
Math. Struct. in Comp. Science (2007), vol. 17, pp. 1029–1073. c© 2007 Cambridge University Press

doi:10.1017/S0960129507006299 Printed in the United Kingdom

An algebraic semantics of event-based architectures

JOS É LUIZ FIADEIRO† and ANTÓNIA LOPES‡

†Department of Computer Science, University of Leicester, University Road,

Leicester LE1 7RH, U.K.

Email: jose@mcs.le.ac.uk
‡Department of Informatics, Faculty of Sciences, University of Lisbon, Campo Grande,

1749-016 Lisboa, Portugal

Email: mal@di.fc.ul.pt

Received 2 May 2006; revised 11 December 2006; first published online 21 September 2007

We propose a mathematical semantics for event-based architectures that serves two main

purposes: to characterise the modularisation properties that result from the algebraic

structures induced on systems by this discipline of coordination; and to further validate and

extend the categorical approach to architectural modelling that we have been building

around the language CommUnity with the ‘implicit invocation’, also known as

‘publish/subscribe’ architectural style. We then use this formalisation to bring together

synchronous and asynchronous interactions within the same modelling approach. We see

this effort as a first step towards a form of engineering of architectural styles. Our approach

adopts transition systems extended with events as a mathematical model of implicit

invocation, and a family of logics that support abstract levels of modelling.

1. Introduction

Event-based interactions are now established as a major paradigm for large-scale distrib-

uted applications (see, for example, Bacon et al. (2000), Carzaniga et al. (2001), Eugster

et al. (2003), Garlan and Notkin (1991) and Meier and Cahill (2002)). In this paradigm,

components may declare their interest in being notified when certain events are published

by other components of the system. Typically, components publish events in order to

inform their environment that something has occurred that is relevant for the behaviour

of the entire system. Events can be generated either in the internal state of the components

or in the state of other components with which they interact.

Although Sullivan and Notkin’s seminal paper (Sullivan and Notkin 1992) focuses on

tool integration and software evolution, the paradigm is much more general: components

can be all sorts of run-time entities. What is important is that components do not know the

identity, or even the existence, of the publishers of any events they subscribe to, or the sub-

scribers of any events that they publish. In particular, event notification and propagation

are performed asynchronously, that is, the publisher cannot be prevented from generating

an event by the fact that given subscribers are not ready to react to the notification.

Event-based interaction has also been recognised as an ‘abstract’ architectural style,

that is, as a means of coordinating the behaviour of components during high-level design.

The advantages of adopting such a style so early in the development process stem from

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

J. L. Fiadeiro and A. Lopes 1030

exactly the same properties recognised for middleware:

— loose coupling allows better control on the structural and behavioural complexity of

the application domain;

— domain components can be modelled independently and easily integrated or removed

without disturbing the whole system.

Precisely these claims can be found in Sullivan and Notkin (1992) applied to the

development of integrated environments but, as already mentioned, they should derive

from the structural properties that the paradigm induces in more general classes of

systems.

However, in spite of these advantages and its wide acceptance, implicit invocation

remains relatively poorly understood. In particular, its structural properties as an archi-

tectural style remain to be clearly stated and formally verified. Despite the merits of

several efforts towards providing methodological principles and formal semantics such as

Dingel et al. (1998), including recent incursions in the use of model-checking techniques

for reasoning about such systems (Bradbury and Dingel 2003; Garlan et al. 2003), we are

still far from an accepted ‘canonical’ semantic model over which all these efforts can be

brought together to provide effective support and to formulate methodological principles

that can steer development independently of specific choices of middleware.

This paper is an extended version of Fiadeiro and Lopes (2006) in which we presented

initial contributions in this direction by investigating how event-based interactions can be

formalised in a categorical setting similar to the one that we started developing in Fiadeiro

and Lopes (1997) around the language CommUnity. As with CommUnity, our goal is not

to provide a full-fledged architectural description language but to restrict ourselves to a

core set of primitives and a reduced notation that can capture the bare essentials of an

architectural style. The use of category theory (Fiadeiro 2004) is justified by the fact that

it provides a mathematical toolbox geared to formalising notions of structure, namely

those that arise in system modelling in a wide sense such as superposition (Katz 1993).

We take this formalisation effort a step further in this paper and address two different

but interrelated aspects of event-based architectures. On the one hand, we provide a

mathematical model of the computational aspects using a new extension of transition

systems with event publication, notification and handling. On the other hand, we address

‘implicit-invocation’ as a discipline of decomposition and interconnection, that is, we

characterise the modularisation properties that result from the algebraic structures induced

on systems by this discipline of coordination. In particular, we justify a claim made

in Sullivan and Notkin (1992) about the externalisation of mediators: ‘Applying this

approach yields a system composed of a set of independent and visible [tool] components

plus a set of separate, or externalised, integration components, which we call mediators’.

Our interest is in investigating and assigning a formal meaning to notions such as

‘independent’, ‘separate’ and ‘externalised’, and in characterising the way they can be

derived from implicit invocation. Finally, we use the proposed formal model to investigate

extensions of event-based interactions with i/o-communication and action synchronisation

(rendezvous) as available in CommUnity. We see this as a first step towards a formal

approach to the engineering of architectural styles.

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

An algebraic semantics of event-based architectures 1031

Organisation of the paper

In Section 2, we introduce our primitives for modelling publish/subscribe interactions

using a minimal language in the style of CommUnity, which we call e-CommUnity. In

Section 3, we provide a mathematical semantics for this language that is based on transition

systems extended with events, including their publication and handling. In Section 4, we

define the category over which we formalise architectural properties. We show how the

notion of morphism can be used to identify components within systems and the way

in which they can subscribe events published by other components. We also show how

event bindings can be externalised and made explicit in configuration diagrams. Section 5

defines the notion of refinement through which under specification may be removed from

designs and investigates compositionality of refinement with respect to superposition as

captured through the morphisms studied in Section 4. In Section 6, we analyse how we can

use the categorical formalisation to combine event-based interactions with synchronous

communication, namely i/o interconnections and action synchronisation as available in

CommUnity. Appendix A provides a glossary collecting together the different terms used

in the definition of the syntax and semantics of e-CommUnity. Finally, the proofs of the

main results of Section 5 are given in Appendix B.

2. Event-based designs

In e-CommUnity, we model components that keep a local state and perform services

that can change their state and publish given events. Although we are addressing service-

oriented architectures with similar mathematical techniques (for preliminary work in this

direction, see Fiadeiro et al. (2006; 2007)), this paper is concerned only with event-based

interactions in general. Therefore, we will use the term service in a rather loose way, that

is, without committing to a full service-oriented approach in the sense of, say, web-services

(Alonso et al. 2004) or wide-area computing (Misra and Cook 2006).

Components can also subscribe to a number of events. Upon notification that a

subscribed event has taken place, a component invokes one or more services. If, when

scheduled for execution, a service is enabled, it is executed, which may change the local

state of the component and publish new events.

We begin the discussion of our approach by showing how we can model what is

considered to be the ‘canonical’ example of event-based interactions: the set-counter.

Consider first the design presented in Figure 1. This is the design of a component Set that

keeps a set elems of natural numbers as part of its local state. This component subscribes

two kinds of events, doInsert and doDelete, each of which carries a natural number as a

parameter. Two other kinds of events, inserted and deleted, are published by Set. Each of

these events also carries a natural number as a parameter.

As a component, Set can perform two kinds of services: insert and delete. These services

are invoked upon notification of events doInsert and doDelete, respectively. When invoked,

insert checks if the parameter of doInsert is already in elems; if not, it adds it to elems

and publishes an inserted event with the same parameter. The invocation of delete has a

similar behaviour.

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

J. L. Fiadeiro and A. Lopes 1032

design Set is

publish inserted
par which:nat

publish deleted
par which:nat

subscribe doInsert
par which:nat
invokes insert

handledBy insert?
which=insert.lm

subscribe doDelete
par which:nat
invokes delete

handledBy delete?
which=delete.lm

store elems: set(nat)

provide insert
par lm:nat
assignsTo elems
guardedBy [lm elems,false]
effects elems’={lm} elems

inserted! inserted.which=lm

provide delete
par lm:nat
assignsTo elems
guardedBy lm elems
effects elems’=elems\{lm}

deleted! deleted.which=lm

Fig. 1. The design of Set

We formalise the languages that are used for specifying component behaviour in

Section 3, together with a denotational semantics for the underlying computational

model. Meanwhile, we will just provide an informal overview of all the aspects involved:

— The events that the component publishes are declared under publish. Events are

published when services execute. The way a service publishes a given event e is

declared in the specification provide of the service under effects using the proposition

e! to denote the publication of e.

— The events that the component subscribes are declared under subscribe. The services

that can be invoked when handling such an event are declared under invokes. Given a

service s, we use s? to denote its invocation when specifying how the notification that

the event has taken place is handled, which we do under handledBy.

— Parameter passing is made explicit through the expressions used when specifying how

event notifications are handled and events are published. For instance, the clause

inserted.which = lm in the definition of the effects of insert means that the event

inserted is published with its parameter which equal to the value of the parameter

lm of insert. In a similar way, the clause which = insert.lm in the specification of

doInsert means that the parameter which is passed on to the service insert with the

same value as lm. Because we are providing high-level designs of components, we are

not saying how such properties are guaranteed, that is, what mechanism is being used

for parameter passing.

— Designs can be under specified, leaving room for further design decisions to be made

during development. Therefore, we allow for arbitrary expressions to be used when

specifying how parameters are passed, events are handled and services change the

state.

— Under store, we identify the state variables (variables for short) of the component;

state is local in the sense that the services of a component cannot change the state

variables of other components.

— We use assignsTo to identify the state variables that a service may change when it is

executed, what we normally call the write-frame or domain of the service. Note that

because designs can be under specified, the write frame of a service cannot be inferred

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

An algebraic semantics of event-based architectures 1033

design Set&Counter is

store elems: set(nat),
value:nat

publish&subscribe inserted
par which:nat
invokes inc

handledBy inc?

publish&subscribe deleted
par which:nat
invokes dec

handledBy dec?

subscribe doInsert
par which:nat
invokes insert

handledBy insert?
which=insert.lm

subscribe doDelete
par which:nat
invokes delete

handledBy delete?
which=delete.lm

provide insert
par lm:nat
assignsTo elems
guardedBy [lm elems,false]
effects elems’={lm} elems

inserted! inserted.which=lm

provide delete
par lm:nat
assignsTo elems
guardedBy lm elems
effects elems’=elems\{lm}

deleted! deleted.which=lm

provide inc
assignsTo value
effects value’=value+1

provide dec
assignsTo value
effects value’=value-1

Fig. 2. The design of Set&Counter

from the specification of its effects; it is possible for a specification not to state any

properties of the effects that a service has on a state variable belonging to its write

frame, meaning that the specification is still open for further refinement.

— When specifying the effects of services, we use primes to denote the values that state

variables take after the service is executed; as already mentioned, it is possible that

the effects of some services are not fully specified.

— We use guardedBy to specify the enabling condition of a service, that is, the set of

states in which its invocation is accepted and the service is executed, implementing

whichever effects are specified. The specification consists of a pair of conditions [l, u]

such that u implies l: when false, the lower-guard l implies that the service is not

enabled; when true, the upper-guard u implies that the service is enabled. For instance,

the lower-guard of insert is lm /∈elems meaning that the invocation of insert is refused

when the element whose insertion is requested already belongs to the set; because the

upper-guard is false, there is no commitment as to when the service is actually enabled.

This allows us to model sets that are bounded without committing to a specific bound,

as well as sets that are subject to restrictions that we may wish to refine at later stages

of development or leave to be decided at run time. When the two guards are the same,

we only indicate one condition – the enabling condition proper. This is the case for

delete, which is specified to be enabled if and only if the element whose deletion is

being requested belongs to the set.

