
J. Fluid Mech. (2016), vol. 805, pp. 88–117. c© Cambridge University Press 2016
doi:10.1017/jfm.2016.538

88
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We develop a set of equations to explore the behaviour of cooling elastic-plated
gravity currents for constant influx conditions. In particular, we introduce a
temperature-dependent viscosity to couple the flow thermal structure with the velocity
field. We show that this coupling results in important deviations from the isoviscous
case. In particular, the bending and gravity asymptotic regimes, characteristic of the
isoviscous case, both split into three different thermal phases: a first ‘hot’ isoviscous
phase, a second phase where the spreading rate drastically decreases and the flow
thickens and a third ‘cold’ isoviscous phase. The viscosity that controls the spreading
rate differs in both asymptotic regimes; it is the average viscosity of a small peeling
region at the current tip in the bending regime and the average flow viscosity in the
gravity regime. In both regimes, we characterize the evolution of the thermal anomaly
and determine the time scale of the phase changes in terms of the Péclet number
and of the viscosity contrast. Finally, we show that the evolution with bending and
gravity can result in six different evolution scenarios depending on the combination
of dimensionless numbers considered. We provide a phase diagram which summarizes
them as a function of the flow Péclet number and viscosity contrast.

Key words: gravity currents, lubrication theory, magma and lava flow

1. Introduction

Elastic-plated gravity currents involve the spreading of viscous material beneath an
elastic sheet. The applications range from the emplacement of magma in the shallow
crust (Bunger & Cruden 2011; Michaut 2011) and gravity-driven lava flows under a
solidified crust at the surface (Slim et al. 2009; Hewitt, Balmforth & De Bruyn 2015)
in geosciences to the manufacture of flexible electronics and microelectromechanical
systems in engineering (Hosoi & Mahadevan 2004).

When the thickness of the flow is small compared to its extent, the lubrication
approximation applies and the study of elastic-plated gravity currents amounts to
the study of a sixth-order nonlinear diffusion equation for the flow thickness h
(Michaut 2011; Lister, Peng & Neufeld 2013; Hewitt et al. 2015). Nonetheless, this
equation is degenerate at the contact line, i.e. where h→ 0, and there cannot be any
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Elastic-plated gravity currents with a temperature-dependent viscosity 89

advancing solutions (Flitton & King 2004; Lister et al. 2013; Hewitt et al. 2015).
This problem is similar to the well-known problem for surface-tension-driven flow
where full continuum theories of fluid mechanics are unable to describe the flow near
the contact line without introducing molecular-scale physics (Bertozzi 1998).

For practical purposes, different forms of regularization at the tip have been
proposed such as the introduction of a thin prewetting film of fluid of initially
constant thickness or the use of a fluid lag filled with gas at constant pressure
(Lister et al. 2013; Hewitt et al. 2015; Peng et al. 2015; Pihler-Puzović et al. 2015).
While both alternatives suffer from depending on the parameter introduced by the
regularization itself, i.e. the thickness of the prewetting film or the pressure within the
gap, the prewetting film regularization approach allows us to more easily introduce
fluid cooling in the problem and is used here.

The dynamics of the spreading for a Newtonian fluid with a constant viscosity has
been thoroughly described in an axisymmetric geometry (Michaut 2011; Lister et al.
2013; Thorey & Michaut 2014; Hewitt et al. 2015) and shows two distinct asymptotic
regimes. First, gravity is negligible and the peeling of the front is driven by bending
of the overlying layer; the interior is bell shaped, the radius evolves as h̃f

1/22
t7/22 and

the thickness at the centre as h̃f
−2/22

t8/22 where h̃f is the prewetting film thickness.
When the radius becomes larger than 4L, where L is the flexural wavelength of the
upper elastic layer, the weight of the current becomes dominant over the bending
terms and the flow enters a gravity current regime (Huppert 1982b). In this regime,
the thickness profile develops a flat top with bent edges, the radius evolves as t1/2

while the thickness tends to a constant. Different analogue experiments of isoviscous
flows confirm these theoretical results (Dixon & Simpson 1987; Lister et al. 2013).

However, in most geological settings, the isothermal/isoviscous assumptions are not
valid. For instance, the viscosity of magmas can vary by several orders of magnitude
(Shaw 1972; Lejeune & Richet 1995). Therefore, as the fluid flows and cools down,
its composition and crystal content change, which in turn modifies its viscosity and
dynamics. Several studies have shown that, in a gravity current, this coupling between
cooling and flow results in important deviations from the isoviscous case (Bercovici
1994; Bercovici & Lin 1996; Balmforth, Craster & Sassi 2004; Garel et al. 2014).

In this paper, we examine how the spreading of an elastic-plated gravity current is
affected by its cooling. In particular, we account for the temperature dependence of
the viscosity. This gives rise to a set of two coupled nonlinear equations that we solve
numerically. We characterize the flow thermal structure and its effect on the dynamics
via its rheology η(T) in each regime separately. In both regimes, we identify different
thermal phases of propagation that we characterize by different time scales and scaling
laws.

2. Theory
2.1. Formulation

We model the axisymmetric flow of fluid below an elastic layer of constant thickness
dc and above a rigid layer (figure 1). To avoid problem at the contact line, we consider
a thin, initially cold, prewetting film of thickness h̃f and temperature T0 (figure 1). The
case of an initially hot prewetting film is treated in appendix C.

The hot fluid is injected continuously at the base and centre of the current at
a constant rate Q0 and constant temperature Ti through a conduit of diameter a.
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FIGURE 1. Model geometry and parameters. The vertical scale is exaggerated. Left upper
panels: temperature profiles with merged (r= ra) and separated (r= rb) thermal boundary
layers.

We assume a Poiseuille flow within the cylindrical feeding conduit such that the
injection velocity wi reads

wi(r, t)=H
(a

2
− r
) 1P

4ηhZc

(
a2

4
− r2

)
, (2.1)

where 1P/Zc is the pressure gradient driving the flow in the feeding conduit and ηh is
the viscosity of the hottest fluid at the temperature Ti. The fluid cools through the top
and bottom boundaries by conduction in the surrounding medium, whose temperature
is maintained constant and equal to T0. For simplicity, heating and melting of the
surrounding medium are neglected.

As it cools, the viscosity of the fluid increases following an inverse dependence on
the temperature

η(T)= ηhηc(Ti − T0)

ηh(Ti − T0)+ (ηc − ηh)(T − T0)
, (2.2)

where ηc is the viscosity of the coldest fluid at T = T0 (Bercovici 1994).
This rheology has the advantage of restricting strong viscosity variations over a

small range of temperature close to T0 while still capturing the essential behaviour
of a viscous fluid, i.e. the viscosity variations are the largest where the temperature
is the coldest (Shaw 1972; Marsh 1981; Lejeune & Richet 1995; Giordano, Russell
& Dingwell 2008).

2.2. Pressure
The intrusion develops over a radius R that is much larger than its thickness h
(R � h). In the laminar regime and in axisymmetrical coordinates (r, z), the
Navier–Stokes equations within the lubrication approximation are

−∂P
∂r
+ ∂

∂z

(
η(T)

∂u
∂z

)
= 0 (2.3)

−∂P
∂z
− ρmg= 0, (2.4)
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where u(r, z, t) is the radial velocity, ρm the fluid density, g the standard acceleration
due to gravity and P(r, z, t) the pressure within the fluid. Integration of (2.4) gives the
dynamic pressure P(r, z, t) within the flow, which, given that the vertical deflection
h(r, t) of the upper elastic layer is small compared to its thickness dc, i.e. h� dc, can
be written (Michaut 2011)

P= ρmg(h− z)+ B∇4
r h, (2.5)

with

∇4
r h= 1

r
∂

∂r

(
r
∂

∂r

(
1
r
∂

∂r

(
r
∂h
∂r

)))
, (2.6)

where h(r, t) is the flow thickness and B is the bending stiffness of the thin elastic
layer, that depends on Young’s modulus E, Poisson’s ratio ν∗ and on the elastic layer
thickness dc as B= Ed3

c/(12(1− ν∗2)).

