound coming from Lemma 2.1 is stronger. For
example, let L be two split copies of the Borromean rings. For this L we have c(L) = 2,
giving a sharp lower bound on the splitting number of 4, whereas blk(L) = 2.

3. Covering link calculus

In this section, first we prove our main covering link result, Theorem 3.2, showing that
covering links can be used to give lower bounds on the splitting number. Then we show
how to extract Theorem 1.1 and three other useful corollaries from Theorem 3.2. In § 3.2
we present an example of this approach.

3.1. Crossing changes and covering links

The following definition is a special case of the notion of a covering link occurring, for
example, in [14, Method 5] and [5].

Definition 3.1. Let L = L1�· · ·�Lm be an m-component link with Li unknotted. We
denote the double branched cover of S3 with branching set the unknot Li by p : S3 → S3.
We refer to p−1(L \ Li) as the two-fold covering link of L with respect to Li.

We note that a choice of orientation of a link induces an orientation of its covering
links.

In the theorem below we use the term internal band sum to refer to the operation
on an oriented link L described as follows. The data for the move is an embedding
f : D1 × D1 ⊂ S3 such that f(D1 × D1) ∩ L = f({−1, 1} × D1), the orientation of
f({−1}×D1) agrees with that of L, and the orientation of f({1}×D1) is opposite to that
of L. The output is a new oriented link given by (L\f({−1, 1}×D1))∪f(D1 ×{−1, 1}),
after rounding corners. The new link has the orientation induced from L.

Theorem 3.2. Let L = L1 � · · ·�Lm be an m-component link and suppose that Li is
unknotted for some fixed i. Fix an orientation of L. Suppose that L can be transformed
to a split link by α + β crossing changes involving distinct components, where α of these
involve Li and β of these do not involve Li. Then the two-fold covering link J of L with
respect to Li can be altered by performing α internal band sums and 2β crossing changes
between different components to the split union of 2(m− 1) knots comprising two copies
of Lj for each j �= i.
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L2L1 J JL1
~

Figure 2. The effect of a crossing change on a two-fold covering
link where one component is the branching set.

Proof. We may assume that i = 1. We begin by investigating the effect of crossing
changes on the two-fold covering link with respect to the first component L1 of a link L.

Type A. First we consider crossing changes between the branching component L1 and
another component, say L2. Such a crossing change lifts to a rotation of the preimage
J of L2 around the lift L̃1 of L1, as shown in Figure 2. The top-left and middle-left
diagrams show a link before and after a crossing change, in a cylindrical neighbourhood
that contains an interval from each of L1 and L2. To branch over L1, which is the
component running down the centre of the cylinders, cut along the surface that is shown
in the diagrams. The results of taking the top-left and middle-left diagrams, cutting,
and gluing two copies together, are shown in the top-right and middle-right diagrams,
respectively.

After forgetting the branching set, the same effect on the lift of L2 can be achieved
by adding a band to J (see the bottom diagram of Figure 2). By ignoring the band,
we obtain the top-right diagram with the branching component removed. If we instead
use the band to make an internal band sum, we obtain the middle-right diagram with
the branching set removed. Note that this band is attached to J in such a way that
orientations are preserved. This holds no matter what choice of orientations was made
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for L. Thus, we see that a crossing change between L1 and L2 corresponds to an internal
band sum on the covering link.

Type B. Consider a crossing change that does not involve L1, say between L2 and L3.
Such a crossing change can be realized by ±1 Dehn surgery on a circle that has zero
linking number with L and that bounds an embedded disc, say D, in S3 that intersects
L in two points of opposite signs, one point of L2 and one point of L3. By performing
the Dehn surgeries, and then taking the branched cover over L1, we produce the covering
link of the link obtained by the crossing change.

Note that the preimage of the disc D in the double branched cover consists of two
disjoint discs, each of which intersects the covering link transversally at two points with
opposite signs, one point of the preimage of L2 and one point of the preimage of L3. As
an alternative construction, we can take the branched cover and then perform ±1 Dehn
surgeries along the boundary circles of the preimage discs. This gives the same covering
link. From this it follows that a single crossing change between L2 and L3 corresponds
to two crossing changes on the covering link.

Note that when there is more than one crossing change, of either type, the correspond-
ing surgery discs and bands associated with the covering link are disjoint.

Recall that the link L can be altered to become the split union of m knots L1, . . . , Lm

by α crossing changes of Type A and β crossing changes of Type B. By the above
arguments, the two-fold covering link of L with respect to the first component L1 can
be altered to become the corresponding covering link of the split link, which is the split
union L2 � L2 � · · · � Lm � Lm, by α internal band sums and 2β crossing changes. �

In the following result, g4(K) denotes the slice genus of a knot K in S3, namely, the
minimal genus of a smoothly embedded connected oriented surface in D4 whose boundary
is K.

Corollary 3.3. Under the same hypotheses as Theorem 3.2, the two-fold covering
link of L with respect to Li bounds a smoothly embedded oriented surface F in D4 that
has no closed components and has Euler characteristic

χ(F ) = 2(m − 1) − α − 4β − 4
∑
k �=i

g4(Lk).

In addition, if there is some j �= i such that each Lk with k �= j is involved in some
crossing change with Lj , then F is connected.

Proof. Once again we may assume that i = 1. Let J be the two-fold covering link of
L with respect to L1.

An internal band sum can be inverted by performing another band sum, while the
inverse of a crossing change is also a crossing change. Hence, by Theorem 3.2 we can also
obtain the covering link J from the split union L2 � L2 � · · · � Lm � Lm by performing
α internal band sums and 2β crossing changes.