Consider now the design presented in Figure 2. This is the design of a system in which

a counter subscribes inserted and deleted to count the number of elements in the set. This

design illustrates how given events may be published and subscribed within the same

component; this is the case of inserted and deleted. Indeed, there are no restrictions as to

the size and role that components may take within a system: designs address large-grained

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

J. L. Fiadeiro and A. Lopes 1034

design Set&Counter&Adder is

store elems: set(nat),
value:nat, sum:nat

publish&subscribe inserted
par which:nat
invokes inc

handledBy inc?
invokes add

handledBy add?
which=add.lm

publish&subscribe deleted
par which:nat
invokes dec

handledBy dec?
invokes sub

handledBy sub?
which=sub.lm

subscribe doInsert
par which:nat
invokes insert

handledBy insert?
which=insert.lm

subscribe doDelete
par which:nat
invokes delete

handledBy delete?
which=delete.lm

provide insert
par lm:nat
assignsTo elems
guardedBy [lm elems,false]
effects elems’={lm} elems

inserted! inserted.which=lm

provide delete
par lm:nat
assignsTo elems
guardedBy lm elems
effects elems’=elems\{lm}

deleted! deleted.which=lm

provide inc
assignsTo value
effects value’=value+1

provide add
par lm:nat
assignsTo sum
effects sum’=sum+lm

provide sub
par lm:nat
assignsTo sum
effects sum’=sum-lm

provide dec
assignsTo value
effects value’=value-1

Fig. 3. The design of Set&Counter&Adder

components, what are sometimes called sub-systems, not just atomic components. We will

discuss the mechanisms that are available for structuring and composing systems in

Section 4.

We can keep extending the system by bringing in new components that subscribe given

events. For instance, we may wish to keep a record of the sum of all elements of the

set by adding an adder that also subscribes inserted and deleted. This is captured by the

design presented in Figure 3.

This example illustrates how a subscribed event can invoke more than one service

and also how we can declare more than one handler for a given event subscription. For

instance, the event inserted invokes two services – inc, as before, but also add – and uses

two handlers: one handler invokes add and the other invokes inc. Because each invocation

has a separate handler, they are independent in the sense that they take place at different

times. This is different from declaring just one handler:

invokes inc, add
handledBy inc? add? which=add.lm

Such a handler would require synchronous invocation of both services; this is useful

when one wants to enforce given invariants, for which it may be important to make sure

that separate state components are updated simultaneously. For instance, we may wish to

ensure that the values of sum and value apply to the same set of elements so that we can

compute the average value of the elements in the set.

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

An algebraic semantics of event-based architectures 1035

As a design, Set&Counter&Adder (SCA) does not seem to provide any structure for the

underlying system: we seem to have lost the original Set as an autonomous component;

and also where are the Counter and the Adder? Later in the paper, we show how

this system can be designed by interconnecting separate and independent components,

including mediators in the sense of Sullivan and Notkin (1992). However, before we do

that, we will formalise the notion of design and propose a mathematical semantics for

event publication/subscription and service invocation/execution.

3. A formal model for event-based designs

In order to provide a formal model for designs in e-CommUnity, we follow the categorical

framework that we have adopted in previous papers for defining the syntax and semantics

of specification and design languages (Fiadeiro 2004).

3.1. Signatures

We begin by formalising the language that we use for defining designs, starting with

the data types and data type constructors. As can be seen in the examples discussed in

the previous section, data structures are used for defining the computational aspects of

component behaviour as well as for supporting interactions through parameter passing.

In order to remain independent of any specific language for the definition of the data

component of designs, we work over a fixed data signature Σ = 〈D, F〉, where D is a set

(of sorts) and F is a D∗ × D indexed family of sets (of operations), and a collection Φ of

first-order sentences specifying the functionality of the operations. We refer to this data

type specification by Θ. We will refrain from expanding further on the algebraic aspects

of data type specification, the theory of which can be found in textbooks such as Ehrig

and Mahr (1985).

From a mathematical point of view, designs are structures defined over signatures.

Definition 3.1. A signature is a tuple Q = 〈V , E, S, P , T , A, G,H〉 where:

— V is a D-indexed family of mutually disjoint finite sets (of state variables).

— E is a finite set (of events).

— S is a finite set (of services).

— P assigns a D-indexed family of mutually disjoint finite sets (of parameters) to every

service s∈ S and to every event e∈E.

— T : E → {pub, sub, pubsub} is a function classifying events as published (only),

subscribed (only) or both published and subscribed. We use Pub(E) to denote the

set {e∈E : T (e) �= sub} and Sub(E) for the set {e∈E : T (e) �= pub}.
— A : S → 2V is a function returning the write frame (or domain) of each service.

— H is a Sub(E)-indexed family of mutually disjoint finite sets (of handlers).

— G assigns to every subscribed event e∈ Sub(E) and handler h∈H(e), a set G(e, h) ⊆ S

consisting of the services that can be invoked by that event through that handler.

Given that the sets H(e) are mutually disjoint, we simplify the notation and use G(h)

instead of G(e, h).

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

J. L. Fiadeiro and A. Lopes 1036

design P is

store V

publish e
par p

p P(e)
e Pub(E)

par p
p P(e)

invokes s
handled By (h)

h H(e)

publish&subscribe e
e Sub(E)

par p
p P(e)

invokes s
handled By (h)

h H(e)

provide s
e PubSub (E)

par p
p P(s)

assignsTo A(s)
guardedBy l (s) , u(s)
effects (s)

s S

subscribe e

γ γ

η

η

Fig. 4. An e-CommUnity design.

Every state variable v is typed with a sort, which is an element of D and which we

denote by sort(v); the set of variables whose type is d is Vd. All these sets are mutually

disjoint, meaning that variables of different sorts have different names.

The mapping P defines, for every event and service, the name and the type of its

parameters, that is, P (s)d (respectively, P (e)d) is the set of parameters of service s

(respectively, event e) that are of sort d; as for variables, we use sort(p) to indicate

the sort of parameter p. Again, the sets (P (s)d∈D)s∈S and (P (e)d∈D)e∈E are assumed to be

mutually disjoint. This is why, for ease of presentation, we have used the ‘dot-notation’

according to which the ‘official’ name of, for instance, the parameter which of event

inserted is inserted.which.

We also assume that the sets of variables and parameters are mutually disjoint and

disjoint from the sets of events, services and handlers. In other words, the same name

cannot be used for different entities.

We use T to classify events as pub (published only), sub (subscribed only) or pub-sub

(both published and subscribed). For instance, in SCA we have:

— ESCA = {inserted, deleted, doInsert, doDelete}
— TSCA(inserted) = TSCA(deleted) = pubsub

— TSCA(doInsert) = TSCA(doDeleted) = sub

— SubSCA(E) = {inserted, deleted, doInsert, doDelete}
— PubSCA(E) = {inserted, deleted}.
And in Set (S) we have:

— ES = {inserted, deleted, doInsert, doDelete}
— TS (inserted) = TS (deleted) = pub

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

An algebraic semantics of event-based architectures 1037

— TS (doInsert) = TS (doDeleted) = sub

— SubS (E) = {doInsert, doDelete}
— PubS (E) = {inserted, deleted}.

For every service s, we define a set A(s) – its domain or write frame – that consists

of the state variables that can be affected by instances of s. These are the variables

indicated under assignsTo. For instance, AS (insert) = {elems}. We extend the notation to

state variables so that A(v) is taken to denote the set of services that have v in their write

frame, that is, A(v) = {s∈ S |v ∈A(s)}. Hence, AS (elems) = {insert, delete}.
When a notification that a subscribed event has been published is received, a component

reacts by invoking services. For every subscribed event e, we use H(e) to denote the

mechanisms (handlers) through which notifications that e has occurred are handled.

Each handler h defines a specific way that the component can react to the notification

that e has been published, which may involve the invocation of one or more services

declared in G(h). For instance, HSC(inserted) has only one handler, which invokes inc,

but HSCA(inserted) has two handlers: one invokes inc and the other invokes add. As for

write frames, we also extend the notation to services so that G(s) for a service s is taken

to denote the set of handlers that can invoke s regardless of the way the invocation is

actually handled.

Note that the functions A, G and H just declare the state variables and services that

can be changed and invoked, respectively. The events that can be published are those in

Pub(E). Nothing in the signature states how state variables are changed, or how and in

what circumstances events are published or services invoked. This is left to the body of

the design, as discussed later in Section 3.3.

3.2. Interpretation structures

Signatures are interpreted over a semantic model based on transition systems in which

execution steps are performed by synchronisation sets of services. Such interpretation

structures require a model for the underlying data types, which we take as a Σ-algebra D
that validates the specification Θ (see Ehrig and Mahr (1985) for details):

— Each data sort d∈D is assigned a set dD (the data values of sort d).

— Each operation f : d1, . . . , dn → d′ is assigned a function fD : (d1)D × . . .× (dn)D → d′
D.

The first step in the definition of our semantic domain is the construction of the

language and space of states, events and services. We assume a fixed signature Q =

〈V , E, S, P , T , A, G,H〉 throughout this section.

Definition 3.2. A Q-space consists of:

— The extension ΣQ of the data signature Σ with:

– for every event e∈E, a new sort de and, for every parameter p∈P (e)d of sort d, an

operation dp : de → d;

– for every service s∈ S , a new sort ds and, for every parameter p∈P (s)d of sort d,

an operation dp : ds → d;

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

J. L. Fiadeiro and A. Lopes 1038

– for every subscribed event e∈ Sub(E), handler h∈H(e) and service s∈G(h) that

can be invoked, an operation invh,s : de → ds;

– for every service s∈ S and published event e∈Pub(E), an operation pubs,e : ds → de.

— An algebra U for ΣQ that extends the Σ-algebra D in the sense that D is the reduct

of U for the inclusion Σ ⊆ ΣQ and, in addition, assigns mutually disjoint carrier sets

to services, and, also, to events.

According to this definition, each event e∈E and service s∈ S defines a sort, which

we take to consist of their run-time instances. We require that these sorts are assigned

mutually disjoint domains so that reducts, as defined in Section 5.2, can forget invocations

and pending events.

The parameters of events and services define operations that assign data values to

every instance: the value that they carry when the corresponding events occur or services

are invoked. In aaddition to these operations that return data values, we define two

other kinds of operations: inv, which return the service instances invoked by every event

occurrence; and pub, which return the event instances published by every service execution.

Notice that we are defining a ‘declarative’ or ‘denotational’ semantics, not an operational

one: we are not saying how parameters are assigned to events/services, or how pub/inv

generate instances of published events and invoked services; parameters are passed at

run time, and the specific event/service instances that pub/inv return are also determined

during execution. However, from a declarative point of view, we can say that these

functions exist between the sets of all possible instances that can ever take place.

All these sets and operations extend the algebra that interprets the data type specific-

ation. We assume that this extension does not affect the original algebra, that is, it does

not interfere with the sets of data and the operations on data. In other words, U and D
coincide in the interpretation that they provide for the data signature Σ.

As already mentioned, the sorts associated with events and services are populated with

identifiers of their run-time instances. These are used for the definition of the execution

model associated with our approach. For the rest of this section, we consider a fixed

Q-space.

Definition 3.3. An execution state consists of a pair 〈VAL, PDN〉 where:

— VAL (valuation) is a mapping that, to every data sort d∈D and state variable v ∈Vd,
assigns a value VAL(v)∈dD.

— PDN is a set whose elements (pending invocations) are triples 〈t, h, u〉 where:

– t is an event instance, that is, an element of for some event e∈Sub(E).

– h is a handler for e, that is, h∈H(e).

– u is a service instance invoked by t through h, that is, u = inv
h,s
U (t) for some s∈G(h).