2.3. Heat transport equation
2.3.1. Local energy conservation

In the laminar regime and in axisymmetrical coordinates (r, z), the local energy
conservation equation within the lubrication assumption is

D
Dt
(ρmCp,mT + ρmL(1− φ))= km

∂2T
∂z2

, (2.7)

where T(r, z, t) is the fluid temperature and ρm, km and Cp,m are the density, thermal
conductivity and specific heat of the fluid. Here, we also account for energy release
by possible crystallization of the fluid, which is a non-negligible source of heat in
the case of magmas; φ(r, z, t) is the crystal fraction in the melt and L the latent
heat of crystallization. In this model, the crystals are only considered as a source/sink
of energy as they melt/form at equilibrium during the flow as we assume that the
physical properties of the crystal liquid mixture are the same as that of the fluid.

The fluid temperature varies between its liquidus TL and solidus temperature TS, i.e.
Ti = TL and T0 = TS. As T0 is also the fixed temperature of the surrounding medium
in this model, this is equivalent to considering a fluid/wall interface pinned near the
bulk freezing temperature TS of the fluid. In making this assumption, we neglect the
heat flux necessary to heat up the wall up to TS.

Following a common approximation, we assume that the crystal fraction is a linear
function of temperature over the melting interval (Hort 1997; Michaut & Jaupart
2006)

φ = TL − T
TL − Ts

= Ti − T
Ti − T0

. (2.8)

With these approximations, the local energy equation (2.7) becomes

∂T
∂t
+ u

∂T
∂r
+w

∂T
∂z
= St

St+ 1
κm
∂2T
∂z2

, (2.9)

where u(r, z, t) and w(r, z, t) are the radial and vertical fluid velocities, St =
(Cp,m(Ti − T0))/L is the Stefan number which represents the ratio of sensible heat
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92 C. Thorey and C. Michaut

between solidus and liquidus to the total energy of the fluid at the liquidus temperature
and κm is the fluid thermal diffusivity κm = km/(ρmCp,m). In particular, equation (2.9)
shows that considering the energy released by crystallization is simply equivalent to
considering a reduced thermal diffusivity κ̃m, which reads

κ̃m = St
St+ 1

κm, (2.10)

in the heat transport equation.
We use an integral balance method of heat transfer theory to approximately solve

equation (2.9). In this method, that is developed below, the vertical structure of the
temperature field is represented by a known function of depth that approximates the
expected solution (Goodman 1958). Previous works on the cooling of lava domes
at the surface have shown that such a reduction efficiently reduces the computation
time while keeping the full dynamics of the unsimplified equation (2.9) well resolved
(Balmforth et al. 2004). We use different kinds of vertical temperature profiles and
show in appendix A that they all lead to very similar results.

2.3.2. Integral balance solution for the temperature T(r, z, t)
We model the cooling of the flow through the growth of two thermal boundary

layers: one growing downward from the top and a second growing upward from the
base. As we assume a fixed temperature at the boundary, the two thermal boundary
layers grow symmetrically and have the same thickness δ(r, t) (figure 1). A popular
approximation for the vertical temperature profile T(r, z, t) is

T =


Tb − (Tb − T0)

(
1− z

δ

)n
0 6 z 6 δ

Tb δ 6 z 6 h− δ
Tb − (Tb − T0)

(
1− h− z

δ

)n

h− δ 6 z 6 h,

(2.11)

where Tb(r, t) is the temperature at the centre of the flow and n> 1 (Balmforth et al.
2004). This approximation captures the essential behaviour of the thermal structure:
cooling is concentrated at the upper and bottom interfaces and cold boundary layers
grow into the fluid interior as it flows. In addition, this profile assures the continuity
of the temperature and heat flux within the flow.

While higher-order contributions to the temperature field, i.e. with n> 2, may also
exist in certain situations, a parabolic profile is the most natural choice and we use
n= 2 in the following (Bercovici 1994; Bercovici & Lin 1996). Nonetheless, the case
of higher-order profiles are treated in appendix A and are shown not to influence the
flow dynamics at least within the level of description adopted here.

While the integral balance solution in (2.11) depends on two variables Tb and
δ that have to be consistently determined, these two variables are not independent.
Indeed, in the flow region where thermal boundary layers exist, i.e. where δ < h/2,
the temperature Tb is equal to the injection temperature Ti and δ is the unknown
(figure 1, r = rb). In contrast, in the flow region where the thermal boundary layers
have connected, which eventually arises at the current front, δ= h/2 and Tb becomes
the unknown (figure 1, r= ra).
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2.3.3. Integral balance equation
We integrate the local energy conservation equation (2.9) separately over the two

thermal boundary layers. The integration over the bottom thermal layer, from z= 0 to
z= δ gives

∂

∂t
(δ(T̄ − Tb))+ 1

r
∂

∂r
(rδ(uT − ūTb))+ δ

(
∂Tb

∂t
+ u

∂Tb

∂r

)
=−κ̃m

∂T
∂z

∣∣∣∣
z=0

+wi(Ti − Tb), (2.12)

where the bar indicates a vertical average over the bottom thermal boundary layer

f = 1
δ

∫ δ

0
f dz, (2.13)

Tb(r, t) is the temperature at z= δ and we have used the nullity of the thermal gradient
at z= δ and the local mass conservation

1
r
∂ru
∂r
+ ∂w
∂z
= 0. (2.14)

The integration over the top thermal layer, from z= h− δ to z= h gives

∂

∂t
(δ(T̄ − Tb))+ 1

r
∂

∂r
(rδ(uT − ūTb))+ δ

(
∂Tb

∂t
+ u

∂Tb

∂r

)
= κ̃m

∂T
∂z

∣∣∣∣
z=h

, (2.15)

where, in addition to (2.14) and the fact that the thermal gradient at z= h− δ is equal
to zero, we have used the kinematic boundary condition at z= h(r, t)

∂h
∂t
+ u

∂h
∂r
=w. (2.16)

Adding (2.12) and (2.15) and using (2.11) with n=2 to derive the conductive fluxes,
we finally obtain the heat balance equation which reads

∂

∂t
(δ(T̄ − Tb))+ 1

r
∂

∂r
(rδ(uT − ūTb))+ δ

(
∂Tb

∂t
+ u

∂Tb

∂r

)
=−2κ̃m

(Tb − T0)

δ
+ wi

2
(Ti − Tb). (2.17)

2.3.4. Final heat transport equation
Equation (2.17) can be rewritten depending on the unknown in the temperature field

δ or Tb.
When Tb = Ti and δ is the variable, equation (2.17) becomes

∂

∂t
(δ(T̄ − Ti))+ 1

r
∂

∂r
(rδ(uT − ūTi))=−2κ̃m

(Ti − T0)

δ
. (2.18)
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When δ = h/2 and Tb is the variable, equation (2.17) becomes

∂

∂t
(h(T̄ − Tb))+ 1

r
∂

∂r
(rh(uT − ūTb))+ h

(
∂Tb

∂t
+ u

∂Tb

∂r

)
=−8κ̃m

(Tb − T0)

h
+wi(Ti − Tb). (2.19)

Expanding the derivatives and using a global statement of mass conservation,
equation (2.19) simplifies and reads

∂

∂t
(hT̄)+ 1

r
∂

∂r
(rhuT)=−8κ̃m

(Tb − T0)

h
+wiTi. (2.20)

Interestingly, equation (2.20) is a particular case of (2.18) if the boundary layers
have merged and δ = h/2. We can then use (2.18) as a simplification of (2.17) to
describe the heat transport within the flow in both cases.