Choose surfaces Vj embedded in D4 with ∂Vj = Lj and genus g4(Lj). Take a split
union V2 � V2 � · · · � Vm � Vm in D4. The boundary of these surfaces is the split union
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L2 �L2 �· · ·�Lm �Lm. The covering link J can be realized as the boundary of a surface
obtained from the split union of the surfaces by attaching α bands and 2β clasps in S3.
As pointed out in the proof of Theorem 3.2, the surgery discs and bands associated with
crossing changes are disjoint. Pushing slightly into D4, we obtain an immersed surface
in D4 bounded by J ; each clasp gives a transverse intersection. As usual, we remove the
intersections by cutting out a disc neighbourhood of the intersection point from each
sheet and gluing a twisted annulus that is a Seifert surface for the Hopf link. This gives a
smoothly embedded oriented surface F in D4 bounded by the covering link J . Note that
each band attached changes the Euler characteristic of the surface by −1, while each
twisted annulus used to remove an intersection point changes the Euler characteristic
by −2. Therefore, the resulting surface F has Euler characteristic

χ(F ) =
m∑

k=2

2 · (1 − 2g4(Vk)) − α − 4β,

which is equal to the claimed value.
The final conclusion of the corollary states (when i = 1) that F is connected if there

is some j �= 1 such that each Lk with k �= j is involved in some crossing change with Lj .
To see this, observe that a crossing change involving Lj and L1 joins the two copies of
Vj ; a crossing change involving Lj and Lk with j, k � 2 joins one of the two copies of
Vj to one of the two copies of Vk and joins the other copy of Vj to the other copy of Vk.
Under the hypothesis, it follows that F is connected. �

Corollary 3.3 has some useful consequences of its own. Considering the case in which
m = 2, α = 2k + 1, β = 0 and g4(Lk) = 0, we obtain Theorem 1.1.

Theorem 1.1. Suppose that L is a two-component link with unknotted components.
If sp(L) = 2k + 1, then any two-fold covering knot of L has slice genus at most k.

Remark 3.4.

(1) In the proof of Corollary 3.3, when β = 0, we construct an embedded surface F

without local maxima. Therefore, in order to show, using Theorem 1.1, that a link
of linking number 1 with unknotted components has splitting number at least 3, it
suffices to show that the covering link is not a ribbon knot.

(2) Different choices of orientation on a link J can change the minimal genus of a
connected surface that J bounds in D4. Since the splitting number is independent of
orientations, in applications we will choose the orientation that gives the strongest
lower bound. This remark will be relevant in § 5.3.

(3) If L is a non-split two-component link, then the surface F of Corollary 3.3 is
automatically connected, by the last sentence of that corollary.

The following is another useful consequence of Corollary 3.3.
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Figure 3. The link L9a30.

Corollary 3.5. Suppose that L is a two-component link with unknotted components
and sp(L) = 2. Then any two-fold covering link of L is weakly slice; that is, bounds an
annulus smoothly embedded in D4.

Proof. First note that a two-fold covering link has two components, since the linking
number is even by Lemma 2.1. Applying Corollary 3.3 with m = 2, α = 2, β = 0 and
g4(Lk) = 0, the conclusion follows. �

We state one more corollary to Theorem 3.2. Let spi(L) be the minimal number of
crossing changes between distinct components not involving Li required to transform
L to a split link. By convention, spi(L) is infinite if we must make a crossing change
involving Li in order to split L.

Corollary 3.6 (see Kohn [14, Method 5]). For a link L = L1 � · · · � Lm and its
two-fold covering link J with respect to Li, we have spi(L) � 1

2 sp(J).

Proof. This follows from Theorem 3.2 with α = 0. �

We remark that the above results generalize to n-fold covering links in a reasonably
straightforward manner. One can also draw analogous conclusions when the branching
component is knotted. We do not address these generalizations here, since the results
stated above are sufficient for the applications considered in this paper.

3.2. An example of the covering link technique

To illustrate the use of the method developed in § 3.1, we now apply it to prove that the
splitting number of the two-component link L9a30 is 3. More applications of Theorem 1.1
and Corollaries 3.5 and 3.6 will be discussed later (see, for example, §§ 5.2, 5.3, 6 and 7). In
this paper, we use the link names employed in the LinkInfo database [7]. The link L9a30
is shown in Figure 3. It is a two-component link of linking number 1 with unknotted
components. Recall that the splitting number is determined modulo 2 by the linking
number by Lemma 2.1. It is easy to see from Figure 3 that three crossing changes suffice,
so the splitting number is either 1 or 3.

To see that sp(L9a30) �= 1, we take a two-fold cover branched over one of the com-
ponents, and check that the resulting knot is not slice. Figure 4 shows the result of an
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Figure 4. Left: the link L9a30 after an isotopy to prepare for taking the cover branching over
the most obviously unknotted component. Right: the knot that arises as the covering link after
taking a two-fold branched cover and deleting the branching set.

Figure 5. The covering knot on the right of Figure 4 after an isotopy.

isotopy that was made in preparation for taking a branched cover on the left, and the
knot obtained as the preimage of L9a30 after deleting the preimage of the branching
component on the right.

The knot on the right of Figure 4 after a simplifying isotopy is shown in Figure 5;
it is a twist knot with a negative clasp and seven positive half-twists. This knot is well
known not to be a slice knot, a fact that was first proved by Casson and Gordon [3,4].
Therefore, by Theorem 1.1, the splitting number of L9a30 is at least 3, as claimed.

4. Alexander invariants

In this section we will recall the definition of Alexander modules and polynomials of
oriented links. We then show how Alexander modules are affected by a crossing change,
which then allows us to prove Theorem 1.2.
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4.1. Crossing changes and the Alexander module

Throughout this section, given an oriented m-component link L, the oriented meridians
are denoted by μ1, . . . , μm. Note that μ1, . . . , μm give rise to a basis for H1(S3 \ νL; Z).
We will henceforth use this basis to identify H1(S3 \ νL; Z) with Zm. Let R be a subring
of C and let ψ : Zm → F be a homomorphism to a free abelian group. We denote the
induced map

π1(S3 \ νL) → H1(S3 \ νL; Z) = Zm ψ−→ F

by ψ as well. We can then consider the corresponding Alexander module

Hψ
1 (S3 \ νL; R[F ])

and the order of the Alexander module is denoted by

Δψ
L ∈ R[F ] = ordR[F ](H

ψ
1 (S3 \ νL; R[F ])).

(We refer the reader to [9] for the definition of the order of an R[F ]-module.) If ψ is
the identity, then we drop ψ from the notation and we obtain the usual multivariable
Alexander polynomial ΔL.

Note that what we term the Alexander module has also been called the ‘link module’
in the literature (see, for example, [11]). The following proposition relates the Alexander
modules of two oriented links that differ by a crossing change.

Proposition 4.1. Let L and L′ be two oriented m-component links that differ by a
single crossing change. Let R be a subring of C and let ψ : Zm → F be a homomorphism
to a free abelian group. Then there exists a diagram

R[F ]

����������� R[F ]

�����������

M

���������
����������

Hψ
1 (S3 \ νL; R[F ])

���������
H1(S3 \ νL′; R[F ])

����������

0 0

where M is some R[F ]-module and where the diagonal sequences are exact.