The proposed notion of state includes, as usual, the values that the variables take in that

state – this is provided by the mapping VAL. In addition to this, we have also provided

states with information on the service invocations that are pending in that state – this

is provided by the set PDN. As discussed below, a service invocation becomes pending,

and is added to PDN, when an event is published that includes the service in its list of

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

An algebraic semantics of event-based architectures 1039

invocations. Each pending invocation is a structure that records both the event instance

that triggered the invocation and the handler through which the invocation is controlled.

Not all pending invocations need to be selected for actual invocation in a given step; as

we shall see, only a subset is chosen according to a policy that depends on the run-time

platform. The subsets that can be chosen need to satisfy some conditions.

Definition 3.4. Given an execution state, a subset INV ⊆ PDN of actual service invocations

satisfies:

— For any invocation 〈t, h, u〉 ∈ INV , if 〈t, h, u′〉 ∈ PDN, then 〈t, h, u′〉 ∈ INV .

— For every pair of services s and s′ and different service invocations 〈t, h, u〉 and 〈t′, h′, u′〉
in INV with u∈ dsU and u′ ∈ ds′U, we have A(s) ∩ A(s′) = �.

That is, all the services invoked by the same event instance and controlled by the

same handler need to be grouped together; this is because, as already motivated, all such

invocations need to be discarded in the same state; service invocations that do not need

to be discarded simultaneously should be assigned to different handlers.

Furthermore, instances of services that have intersecting domains cannot be selected

together; this is because they cannot both write on the same part of the state within an

(atomic) execution step. A particular case is when they are both instances of the same

service: it does not make sense to fulfil two pending invocations of inc, corresponding to

insertions of different elements, by executing the increment only once: clearly, we want

the number of elements in the set to be incremented twice.

In addition to the notion of execution state, we need to define the state transitions that

characterise the way a system can evolve.

Definition 3.5. An execution step is a tuple 〈SRC,TRG, INV , EXC, PUB,NXT 〉 where:

— SRC (the source) and TRG (the target) are two execution states;

— INV is a subset of PDNSRC (the set of actual service invocations);

— EXC is a set of service instances (these correspond to the actual service invocations

that are enabled in SRC);

— PUB is a set whose elements are the event instances published at that step;

— NXT is a subset of PDNTRG (the set of next service invocations);

satisfying the following properties:

— for every u∈EXC there is 〈t, h, u〉 ∈INV ;

— for every 〈t, h, u〉 ∈ NXT , t∈PUB, that is, only services invoked by published events

can become pending;

— PDNTRG = PDNSRC\INV ∪ NXT , that is, we discard the invoked services from the

set of pending ones, and we add the set of services invoked by handlers of published

events;

— for every v ∈V such that VALTRG(v) �= VALSRC(v), there is u∈EXC with u∈ dsU such

that v ∈A(s), that is, a state variable can only change during an execution step if a

service in its domain is executed during that step.

The proposed notion of execution step captures the main aspects of the computational

model that we are adopting. On the one hand, a number of event instances are published

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

J. L. Fiadeiro and A. Lopes 1040

Fig. 5. Representation of the elements involved in the execution steps.

during an execution step, which is captured by the set PUB; and these published events add

pending invocations to the target state, which is captured by NXT and the functions inv.

On the other hand, each step discards a number of the invocations pending in the source

state, which is captured through INV. Services belonging to the discarded invocations that

are enabled in the source state are executed, which is captured by the ‘subset’ EXC of

INV. The actual service executions in EXC are responsible for the publication of events

and changes performed on the state variables in ways that are discussed in the next

sub-section.

Finally, one generally assumes that the selection process is fair in the sense that

invocations cannot remain pending forever; they must eventually be selected and executed

if enabled. Notice that this is not a property of any individual execution step but of the

global execution model; therefore, this is not captured in the above definition.

The picture presented in Figure 5 summarises some of the relationships between the

entities involved in an execution step. Note that events may be published that do not

result from service execution: these instances are generated by the environment. However,

all pending service invocations result necessarily from an event published in PUB and

one of its handlers; that is, services of a component cannot be invoked directly from

the environment, only as a result of the publication of an event. A similar kind of

encapsulation is enforced on the state component: a state variable can only change value

if a service that includes the variable in its domain has been executed.

In summary, we are saying that interaction between a component and its environment is

reduced to the publication and subscription of events: the state structures and the services

that operate on them cannot be acted upon directly from outside the component. More

precisely, what these encapsulation mechanisms imply is that state variables and services

can only be shared together with the events that manipulate them. We shall discuss this

further in later sections.

A model for a signature consists of a set of execution steps that satisfy a number of

closure conditions that capture the fact that service execution is deterministic: the effects

on the state and the enabling condition of every service is fully determined.

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

An algebraic semantics of event-based architectures 1041

Definition 3.6. A model of a signature Q is a Q-space 〈ΣQ,U〉 together with a directed

acyclic graph 〈N,R〉 where N is the set of nodes and R is a set of pairs of nodes (directed

arcs) and a labelling function L that assigns an execution state to every node and an

execution step to every arc satisfying the following conditions:

— For every arrow r = 〈n1, n2〉, L(r) is of the form 〈L(n1),L(n2), , , , 〉.
— VALTRG(v) = VALTRG′(v) for every state variable v ∈ V and every pair of ar-

rows r = 〈n, m〉 and r′ = 〈n, m′〉 such that there are s∈A(v) and u∈ dsU ∩ EXC ∩
EXC ′, where L(r) is of the form 〈 , TRG, , EXC, , 〉 and L(r′) is of the form

〈 , TRG′, , EXC ′, , 〉.
— For any two arrows r = 〈n, m〉 and r′ = 〈n, m′〉 where L(r) is of the form 〈 , , INV ,

EXC, , 〉 and L(r′) is of the form 〈 , , INV ′, EXC ′, , 〉, and service instance u

such that 〈 , , u〉 ∈INV and 〈 , , u〉 ∈INV ′, u∈EXC if and only if u∈EXC ′.

Note that in order to improve readability, we use underscores ‘ ’ in lieu of parameters

that do not play a role in the definitions or propositions.

The first condition simply means that the labelling function respects sources and targets

of execution steps. The second condition means that the effects on any state variable are

fully determined by the execution of an instance of a service that has the variable in its write

frame. A particular case is when the execution sets of the two steps are the same, meaning

that service instances have a deterministic effect on the state. The same does not apply to

the publication of events because we allow the environment to publish events as well.

The third condition reflects the fact that the set EXC of service executions is fully

determined by the selected invocations INV and the source state. Intuitively, what

determines if an invoked service will be executed in the source state is what we call

its enabling condition. In Section 3.3 we discuss how the lower and upper guards are

interpreted as requirements on the enabling condition.

As a result, branching in a model, that is, the existence of more than one execution step

from the same state, reflects a degree of non-determinism that results from the fact that

the behaviour of the component is open to the environment.

3.3. Designs and their models

Signatures provide the ‘syntax’ of designs. However, note that signatures include typing

information that is sometimes associated with the ‘semantics’ such as the encapsulation

of state change and service invocation. In brief, as we will explain later in the paper,

signatures need to include all and only the typing information required for establishing

interconnections. Hence, for instance, it is important to include in the signature information

about which state variables are in the domain of which services but not the way services

affect the state variables; it is equally important to know the structure of handlers for

each subscribed event but not the way each subscription is handled.

The additional information that pertains to the individual behaviour of components is

defined in the bodies of designs through three different structures, each of which involves

sentences in a different language. We begin with the language we use to specify the guards

of services.

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

J. L. Fiadeiro and A. Lopes 1042

Definition 3.7. Given a signature Q = 〈V , E, S, P , T , A, G,H〉 and a service s∈ S , we define

the state language SLQ,s associated with s as the first-order language generated by the

data signature Σ = 〈D, F〉 enriched with:

— for every d∈D, each parameter p∈P (s)d as a constant of sort d;

— for every d∈D, each state variable v ∈Vd as a constant of sort d.

Given a valuation VAL of the state variables and an instance u ∈ D, we evaluate the

sentences of SLQ,s in the extension of the Σ-algebra D with

— pD = d
p
U(u);

— vD = VAL(v).

That is, we extend the first-order language associated with the data signature with the

parameters of the service and the state variables. We call it a ‘state’ language because it

does not concern state transitions – sentences can be evaluated on a single state, which

is what we require for determining if a service is enabled. An example is the sentence

delete.lm ∈ elems in the state language of delete; this sentence involves the parameter

delete.lm as well as the state variable elems.

Consider now the language we use to specify the effects of services.

Definition 3.8. Given a signature Q = 〈V , E, S, P , T , A, G,H〉 and a service s∈S , we define

the transition language TLQ,s associated with s as the first-order language (with equality)

generated by the data signature Σ = 〈D, F〉 enriched with:

— for every d∈D, each parameter p∈P (s)d as a constant of sort d;

— for every d ∈ D, each parameter p∈P (e)d of every published event e∈Pub(E) as a

constant of sort d;

— for every d∈D, each state variable v ∈Vd as a constant of sort d;

— for every d∈D and state variable v ∈A(s)d, v
′ as a constant of sort d;

— for every published event e∈Pub(E), the atomic proposition e!.

Given an execution step and an instance u∈dsU, we evaluate the sentences of TLQ,s in the

extension of the Σ-algebra D with:

— pD= d
p
U(u) for p∈P (s).

— pD= d
p
U(pubs,eU (u)) for p∈P (e) and e∈Pub(E).

— vD= VALSRC(v) for v ∈V .

— v′
D= VALTRG(v) for v ∈A(s).

— e! is true if and only if pubs,eU (u) ∈PUB.

This time, the extension includes not only the state variables and the parameters of the

service, but also the events that the service can publish (and their parameters) and primed

versions of the state variables that belong to the domain of the service. This is because we

need to be able to specify the effects of the execution of the service on the state variables,

for which we use their primed versions, as well as the circumstances in which events are

published, which includes the specification of how parameters are passed. Such sentences

no longer specify properties of single execution states but of execution steps; this is why

we call it a ‘transition’ language.

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

An algebraic semantics of event-based architectures 1043

An example is the sentence

(elems′ = {insert.lm} ∪ elems ∧ inserted! ∧ inserted.which = insert.lm)

in the transition language of insert. This sentence uses elems′ to indicate that, when

executed, insert adds its parameter to the set stored in the state variable elems; this is

because primed variables are evaluated in the target state TRG of the execution step.

As already mentioned, inserted! is used to indicate that the event inserted is published:

such propositions specify properties of the set PUB associated with the execution step.

Indeed, a typical sentence of the form ψ ⊃ (e! ∧ φ) in the transition language holds of a

step for an instance u of a service s if and only if, when ψ is true, φ is also true and an

event publication is added to PUB for the instance pubs,eU (u) of e generated by u. Notice

that, typically, ψ (the pre-condition in the sense of the Hoare calculus) involves the state

variables, which are evaluated at the source state, and φ (the post-condition) involves the

primed state variables, which are evaluated in the target state TRG, thus establishing how

the state changes as a result of the execution of the service. In the event-based approach,

the post-condition includes conditions on the parameters of t and pub
s,e
U (t), which are

evaluated in the algebra U.

When a state sentence determines the value of a primed variable as a function of the

state variables and the parameters of the service, we obtain an assignment, in which case

we tend to use the common programming language notation v := F(s, v) for v′ = F(s, v).

Finally, we define the language we use to specify the event handlers.

Definition 3.9. Given a signature Q = 〈V , E, S, P , T , A, G,H〉 and a handler h ∈H(e) of

an event e∈E, we define the handling language HLQ,h associated with h as the first-order

language generated by the data signature Σ = 〈D, F〉 enriched with:

— for every d∈D, each parameter p∈P (e)d as a constant of sort d;

— for every d∈D, each parameter p∈P (s)d of every service s∈G(h) invoked by h as a

constant of sort d;

— for every service s∈G(h) invoked by h, the atomic proposition s?.