We finally rewrite (2.18) using a new variable ξ = δ(Ti − T̄) which encloses both
unknowns δ and Tb since T̄ depends on Tb following T̄ = (2Tb + T0)/3

∂ξ

∂t
+ 1

r
∂

∂r
(rūξ)− 1

r
∂

∂r
(rδ(uT − ūT̄))= 2κ̃m

(Ti − T0)

δ
. (2.21)

The second term on the left-hand side of (2.21) contains advection by the vertically
integrated radial velocity profile while the third term contains a correction accounting
for the vertical structure of the temperature field. The term on the right is the loss of
heat by conduction in the surrounding medium.

In addition, this formulation in terms of a unique variable ξ allows us to calculate
Tb or δ directly from the expression of ξ using either δ= h/2 or Tb=Ti respectively

Tb(r)=


Ti if ξ 6 ξt

3Ti − T0

2
− 3ξ

h
if ξ > ξt

δ(r)=
{

3ξ if ξ 6 ξt

h(r, t)/2 if ξ > ξt,
(2.22a,b)

with ξt = h(Ti − T0)/6.

2.4. Equation of motion
To obtain an equation for the flow thickness, we first note that, since the boundary
conditions are the same at z= 0 and z= h and the viscosity and velocity u possess
the same symmetry, the vertical structure of the temperature field (2.11) is symmetric
around h/2. Taking advantage of this symmetry, we integrate once (2.3) using
∂u/∂z|z=h/2 = 0 to get

∂u
∂z
= 1
η(r, z, t)

∂P
∂r

(
z− h

2

)
, (2.23)

where η(r, z, t) is given by (2.2). Using no-slip boundary conditions at the top and
bottom of the flow, the global mass conservation can be rewritten as

∂h
∂t
= 1

r
∂

∂r

(
r
∫ h

0

∂u
∂z

z dz
)
+wi, (2.24)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

53
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.538


Elastic-plated gravity currents with a temperature-dependent viscosity 95

and therefore, inserting (2.23) into (2.24) and using (2.5), we obtain the equation for
the flow thickness evolution

∂h
∂t
= 1

r
∂

∂r

(
r
(
ρmg

∂h
∂r
+ B

∂

∂r
(∇4

r h)
)

I1(h)
)
+wi, (2.25)

where

I1(z)=
∫ z

0

1
η(r, y, t)

(
y− h

2

)
y dy. (2.26)

2.5. Average quantities
Solving the equations of motion (2.25) and heat transport (2.21) requires determining
the average quantities u, uT and uT .

Integration of (2.23) using the no-slip boundary condition at z= 0 gives

u(r, z, t)= ∂P
∂r

I0(z), (2.27)

where

I0(z)=
∫ z

0

1
η(r, y, t)

(
y− h

2

)
dy. (2.28)

The average velocity over a thermal boundary layer u then reads

u= 1
δ

∫ δ

0
u dz = u(r, δ, t)− 1

δ

∫ δ

0

∂u
∂z

z dz

= 1
δ

∂P
∂r
(δI0(δ)− I1(δ)), (2.29)

where P(r, z, t) is given by (2.5) and we have used (2.23).
The average rate of heat advected uT over a thermal boundary layer reads

uT = 1
δ

∫ δ

0
uT dz = 1

δ

(
[uG(z)]δ0 −

∫ δ

0
G(z)

∂u
∂z

dz
)

= 1
δ

∂P
∂r

(
G(δ)I0(δ)−

∫ δ

0

1
η(r, y, t)

(
y− h

2

)
G(y) dy

)
, (2.30)

where

G(z)= T0z+ z2

δ
(Tb − T0)− z3

3δ2
(Tb − T0) (2.31)

is an antiderivative of T(z) for 0 6 z 6 δ. More conveniently, equation (2.30) can be
rewritten in terms of I1(z) and a new integral I2(z) as

uT = 1
δ

∫ δ

0
uT dz= 1

δ

∂P
∂r
(G(δ)I0(δ)− T0I1(δ)− I2(δ)), (2.32)

where

I2(z)=
∫ z

0

1
η(r, y, t)

(
y− h

2

)
y2

3δ2
(3δ − y)(Tb − T0) dy. (2.33)

Therefore, using (2.29), (2.32) and T̄ = (2Tb + T0)/3, we finally get

uT − ūT̄ = 1
δ

∂P
∂r

(
2
3
(Tb − T0)I1(δ)− I2(δ)

)
. (2.34)
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2.6. Dimensionless equations
We adopt T = T0 + (Ti − T0)θ to obtain a dimensionless temperature θ(r, z, t), i.e.
the injection temperature Ti is scaled to 1 and the far-field temperature T0 to 0. The
dimensionless integral balance approximation (2.11) with n= 2 becomes

θ(z)=


Θb

(
1−

(
1− z

δ

)2
)

0 6 z 6 δ

Θb δ 6 z 6 h− δ
Θb

(
1−

(
1− h− z

δ

)2
)

h− δ 6 z 6 h,

(2.35)

where Θb = (Tb − T0)/(Ti − T0). Equations (2.21) and (2.25) are non-dimensionalized
using a horizontal scale L, a vertical scale H and a time scale T given by

L=
(

B
ρmg

)1/4

(2.36)

H=
(

12ηhQ0

ρmgπ

)1/4

(2.37)

T = πL2H
Q0

, (2.38)

where L represents the flexural wavelength of the upper elastic layer (Michaut 2011),
H the characteristic thickness of an isoviscous constant flux gravity current with
viscosity ηh (Huppert 1982a) and T the characteristic time to fill up a cylindrical
flow of radius L and thickness H at a constant rate Q0. In addition, we can define a
horizontal velocity scale U =L/T = (ρmgH3)/(12ηhL) and a pressure scale ρmgH.

The dimensionless variable ξ reads ξ = δ(1 − θ̄ ) and the dimensionless model
summarizes as followed

∂h
∂t
− 12

r
∂

∂r

(
rI1(h)

∂P
∂r

)
=H

(γ
2
− r
) 32
γ 2

(
1
4
− r2

γ 2

)
(2.39)

∂ξ

∂t
+ 1

r
∂

∂r
(r(ūξ −Σ))= 2Pe−1Θb

δ
, (2.40)

with

Θb(r)=


1 if ξ 6 ξt = h

6
3
2
− 3ξ

h
if ξ > ξt = h

6

δ(r)=


3ξ if ξ 6 ξt = h

6

h(r, t)/2 if ξ > ξt = h
6

(2.41a,b)

u= 12
δ

∂P
∂r
(δI0(δ)− I1(δ)) (2.42)

Σ = ∂P
∂r
(8I1(δ)Θb − 12I2(δ)) (2.43)

and

I0(z)=
∫ z

0
(ν + (1− ν)θ(r, y, t))

(
y− h

2

)
dy (2.44)
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I1(z)=
∫ z

0
(ν + (1− ν)θ(r, y, t))

(
y− h

2

)
y dy (2.45)

I2(z)=
∫ z

0
(ν + (1− ν)θ(r, y, t))

(
y− h

2

)
y2

3δ
(3δ − y) dy, (2.46)

where P= h+ ∇4
r h is the dimensionless dynamic pressure, γ the dimensionless size

of the conduit is set to 0.02 in the following (Michaut 2011), H is the Heaviside
function and hf , Pe and ν are the three dimensionless numbers that control the
dynamics of the flow

hf = h̃f

H
(2.47)

Pe= H2

κ̃mT
(2.48)

ν = ηh

ηc
, (2.49)

hf is the dimensionless thickness of the prewetting film; it is the sole parameter
governing the evolution of the dimensionless isoviscous current (Lister et al. 2013).
For practical purposes, we use hf = 5 × 10−3 in the main text and show results
and scalings for variable hf in appendix C. Pe is a reduced Péclet number which
incorporates the energy released by crystallization; it compares the vertical diffusion
of heat to the horizontal advection in the interior. Finally, ν is the viscosity contrast,
i.e. the ratio between the hottest and coldest viscosity.