The formulation of this proposition is somewhat more general than what is strictly
needed in the proof of Theorem 1.2. We hope that this more general formulation will be
applicable, in future work, to the computation of unlinking numbers; see the beginning
of § 6 for the definition of the unlinking number of a link.

Proof. We write X = S3 \ νL and X ′ = S3 \ νL′. We pick two open disjoint discs D1

and D2 in the interior of D2 and we write

B = (D2 \ (D1 ∪ D2)) × [0, 1],

S = (D2 \ (D1 ∪ D2)) × {0, 1} ∪∂D2×{0,1} S1 × [0, 1].
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Put differently, S is the ‘top and bottom boundary’ of B together with the outer cylinder
S1 × [0, 1].

Since L and L′ are related by a single crossing change, there exists a subset Y of X

and continuous injective maps f : B → X and f ′ : B′ → X ′ with the following properties:

(1) X = Y ∪ f(B) and Y ∩ f(B) = f(S),

(2) X ′ = Y ∪ f ′(B) and Y ∩ f ′(B) = f ′(S).

We can now state the following claim.

Claim 4.2. There exists a short exact sequence

R[F ] → Hψ
1 (Y ; R[F ]) → Hψ

1 (X; R[F ]) → 0.

By a slight abuse of notation we now write B = f(B) and S = f(S). We then consider
the Mayer–Vietoris sequence

· · · → Hψ
1 (S; R[F ])

i∗⊕j∗−−−−→ Hψ
1 (B; R[F ]) ⊕ Hψ

1 (Y ; R[F ]) → Hψ
1 (X; R[F ])

→ Hψ
0 (S; R[F ])

i∗⊕j∗−−−−→ Hψ
0 (B; R[F ]) ⊕ Hψ

0 (Y ; R[F ]),

where i : S → B and j : S → Y are the two inclusion maps. We need to study the rela-
tionships between the homology groups of S and B. We make the following observations.
By [10, § VI.3] we have the following commutative diagram:

Hψ
0 (S; R[F ])

∼=
��

�� Hψ
0 (B; R[F ])

∼=
��

R[F ]/{ψ(g)v − v}v∈R[F ], g∈π1(S) �� R[F ]/{ψ(g)v − v}v∈R[F ], g∈π1(B)

Here the horizontal maps are induced by the inclusion S → B and the vertical maps
are isomorphisms. The map i∗ : π1(S) → π1(B) is surjective; it follows that the bottom
horizontal map is an isomorphism. Hence, the top horizontal map is also an isomorphism.
The above Mayer–Vietoris sequence thus simplifies to the following sequence:

Hψ
1 (S; R[F ])

i∗⊕j∗−−−−→ Hψ
1 (B; R[F ]) ⊕ Hψ

1 (Y ; R[F ]) → Hψ
1 (X; R[F ]) → 0.

We note that the space B is homotopy equivalent to a wedge of two circles m and n.
Furthermore, S is homotopy equivalent to the wedge of m, n and another curve m′ that
is homotopic to m in B. By another slight abuse of notation we now replace B and S by
these wedges of circles and we view B and S as CW-complexes with precisely one 0-cell
in the obvious way. We denote by p : S̃ → S and p : B̃ → B the coverings corresponding
to the homomorphisms π1(S) → π1(B) → π1(X)

ψ−→ F . Note that we can and will view B̃

as a subset of S̃. We now pick preimages m̃, ñ and m̃′ of m, n and m′ under the covering
map p : S̃ → S. Note that {m̃, ñ} is a basis for C1(B; R[F ]) = C1(B̃) and {m̃, ñ, m̃′} is
a basis for C1(S; R[F ]) = C1(S̃). The kernel of the map C1(S; R[F ]) → C1(B; R[F ]) is
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given by R[F ] · (m − m′). We thus obtain the following commutative diagram of chain
complexes with exact rows:

0 �� R[F ] · (m − m′) ��

��

C1(S; R[F ])

��

i∗ �� C1(B; R[F ]) ��

��

0

0 �� C0(S; R[F ])
i∗ �� C0(B; R[F ]) �� 0

It now follows easily from the diagram, or more formally from the snake lemma, that

ker(i∗ : Hψ
1 (S; R[F ]) → Hψ

1 (B; R[F ])) ∼= R[F ] · (m − m′) (4.1)

and that
coker(i∗ : Hψ

1 (S; R[F ]) → Hψ
1 (B; R[F ])) = 0. (4.2)

Finally, we consider the following commutative diagram:

R[F ] · (m − m′) ��

��

Hψ
1 (Y ; R[F ]) ��

⎛
⎝ 0
Id

⎞
⎠

��

Hψ
1 (X; R[F ])

=

��

�� 0

Hψ
1 (S; R[F ]) �� Hψ

1 (B; R[F ]) ⊕ Hψ
1 (Y ; R[F ]) �� Hψ

1 (X; R[F ]) �� 0

We have already seen above that the bottom horizontal sequence is exact. It now
follows from (4.1), (4.2) and a straightforward diagram chase, that the top horizontal
sequence is also exact. This concludes the proof of the claim.

Precisely the same proof shows that there exists a short exact sequence

R[F ] → Hψ
1 (Y ; R[F ]) → Hψ

1 (X ′; R[F ]) → 0.

(Use B = f ′(B), S = f ′(S) instead of B = f(B), S = f(S).) Combining these two short
exact sequences now gives the desired result, by taking M := Hψ

1 (Y ; R[F ]). �

4.2. The Alexander polynomial obstruction

Using Proposition 4.1 we can prove the following obstruction to the splitting number
being equal to 1.

Theorem 4.3. Let L be a two-component oriented link. We denote the Alexander
polynomial of L by ΔL(s, t). If the splitting number of L equals 1, then ΔL(s, 1) ·ΔL(1, t)
divides ΔL(s, t).