Given an execution step and an instance t∈deU, we evaluate the sentences of HLQ,h in the

extension of the Σ-algebra D with:

— pD= d
p
U(t) for p∈P (e).

— pD= d
p
U(invh,sU (t)) for p∈P (s) and s∈G(h).

— s? is true if and only if 〈t, h, invh,sU (t)〉 ∈NXT .

Handling languages are not associated with services but with events and their handlers;

they provide the means for specifying how the publication of the associated events are

handled. A typical handling requirement for an event e is of the form ψ ⊃ (s? ∧φ), which

establishes the fact that s is invoked with property φ if condition ψ holds on notification

that an instance of e has occurred. This describes the circumstances in which services

are invoked, including how parameters are passed. An example in the handling language

associated with doInsert in SCA is the sentence (insert? ∧ doInsert.which = insert.lm);

this sentence uses insert? to indicate that the service insert is invoked when doInsert is

published; furthermore, the parameter lm of this invocation of insert has the same value

as the parameter which of doInsert.

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

J. L. Fiadeiro and A. Lopes 1044

Sentences of this form specify properties of the set NXT of service invocations associated

with the execution step. Indeed, ψ ⊃ (s? ∧ φ) holds for an instance t of an event e and

handler h for e if and only if when ψ is true, φ is also true and a service invocation is

added to NXT for the instance invh,sU (t) of s invoked by t through h. Notice that, typically,

both ψ and φ are properties of the parameters of t and invh,sU (t), which are evaluated in the

algebra U. This is because handling languages do not include state variables, reflecting

the fact that typical publish/subscribe mechanisms do not use state information of the

components to decide which services are to be invoked. However, this does not mean that

the invoked services will necessarily be executed as they may not be enabled.

We can now define the notion of a design.

Definition 3.10. A design is a pair 〈Q,∆〉 where Q is a signature and ∆, the body of the

design, is a triple 〈η, ρ, γ〉 where:

— η assigns to every handler h∈H(e) of a subscribed event e∈ Sub(E) a sentence in the

handling language HLQ,h associated with h.

— ρ assigns to every service s∈ S a sentence in the transition language TLQ,s associated

with s.

— γ assigns to every service s∈ S a pair of sentences [γl(s), γu(s)] in the state language

SLQ,s associated with s.

Given this, the body of a design is defined in terms of:

— For every subscribed event e, a set H(e) of handling requirements expressed through

sentences ρ(h) for every handler h∈H(e).

Every handling requirement (handling for short) is enforced when the event is

published. Each handler consists of service invocations and other properties that

need to be observed on invocation (for example, for parameter passing) or as a pre-

condition for invocation (for example, in the case of filters for discarding notifications).

— For every service s, an enabling interval [γl(s), γu(s)] defining constraints on the states

in which the invocation of s can be accepted.

These are the conditions that we specify under guardedBy. The invocation is accepted

when γu(s) holds and is refused when γl(s) is false.

— For every service s, a sentence ρ(s) defining the state changes that can be observed due

to the execution of s.

As shown in the examples, this sentence may include the publication of events and

parameter passing. This is the condition that we specify under effects.

This intuitive semantics is formalised as follows.

Definition 3.11. A model of a design 〈Q,∆〉 where ∆ = 〈η, ρ, γ〉 is a model of Q such that

any execution step 〈SRC,TRG, INV , EXC, PUB,NXT 〉 that is the label of an arrow of

the underlying graph satisfies the following conditions:

— For every u∈EXC with u∈ dsU, we have γl(s) holds for u at SRC.

— For every 〈t, h, u〉 ∈INV and u∈ dsU, if γl(s) holds for u at SRC, then u∈EXC .

— For every u∈EXC with u∈ dsU, we have ρ(s) holds for u at that step.

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

An algebraic semantics of event-based architectures 1045

— For every t∈PUB where t∈ deU and h∈H(e), we have η(h) holds for t and h at that

step.

A complete execution in a model is a sequence of steps L(〈ni, mi〉)i∈ω such that mi = ni+1

for every i∈ω. We say that an execution is fair if and only if, for every i∈ω and

〈t, h, u〉 ∈ PDNi, there is k � i such that 〈t, h, u〉 ∈INVk .

Because each model is fully deterministic apart from the possible interference of the

environment, the existence of more than one model for a given design reflects under

specification. In other words, each such model reflects a possible choice of implementation.

The degree of under specification can be reduced by refining the design. Refinement

supports a stepwise development process in which design decisions are made because re-

quirements are made more specific, for example, as in product-lines, or as knowledge of the

target run-time platform becomes more precise. This topic is discussed further in Section 5.

4. Structuring event-based systems

In a categorical approach to software architecture (Fiadeiro and Lopes 1997; Fiadeiro

et al. 2003), the structure of systems is captured through morphisms. These are maps

between designs that identify ways in which the source is a design of a component of the

system described by the target. Morphisms induce operations on models of designs that

explain how the behaviour of the component can be restricted by that of the system.

4.1. Identifying components of systems

We start by defining how morphisms act on signatures.

Definition/Proposition 4.1. A morphism σ : Q1 → Q2 for

Q1 = 〈V1, E1, S1, P1, T1, A1, G1, H1〉

and

Q2 = 〈V2, E2, S2, P2, T2, A2, B2, G2, H2〉
is a tuple 〈σst, σev, σsv, σpar−ev, σpar−sv, σhr−ev〉, where:

— σst : V1 → V2 is a function on state variables;

— σev : E1 → E2 is a function on events;

— σsv : S1 → S2 is a function on services;

— σpar−ev maps every event e to a function σpar−ev,e : P1(e) → P2(σev(e)) on its parameters;

— σpar−sv is like σpar−ev but for service parameters, that is, σpar−sv,s : P1(s) → P2(σsv(s));

— σhr−ev maps every subscribed event e to a function. σhr−ev,e : H1(e) →H2(σev(e)) on its

handlers;

satisfying the following conditions:

— sort2(σst(v)) = sort1(v) for every v ∈V1, that is, the sorts of state variables are preserved;

— σev preserves kinds, that is:

– σev(e) ∈Pub(E2) for every e∈Pub(E1);

– σev(e) ∈ Sub(E2) for every e∈Sub(E1);

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

J. L. Fiadeiro and A. Lopes 1046

design Counter is

subscribe doInc
invokes inc

handledBy inc?

subscribe doDec
invokes dec

handledBy dec?

store value: nat

provide inc
assignsTo value
effects value’=value+1

provide dec
assignsTo value
effects value’=value-1

Fig. 6. The design of Counter

— A2(σst(v)) = σsv(A1(v)) for every v∈V1, that is, domains are preserved;

— σsv(G1(h)) ⊆ G2(σhr−ev(h)) for every e∈E1 and h∈H1(e), that is, services invoked by

handlers carry through;

— σhr−ev(G1(s)) = G2(σsv(s)) for every s∈S1, that is, invocation of services is preserved;

— sort2(σpar−ev,e(p)) = sort1(p) for every e ∈ E1 and p∈P1(e), that is, event parameter

sorts are preserved;

— sort2(σpar−sv,s(p)) = sort1(p) for every s ∈ S1 and p∈P1(s), that is, service parameter

sorts are preserved.

Signatures and their morphisms constitute a category SIGN.

A morphism σ from Q1 to Q2 supports the identification of a way in which a component

with signature Q1 is embedded in a larger system with signature Q2. Morphisms map state

variables, services and events of the component to corresponding state variables, services

and events of the system, preserving data sorts and kinds. An example is the inclusion of

Set in SCA. All the mappings are inclusions: all names used in Set are preserved in SCA.

Notice that it is possible that an event that the component subscribes is bound to an

event published by some other component in the system, thus becoming pubsub in the

system. This is why we have TS (inserted) = sub but TSCA(inserted) = pubsub: in SCA, the

event inserted is published by the service insert.

The constraints on domains are of the form A2(σst(v)) = σsv(A1(v)) and imply that the

domain in Q2 of an ‘old’ variable, that is, a variable of the form σst(v), is the image of the

domain of that variable in Q1. Therefore, new services introduced in the system cannot

assign to state variables of the component. This is what makes state variables ‘private’

to components. The same applies to the invocation of services through the constraints

σhr−ev(G1(s)) = G2(σsv(s)): events subscribed by the system but not by the component

cannot invoke services of the component; if other parts of the system want to invoke

services of the component, they must do so by publishing events to which the component

subscribes. Notice that the condition σsv(G1(h)) ⊆ G2(σhr−ev(h)) allows a subscribed event

to invoke more services in the system through the same handler; however, the previous

constraint implies that these new invocations cannot be for services of the component.

As a result of these encapsulation mechanisms, we cannot identify components of a

system by grouping state variables, services and events in an arbitrary way; we have to

make sure that variables are grouped together with all the services that can assign to

them, and we have to group those services with all the events that can invoke them.

For instance, we can identify a counter as a component of SCA that manages the state

variable value (see Figure 6).

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

An algebraic semantics of event-based architectures 1047

If we map doInc to inserted and doDec to deleted, we define a morphism between the

signatures of Counter and SCA. Indeed, sorts of state variables are preserved, and so are

the kinds of the events. The domain of the state variable value is also preserved because

the other services available in SCA (insert, delete, add, sub) do not assign to it. The same

applies to the invocation of its services: inc and dec are not invoked by the new events

subscribed in SCA (doInsert and doDelete).

Components are meant to be ‘reusable’ in the sense that they are designed without

a specific system or class of systems in mind. In particular, it is not necessary that

the components that are responsible for publishing events or those that will subscribe

published events, are fixed at design time. This is why, in our language, all names are

local and morphisms have to account for any renamings that are necessary to establish

the bindings that may be required. For instance, as already mentioned, the morphism that

identifies Counter as a component of SCA needs to map doInc to inserted and doDec to

deleted. Do notice that the binding also implies that inserted and deleted are subscribed

within SCA. As a result, our components are independent in the sense of Sullivan and

Notkin (1992): they do not explicitly invoke any component other than themselves.

In order to identify components in systems, the bodies of their designs also have to be

taken into account, that is, the ‘semantics’ of the components have to be preserved. In

this sense, morphisms capture relationships between designs that are similar to what in

parallel program design languages is known as ‘superposition’ (Lopes and Fiadeiro 2004).

Definition/Proposition 4.2. A superposition morphism σ : 〈Q1,∆1〉 → 〈Q2,∆2〉 consists of a

signature morphism σ : Q1 → Q2 such that, for every model of 〈Q2,∆2〉 and execution

step:

— Handling requirements are preserved: (η2(σhr−ev,e(h)) ⊃ σ(η1(h))) holds for every event

e∈E1 and handling h∈H1(e).

— Effects are preserved: (ρ2(σsv(s)) ⊃ σ(ρ1(s))) holds for every s∈ S1.

— Lower guards are preserved: (γl2(σsv(s)) ⊃ σ(γl1(s))) holds for every s∈ S1.

— Upper guards are preserved: (γu2(σsv(s)) ⊃ σ(γu1(s))) holds for every s∈ S1.

Designs and their morphisms constitute a category sDSGN. We use sign to denote the

forgetful functor from sDSGN to SIGN that forgets everything from designs except their

signatures.

We use σ to denote the translations that the morphism σ induces on the languages

that we use in the body of designs. The definition of such translations is quite straight-

forward (but tedious) using induction on the structure of the terms and sentences. See

Fiadeiro (2004) for examples.

Note that the first condition allows for more handling requirements to be added and,

for each handling, subscription conditions to be strengthened. In other words, as a result

of being embedded in a bigger system, a component that publishes a given event may

acquire more handling requirements but also more constraints on how to handle previous

requirements, for instance on how to pass new parameters.