The expression of I0(δ), I1(h), I1(δ) and I2(δ), as well as the numerical scheme used
to solve equations (2.39) and (2.40), are given in appendix B for n= 2.

2.7. Basic behaviour of an isothermal flow
For a constant injection rate, a small prewetting film thickness, i.e. hf � 1 and a
viscosity contrast ν set to 1, the numerical resolution of (2.39) shows the two classical
asymptotic spreading regimes that were previously described by Michaut (2011), Lister
et al. (2013) and Hewitt et al. (2015).

At early times, when R� L, gravity is negligible and the interior has a uniform
pressure P=∇4

r h. The flow is bell shaped and its thickness is given by

h(r, t)= h0(t)
(

1− r2

R2(t)

)2

, (2.50)

with h0(t) the flow thickness at the centre. In this regime, Lister et al. (2013) have
shown that the spreading is controlled by the propagation of a peeling by bending
wave at the flow front whose velocity c, which critically depends on the flow viscosity
η, reads

c= dR
dt
= Bh̃f

1/2

12η

( κ

1.35

)5/2
(2.51)

in dimensional form, where κ is the curvature of the interior solution. Using η = ηh
in (2.51), the dimensionless flow radius and height are given by (figure 2)

h0(t)= 0.65h−1/11
f t8/22, (2.52)

R(t)= 2.13h1/22
f t7/22. (2.53)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

53
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.538


98 C. Thorey and C. Michaut

100

10–1

10–2

101

100

10–1

10–5 10–4 10–3 10–2 10–1 100 101 102 103 10–5 10–4 10–3 10–2 10–1 100 101 102 103

tt

R

(a) (b)

FIGURE 2. (a) Dimensionless thickness at the centre h0 versus dimensionless time t.
Dotted lines: scaling laws in the bending regime h0 = 0.65h−1/11

f t8/22 and in the gravity
regime where h0 tends to a constant. (b) Dimensionless radius R versus dimensionless time
t. Dotted lines: scaling laws in the bending regime R = 2.13h1/22

f t7/22 and in the gravity
current regime R= 1.10t1/2.

In contrast, when the radius R becomes larger than 4L (R� L), the fluid weight
becomes the dominant pressure contribution, i.e. P = h and the current enters a
classical gravity current regime where the dimensional radius is given by

R(t)= 0.715
(
ρgQ3

0

12η

)1/8

t1/2 (2.54)

and the thickness h0 tends to a constant (Huppert 1982b; Michaut 2011; Lister et al.
2013). Taking η= ηh in (2.54), the dimensionless radius R(t) is given by (figure 2)

R(t)= 1.10t1/2. (2.55)

In the following, we study the effect of cooling on the flow dynamics in both
regimes separately.

3. Evolution in the bending regime

We first concentrate on the case in which only bending contributes to the pressure.
We then numerically solve and study the system composed by (2.39) and (2.40) where
we remove the gravitational contribution in the pressure P, i.e. P=∇4

r h. The thin film
of fluid is initially cold.

3.1. Qualitative description
3.1.1. Thermal structure for an isoviscous flow, effect of Pe

The current cools by conduction and thermal boundary layers form at the contact
with the surrounding medium. These boundary layers first connect at the tip of the
flow, where the small thickness induces an important cooling (figure 3). A region of
cold fluid forms at the front and slowly grows with time.
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FIGURE 3. Snapshots of the flow thermal structure θ(r, z, t) at different times indicated on
the plot. Dashed lines represent the thermal boundary layers. Solid grey lines are isotherms
for θ = 0.2, 0.4, 0.6 and 0.8. Here, the temperature field is decoupled from the dynamics,
i.e. ν = 1 and Pe= 100.

The flow is composed of a hot core, that contains a significant amount of heat and
is lately referred to as the flow thermal anomaly, and a cold front. The radius Rc(t) of
the thermal anomaly is defined as the radius where Θb= 0.01. As the current thickens
with time, a balance between advection and diffusion of heat is never reached in the
current and the extent of the thermal anomaly grows with time. However, it spreads
slower than the current itself and the extent of the cold fluid region at the tip, i.e.
the region defined by (R−Rc)(t), grows. For instance, for Pe= 100, while the region
of cold fluid extends over approximately 10 % of the current at t = 0.5, it extends
over approximately 20 % at t = 10 (figure 3). The smaller the number Pe, the more
important the conductive cooling and the larger the cold region is (figure 4).

3.1.2. Thickness and temperature profile, effect of ν
When accounting for the temperature dependence of the viscosity, the region of cold

fluid at the tip is marked by a higher viscosity which enhances flow thickening at the
expense of spreading. The larger the viscosity contrast, the larger the aspect ratio h0/R
(figure 4). For instance, for the same value of Pe= 1, while the aspect ratio is 0.7 for
ν = 1 at t = 10, it is 4.2 at the same time for ν = 10−3 (figure 4). Nevertheless, the
shape of the flow remains essentially self-similar, i.e. well described by (2.50) and
cannot be differentiated from the shape of an isoviscous current if the thickness and
the radial coordinates are rescaled by the thickness at the centre h0(t) and radius R(t)
(figure 5).

While the flow thermal structure is similar to the isoviscous case (figure 4), the
important thickening induced by the viscosity increase tends to limit heat loss to the
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FIGURE 4. Snapshots of the flow thermal structure θ(r, z, t) for different set (ν, Pe) with
ν = 1, 0.1, 0.01 and 0.001 and Pe= 1, 10, 100 and 1000 at t= 10. While Pe controls the
thermal structure of the flow, it has only a small influence on the flow aspect ratio which
is controlled by ν.

surrounding and to increase the size of the thermal anomaly at a given time. For
instance, for Pe= 1 at t= 10, while the thermal anomaly extends over approximately
30 % of the flow for ν = 1, it extends over more than 50 % for ν = 10−3 (figure 4).

As expected, a larger Péclet number leads to a larger thermal anomaly (figure 4).
However, although different Péclet numbers cause very different thermal structures, the
influence of the Péclet number on the flow morphology is small, much smaller than
the effect of the viscosity contrast ν (figure 4). For instance, at t = 10 for ν = 10−3,
the thermal anomaly is still attached to the tip of the current for Pe= 1000 whereas
it makes approximately 50 % of the current for Pe= 1; but, the thickness h0 and the
radius R in both cases differ only by a few per cent (figure 4). This confirms that, in
this regime, the spreading of the flow is not controlled by the mean temperature or
average viscosity of the flow, but by the local dynamics at the flow front, as suggested
by Lister et al. (2013).
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FIGURE 5. (a) Thickness normalized by the thickness at the centre h(r, t)/h0(t) versus
radial axis normalized by the current radius r/R(t) at different times indicated on the plot
for Pe= 1.0 and ν = 1.0. The solid lines represent the thickness profiles and the dashed
lines represent the thermal boundary layers. The predicted morphology (2.50) (dotted line)
is also plotted for comparison. (b) Same plot but for ν = 10−3.

3.2. Quantitative description
3.2.1. Evolution of the thickness and the radius

In this bending dominated regime, the dynamics shows three different spreading
phases. The thickness as well as the radius first evolve like an isoviscous flow, i.e.
h0∝ t8/22 (2.52) and R∝ t7/22 (2.53) (figure 6). In a second phase, thickening occurs at
the expense of spreading and the dynamics deviates from the isoviscous case. Finally,
the current returns to an isoviscous-like dynamics but offset from the hot isoviscous
scaling law by a factor that depends on the viscosity contrast (figure 6).