Let L = J ∪ K be an oriented link with splitting number equal to 1. We denote
the Alexander polynomials of J and K by ΔJ and ΔK , respectively. It follows from
Lemma 2.1 that the linking number satisfies |lk(J, K)| = 1. Therefore, by the Torres
condition, |ΔL(1, 1)| = 1 and we have that

ΔL(s, 1) = ΔJ(s) and ΔL(1, t) = ΔK(t).

https://doi.org/10.1017/S0013091516000420 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091516000420


Splitting numbers of links 599

We can thus reformulate the statement of the theorem as saying that if L = J ∪ K is
an oriented link with splitting number equal to 1, then ΔJ(s) and ΔK(t) both divide
ΔL(s, t).

Proof. Let L = J ∪K be an oriented link with splitting number equal to 1. We denote
by ψ : H1(S3 \ L; Z) → 〈s, t|[s, t] = 1〉 the map that is given by sending the meridian of
J to s and by sending the meridian of K to t. We write Λ := Z[s±1, t±1].

In the following we also denote by ψ the map H1(S3 \ J ; Z) → 〈s, t|[s, t] = 1〉, which
is given by sending the meridian of J to s. Note that with this convention we have an
isomorphism

Hψ
1 (S3 \ J ; Λ) = H1(S3 \ J ; Z[s±1]) ⊗Z[s±1] Λ

and we obtain that
ordΛ(Hψ

1 (S3 \ J ; Λ)) = ΔJ(s). (4.3)

Similarly, we define a map H1(S3 \K; Z) → 〈s, t|[s, t] = 1〉 by sending the meridian of K

to t. We see that
ordΛ(Hψ

1 (S3 \ K; Λ)) = ΔK(t). (4.4)

We denote the split link with components J and K by J � K. The Mayer–Vietoris
sequence for S3 \ (J � K), which comes from splitting along the separating 2-sphere S,
gives rise to an exact sequence

0 → Hψ
1 (S3 \ J ; Λ) ⊕ Hψ

1 (S3 \ K; Λ) → Hψ
1 (S3 \ (J � K); Λ)

h−→ H0(S; Λ) → Hψ
0 (S3 \ J ; Λ) ⊕ Hψ

0 (S3 \ K; Λ).

We recall that by [10, § VI], for any connected space X with a ring homomorphism
ψ : π1(X) → Λ, we have

Hψ
0 (X; Λ) = Λ/{ψ(g)v − v | v ∈ Λ, g ∈ π1(X)}.

It follows easily that Hψ
0 (S; Λ) ∼= Λ and that Hψ

0 (S3 \ J ; Λ) and Hψ
0 (S3 \ K; Λ) are

Λ-torsion. In particular, we see that the last map in the above long exact sequence has
a non-trivial kernel. By the exactness of the Mayer–Vietoris sequence above, it follows
that the map h has non-trivial image.

Since L has splitting number 1, we can do one crossing change involving both J and
K to turn L into J � K. The conclusion of Proposition 4.1 together with the above
Mayer–Vietoris sequence gives rise to a diagram of maps as follows:

Λ
f �� M

p �� ��

g

����

Hψ
1 (S3 \ L; Λ)

Hψ
1 (S3 \ J ; Λ) ⊕ Hψ

1 (S3 \ K; Λ) � � �� Hψ
1 (S3 \ (J � K); Λ)

h �� Λ
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where the top and bottom horizontal sequences are exact, and where the map h is non-
trivial. In particular, note that p gives rise to an isomorphism M/f(Λ) ∼= Hψ

1 (S3 \ L; Λ),
and that g gives rise to an epimorphism

Hψ
1 (S3 \ L; Λ) ∼= M/f(Λ) → Hψ

1 (S3 \ (J � K); Λ)/(g ◦ f)(Λ). (4.5)

Next we will prove the following claim.

Claim 4.4. The map

Hψ
1 (S3 \ J ; Λ) ⊕ Hψ

1 (S3 \ K; Λ) → Hψ
1 (S3 \ J � K; Λ)/(g ◦ f)(Λ)

is a monomorphism.

We consider the commutative diagram

Λ

g◦f

��
0 �� Hψ

1 (S3 \ J ; Λ) ⊕ Hψ
1 (S3 \ K; Λ) � � �� Hψ

1 (S3 \ (J � K); Λ)
h ��

��

Λ

��Hψ
1 (S3 \ (J � K); Λ)

(g ◦ f)(Λ)
h �� Λ/(h ◦ g ◦ f)(Λ)

where the bottom vertical maps are the obvious projection maps. Furthermore, as above,
the map h in the middle sequence is non-trivial.

We first note that the bottom-left group is Λ-torsion. Indeed, in the discussion pre-
ceding the proof we saw that ΔL(s, t) �= 0. This implies that the homology group
Hψ

1 (S3 \ L; Λ) is Λ-torsion. But by (4.5) this also implies that the bottom-left group
of the diagram is Λ-torsion.

It follows that in the square the composition of maps given by going down and then
right factors through a Λ-torsion group. On the other hand, we have seen that the map
h : Hψ

1 (S3 \ (J � K); Λ) → Λ is non-trivial. By the commutativity of the square and by
the fact that the down-right composition of maps factors through a Λ-torsion group, it
now follows that the projection map Λ → Λ/(h ◦ g ◦ f)(Λ) cannot be an isomorphism.
But this just means that the composition

Λ
g◦f−−→ Hψ

1 (S3 \ (J � K); Λ) h−→ Λ

is non-trivial and, in particular, injective. Put differently, we have

im(g ◦ f : Λ → Hψ
1 (S3 \ (J � K); Λ)) ∩ ker(h) = 0.

By the exactness of the middle horizontal sequence, we thus see that the intersection of
the images of (g ◦ f)(Λ) and of Hψ

1 (S3 \ J ; Λ) ⊕ Hψ
1 (S3 \ K; Λ) in Hψ

1 (S3 \ (J � K); Λ)
is trivial. It follows that the map

Hψ
1 (S3 \ J ; Λ) ⊕ Hψ

1 (S3 \ K; Λ) → Hψ
1 (S3 \ J � K; Λ)/(g ◦ f)(Λ)

is indeed a monomorphism. This concludes the proof of the claim.

https://doi.org/10.1017/S0013091516000420 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091516000420


Splitting numbers of links 601

K

J

Figure 6. The link L9a29, with splitting number 3.

Before we continue with the proof we recall that if

0 → A → B → C → 0

is a short exact sequence of Λ-modules, then by [9, Part 1.3.3] the orders of the modules
are related by the equality

ordΛ(B) = ordΛ(A) · ordΛ(C). (4.6)

We thus see, from the claim and from (4.6), (4.3) and (4.4), that

ΔJ(s) · ΔK(t) | ordΛ(Hψ
1 (S3 \ J � K; Λ)/(g ◦ f)(Λ)).