It is easy to see that these conditions are satisfied by the signature morphisms that

identify Set and Counter as components of SCA. However, in general, it may not be trivial

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

J. L. Fiadeiro and A. Lopes 1048

Fig. 7. A simple configuration of set–counter.

to prove that a signature morphism extends to a morphism between designs. After all,

such a proof corresponds to recognising a component within a system, which is likely

to be a highly complex task unless we have further information on how the system was

put together. This is why it is important to support an architectural approach to design

through which systems are put together by interconnecting independent components. This

is the topic of Section 4.3.

4.2. Externalising the bindings

As explained in Fiadeiro and Lopes (1997) and Fiadeiro et al. (2003), one of the advantages

of a categorical formalisation of architectural design is that it allows us to support a design

approach based on superposing separate components (or connectors) over independent

units. These separate components are called mediators in Sullivan and Notkin (1992).

Here we take ‘separate’ and ‘independent’ in the same sense as used in Sullivan and

Notkin (1992): mediators are separate in the sense that they are components in their own

right, and they interconnect components that are independent, as already explained: they

do not explicitly invoke any component other than themselves.

For instance, using a graphical notation for the interfaces of components – the events

they publish and subscribe, and the services that they can perform – we are able to start

from separate Set and Counter components and externally superpose the bindings through

which Counter subscribes the events published by Set (see Figure 7).

As in Fiadeiro (2004), we explore the ‘graphical’ nature of Category Theory to model

interconnections as ‘boxes and lines’. In our case, the lines need to be accounted for

by special components that perform the bindings between the event published by one

component and subscribed by the other:

design Binding_0 is
publish&subscribe event

The binding has a single event that is both published and subscribed. The intercon-

nection between Set, Binding 0 and Counter is performed by an even simpler kind of

component: cables that attach the bindings to the events of the components. These are of

the form

design CableP is
publish.

design CableS is
subscribe.

Because names are local, the identities of events in cables are not relevant: they are just

placeholders for the projections to define the relevant bindings. This is why we represent

them through the symbol •. The configuration presented in Figure 7 corresponds to the

diagram (labelled graph) in the category sDSGN of designs presented in Figure 8.

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

An algebraic semantics of event-based architectures 1049

CableP CableS

Binding_0

Set Counter

Binding_0

CableP CableS

inserted • event event • doInc

deleted • event event • doDec

Fig. 8. A categorical diagram expressing the system configuration presented in Figure 7.

design Filter is

publish target

provide service
effects target!

subscribe source
par n:nat
invokes service

handledBy
isEven(n) service?

Fig. 9. The design of Filter.

In Category Theory, diagrams are mathematical objects and, as such, can be manip-

ulated in a formal way. One of the constructs that are available on certain diagrams

internalises the connections in a single (composite) component. In the above case this

consists of computing the colimit of the diagram (Fiadeiro 2004), which returns the

design Set&Counter discussed in Section 2. In fact, the colimit also returns the morphisms

that identify both Set and Counter as components of Set&Counter. We will discuss these

constructions in Section 4.3.

Bindings can be more complex. Just for illustration, consider the case in which we want

to count only the even elements that are inserted. Instead of using Binding 0 to connect

Set and Counter directly, we would use the more elaborate connector (mediator) Filter

presented in Figure 9. This is a generic component that subscribes to an event source that

carries a natural number, and invokes the service source when and only when that natural

number is even. The effect of executing service is to publish an event target. That is, what

we are filtering is source events, passing on only those that carry an even parameter.

What we want now is for this filter to be connected to inserted events at the source, and

to doInc at the target.

This connector, which is presented in Figure 10, is made explicit in the configuration

as a mediator between Set and Counter, replacing the simple binding. Notice that the

connections between Filter and the other two components, Set and Counter, is still

established through bindings, which we have abstracted in the picture through the same

solid lines as we used before. The categorical diagram corresponding to this configuration

is presented in Figure 11.

The connection to Set requires a more sophisticated binding to ensure that the parameter

is transmitted. We need the interconnection presented in Figure 12 with the binding defined

in Figure 13 and the cables defined in Figure 14. The other connections are established in

a similar way.

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

J. L. Fiadeiro and A. Lopes 1050

Fig. 10. A configuration involving Filter: only the insertions of even numbers are counted.

CableP CableS

Binding_0

Filter Counter

target • event event • doInc

Fig. 11. Interconnection of Filter and Counter.

CableP_1P CableS_1P

Binding_1

Set Filter

which • p
inserted • event

p • n
event • source

Fig. 12. Interconnection of Set and Filter.

design Binding_1 is

publish&subscribe event
par p:nat

Fig. 13. The binding involved in Figure 12.

design CableP_1P is

publish ·
par ·:nat

design CableS_1P is

subscribe ·
par ·:nat

Fig. 14. The cables involved in Figure 12

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

An algebraic semantics of event-based architectures 1051

design Adder is

provide add
par lm:nat
assignsTo sum
effects sum’=sum+lm

provide sub
par lm:nat
assignsTo sum
effects sum’=sum-lm

store sum:nat

subscribe doAdd
par which:nat
invokes add

handledBy add? which=add.lm

subscribe doSub
par which:nat
invokes sub

handledBy sub? which=sub.lm

Fig. 15. The design of Adder.

Fig. 16. A configuration of set–counter involving Adder.

The same design approach can be applied to the addition of an Adder, defined in

Figure 15. The required configuration is shown in Figure 16. We will abstain from

translating the configuration to a categorical diagram. The colimit of that diagram

returns the design SCA discussed in Section 2 and the morphisms that identify Set, Adder

and Counter as components.

Note that the categorical approach allows for systems to be reconfigured by plugging

in and out bindings, components, connectors, mediators, and so on. For instance, we can

superpose Filter to count only insertions of even numbers, or we could have superposed

Adder to the previous configuration with Filter, presented in Figure 17.

Fig. 17. A configuration of set–counter involving Filter and Adder.

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

J. L. Fiadeiro and A. Lopes 1052

4.3. The universal properties of designs

We have already mentioned that we rely on so-called universal constructions, namely

colimits, to give semantics to configuration diagrams following the same principles as

have been used in other areas, including CommUnity. These are operations that, when

applied to a (categorical) diagram, return an object (a design in our case) that captures

the global behaviour of the configured system, together with the morphisms that indicate

how the objects of the diagram are now components of the system. For instance, we

have already mentioned how the more complex designs of Section 2 result from the

configurations developed in Section 4.2.

Proposition 4.3. The functor sign defines sDSGN as a coordinated category, that is, it is

faithful, lifts colimits and has discrete structures.

The proof of this property is too long to be included in this paper. However, it is

useful to explain what being coordinated means and why it is meaningful in this context.

The fact that e-CommUnity has discrete structures means that every signature Q has a

‘canonical realisation’ (a discrete lift) as a design dsgn(Q) = 〈Q,∆〉 where the body ∆ is

the tuple 〈η, ρ, γ〉 with:

— For every service s, ρ(s) is the proposition true: that is, we make no commitments

about the effects of the execution of the service.

— For every service s, both guards γl(s) and γu(s) are the proposition true: that is, we

make no commitments about the bounds of the enabling condition of the service.

— For every event handler h, η(h) is the proposition true: that is, we make no requirements

about how subscribed events are handled.

In other words, dsgn(Q) is completely under specified. This canonical realisation is

such that every morphism σ : Q → sign(〈Q′,∆′〉) is also a morphism of designs dsgn(Q)→
〈Q′,∆′〉. Hence, the cables in a configuration diagram are, basically, signatures and, indeed,

the calculation of a colimit takes place, essentially, in the underlying diagram of signatures:

once the signature of the colimit is computed, the body is ‘lifted’ in a canonical way from

the body of the components.

The colimit construction operates over signatures by amalgamating the events involved

in each pub/sub interconnection established by the configuration. From a mathematical

point of view, these events represent the quotient sets of events defined by the equivalence

relation that results from the pub/sub interconnections. The corresponding sets of

parameters are amalgamated in a similar way, as are services and their parameters.

Lifting the colimit of a diagram of signatures back to a design operates as follows. Let

{s1, . . . , sn} be the quotient set of amalgamated services of the components of a system, and

σij be the signature morphism that identifies the component to which service sj belongs

within the system. Then:

— The transformations performed by an amalgamated service are specified by the

conjunction of the specifications of the local effects of each of the services in the

quotient set. That is, we have ρ({s1, . . . , sn}) = σi1 (ρi1 (S1)) ∧ . . . ∧ σin (ρin(sn)).
— Guards operate in the same way, that is, γl({s1, . . . , sn}) = σi1 (γ

l
i1
(s1)) ∧ . . . ∧ σin(γ

l
in
(sn))

and γui1 ({s1, . . . , sn}) = σi1 (γ
u
i1
(s1)) ∧ . . . ∧ σin(γuin (sn)).

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

An algebraic semantics of event-based architectures 1053

— The set of handlers of a subscribed event is also obtained through amalgamated sums

and the handling requirement of a quotient set of handlers is also a conjunction:

η({h1, . . . , hn}) = σi1 (ηi1 (h1)) ∧ . . . ∧ σin (ηin(hn)).

This explains the colimits that we have already computed in the paper for various

configuration diagrams.

5. Refinement and compositionality

In this section we define a formal notion of refinement that supports incremental

development by removing under specification. As in Lopes and Fiadeiro (2004), we

distinguish between composition and refinement as design dimensions and formalise them

through different notions of morphism, giving rise to two different but related categories

of designs. We also show that this notion of refinement is compositional in the sense

that designs may be refined independently of the other components and the way they are

interconnected in a configuration.

5.1. Refining designs

We define the notion of refinement in much the same way as in CommUnity, that is, by

defining a notion of morphism between designs through which we can add detail and

remove under specification.

Definition/Proposition 5.1. A refinement morphism µ : 〈Q1,∆1〉 → 〈Q2,∆2〉 consists of a

signature morphism µ : Q1 → Q2 such that:

— The interface with the environment is preserved: the functions µev , µsv , µpar−ev,e, µpar−sv,s,

µhr−ev,e, for every e∈E1 and s∈ S1, are injective.

— Handling requirements are preserved: (η2(µhr−ev,e(h)) ⊃ µ(η1(h))) holds for every event

e∈E1 and handling h∈H1(e).

— Effects are preserved: (ρ2(µsv(s)) ⊃ µ(ρ1(s))) holds for every s∈ S1.

— Lower guards are preserved: (γl2(µsv(s)) ⊃ µ(γl1(s))) holds for every s∈ S1.

— Upper guards are reflected: (µ(γu1(s)) ⊃ γu2(µsv(s))) holds for every s∈S1.

Designs and their refinement morphisms constitute a category rDSGN.

A refinement morphism µ from designs C1 to C2 captures the way in which the

design C1 of a given component is refined by a more concrete design C2 (of the same

component). Although refinement morphisms are based on the same signature mappings

as superposition morphisms, there are some significant differences.

— Every event and service of C1 is represented by a distinct event and service in C2; the

same applies to the set of event and service parameters, as well as event handlers. This

means that refinement preserves the interface of the component: design decisions may

be made that add new events, services, parameters and handlers without collapsing

them since this would change the way other components may have been connected

through the more abstract design.

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

J. L. Fiadeiro and A. Lopes 1054

design Actuator is

subscribe doAction
invokes action

handledBy action?

provide action

Fig. 18. The design of Actuator.

design FBActuator is

subscribe doAction
invokes action

handledBy action?

publish actioned

provide action
effects actioned!

Fig. 19. The design of FBActuator.

— The intervals provided by the guards for the enabling conditions of services are

preserved in the sense that the refined interval is included in the abstract one. This

means that refinement reduces the degree of under specification on enabling conditions.