These different propagation phases thus reflect variations in the spreading rate of
the current. As described in § 2.7, the propagation speed of the front is governed by
local conditions in the peeling region and is given in dimensional form by (2.51); it
decreases when the viscosity η increases.

Inserting the cold viscosity ηc in place of η into (2.51), we find that the
dimensionless thickness and radius for a cold isoviscous current evolve as

h0 = 0.65ν−2/11h−1/11
f t8/22, (3.1)

R= 2.13ν1/11h1/22
f t7/22. (3.2)

Both (3.1) and (3.2) fit very well the third asymptotic phase of the dynamics
(figure 6).

3.2.2. Flow effective viscosity
The effective viscosity of the current, i.e. the dimensionless viscosity ηe which

controls the current spreading rate in (2.51), is obtained by substituting ν by 1/ηe(t)
in (3.1) and reads

ηe(t)=
(

h0(t)t−8/22

0.65h−1/11
f

)11/2

, (3.3)

where h0(t) is given by our simulations.
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FIGURE 6. (a) Dimensionless thickness at the centre h0 versus dimensionless time
t for different sets (ν, Pe) indicated on the plot. Dotted lines: scaling laws h0 =
0.65h−1/11

f ν−2/11t8/22 for ν= 1.0 and 0.01. (b) Dimensionless radius R versus dimensionless
time t for the same sets (ν, Pe). Dotted lines: scaling laws R = 2.13h1/22

f ν1/11t7/22

for ν = 1.0 and 0.01. (c) Dimensionless effective viscosity versus dimensionless
time t for different Pe and ν = 0.01. Solid lines: dimensionless effective viscosity
ηe defined by (3.3). Dotted lines: dimensionless average flow viscosity defined by
ηa(t) = (1/V(t))

∫ R(t)
0

∫ h(r,t)
0 rη(θ) dr dz where V(t) is the current volume. Dashed lines:

dimensionless average front viscosity ηf defined by (3.4).

As suggested by the results of § 3.2.1, the effective viscosity is first low (figure 6c).
It rapidly increases in the second phase of propagation and finally tends to the cold
viscosity 1/ν in the third phase. The effective viscosity is however much larger than
the average flow viscosity (figure 6c).

We calculate the average viscosity ηf (t) over a front region of size L in between
R(t)− L and R(t)

ηf = 1
Vf

∫ R

R−L

∫ h

0
rη(θ) dr dz, (3.4)

where Vf (t) is the volume of this region. The numerical evaluation of ηf (t) for
L= 4Lp(t), where Lp is the peeling length scale defined by Lister et al. (2013), given
by

Lp = 1.08h13/22
f η−2/11

e t3/22, (3.5)

fits relatively well the behaviour of the effective viscosity ηe (figure 6c).
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FIGURE 7. (a) Extent of the cold fluid region R(t) − Rc(t) versus dimensionless time
for different combinations (ν, Pe) indicated on the plot. (b) Same plot but where we
rescale the extent of the cold fluid region by Pe−1/3ν7/33. Dotted line: scaling law
(R(t)− Rc(t))Pe1/3ν−7/33 = 2.1h7/66

f t9/22.

Therefore, the effective viscosity, and thus the spreading rate, are controlled by the
average viscosity of a small region at the front of size L=O(Lp). Note that in the first
flow phase, the effective viscosity ηe, and thus the average viscosity of the peeling
region, is larger than 1 as the current has to accommodate the cold fluid initially
present in the prewetting film. The effective viscosity is initially equal to 1 in the
case of an initially hot prewetting film (see appendix C).

Average local thermal conditions in the peeling region thus control the spreading
rate in the bending regime.

3.2.3. Evolution of the thermal condition at the tip
The thermal anomaly is first advected at the same velocity as the current itself, i.e.

R(t)= Rc(t) (figure 7a). After a time that depends on Pe and ν, the flow front leaves
the thermal anomaly behind and R(t)− Rc(t) increases with time (figure 7).

In the bending regime, the interior pressure is constant and the thickness profile
h(r, t) is given by (2.50) (figure 5). The radius of the thermal anomaly Rc(t) is
theoretically taken as corresponding to the radius in the flow where heat advection
locally balances heat loss, i.e.

d
dt
(Θbh)∼ Pe−1Θb

h
. (3.6)

Using the thickness profile (2.50), (3.6) becomes

α2

(
1+ Rc

R

)2 (
Θb

dh0

dt
+ h0

dΘb

dt

)
+ 4h0R2

cΘb

R3

dR
dt
α

(
1+ Rc

R

)
∼ Pe−1Θb

α2

(
1+ Rc

R

)2

h0

,

(3.7)

where α(t) = (R(t) − Rc(t))/R(t) is the normalized region beyond r = Rc(t). In the
limit α� 1, i.e. Rc/R ∼ 1, the time derivative is locally dominated by its advective
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part (∝α) and we finally get

α3 ∼ Pe−1

h2
0(t)

R
∂R
∂t

. (3.8)

Substituting h0(t) and R(t) by their respective scaling laws (3.1) and (3.2), the size
evolution of the normalized cold front region α reads

α(t)∼ Pe−1/3ν4/33h2/33
f t1/11, (3.9)

which is equivalent to

R(t)− Rc(t)∼ Pe−1/3ν7/33h7/66
f t9/22. (3.10)

The predicted scaling law for the evolution of the cold fluid region (3.10) closely
fits the numerical simulations for ν < 1 and for different Péclet numbers (figure 7). In
particular, this scaling perfectly fits the simulations with a numerical prefactor equal
to 2.1.

3.2.4. Summary of the bending regime dynamics
The spreading rate of the current is controlled by the average viscosity in the

peeling region which depends on the average local thermal conditions at the tip.
At the initiation of the flow, heat advection is larger than conductive heat losses in

the peeling region, the thermal anomaly reaches the flow front and the spreading rate
is similar to the one of an isoviscous hot current.

Once heat loss in the peeling region becomes larger than heat advection, the current
tip leaves the thermal anomaly behind. The average temperature of the peeling region
decreases and the effective viscosity rapidly increases. Setting (R−Rc)(t) (3.10) equal
to the peeling length scale Lp(t) (3.5), taking ν = 1 and inverting for time, we found
that the time tb2 to reach the second thermal phase reads

tb2 = 7× 10−3Pe11/9h16/9
f , (3.11)

where the numerical prefactor is chosen from the numerical solutions. When rescaling
the time of the simulations by tb2, the different simulations enter the second phase
simultaneously (figure 8a).

Finally, when the peeling region becomes entirely cold, i.e. R(t) − Rc(t)� Lp(t),
the flow behaves as an isoviscous cold current. Repeating the same exercise as before
while keeping the viscosity contrast ν, we found that the time tb3 for the flow to enter
this third phase reads

tb3 = 14Pe11/9h16/9
f ν−1/9, (3.12)

where the numerical prefactor is chosen from the numerical solutions. When rescaling
the time of the simulations by tb3, the different simulations enter the third phase
simultaneously (figure 8b).

4. Evolution in the gravity current regime
To study the late time behaviour, we concentrate on the case where only the weight

of the fluid contributes to the pressure. We numerically solve and study the system
composed by (2.39) and (2.40) where we remove the bending contribution in the
pressure P, i.e. P= h. We follow the same framework as in § 3.
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FIGURE 8. (a) Dimensionless thickness at the centre h0/h0(tb2) versus dimensionless time
t/tb2 , where tb2 is the time to enter the second thermal phase of the bending regime (3.11),
for different sets (ν, Pe) indicated on the plot. Dotted line: scaling laws h0(t)/h0(tb2) =
(t/tb2)

8/22. (b) Dimensionless thickness at the centre h0/h0(tb3) versus dimensionless time
t/tb3, where tb3 is the time to enter the third thermal phase of the bending regime (3.12),
for different sets (ν, Pe) indicated on the plot. Dotted line: scaling laws h0(t)/h0(tb3) =
(t/tb3)

8/22.