On the other hand, it follows from (4.5) and again from (4.6) that

ordΛ(Hψ
1 (S3 \ (J � K); Λ)/(g ◦ f)(Λ)) | ordΛ(Hψ

1 (S3 \ L; Λ)). �

4.3. An example of the Alexander polynomial technique

We consider the oriented link L = K � J = L9a29 from Figure 6.
It has linking number 1 and it is not hard to see that one can turn it into a split link

using three crossing changes between the two components. The multivariable Alexander
polynomial of L is

ΔL(s, t) = s − s2 + t − st + s2t − t2 + st2 − s2t2 + t3 − st3 + s2t3 − t4 + st4.

It is straightforward to see that ΔJ(s) · ΔK(t) = 1 − t + t2 does not divide ΔL(s, t). It
thus follows from Theorem 4.3 that the splitting number of L is 3.

This is one of the instances of the use of the Alexander polynomial that is cited in
§ 6, in Table 3 (Method (4)). The other computations listed in that table as using this
method are performed in a similar fashion; see the LinkInfo tables [7] for the multivariable
Alexander polynomials of the other nine-crossing links, which are L9a24, L9n13, L9n14
and L9n17. Since these are two-component links of linking number 1, the Alexander
polynomials of the components can be obtained by substituting either t = 1 or s = 1
into the multivariable Alexander polynomial in Z[s±1, t±1].
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Figure 7. A two-component link of linking number 1 whose splitting number equals 3.

5. The examples of Batson and Seed

In [2], Batson and Seed constructed a spectral sequence from the Khovanov homology
of a link L to the Khovanov homology of the split link with the same components as L.
This spectral sequence gives rise to a lower bound on the splitting number, given by the
lowest page on which their spectral sequence collapses.

Batson and Seed computed the lower bound for all links up to 12 crossings and they
showed that it provides more information than basic linking number observations (see
our Lemma 2.1) for 17 links. The lower bound they computed will be denoted by b(L).
One of the 17 links is a three-component link with 12 crossings, for which b(L) = 3, while
the sum of the absolute values of the linking numbers is 1. The remaining 16 links have
two components and satisfy lk(L) = ±1 and b(L) = 3. One of these has 11 crossings,
and 15 of these have 12 crossings. Batson and Seed determined the splitting numbers for
seven links among these 17 links, while for the other 10 cases the splitting numbers are
listed as being either 3 or 5. This information is given in [2, Table 3].

In this section we revisit these links to reprove or improve the results in [2]. In partic-
ular, we completely determine the splitting numbers by using our methods.

5.1. Using the Alexander polynomial

We first apply our Alexander polynomial method to the examples of [2] with at least
one knotted component. This will reprove their splitting number results for these links.
Before we turn to the links of [2, Table 3], we will discuss a link with 13 crossings in
detail, which is also discussed in [2].

A 13-crossing example

Consider the two-component link L shown in Figure 7. It is the link denoted by 2n13
8862

in [2].
Note that one component is an unknot and the other is a trefoil. We refer to the

unknotted component as J and to the knotted component as K. It is not hard to see
that L can be turned into a split link using three crossing changes. On the other hand,
the linking number is 1, so it follows from Lemma 2.1 that the splitting number is either
1 or 3. The invariant b(L) shows that the splitting number of L is in fact 3.
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We will now use Theorem 4.3 to give another proof that the splitting number of L

equals 3. We used Kodama’s program knotGTK to show that

ΔL(s, t) = −s8t4 + s7t5 + 4s8t3 − 5s6t5 − 6s8t2 − 9s7t3 + 13s6t4 + 11s5t5 + 4s8t

+ 17s7t2 − 6s6t3 − 37s5t4 − 14s4t5 − s8 − 12s7t − 10s6t2 + 45s5t3 − 4s6

+ 52s4t4 + 11s3t5 + 3s7 + 12s6t − 24s5t2 − 74s4t3 − 44s3t4 − 5s2t5

+ 2s5t + 51s4t2 + 67s3t3 + 23s2t4 + st5 + 3s5 − 13s4t − 46s3t2 − 39s2t3

− 7st4 − s4 + 11s3t + 25s2t2 + 15st3 + t4 − 3s2t − 9st2 − 3t3 + 2t2.

It is straightforward to see (we used Maple) that

ΔL(s, 1) · ΔL(1, t) = ΔJ(s) · ΔK(t) = 1 − t + t2

does not divide ΔL(s, t). Thus, it follows from Theorem 4.3 that the splitting number of
L is not 1. By the above observations we therefore see that the splitting number of L is
equal to 3.

Seven 12-crossing examples

In [2, Table 3], Batson and Seed give seven examples of two-component 12-crossing
links that have linking number equal to 1 and for which b(L) detects that the splitting
number is 3.

In Table 1 we list the links together with their Dowker–Thistlethwaite (DT) codes
and multivariable Alexander polynomials. The translation between the names we use
(following LinkInfo [7]) and the convention used in [2] is given by L12nX = 2a12

X+4196.
All these Alexander polynomials are irreducible. For each link, both components are
trefoils, so ΔL(s, 1) = 1− s+ s2 and ΔL(1, t) = 1− t+ t2 do not divide the multivariable
Alexander polynomial. Thus, it follows from Theorem 4.3 that the splitting number of
each of these links is at least 3, which recovers the results of Batson and Seed. Inspection
of the diagrams shows that the splitting numbers are indeed equal to 3.

5.2. Using the covering link technique

Batson and Seed [2, Table 3] gave nine further examples of links that have two unknot-
ted components and linking number ±1. They list these links as having splitting number
either 3 or 5. Translating notation again, we have: L11a372 = 2a11

739, L12aX = 2a12
X+1288

and L12nY = 2n12
Y +4196.

Table 2 lists the results of our computations, giving the slice genus of the knot obtained
by taking a two-fold branched cover of S3, branched over one of the components, the
method that we use to compute the slice genus, and the resulting splitting number
obtained by the methods of § 3.1.