Note that superposition morphisms allow for this interval to be shifted to reflect the

fact that a service shared by two components requires that both enabling conditions

are true for the service to be executed.

Otherwise, the conditions on the effects of services and the handling of events are the

same because they reduce the degree of under specification present in the abstract design.

This reflects the fact that superposition identifies ways in which complex components

share simpler components; as a result, their designs may complement each other where

they were under specified.

As an example, consider the high-level design of a typical Actuator, defined in Figure 18,

that provides a service action that can only be invoked through the publication of the

event doAction, the publication of which guarantees that action is indeed invoked.

Note that in this description we do not provide any details of what exactly the action

does or when it is enabled, that is, the execution of action is totally under specified.

This design can be regarded as an abstract description of Set. This is because if we map

doAction to doInc and action to inc, we define a refinement morphism from Actuator to

Set. In fact, there are two ways of identifying Set as a refinement of Actuator because

if we map doAction to doDec and action to dec, we also define a refinement morphism.

Similarly, Counter and Adder also refine Actuator in several ways.

A more informative abstract description of Set is provided by the design FBActuator

presented in Figure 19. This design refines Actuator by including feedback on the execution

of action in the form of the publication of a new event actioned.

Notice that this design is no longer refined by either Counter or Adder.

An abstraction of Set that is more specific in the way it can relate to other components

is presented in Figure 20. Apart from the state variables, this design has the same signature

as Set up to renaming. As result, it offers the same interactions with the environment as

Set but is more abstract in the sense that it does not specify its state component.

Refinement morphisms support the definition of hierarchies of ‘kinds’ or classes of

components, which is useful for defining architectural connectors as illustrated in Fiadeiro

et al. (2003). Figure 21 presents an example with the components involved in our running

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

An algebraic semantics of event-based architectures 1055

design 2FBActuator&Par is

subscribe doAction1
par par:nat
invokes action1

handledBy action1?
action1.which=par

subscribe doAction2
par par:nat
invokes action2

handledBy action2?
action2.which=par

publish actioned1
par par:nat

publish actioned2
par par:nat

provide action1
par which:nat
effects actioned1!

actioned1.par=which

provide action2
par which:nat
effects actioned2!

actioned2.par=which

Fig. 20. The design of 2FBActuator&Par.

Actuator

Counter Adder

FBActuator

2FBActuator&Par

Set

Fig. 21. Hierarchy of components of our running example.

example. Notice that, in order to represent refinement morphisms in diagrams, we use a

different arrow from the one we use for superposition.

5.2. Reducts

Refinement morphisms act on models of the corresponding designs through what is

usually called a reduct mapping (or just reduct, for short). The definition of a reduct

requires that we are able to relate the semantic structures of both designs. In the rest of

the paper, we assume a fixed a refinement morphism µ : 〈Q1,∆1〉 → 〈Q2,∆2〉.

Proposition 5.2. A data signature morphism µ : Σ1 → Σ2 is defined by the morphism µ

between the corresponding extensions of the data signature Σ by mapping:

— every sort and operation of Σ into itself;

— de into dµ(e), for every e∈E1;

— dp : de → d into dµ(p) : dµ(e) → d, for every e∈E1, p∈P1(e)d and sort d in Σ;

— invh,s : de → ds into invµ(h),µ(s) : dµ(e) → dµ(s), for every e ∈ Sub(E1), h∈H1(e) and

s∈G1(h);

— dp : ds → d into dµ(p) : dµ(s) → d, for every s∈ S1, p∈P1(s)d and sort d in Σ;

— pubs,e : ds → de into pubµ(s),µ(e) : dµ(s) → dµ(e), for every s∈S1 and e∈Pub(E1).

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

J. L. Fiadeiro and A. Lopes 1056

Every such signature morphism µ : Σ1 → Σ2 induces a reduct functor |µ from the

algebras of Σ2 to the algebras of Σ1 (Ehrig and Mahr 1985). Such reducts extend to

spaces in the sense that, applied to a Q2-space 〈Σ2,U〉, we get 〈Σ2,U|µ〉 as a Q1-space.

We omit the proof of this result because it is quite simple. However, we would like to

point out that the injectivity of the functions µev and µsv is necessary to ensure that the

reducts of algebras extend to spaces.

From now on, we assume a fixed Q2-space with an algebra U.

Definition 5.3. The µ-reduct of a set of invocations INV , which we denote by INV |µ, is

the set of triples 〈t, h, u〉 such that:

— t is an element of deU for some event e∈µev(Sub(E1));

— h∈H1(e);

— u = inv
µ(h),s
U (t) for some s∈µsv(G1(h));

— 〈t, µhr−ev,e(h), u〉 ∈INV .

That is, we get the set INV |µ by ‘forgetting’ those invocations in INV that result from

the handling of new events, or invoke new services, or result from a new handler for an

‘old’ event.

Definition 5.4. The µ-reduct of an execution state EST = 〈VAL, PDN〉 for Q2, which we

denote by EST |µ, consists of:

— the mapping that, to every data sort d∈D and state variable v ∈V1d , assigns the value

VAL(µst(v));

— the µ-reduct PDN |µ of PDN.

That is, variables are evaluated in the reduct of a state in the same way that their

translations are evaluated in the original state. With regard to pending invocations, as

mentioned earlier, the reduct ‘forgets’ those that result from the handling of new events,

or invoke new services, or result from a new handler for an ‘old’ event. The following

results reflect the fact that what we obtain is an execution state for the source signature.

Proposition 5.5. The µ-reduct of an execution state EST for Q2, in the sense that it satisfies

the conditions of Definition 3.3, is an execution state for Q1. Moreover, the µ-reduct of

any set of actual service invocations of EST , in the sense that it satisfies the conditions

of Definition 3.4, is a set of actual invocations of EST |µ.

The proof of this result is straightforward. We can now define how reducts act on

execution steps.

Definition/Proposition 5.6. Given an execution step 〈SRC,TRG, INV , EXC, PUB, NXT 〉
of Q2, its µ-reduct is the execution step 〈SRC |µ, TRG |µ, INV |µ, EXC |µ, PUB |µ, NXT |µ〉
of Q1 where:

— EXC |µ is the set of service instances u∈EXC such that u∈ dsU for some s∈ µsv(S1),

that is, that are instances of services in Q1.

— PUB |µ is the set of event instances t∈PUB such that t∈ deU for some e∈ µev(E1), that

is, that are instances of events in Q1.

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

An algebraic semantics of event-based architectures 1057

In this case, we simply apply the reduct componentwise to each element of the execution

step. The sets EXC |µ of executed services and PUB |µ of published events are obtained

by ‘forgetting’ the services and events that are not generated within Q1.

Definition/Proposition 5.7. Given a model M of a signature Q2, its µ-reduct is the model

of Q1 obtained by taking the µ-reduct of the Q2-space of M together with the direct

acyclic graph of M and the labelling function L|µ that results from the application of

the reduct to the labels provided by L (that is, L|µ assigns the execution state L(n) |µ to

a node n and the execution step L(r) |µ to an arrow r).

In this way, the structure of the original model is preserved. The reduct only affects the

labelling of nodes and arrows, which is obtained by applying the corresponding reducts

to the labels of the original model.

Finally, we state the result that states that refinement morphisms are model preserving.

Definition/Proposition 5.8. Given a model M of a design 〈Q2,∆2〉, its µ-reduct M|µ is a

model of the design 〈Q1,∆1〉.

As required, the refinement of a design may only eliminate models, reflecting the fact

that the degree of under specification is reduced. As a result, any refinement of a design

preserves its properties. The proofs of Definitions/Propositions 5.6, 5.7 and 5.8 are given

in the Appendix.

5.3. Compositionality

Refinement and composition are handled through different kinds of morphisms, but

they can be related by a compositionality property according to which it is possible to

refine designs that are part of a configuration without interfering with either the other

components or the interconnections that are in place. We state and prove our results for

a special kind of colimits – pushouts – as this simple case generalises to the colimit of

any finite diagram (Fiadeiro 2004).

Proposition 5.9. Let 〈σ1 : dsgn(Q0) → D1, σ2 : dsgn(Q0) → D2〉 be a pair of superposition

morphisms in sDSGN with pushout 〈α1 : D1 → D, α2 : D2 → D〉. Given a pair 〈µ1 : D1 →
D′

1, µ2 : D2 → D′
2〉 of refinement morphisms in rDSGN, there exists a unique refinement

morphism µ : D → D′ satisfying α1; µ = µ1; α
′
1 and α2; µ = µ2; α

′
2 in the category SIGN,

where 〈α′
1 : D′

1 → D′, α′
2 : D′

2 → D′〉 is the pushout of 〈σ1; µ1, σ2; µ2〉 in sDSGN and

(σi; µi) are the morphisms obtained by lifting the composition of the underlying signature

morphisms to sDSGN.

Note that the fact that sDSGN is coordinated over SIGN ensures that any intercon-

nections of designs can be established via their signatures, which is why we used dsgn(Q0)

as a middle object in the given configuration (see Figure 22). As discussed in Section 4.3,

this design is a canonical realisation of a signature. The fact that this simplification does

not constitute a limitation is proved in Fiadeiro (2004).

More information on the relationship between refinement and superposition, and the

compositionality results that relate them can be found in Lopes and Fiadeiro (2004).

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

J. L. Fiadeiro and A. Lopes 1058

dsgn(Q0)

D1 D2

D1' D2'

D'

1 2

Dµ

σ

α α

α α

σ

1 µ2
1 2

µ

1' 2'

Fig. 22. Compositionality of refinement with respect to superposition.

6. Adding synchronous interactions

Another advantage of the categorical formalisation of publish/subscribe is that it allows

us to use this style in conjunction with other architectural modelling techniques, namely

synchronous interactions as in CommUnity. For instance, suppose we are now interested

in restricting the insertion of elements in a set to keep the sum below a certain limit LIM.

Changing the service add of Adder to

provide add
par lm:nat
assignsTo sum
guardedBy sum+lm<LIM
effects sum’=sum+lm

does not solve the problem because inserted, to which Adder subscribes, is published after

the element has been inserted in the set. What we need is to change the service insert of

Set so as to strengthen its enabling condition with sum+ lm < LIM, and ensure that sum

is updated by insert and delete. However, in order to do this within sDSGN, we would

have to redesign the whole system. Ideally, we would like to remain within the incremental

design approach through which we superpose separate components to induce required

behaviour.

One possibility is to use action synchronisation and i/o-communication as in Com-

mUnity. More precisely, the idea is to synchronise Set and Adder to ensure that sum is

updated when insertions and deletions are made, and superpose a regulator to check the

sum before allowing the insertion invocation to proceed. In CommUnity, actions capture

synchronisation sets of service invocations, something that is not intrinsic to implicit

invocation as an architectural style and, therefore, cannot be expressed in the formalism

presented in the previous sections. Similarly, input and output channels are needed to

make sure that data is exchanged synchronously. This is why we will now extend the

notion of design in e-CommUnity with synchronisation constraints and communication

channels.

As an example, consider the revision of SCA given in Figure 23. Through the new

primitive synchronise we provide a sentence that defines the synchronisation sets of service

execution that can be observed at run time. For instance, through the sentence a ≡ b, we

can specify that two given services a and b are always executed simultaneously. Hence, in

the example, insert and add are always performed synchronously.