4.1. Qualitative description
4.1.1. Thermal structure for an isoviscous flow, effect of Pe

As in the bending regime, the bulk of the fluid first expands at the injection
temperature and Rc(t) = R(t). As the bottom and top cool by conduction, thermal
boundary layers form at the contact with the surrounding medium and connect at the
tip of the current. However, in the gravity current regime, for a constant viscosity, the
thickness of the current tends to a constant. Therefore, when conduction in the sur-
rounding medium balances the input of heat at the centre and the flow front has
already left the thermal anomaly behind, its extent approaches a steady state (figure 9).

The radius of the steady-state thermal anomaly Rc also largely depends on Pe in
this regime: the larger the number Pe, the larger the radius Rc (figure 10).

4.1.2. Thickness and temperature profile, effect of ν
For a current with a viscosity that depends on temperature, as soon as the cooling

becomes more effective and the thermal anomaly detaches from the current tip, the
spreading slows down and flow thickening is enhanced (figure 10). For instance, for
Pe= 1, while the aspect ratio h0/R is approximately 0.12 for ν = 1 at t = 200, it is
∼1 for ν= 10−3 (figure 10). The shape of the current is not self-similar and the front
steepens when the viscosity increases in comparison to the isoviscous case as noted by
Bercovici (1994). However, when the current becomes much larger than the thermal
anomaly, the current side slumps to become less steep (figure 10) and recovers a shape
similar to an isoviscous flow with a cold viscosity.

The thermal structure is similar to the isoviscous case (ν = 1). In particular, after
a time that depends on Pe, the thermal anomaly approaches a steady-state profile
(figure 10). As in the bending regime, the thickening at the centre limits heat loss to
the surrounding for large values of the viscosity contrast ν. Therefore, the extent of
the thermal anomaly in the steady state is slightly larger for a larger viscosity contrast.
For instance, for Pe= 10 at t= 200, while the thermal anomaly extends over less than
2 for ν = 1, it reaches ∼3 for ν = 10−3.
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FIGURE 9. Snapshots of the flow thermal structure θ(r, z, t) at different times indicated
on the plot. Dashed lines: thermal boundary layers. Here, ν = 1 and Pe= 100.

The flow morphology is much more sensitive to Pe in the gravity current regime
than in the bending regime and different Pe lead to different current morphologies for
a given ν (figure 10). For instance, for ν=10−3 at t=200, the thermal anomaly is still
attached to the tip for Pe= 103 and the aspect ratio of the flow h0/R is close to 0.15.
In contrast, for Pe = 1, the thermal anomaly radius is less than 30 % of the current
radius and the dimensionless aspect ratio of the flow is much larger h0/R = 1.15
(figure 10).

4.2. Quantitative description
4.2.1. Evolution of the thickness and radius

As in the bending regime, the dynamics in the gravity current regime shows
three different spreading phases. The thickness as well as the radius first follow the
isoviscous scaling laws for a given hot viscosity ηh, i.e. h0 approaches a constant
and R ∝ t1/2 (figure 11). In a second phase, the thickness rapidly increases and the
spreading slows down. Finally, the current returns to an isoviscous-like dynamics but
offset from the hot isoviscous scaling law by a factor that depends on the viscosity
contrast (figure 11). In particular, replacing η by ηc instead of ηh in (2.54), we find
that the dimensionless radius R(t) in the third flow phase matches the one of a cold
viscosity current (4.1) (figure 11)

R(t)= 1.10ν1/8t1/2. (4.1)

As in the bending regime, these spreading rate variations reflect variations in the
flow effective viscosity, from the hot to the cold viscosity. However, in that case, the
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FIGURE 10. Snapshots of the flow thermal structure θ(r, z, t) for different sets (ν, Pe)
with ν = 1, 0.1, 0.01 and 0.001 and Pe= 1, 10, 100 and 1000 at t= 200.

effective viscosity is the average flow viscosity. Using the predicted scaling law for
the radius R(t) (4.1) as a function of νe to derive the effective viscosity 1/νe, we show
that the current average viscosity matches the effective flow viscosity almost perfectly
(figure 11c).

4.2.2. Characterization of the thermal anomaly
The thermal anomaly is first advected at the same velocity as the current itself,

i.e. Rc(t)/R(t) = 1 (figure 12a). After a time that depends on Pe and ν, the flow
front leaves the thermal anomaly behind and the anomaly extent slowly approaches
a steady-state profile as the viscosity becomes closer to the cold viscosity (figures 9,
10 and 12).

At the steady-state radius Rc of the thermal anomaly, a balance between heat
advection and diffusion in the surrounding medium gives

Θb
U0

Rc
∼ Pe−1

h2
0
Θb, (4.2)
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FIGURE 11. (a) Dimensionless thickness at the centre h0 versus dimensionless time t for
different sets (ν, Pe) indicated on the plot. Dotted lines represent the scaling laws h0 =
2.1ν−1/4 for ν= 1.0 and 10−2. (b) Dimensionless radius R versus dimensionless time t for
the same sets (ν, Pe). Dotted lines represent the scaling laws R= 1.1ν1/8t1/2 for ν = 1.0
and 10−2. (c) Dimensionless effective viscosity versus dimensionless time t for different Pe
and ν= 0.01. Solid lines: effective viscosity ηe(t)= (R(t)/1.1t1/2)−8. Dashed lines: average
flow viscosity defined by ηa(t)= (1/V(t))

∫ R(t)
0

∫ h(r,t)
0 rη(θ) dr dz where V(t) is the current

volume. Note that the irregularities at early times, which are enhanced by the log–log
representation, come from a slight decrease of the effective viscosity when the current
begins to thickens.

where U0 is a mean dimensionless velocity of advection. For a gravity current, in
contrast to the bending regime, the thickness h0 approaches a constant. Taking
U0 as a horizontal redistribution of the dimensionless injection rate at r = Rc,
i.e. U0 = 1/(Rch0), and using the scaling for the thickness of a cold isoviscous
current h0 ∼ ν−1/4, we obtain

Rc ∼ Pe1/2ν−1/8 (4.3)

and hence

Rc

R(t)
∼ Pe1/2ν−1/4t−1/2, (4.4)

where we have used (4.1).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

53
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.538


Elastic-plated gravity currents with a temperature-dependent viscosity 109

10–2 10–1 100 102 103101 104 10–1 100 102 103101 104

t t

10–1

100

10–2

(a) (b)100

10–1

FIGURE 12. (a) Normalized thermal anomaly radius Rc(t)/R(t) versus dimensionless
time for different combinations (ν, Pe) indicated on the plot. (b) Same plot but where
we rescale the normalized thermal anomaly radius Rc(t)/R(t) by Pe1/2ν−1/4. Dotted line:
Pe−1/2ν1/4Rc(t)/R(t)= 0.8t−1/2.

This scaling law fits our simulation for a prefactor equal to 0.8 (figure 12): when the
thermal anomaly enters the steady state, its radius remains constant and the normalized
radius Rc(t)/R(t) evolves as the inverse of the current radius, i.e. as t−1/2 (figure 12).
Furthermore, both the dependence with Pe and ν vanish when rescaling Rc/R(t) by
Pe1/2ν−1/4 in the steady state (figure 12b).