The methods we use to compute the slice genus of the covering knot are as follows.
First, the slice genus of a knot is bounded below by half the absolute value of its signature
σ(K) = sign(A + AT), where A is a Seifert matrix of K, by [15, Theorem 9.1]. We
used a Python software package of the first author to compute σ(K). The Rasmussen
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Table 1. Seven 12-crossing links and their Alexander polynomials.

link DT code Alexander polynomial

L12n1342 (14, 6, 10, 16, 4, 18), s2t4 − st4 − s2t2 + s2t + st2 + t3 − t2 − s + 1
(20, 22, 8, 24, 2, 12)

L12n1350 (14, 6, 10, 16, 4, 20), −s4t3 + s3t4 + s4t2 + s3t3 − 2s2t4 − 2s3t2 + s2t3

(12, 22, 8, 24, 2, 18) +st4 + s2t2 + s3 + s2t − 2st2 − 2s2 + st + t2 + s − t

L12n1357 (14, 6, 10, 16, 4, 22), −s4t4 + s4t3 + s3t4 − s4t2 + s4t − s2t3

(20, 2, 8, 24, 12, 18) +s2t2 − s2t + t3 − t2 + s + t − 1

L12n1363 (14, 6, 10, 18, 4, 22), 2s2t2 − 3s2t − 3st2 + 2s2 + 5st + 2t2 − 3s − 3t + 2
(2, 20, 8, 24, 12, 16)

L12n1367 (14, 6, 10, 18, 4, 24), s4t2 + s3t3 − s2t4 − s4t − 2s3t2 + st4 + s3t

(2, 12, 22, 8, 16, 20) +s2t2 + st3 + s3 − 2st2 − t3 − s2 + st + t2

L12n1374 (14, 6, 10, 20, 4, 16), s4t3 + s3t4 − s4t2 − s3t3 − s2t4 + s4t + st4

(2, 12, 22, 24, 8, 18) −s4 + s2t2 − t4 + s3 + t3 − s2 − st − t2 + s + t

L12n1404 (14, 8, 18, 12, 22, 4), 2s2t3 − st4 − 2s2t2 − st3 + t4

(20, 2, 24, 6, 16, 10) +3st2 + s2 − st − 2t2 − s + 2t

Table 2. Nine links and their covering knot slice genus.

covering knot method for splitting
link DT code slice genus slice genus number

L11a372 (12, 14, 16, 20, 18), 2 σ = −4 5
(10, 2, 4, 22, 8, 6)

L12a1233 (12, 14, 16, 18, 20), 2 σ = −4 5
(2, 24, 4, 6, 22, 8, 10)

L12a1264 (12, 14, 16, 20, 18), 2 σ = −4 5
(2, 24, 4, 22, 8, 6, 10)

L12a1384 (14, 8, 16, 24, 18, 20), 2 σ = −4 5
(2, 22, 4, 10, 12, 6)

L12n1319 (12, 14, 16, 24, 18), 1 σ = −2 3
(2, 10, 22, 20, 8, 4, 6)

L12n1320 (12, 14, 16, 24, 18), 1 p = 3, q = 7, 3
(6, 22, 20, 8, 4, 2, 10) Δχ(s) = 7s2 + 15s + 7

L12n1321 (12, 14, 16, 24, 18), 2 s = 4 5
(10, 2, 22, 20, 8, 4, 6)

L12n1323 (12, 14, 18, 16, 20), 2 σ = −4 5
(10, 2, 24, 6, 22, 8, 4)

L12n1326 (12, 14, 18, 24, 20), 1 p = 3, q = 7, 3
(8, 2, 4, 22, 10, 6, 16) Δχ(s) = 7s2 − 71s + 7

https://doi.org/10.1017/S0013091516000420 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091516000420


Splitting numbers of links 605

s-invariant [16] also gives a lower bound by |s(K)| � 2g4(K). We used JavaKh of Green
and Morrison to compute s(K).

We can also prove that a knot is not slice using the twisted Alexander polynomial [12],
denoted by Δχ

K(s) ∈ Q(ζq)[s±1], where ζq is a primitive qth root of unity, associated with
the p-fold cyclic cover Xp of the knot exterior X and a character χ : TH1(Xp; Z) → Zq.
For slice knots, there exists a metaboliser of the Q/Z-valued linking form on H1(Xp; Z)
such that, for characters χ that vanish on the metaboliser, the twisted Alexander poly-
nomial factorizes (up to a unit) as g(s)g(s) for some g ∈ Q(ζq)[s±1]. By checking that
this condition does not hold for all metabolisers, we can prove that a knot is not slice.
(For each covering knot K to which we apply this, all metabolisers give the same poly-
nomial Δχ

K .) Our computations of twisted Alexander polynomials were performed using
a Maple program written by Herald et al . [8].

The invariants discussed above give us lower bounds on the slice genera of the covering
knots. We do not need to know the precise slice genera in order to obtain lower bounds.
Nevertheless, we point out that we are able to determine them. In each case we found
the requisite crossing changes to split the link, so an application of Theorem 1.1 gives
us an upper bound on the slice genus of the covering knot, which implies that the above
lower bounds are sharp.

For the links L11a372, L12a1233, L12a1264, L12a1384, L12n1321 and L12n1323, we
are able to show that the splitting numbers of these links are 5. Amusingly, we use
Khovanov homology, in the guise of the s-invariant, to compute that the slice genus of
the covering knot of L12n1321 is 2. We remark that this knot has σ = −2, which is only
sufficient to show that the splitting number is at least 3.

For the other links, as in § 5.1, our obstruction gives the same information as the
Batson–Seed lower bound, namely, that the splitting number is at least 3. For the links
L12n1319, L12n1320 and L12n1326 we looked at the diagrams and found the crossing
changes to verify that the splitting number is indeed 3.

We present one example in detail, the link L11a372, which is shown as given by LinkInfo
on the left of Figure 8, while on the right the link L11a372 is shown after an isotopy, to
prepare for making a diagram of a covering link. It is easy to see from the diagram that
the splitting number is at most 5. The link L11a372 has b(L11a372) = 3.

The two-fold covering link obtained by branching over the left-hand component is
shown in Figure 9. This turns out to be the knot 75, which according to KnotInfo [6] has
|σ| = 4 and slice genus 2. Therefore, by Theorem 1.1, the splitting number is 5.