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

An algebraic semantics of event-based architectures 1059

design syncSet&Counter&Adder is
store elems: set(nat),

value:nat, sum:nat
output mysum:nat
publish&subscribe inserted

par which:nat
invokes inc

handledBy inc?
publish&subscribe deleted

par which:nat
invokes dec

handledBy dec?
subscribe doInsert

par which:nat
invokes insert

handledBy insert?
which=insert.lm

subscribe doDelete
par which:nat
invokes delete

handledBy delete?
which=delete.lm

synchronise insert add
insert.lm=

=
add.lm

sub delete
sub.lm=delete.lm

convey mysum=sum

provide insert
par lm:nat
assignsTo elems
guardedBy

[lm elems lm+mysum<LIM,false]
effects elems’={lm} elems
inserted! inserted.which=lm

provide delete
par lm:nat
assignsTo elems
guardedBy lm elems
effects elems’=elems\{lm}

deleted! deleted.which=lm
provide inc

assignsTo value
effects value’=value+1

provide add
par lm:nat
assignsTo sum
effects sum’=sum+lm

provide sub
par lm:nat
assignsTo sum
effects sum’=sum-lm

provide dec
assignsTo value
effects value’=value-1

∨

∨

∨

∨

∨

∨
∨

∨

∨
∨

∨

Fig. 23. The design of syncSet&Counter&Adder.

Through convey we establish how the output channels relate to the state variables. In

the example, we are just making the sum directly available to be read by the environment

through mysum. The idea is that sum ‘belongs’ to the adder but needs to be observed

by the set in order to determine if insertions are allowed. The output channel mysum

does exactly this, that is, it allows a component to make data available synchronously to

other components in the same system (as above) or the environment. This is why we can

strengthen the guard of insert with the condition lm+ mysum < LIM.

We can now formalise the extension, starting with signatures.

Definition 6.1. We define an extended signature QI,O to be a signature Q together with two

D indexed families I and O of mutually disjoint finite sets (of input and output channels,

respectively).

Our next step deals with the semantic model. Basically, we have to provide the structures

through which we can interpret channels and synchronisation constraints. This concerns

both execution states and steps.

Communication channels are interpreted over execution states by extending the valu-

ation mappings.

Definition 6.2. An extended execution state for an extended signature QI,O is an execution

state for Q with its valuation mapping VAL extended to I and O, that is, to every data

sort d∈D and channel c∈ Id ∩ Od, VAL assigns a value VAL(c)∈dD.

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

J. L. Fiadeiro and A. Lopes 1060

Fig. 24. Representation of the elements involved in extended execution steps.

Execution steps are extended with an additional set RZV of service instances corres-

ponding to the executions that result from synchronisation constraints. These additional

executions have to satisfy the requirement that there can be no more than one execution

of an instance of any service at any given step.

Definition 6.3. An extended execution step for an extended signature QI,O is an execution

step for Q together with a set RZV of service instances such that, for every s∈ S , there is

at most one u∈ dsU ∩ RZV .

The set RZV contains the service instances that are executed during that step. It may

exclude some of the instances in EXC , that is, instances that have been invoked and are

enabled. This may happen, for instance, because the excluded services are synchronised

with other services that are not enabled. That is, the synchronisation requirements may

impose the execution of services that were not directly invoked, but they may also exclude

invoked services that would otherwise be executed. However, as discussed in the definition

of a model, we impose a ‘maximality’ constraint on RZV with respect to EXC that

makes sure that only as many enabled invocations are discarded as necessary to satisfy

the synchronisation constraints.

The Figure 24 reflects the structure of an extended execution step.

We can now define the languages over which we can specify both observation and

synchronisation constraints – the former involves output channels and state variables.

Definition 6.4. Given an extended signature QI,O we define the observation language OLQ,I,O
associated with Q as the first-order language generated by the data signature Σ = 〈D, F〉
enriched with:

— for every sort d∈D, each output channel o∈Od as a constant of sort d;

— for every sort d∈D, each state variable v∈Vd as a constant of sort d.

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

An algebraic semantics of event-based architectures 1061

Given an extended execution state, we evaluate the sentences of OLQ,I,O in the extension

of the Σ-algebra D using:

— oD = VAL(o).

— vD = VAL(v).

The synchronisation constraints are expressed in a language that involves services and

their parameters.

Definition 6.5. Given an extended signature QI,O , we define the synchronisation language

SLQ,I,O associated with Q as the first-order language generated by the data signature

Σ = 〈D, F〉 enriched with:

— for every s∈ S and d∈D, each parameter p∈P (s)d as a constant of sort d;

— for every service s∈ S , the atomic proposition s.

Given an extended execution step, we evaluate the sentences of SLQ,I,O in the extension

of the Σ-algebra D with:

— pD = d
p
U(u) for s∈ S , p∈P (s) and u∈ dsU such that u∈ dsU ∩ RZV if dsU ∩ RZV �= �.

— s is true if and only if dsU ∩ RZV �= �.

We use s as a proposition to denote the fact that an instance of service s is executed

during a step, either in response to an invocation or as a result of a synchronisation. Note

that this is different from the invocation of s, which we denoted by s?; the invocation is

evaluated over NXT , whereas the execution refers to RZV .

Finally, we extend the state and transition languages defined in Section 3 in order to

allow communication channels to be used both in guards and in the specification of the

effects of services.

Definition 6.6. The state and transition languages associated with QI,O are those of Q

extended with each input channel i∈ Id as a constant of sort d, and every output channel

o∈Od as a state variable of sort d. For every execution state, we extend every Σ-algebra

D with iD = VAL(i) and, for every execution step, oD = VALSRC(o) and o′
D = VALTRG(o).

Given this, we can define designs in extended signatures.

Definition 6.7. An extended design over QI,O is a tuple 〈η, ρ, γ, β, χ〉 where 〈η, ρ, γ〉 is a

design for Q in which I and O can be used in the languages of ρ and γ, and:

— β ∈OLQ,I,O is a sentence establishing what observations of the local state are made

available through the output channels.

— χ∈ SLQ,I,O is a sentence establishing dependencies between service execution that need

to be observed at every step.

The corresponding notion of model is as follows.

Definition 6.8. A model of an extended design 〈QI,O,∆〉 where ∆ = 〈η, ρ, γ, β, χ〉 is a model

of QI,O such that any label 〈SRC,TRG, INV , EXC,RZV , PUB,NXT 〉 of an arrow of

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

J. L. Fiadeiro and A. Lopes 1062

the underlying graph satisfies the following conditions:

— For every u∈EXC with u∈ dsU, we have γl(s) holds for u at SRC .

— For every 〈t, h, u〉 ∈INV and u∈ dsU, if γu(s) holds for u at SRC , then u∈EXC .

— For every u∈RZV with u∈ dsU, we have γl(s) holds for u at SRC .

— For every u∈RZV with u∈ dsU, we have ρ(s) holds for u at that step.

— For every t∈PUB where t∈ deU and h∈H(e), we have η(h) holds for t and h at that

step.

— β is true at TRG.

— χ is true at that step.

— If u∈EXC and u /∈ RZV , there is no step 〈SRC, , INV , EXC,RZV ′, , 〉 with

RZV ′ ⊇ RZV and u∈RZV ′ such that all the previous conditions hold for that step.

— There is no step 〈SRC, , INV , EXC,RZV ′, , 〉 with RZV ′ ⊂ RZV such that all

the previous conditions hold for that step.

— If u∈EXC and u /∈ RZV , and there is a step 〈SRC, , INV , EXC,RZV ′, , 〉 such

that u∈RZV ′ and all the previous conditions hold for that step, then there is an arrow

of the underlying graph that has the same source node and is labelled with that step.

The first and second condition repeat what we defined for models of the original

designs. The third condition is like the first but applied to RZV . The fourth condition

repeats the requirements for models of the original designs but applied to RZV instead

of EXC; this is because the services that are executed are those in RZV , which may

include only some of those in EXC . The fifth condition is also as for the original designs.

The sixth and seventh conditions address the new sets of requirements on observations

and synchronisations. The eighth condition captures, in a sense, a notion of ‘maximality’

with respect to EXC: invoked services that can be executed in spite of synchronisation

constraints should be part of a step. The ninth condition captures a notion of ‘minimality’

of RZV : no more services should be executed than those necessary for fulfilling the

synchronisation constraints. Finally, the tenth condition adds to the maximality property

given by the eighth condition the fact that all options should be reflected in the same

model.

Note that because service synchronisations are specified through a sentence in which

services are used as atomic propositions, every model defines a number of sets of services –

those that correspond to the propositional models of the synchronisation constraint. For

instance, in a language of propositions (services) {a, b, c}, the (synchronisation) constraint

(a ⊃ b) admits as models the subsets {}, {c}, {b}, {b, c},{a, b} and {a, b, c}. In other words,

it excludes the sets that contain a but not b.

These propositional models correspond to the synchronisation sets used for interpreting

actions in CommUnity. The difference is that in e-CommUnity we are not synchronising

actions as sets of service executions, but imposing constraints on the way these service can

be executed with respect to each other. In other words, whereas by binding action names,

CommUnity offers an ‘operational’ account of synchronisation through its universal

constructions, e-CommUnity is ‘declarative’; the bindings established in e-CommUnity

through cables do not synchronise independent services, they identify them. We will

resume this discussion at the end of this section.

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

An algebraic semantics of event-based architectures 1063

design syncAdder is

provide add
par lm:nat
assignsTo sum
effects sum’=sum+lm

provide sub
par lm:nat
assignsTo sum
effects sum’=sum-lm

store sum:nat

output mysum:nat

convey mysum=sum

Fig. 25. The design of syncAdder.

It remains to show how we can externalise the extension in much the same way as we

did in Section 4. The following design captures the synchronisation:

design sync is

synchronise a b
a.p=b.p

provide a
par p:nat

provide b
par p:nat

In order to strengthen the guard of insert, we need a component that reads the state of

Adder to determine if insert can proceed:

design control is
input i:nat

provide s
par n:nat
guardedBy n+i<LIM

This leads us to a new configuration, presented in Figure 26, in which syncAdder is

modelled as a component prepared for synchronous interaction (see Figure 25).

Notice that sync and control are, like mediators, separate components that interconnect

independent components: syncAdder and Set are unaware that they are being synchronised,

and syncAdder does not know who is connected to its output channel; we can replace sync

by another interaction protocol without disturbing syncAdder and Set. Therefore, we can

claim that we have not increased the degree of coupling and compromised the evolutionary

properties of systems by adding synchronous interactions to implicit invocations.

The proposed extension of e-CommUnity is supported by the following notion of

morphism.

Definition 6.9. A morphism σ between extended signatures

〈V1, E1, S1, P1, T1, A1, G1, H1, I1, O1〉

and

〈V2, E2, S2, P2, T2, A2, G1, H2, I2, O2〉
is a morphism between signatures

〈V1, E1, S1, P1, T1, A1, G1, H1〉

and

〈V2, E2, S2, P2, T2, A2, G2, H2〉
together with σin : I1 → I2 ∩ O2 and σout : O1 → O2.

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

J. L. Fiadeiro and A. Lopes 1064

Fig. 26. A new configuration of set–counter.

That is, as in CommUnity, input channels may become output channels of the system,

but not the other way around.

Definition 6.10. A morphism between 〈η1, ρ1, γ1, β1, χ1〉 and 〈η2, ρ2, γ2, β2, χ2〉 is a morph-

ism between 〈η1, ρ1, γ1〉 and 〈η2, ρ2, γ2〉 such that the observation and synchronisation

dependencies are preserved: Φ � β2 ⊃ σ(β1) and Φ � χ2 ⊃ σ(χ1).

Notice that this is an extension of the previous notion of morphism, that is, morphisms

between designs that do not involve communication channels and synchronisations

are as before. According to this notion of morphism, synchronisation and observation

dependencies can be strengthened, that is, a system may impose new synchronisations

among services of the component and new observations of the state of the component.