4.2.3. Summary of the gravity regime dynamics
In the gravity regime, the current spreading rate is controlled by the flow average

viscosity. Therefore, it strongly depends on the extent of the thermal anomaly.
At flow initiation, the thermal anomaly is advected at the same velocity as the

current itself and the current spreads with a hot viscosity ηh. Once heat loss over
the current balances the heat input at the centre, the current tip leaves the thermal
anomaly behind, the average viscosity increases and the spreading rate decreases. The
time tg2 to enter this second phase scales with the time to cool the hot current (ν= 1)
by conduction and reads

tg2 = 0.65Pe, (4.5)

where the numerical prefactor is chosen from the numerical solutions. Indeed, when
rescaling the time of the simulations by tg2, the different simulations enter the second
phase simultaneously (figure 13a).

Finally, when the thermal anomaly becomes small compared to the current, i.e.
Rc/R� 1, the average flow temperature is close to zero and the current behaves as
an isoviscous cold current. The time tg3 to enter this third phase scales as the time
to cool an isoviscous cold gravity current and reads

tg3 = 10Peν−1/2, (4.6)

where the numerical prefactor is chosen from the numerical solutions. Indeed, when
rescaling the time of the simulations by tg3, the different simulations enter the third
phase simultaneously (figure 13b). The time scales tg2 (respectively tg3) can be derived
by inverting (4.4) for t for a fixed value of Rc/R and setting ν = 1 (respectively
keeping ν) in a similar way that we derive tb2 (respectively tb3) in § 3.2.4.
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FIGURE 13. (a) Dimensionless radius at the centre R/R(tg2) versus dimensionless time
t/tg2, where tg2 (4.5) is the time to enter the second thermal phase of the gravity regime,
for different sets of (ν, Pe) indicated on the plot. Dotted line: scaling law R/R(tg2) =
(t/tg2)

1/2. (b) Dimensionless radius R/R(tg3) versus dimensionless time t/tg3, where tg3
(4.6) is the time to enter the third thermal phase of the gravity regime, for different sets
(ν, Pe) indicated on the plot. Dotted line: scaling law R/R(tg3)= (t/tg3)

1/2.

5. Different evolutions with bending and gravity

For an isoviscous flow with hf� h� dc, in between the bending and gravity regime,
Lister et al. (2013) also describe a short intermediate regime where the peeling by
bending continues to control the propagation but where the flow shows an interior flat-
topped region due to the increasing effect of gravity. For simplicity, we only consider
the two asymptotic regimes. At the transition, the isoviscous current is characterized
by R∼ 4 and for hf = 0.005, h0 ∼ 2 and t∼ 10.

For a temperature-dependent viscosity current and for any values of hf , ν and Pe,
the current always transitions to the gravity regime when R∼ 4 (figure 14). However,
the current thickness as well as the time to reach this transition naturally depends
on the bending thermal phase of the current at the transition, i.e. on the combination
of (ν, Pe) considered. For instance, for ν = 0.01 and a small value of Pe= 1.0, the
current transitions to the gravity regime while in the third bending thermal phase. The
transition occurs much later and the current is much thicker than for an isoviscous
current (tt ∼ 50 and h0(tt)∼ 8, figure 14). In contrast, for ν = 0.01 and a large value
of Pe= 105, the current spreads in the first thermal bending phase for a longer period
of time; it reaches the transition sooner at a smaller thickness while in the second
thermal bending phase, i.e. tt ∼ 30 and h0(tt)∼ 5.

Overall, the time for the current to reach the transition tt is the time for its radius
to reach R(t) = 4. Setting (3.2) equal to 4, we obtain tt = 6.5η2/7

e h−1/7
f where ηe is

the effective viscosity of the current. This transition time depends on the effective
viscosity and is bounded by two values th

t < tt < tc
t . If the current transitions to the

gravity regime while in the first thermal bending phase, then ηe≈ 1 and th
t = 6.5h−1/7

f ;
if the current transitions to the gravity regime while in the third thermal bending
phase, then ηe ≈ ν−1 and tc

t = 6.5ν−2/7h−1/7
f (table 1).
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FIGURE 14. (a) Dimensionless thickness at the centre h0 versus dimensionless time for
different sets (ν, Pe) indicated on the plot and an initially hot prewetting film. The grey
line represents the isoviscous case ν = 1. (b) Same plot but for the dimensionless radius
R. These numerical solutions were obtained by solving (2.39) and (2.40) with the pressure
P containing both the gravity and the bending contributions.

Name From To Expression

tt Bending Gravity 6.5η2/7
e h−1/7

f

th
t Bending Gravity 6.5h−1/7

f

tc
t Bending Gravity 6.5ν−2/7h−1/7

f

Bending regime
tb2 Phase 1 Phase 2 7× 10−3Pe11/9h16/9

f

tb3 Phase 2 Phase 3 14Pe11/9ν−1/9h16/9
f

Gravity regime
tg2 Phase 1 Phase 2 0.65Pe
tg3 Phase 2 Phase 3 10Peν−1/2

TABLE 1. Summary of the different transition times. tt is the transition time between
bending and gravity which is bound by th

t , when the current transitions in the first bending
thermal phase, and tc

t , when the current transitions in the third bending thermal phase. tb2
(respectively tb3) represents the time to transition from phase 1 to phase 2 (respectively
from phase 2 to phase 3) in the bending regime. tg2 (respectively tg3) represents the time
to transition from phase 1 to phase 2 (respectively from phase 2 to phase 3) in the gravity
regime.

The subsequent evolution in the gravity regime also depends on the combinations
of (ν, Pe) considered. Indeed, in contrast to the bending regime where the effective
viscosity is that of a small region at the tip, the effective viscosity is the average flow
viscosity in the gravity regime. Therefore, the flow effective viscosity can drastically
decrease when entering the gravity regime. In particular, a current in the ith bending
thermal phase can transition in the jth gravity thermal phase with j 6 i.

Overall, five evolution scenarios are possible depending on the combination (ν, Pe)
considered and are depicted in the phase diagram proposed in figure 15.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

53
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.538


112 C. Thorey and C. Michaut

100

10–1

10–2

10–3

10–4

10–5

10–6

10–7

10–8

10–9

100 102 103101 104 105 106 107 10810–2 10–1

FIGURE 15. Phase diagram for the evolution with bending and gravity for different
combinations (ν, Pe) and a given value of hf = 0.005. BiGj refers to the case where the
current transitions from the ith bending thermal phase to the jth gravity thermal phase
where i and j ∈ {1, 2, 3}.

6. Summary and conclusions
Isothermal elastic-plated gravity currents show two asymptotic regimes. At early

times, the gravity is negligible and the peeling of the front is driven by the bending
of the overlying layer. In contrast, at late times, the own flow weight becomes the
driving pressure and the current evolves in a gravity current regime. In this study, we
have developed a theory for the evolution of an elastic-plated gravity current with a
temperature-dependent viscosity and studied the response of the flow to its cooling in
each regime separately.

In the bending regime, we show that the flow effective viscosity, or equivalently,
its spreading rate, is critically controlled by average local thermal conditions in the
peeling region. We identify three main propagation phases. In a first phase, the thermal
anomaly grows as the current radius, the peeling region remains relatively hot and the
dynamics is close to the hot isoviscous case. In a second phase, a cold front grows and
the thermal anomaly detaches from the radius, the temperature in the peeling region
rapidly decreases, the current slows down and thickens. Finally, in a third phase, the
peeling region is entirely cold and the dynamics returns to an isoviscous propagation
but with a cold viscosity. We propose a scaling law for the behaviour of the cold fluid
region (R− Rc)(t) in terms of the dimensionless numbers of the system (Pe, ν) and
characterize the transition time scales in between the different thermal bending phases.

The evolution of the spreading rate is similar in the gravity regime with three
different thermal phases: a first phase of hot isoviscous spreading followed by a
second phase of important thickening and a third phase of isoviscous spreading
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but with a cold viscosity. However, the spreading rate depends on the average flow
viscosity in this regime. In particular, flow propagation is controlled by the behaviour
of the thermal anomaly itself. We propose a scaling law for the relative size of the
thermal anomaly (R/Rc)(t) in terms of Pe and ν and characterize the different thermal
phase transitions in this regime as well.