5.3. A three-component example

There is one final link listed in [2, Table 3] as having splitting number either 3 or 5,
namely, the three-component link L := L12a1622, which is shown in Figure 10. In the
notation of [2], L is the link 3a12

2910.
We show that the splitting number of L is in fact 5. Note that the components are

unknotted, and the only non-zero linking number is between L2 and L3, which have
|lk(L2, L3)| = 1. Thus, the splitting number is odd by Lemma 2.1. It is easy to find five
crossing changes that suffice.
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Figure 8. Left: the link L11a372. Right: after an isotopy.

Figure 9. The covering link obtained by taking a two-fold branched covering
over the left-hand component of the link in Figure 8.

We begin by showing that three crossing changes involving just L2 and L3 do not suffice
to split the link. We take the two-fold covering link J with respect to L1. The result of
an isotopy to prepare for taking such a covering is shown on the right of Figure 10. The
resulting covering link J is shown in Figure 11. The link J has splitting number 10 by
Lemma 2.1, with a sharp lower bound given by the sum of the absolute values of the
linking numbers between the components. By Corollary 3.6, we have that sp1(L) � 5.

Combining sp1(L) � 5 with the linking number, it follows that if sp(L) � 3, then
exactly one crossing change involving (L2, L3) is required to split the link, and there can
be either two additional (L1, L2) crossing changes, or two (L1, L3) crossing changes. We
will give the argument to show that the first possibility cannot happen; the argument
discounting the second possibility is analogous.

Suppose that two (L1, L2) crossing changes and one (L2, L3) crossing change yields
the unlink. Applying Corollary 3.3 (with m = 3, α = 2, β = 1, g4(Lk) = 0), it follows
that the covering link J ⊂ S3 bounds an oriented surface F of Euler characteristic
2(3 − 1) − 2 − 4 = −2 that is smoothly embedded in D4 and has no closed component.
Also, F is connected by the last part of Corollary 3.3 since both L1 and L3 are involved
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L2

L1

L3

Figure 10. Left: the link L12a1622. Right: the same link, after an isotopy
to prepare for taking a covering link by branching over the top component.

Figure 11. The two-fold covering link of the link in Figure 10, branched over L1.

in some crossing change with L2. Since J has four components, F is a three-punctured
disc. That is, J is weakly slice.

To show that this cannot be the case for J , we use the link signature invariant, which is
defined similarly to the knot signature: for a link J , choose a surface V in S3 bounded by
J (V may be disconnected), define the Seifert pairing on H1(V ) and an associated Seifert
matrix A as usual. Then the link signature of J is defined by σ(J) = sign(A+AT). Due to
Murasugi [15], if an m-component link J bounds a smoothly embedded oriented surface
F in D4, we have |σ(J)| � 2g(F ) + m − b0(F ), where g(F ) is the genus and b0(F ) is
the zeroth Betti number of F . For our covering link J , since it bounds a three-punctured
disc in D4, we have |σ(J)| � 3. Here we orient J as in Figure 11; this orientation is
obtained using the orientations of L2 and L3 shown on the right of Figure 10. On the
other hand, a computation aided by a Python software package of the first author shows
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that σ(J) = −7. From this contradiction it follows that one (L2, L3) crossing change and
two (L1, L2) crossing changes never split L.

6. Links with nine or fewer crossings

In Table 3 we give the splitting numbers for the links of nine crossings or fewer, together
with the method that is used to give a sharp lower bound for the splitting number. The
entry in the method column of the table refers to the list below.

In the case of two-component links with unknotted components and linking number 1,
knowing that the unlinking number is greater than 1 implies that the splitting number
is at least 3. Recall that by definition the unlinking number of an m-component link L

is the minimal number of crossing changes required to convert L to the m-component
unlink. Note that for this link invariant, crossing changes of a component with itself are
in general permitted.

In Method (3), below, we will make use of computations of unlinking numbers made
by Kohn in [14], where, making considerable use of his earlier work [13], he computed
the unlinking numbers of two-component links with nine or fewer crossings, in all but
five cases.

(1) Using Lemma 2.1, the linking numbers determine the lower bound for the splitting
number by providing a lower bound or by fixing the splitting number modulo 2.

(2) A combination of linking numbers and either one or two Whitehead links as a
sublink determine a lower bound for the splitting number. That is, Lemma 2.1
provides a sharp lower bound, with c(L) �= 0.

(3) This is a link where the sum of the linking numbers is 1 and the components
are unknotted, but which does not have unlinking number 1, and so cannot have
splitting number 1. Therefore, the splitting number is at least 3.

For the two-component case (all that use this method have two components apart
from L9a46 and L8a16), we know that this link does not have unlinking number 1
by [14]. Kohn did not explicitly give an argument that the unlinking number of
L9a30 is at least 2, but we computed the splitting number of L9a30 in § 3.2.

For the three-component links L8a16 and L9a46, we show that the splitting number
(and unlinking number) is not 1 in §§ 7.2 and 7.3, respectively.

(4) A two-component link of linking number 1, with at least one component knotted.
The Alexander polynomials of the components do not divide the multivariable
Alexander polynomial of the link, so by Theorem 4.3 the splitting number must be
at least 3. See § 4.3 for an example of this argument in action, for the link L9a29.

(5) A two-component link with unknotted components and linking number zero mod-
ulo 2. For the link L9a36, we note that the unlinking number is not 2 by [14].
Thus, the splitting number must be at least 4. For the link L9a40, we show that
the splitting number is not 2 in § 7.1.

We remark that some of the splitting numbers in the table are also given in [2].
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Table 3. Splitting numbers of links with nine or fewer crossings.

link L sp(L) method link L sp(L) method link L sp(L) method

L2a1 1 (1) L8n6 4 (1) L9a42 2 (1)
L4a1 2 (1) L8n7 4 (1) L9a43 3 (1)
L5a1 2 (1) L8n8 4 (1) L9a44 3 (1)
L6a1 2 (1) L9a1 2 (1) L9a45 3 (1)
L6a2 3 (1) L9a2 2 (1) L9a46 3 (3)
L6a3 3 (1) L9a3 2 (1) L9a47 4 (2)
L6a4 2 (1) L9a4 2 (1) L9a48 4 (1)
L6a5 3 (1) L9a5 2 (1) L9a49 4 (1)
L6n1 3 (1) L9a6 2 (1) L9a50 4 (2)
L7a1 2 (1) L9a7 2 (1) L9a51 4 (1)
L7a2 2 (1) L9a8 2 (1) L9a52 4 (2)
L7a3 2 (1) L9a9 2 (1) L9a53 2 (1)
L7a4 2 (1) L9a10 2 (1) L9a54 4 (2)
L7a5 1 (1) L9a11 2 (1) L9a55 4 (1)
L7a6 3 (3) L9a12 2 (1) L9n1 2 (1)
L7a7 3 (1) L9a13 2 (1) L9n2 2 (1)
L7n1 2 (1) L9a14 2 (1) L9n3 2 (1)
L7n2 2 (1) L9a15 2 (1) L9n4 2 (1)
L8a1 2 (1) L9a16 2 (1) L9n5 2 (1)
L8a2 2 (1) L9a17 2 (1) L9n6 2 (1)
L8a3 2 (1) L9a18 2 (1) L9n7 2 (1)
L8a4 2 (1) L9a19 2 (1) L9n8 2 (1)
L8a5 2 (1) L9a20 3 (3) L9n9 2 (1)
L8a6 2 (1) L9a21 1 (1) L9n10 2 (1)
L8a7 2 (1) L9a22 3 (3) L9n11 2 (1)
L8a8 3 (3) L9a23 3 (1) L9n12 2 (1)
L8a9 3 (3) L9a24 3 (4) L9n13 3 (4)
L8a10 3 (1) L9a25 3 (1) L9n14 3 (4)
L8a11 3 (1) L9a26 3 (3) L9n15 3 (1)
L8a12 4 (1) L9a27 1 (1) L9n16 3 (1)
L8a13 4 (1) L9a28 3 (1) L9n17 3 (4)
L8a14 4 (1) L9a29 3 (4) L9n18 4 (1)
L8a15 3 (1) L9a30 3 (3) L9n19 4 (1)
L8a16 3 (3) L9a31 1 (1) L9n20 3 (1)
L8a17 4 (1) L9a32 3 (1) L9n21 3 (1)
L8a18 4 (1) L9a33 3 (1) L9n22 3 (1)
L8a19 2 (1) L9a34 2 (1) L9n23 4 (2)
L8a20 4 (1) L9a35 2 (1) L9n24 4 (2)
L8a21 4 (1) L9a36 4 (5) L9n25 2 (2)
L8n1 2 (1) L9a37 2 (1) L9n26 4 (2)
L8n2 2 (1) L9a38 2 (1) L9n27 4 (2)
L8n3 4 (1) L9a39 2 (1) L9n28 4 (2)
L8n4 4 (1) L9a40 4 (5) — — —
L8n5 2 (1) L9a41 2 (1) — — —
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Figure 12. Left: the link L9a40. Right: the two-fold branched
cover with respect to the right-hand component.

7. Arguments for the splitting number of particular links

7.1. The link L9a40

The link L9a40 is shown on the left of Figure 12. We claim that the splitting number
of L9a40 is 4. Note that the linking number is zero, so the splitting number is either 2
or 4, since it is easy to see from the diagram that four crossing changes suffice to split
the link.

To show that the splitting number cannot be 2, we consider the two-component link
obtained by taking the two-fold covering link with respect to the right-hand component,
which is shown on the right of Figure 12. This is the link L6a1. By Corollary 3.5, if
sp(L9a40) = 2, then L6a1 would bound an annulus smoothly embedded in D4. Thus,
any internal band sum of L6a1, which is a knot, would have slice genus at most 1. But
the band sum of L6a1 shown in Figure 13 is the knot 75, which has signature 4 and
smooth slice genus 2. It follows that the splitting number of L9a40 is 4 as claimed.

7.2. The link L8a16

The link L8a16 is shown in Figure 14. The components are labelled L1, L2 and L3.
The linking number |lk(L1, L2)| = 1, and the other linking numbers are trivial. We claim
that sp(L8a16) = 3. It is not hard to find three crossing changes that work; for example,
change all three of the crossings where L2 passes over L1 in Figure 14. By this observation
and Lemma 2.1, the splitting number is either 1 or 3. We therefore need to show that it
is not possible to split the link with a single crossing change. (We remark that this is the
same as showing that the unlinking number is greater than 1, since the components are
unknotted.)

By linking number considerations, a single crossing change would have to involve L1

and L2. To discard this eventuality, we will take a two-fold covering link branched over L3.
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Figure 13. A band sum of L6a1 to produce the knot 75. The band that
was added is indicated by dotted lines; it has a half twist in it.

L2

L1

L3

Figure 14. The link L8a16.

The left of Figure 15 shows the link L8a16 after an isotopy; the right-hand picture
shows the 2-fold cover branched over L3. Call this link J . The sum of linking numbers∑

i<j |lk(Ji, Jj)| = 6, so sp(J) � 6 by Lemma 2.1 (in fact sp(J) = u(J) = 6). Therefore,
by Corollary 3.6, we see that sp3(L8a16) � 3. (Recall that spi(L) denotes the splitting
number of L, where the component Li is not involved in any crossing changes.) Thus, as
claimed, it is not possible to split the link in a single crossing.

7.3. The link L9a46

The link L9a46 is shown on the left of Figure 16. We claim that sp(L9a46) = 3. It
is not hard to find three changes that suffice. For example, in Figure 16, change the
crossings where L1 passes under L2.
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Figure 15. Left: the link L8a16 after an isotopy. Right: the two-fold cover branched over L3.

L2

L1

L3

Figure 16. Left: the link L9a46. Right: the link L9a46 after an isotopy.

Note that |lk(L1, L2)| = 1. Therefore, if one crossing change suffices, it must be between
L1 and L2. We need to show that this is not possible. For this purpose we apply Corol-
lary 3.6 again. We will take a two-fold covering link branched over L3. In preparation
for this, the link from the left of Figure 16 is shown, after an isotopy, on the right of
Figure 16.

Taking the cover branched over the right-hand component of the link on the right of
Figure 16, we obtain the two-fold covering link J shown in Figure 17.

We need to see that the link J of Figure 17 has splitting number at least 6. Observe that
|lk(J1, J4)| = |lk(J2, J3)| = 1. Moreover, the sublinks J1 � J3 and J2 � J4 are Whitehead
links. It now follows from Lemma 2.1 that sp(J) � 6. By Corollary 3.6, we obtain that
sp3(L9a46) � 3. It thus follows from the above discussion that sp(L9a46) = 3.
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J2

J1

J3

J4

Figure 17. The two-fold covering link of the link L9a46 from the right of Figure 16.
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