The overall evolution of an elastic-plated gravity current therefore depends on the
relative phase changes within each regime and on the transition between the bending
and the gravity regime itself which occurs when R(t)∼ 4, whatever the value of hf , ν
and Pe. We finally provide a general phase diagram which summarizes the different
evolution scenarios as a function of the dimensionless parameters.
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Appendix A. Influence of the vertical temperature structure
The vertical temperature field used in this study (2.35) assumes a quadratic

decrease of the temperature within the thermal boundary layers and hence, a parabolic
temperature profile where the two thermal boundary layers have merged. Here, we
test whether higher-order contributions (i.e. n > 2 in (2.11)) would modify the loss
and advection of heat and thereby test the accuracy of our initial assumptions. We
show in the following that the details of the vertical temperature structure does not
influence our results.

When considering n>2, the vertical temperature profile tends to flatten at the centre
and sharpen toward the top and bottom thermal boundary layers. Therefore, while the
fluid is more efficiently advected toward the tip of the current over a somewhat larger
central zone, heat loss at the boundary is also larger than for the case n= 2 and, in
the end, both effects compensate for each other. The scaling analysis proposed for the
extent of the cold fluid region (R− Rc)(t) (§ 3.2.3) in the bending regime and of the
thermal anomaly (Rc/R)(t) in the gravity regime (§ 4.2.2) still apply. The numerical
prefactors observed for these quantities are only slightly modified (figure 16). For
instance, the extent of the cold fluid region appears slightly larger for larger values
of n, because the heat loss is then increased, especially for large Pe (figure 16). This
slight difference has clearly a negligible effect on the evolution of the spreading
rate which appears independent of the choice of the vertical temperature structure
(figure 16).

Overall, the precise shape of the temperature profile, as long as the symmetry is
preserved and the boundary layers accounted for, has only little influence on our
results. Since the boundary conditions are symmetric here, this simplified model
allows to account for a vertical temperature structure including a hotter core within
the flow, which was not possible in Balmforth et al. (2004) given the asymmetry
of the considered cooling process; this constituted the main difference in between
the thermal structure obtained from the simplified model and the full heat transport
equation.

Appendix B. Numerical scheme
The coupled nonlinear partial differential equations (2.39) and (2.40) are solved

on a grid much larger than the flow itself and that is shifted at the centre to
avoid problems arising from the axisymmetrical geometry. To solve equations (2.39)
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FIGURE 16. (a–c) Dimensionless thickness at the centre h0 (a,d), radius (b,e) and extent
of the cold fluid region R(t) − Rc(t) (c, f ) versus dimensionless time t for different
exponents n indicated on the plot, ν = 0.01 and Pe = 1.0. (d–f ) Same plots but for
Pe= 1000.

and (2.40), we use a finite-difference scheme for spatial discretization coupled with an
implicit backward Euler scheme in time. In addition, since each equation is nonlinear,
we use a Newton–Raphson method to iterate towards the solution at each time step
for both equations. Unless specified differently, we begin the computation with h= hf ,
Θb = 0 and δ = h/2 over the whole domain. In addition, we impose

∂h
∂r

∣∣∣∣
r=0

= ∂P
∂r

∣∣∣∣
r=0

= 0 (B 1)

and h= hf at the end of the grid.
The expressions of I0(δ), I1(h), I1(δ) and I2(δ) are the following

I0(δ)= δ

12
(ν(6δ − 6h)+ (1− ν)Θb(5δ − 4h)) (B 2)

I1(h)= 1
60
(5h3ν + (1− ν)Θb(−4δ3 + 10δ2h− 10δh2 + 5h3)) (B 3)

I1(δ)= δ2

120
(ν(40δ − 30h)+ (1− ν)Θb(36δ − 25h)) (B 4)

I2(δ)= δ
2Θb

2520
(ν(462δ − 315h)+ (1− ν)Θb(428δ − 280h)) (B 5)

and therefore, equations (2.42) and (2.43) reduce to

u= δ

10
(ν(20δ − 30h)+ (1− ν)Θb(14δ − 15h)) (B 6)

Σ = δ
2Θb

210
(ν(98δ − 105h)+ (1− ν)Θb(76δ − 70h)). (B 7)
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FIGURE 17. (a) Dimensionless thickness at the centre h0h1/11
f versus dimensionless time

t for different hf indicated on the plot, ν = 0.01 and Pe = 100. Dashed line represents
the scaling law h0h1/11

f = 0.65ν−2/11t8/22. (b) Dimensionless radius R versus dimensionless
time t for the same hf . Dashed line represents the scaling law Rh−1/22

f = 2.13ν1/11t7/22.
(c) Extent of the cold fluid region (R(t)− Rc(t))h

−7/66
f versus dimensionless time for the

same hf . Dashed line: scaling law (R(t)− Rc(t))h
−7/66
f = 2.1Pe−1/3ν7/33t9/22.

Appendix C. Influence of the initial temperature and thickness of the film

The thickness of the film is one of the parameters, with Pe and ν, which controls
the spreading rate in the bending regime. For instance, the scaling law (3.1) predicts
that the thickness h0 decreases with h−1/11

f and that the radius increases with h1/22
f (3.2).

We also show that the extent of the cold fluid region (R− Rc)(t) increases with h7/66
f

(3.10). We show there that these scaling laws are in agreement with our numerical
simulations for different values of hf : the different curves collapse when rescaling by
hf elevated to the appropriate power (figure 17).

In the main text, we assume that the prewetting film is initially cold, i.e. Θb= 0 and
δ=h/2 everywhere. However, the thermal state of the prewetting film at t=0 certainly
influences the spreading evolution. In particular, during the first thermal bending phase,
the effective viscosity is constant and slightly larger than 1 as the peeling region
accounts for the presence of cold fluid in the film at the tip.

When considering an initially hot prewetting film, i.e. Θb= 1 and δ= 10−4 at t= 0,
the effective viscosity of the current is initially closer to 1, i.e. ηe(t)∼ 1 (figure 18,
Pe= 1000). The film then cools on a time that scales with Peh2

f , which is smaller than
the time tb2 for the current to enter the second thermal bending phase. The effective
viscosity increases slightly as the peeling region includes the presence of cold fluid in
the film at the tip and the evolution then collapses with the one of an initially cold
prewetting film. For instance, for Pe= 1000.0, the film has cooled at t∼ 0.01 and the
current transitions to the second thermal bending phase at t∼ 0.03.

In summary, the first thermal bending phase splits in two different phases when
considering an initially hot film: a first phase where the current spreads with ηe ∼ 1
which lasts over a time scaling with Peh2

f and a second phase where the current
spreads with ηe slightly larger than 1 once the film is entirely cold.
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FIGURE 18. (a) Dimensionless thickness at the centre h0 versus dimensionless time t for
an initially cold and hot prewetting film, Pe= 10.0 and Pe= 1000.0 and ν = 0.01. Dotted
lines: scaling laws h0 = 0.65h−1/11

f ν−2/11t8/22 for ν = 1.0 and 0.001. (b) Dimensionless
radius R versus dimensionless time t for initially cold and hot prewetting films and the
same sets of parameters (ν, Pe). Dotted lines: scaling laws R = 2.13h1/22

f ν1/11t7/22 for
ν = 1.0 and 0.001. (c) Dimensionless effective viscosity versus dimensionless time t for
initially cold and hot prewetting films and the same set of parameters (ν,Pe). The initially
cold film is set with Θb = 0 and δ = h/2. The initially hot film is set with Θb = 1 and
δ = 10−4.
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