However, note that, at the level of synchronisation sets, morphisms operate in a

contravariant way: the inverse image σ−1
ac (ss2) of every synchronisation set ss2 of P2 is

a synchronisation set of P1. To understand why this is so, consider the case in which

the morphism is an inclusion over services. This means that the implication (χ2 ⊃ χ1)

holds, which implies that every model (synchronisation set) of χ2 projects to a model

of χ1 by discarding the propositions (services) that are not in the language of S1. This

contravariant behaviour reflects the way signature morphisms were used in the previous

generation of CommUnity.

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

An algebraic semantics of event-based architectures 1065

In terms of the colimit construction, synchronisation dependencies are also composed

as a conjunction of the dependencies of the components: χ = σ1(χ1) ∧ . . . ∧ σn(χn). Again,

this reflects the fact that colimits operate on synchronisation sets through fibred products:

these compute intersections of inverse images of synchronisation sets of components,

which is the way actions are synchronised in CommUnity.

Every design in e-CommUnity is also an extended design in a canonical way by

considering that the set of communication channels is empty, and including observation

and synchronisation constraints that are tautological. However, note that this relationship

does not extend to an adjunction: there is an adjunction between the corresponding

categories of signatures, but it does not lift to designs, much in the same way that, in

logics, adjunctions between categories of signatures lift to the categories of theories but

not of presentations (Fiadeiro 2004).

On the other hand, every model of a design provides a model for its canonical extended

design by making RZV equal to EXC . Furthermore, the maximality and minimality

conditions ensure that this is the only possible choice for RZV : on the one hand, we

cannot exclude enabled invocations from RZV because of the eighth condition; on the

other hand, we cannot add more invocations because of the ninth condition. In other

words, every design and its canonical extended design have essentially the same models,

meaning that the extension is ‘conservative’ in a model-theoretic sense.

7. Conclusions and further work

In this paper, we have presented an extended account of the formalisation of the

architectural style known as ‘publish/subscribe’ or ‘implicit invocation’ that we started in

Fiadeiro and Lopes (2006). Other formal models (see, for example, Dingel et al. (1998)

and Garlan et al. (2003)) exist that abstract away from concrete notions of event and

related notification mechanisms, but they just address the computational aspects of the

paradigm, which is necessary for supporting, for instance, several forms of analysis. Our

work addresses both the computational and the architectural properties of the paradigm,

that is, how connectors can be defined and superposed over components to coordinate

their interactions.

For the computational model, we have proposed a mathematical semantics based on

transition systems extended with the publication of events and invocation of (atomic)

services. As mentioned in Section 2, we are now extending this framework to address

the full expressive power of conversational services in the sense of Service-Oriented

Architectures (Alonso et al. 2004). See Fiadeiro et al. (2006; 2007) for a preliminary

account of this approach.

We have defined several logics that support the high-level specification of different

aspects of component behaviour. However, such logics do not support verification of

properties as such; we are currently developing a modal logic that supports the analysis

of several classes of properties. This modal logic semantics should also give rise to a

functor that captures the way properties emerge from interconnections.

For the architectural model, our formalisation has allowed us to characterise key

structural properties of the architectural style for the externalisation of bindings and

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

J. L. Fiadeiro and A. Lopes 1066

mediators previously claimed in papers such as Sullivan and Notkin (1992). Terms like

‘separate’ and ‘independent’ were given a precise interpretation in our framework, which

we claim is faithful to the one given in Sullivan and Notkin (1992): mediators are separate

components in the sense that they are defined as first-class citizens that maintain a state

and can publish and subscribe events as required to coordinate the behaviour of other

components; components remain independent in the sense that they do not invoke any

other component (including mediators) other than themselves. The ability to support a

design approach in which mediators can be dynamically superposed over such independent

components derives from the externalisation of bindings. From a mathematical point of

view, these properties derive from the fact that the (forgetful) functor that maps the

category of designs to that of signatures has the strong structural property of being

coordinated, as explained in Fiadeiro (2004).

Furthermore, the proposed categorical semantics has allowed us to propose extensions

to what is normally available in event-based languages. On the one hand, e-CommUnity

supports under specification and refinement, that is, the ability to design systems in

which components, mediators and their interconnections have been established but not

the circumstances in which they actually publish events, how they subscribe events or

how their services operate. Refinement is the process through which we can add detail to

the designs of these components in a stepwise fashion. We have proved that this process

is compositional with respect to superposition, that is, that the designs of components

can be refined independently of the way they are interconnected. We believe that the

separation between superposition and refinement as design dimensions is an essential one,

and that compositionality results are key for any architectural style to be able to address

the complexity of software development (Lopes and Fiadeiro 2004).

The second extension that we proposed concerns the way in which implicit invocation

can be used together with synchronous forms of interconnection as previously formalised

through the language CommUnity. More precisely, we have added channels for (syn-

chronous) input/output communication, and a rendez vous style of synchronisation of

service executions. We have shown how these new forms of interaction do not increase the

degree of coupling nor compromise the evolutionary properties of implicit invocation. In

particular, we have shown how synchronous interactions may themselves be externalised in

separate mediators, and how communication channels are not connected through explicit

naming but through external bindings. Again, the proposed categorical formalisation was

key for showing how all these dimensions can be brought together.

Further work is going on towards exploiting this categorical framework to support

the integration of several architectural styles. For instance, we should be able to extend

e-CommUnity with the primitives that we used for extending CommUnity to capture

distribution and mobility (Lopes and Fiadeiro 2006) as well as context-awareness (Lopes

and Fiadeiro 2005). However, we are still in the initial stages of what could be called

‘architectural engineering’, by which we mean the ability to identify, characterise and

compose architectural ‘aspects’ to define an architectural style for a particular class of

applications. Our current work on providing an algebraic approach to service-oriented

architecture (Fiadeiro et al. 2007) should provide us with more insight into the engineering

of architectural styles.

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

An algebraic semantics of event-based architectures 1067

Appendix A. Notation

Signatures

A(s) The write frame (or domain) of service s, that is, the state variables that any

execution of s can change.

This set is declared under assignsTo.

A(v) The set of services that can change the state variable v.

s ∈ A(v) if and only if v ∈ A(s).

D The set of data sorts.

E The set of all the events either published or subscribed to by a component.

F Family of operations on data.

G(h) The set of services that can be invoked through handler h.

This set is declared under invokes.

G(s) The set of handlers that can invoke s.

h ∈ G(s) if and only if s ∈ G(h).

H(e) The set of handlers that react to the notifications that e has occurred.

Each handler h declares, under invokes, the set G(h) of services that it can

invoke and, under handledBy, the condition η(h) that specifies how such services

are invoked.

Id The set of input channels of sort d.

A channel i ∈ Id is declared under input i:d.

Od The set of output channels of sort d.

A channel o ∈ Od is declared under output o:d.

P (e)d The set of parameters of event e that are of sort d.

A parameter p ∈ P (e)d is declared under par p:d.

P (s)d The set of parameters of service s that are of sort d.

A parameter p ∈ P (s)d is declared under par p:d.

S The set of all services of a component.

Each service is declared under provide.

T (e) The type of event e: pub (published only), sub (subscribed only) or pubsub

(published and subscribed).

Vd The set of state variables of sort d.

A variable v ∈ Vd is declared under store v : d.

Design bodies

β A sentence that establishes what observations of the local state are made

available through the output channels.

This sentence is declared under convey.

γl(s) The lower guard of service s, that is, a sentence that, when false, implies that

the execution of s is not enabled.

This sentence is declared under guardedBy as part of a pair [γl(s), γu(s)].

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

J. L. Fiadeiro and A. Lopes 1068

γu(s) The upper guard of service s, that is, a sentence that, when true, implies that

the execution of s is enabled.

This sentence is declared under guardedBy as part of a pair [γl(s), γu(s)].

η(h) A sentence that specifies how the services in G(h) are invoked by h.

This sentence is declared under handledBy.

ρ(s) A sentence that specifies how the execution of service s changes the state

variables declared in A(s) and publishes the events declared in B(s).

This sentence is declared under effects.

χ A sentence that establishes synchronisation dependencies on the execution of

services.

This sentence is declared under synchronise.

Semantic models

EXC Invoked service instances that are enabled.

inv
h,s
U (t) The instance of s invoked by handler h for the event instance t.

INV Service invocations selected for an execution step.

NXT Service invocations generated by an execution step.

PDN Service invocations pending in a given state.

pub
s,e
U (u) The instance of e published when the instance u of service s is executed.

PUB Event instances published during an execution step.

RZV Service instances that result from the synchronisation constraints applied to

EXC .

SRC Source state of an execution step.

TRG Target state of an execution step.

VAL(v) Value of state variable v in a given state.

Appendix B. Proofs

Definition 5.6 Given an execution step

STP = 〈SRC,TRG, INV , EXC, PUB,NXT 〉

of Q2, its µ-reduct is the execution step

〈SRC |µ, TRG |µ, INV |µ, EXC |µ, PUB |µ, NXT |µ〉

of Q1 where

— EXC |µ is the set of service instances u∈EXC such that u∈ dsU for some s∈ µsv(S1),

that is, that are instances of services in Q1.

— PUB |µ is the set of event instances t∈PUB such that t∈ deU for some e∈ µev(E1), that

is, that are instances of events in Q1.

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

An algebraic semantics of event-based architectures 1069

Proof. We prove that STP |µ is indeed an execution step of Q1. This requires us to

prove that:

— For every u∈EXC |µ there is 〈t, h′, u〉 ∈ INV |µ: If u∈EXC |µ, then u∈ for some

s∈ µsv(S1) and u∈EXC . Supose that s′ ∈ S1 and µ(s′) = s. Because STP is an execution

step of Q2, there exists 〈t, h, u〉 ∈INV such that:

– t∈ deU for some e∈ Sub(E2).

– h∈H2(e).

– u = inv
h,s
U (t) and s∈G2(h); this is because algebras of spaces assign disjoint carrier

sets to different services and u∈ dsU, that is, the service that invokes e must be an

instance of s.

On the one hand, from µ(s′) = s∈G2(h) and the fact that µ is a refinement morphism,

it follows that there is h′ ∈G1(s
′) such that µ(h′) = h. This implies that s′ ∈G1(h

′). On

the other hand, µ(h′) = h∈H2(e) and the fact that µ is a refinement morphism implies

that e∈ µ(Sub(E1)) and, hence, there is e′ ∈E1 such that µ(e′) = e and h′ ∈H1(e
′). It

then follows that 〈t, h′, u〉 ∈INV |µ.
— For every 〈t, h′, u〉 ∈NXT |µ, t∈PUB |µ.

If 〈t, h′, u〉 ∈ NXT |µ, then 〈t, µ(h′), u〉 ∈ NXT and t∈ dsU for some e∈ µ(Sub(E1)).

Because STP is an execution step of Q2, we have t∈PUB, so t∈PUB |µ.
— PDNTRG |µ= PDNSRC |µ \INV |µ ∪NXT |µ.

This is a simple consequence of a general result: for every pair A,B of sets of

invocations, (A ∪ B) |µ= A |µ ∪B |µ and (A\B) |µ= A |µ \B |µ.
— For every v ∈V1 such that VALTRG |µ (v) �= VALSRC |µ (v), there is u∈EXC |µ with

u∈ dsU|µ
such that v ∈A1(s).

If VALTRG |µ (v) �= VALSRC |µ (v), then VALTRG(µ(v)) �= VALSRC(µ(v)). Because STP

is an execution step of Q2, there is u∈EXC with u∈ dsU such that µ(v) ∈A2(s
′). Because

µ is a refinement morphism, µ(v) ∈A2(s
′) implies that there is s∈ S1 such that µ(s′) = s

and v∈A1(s). This also implies that u∈EXC |µ.

Definition 5.7 Given a model M of a signature Q2, its µ-reduct is the model of Q1 obtained

by considering the µ-reduct of the Q2-space of M together with the direct acyclic graph

of M and the labelling function L|µ that results from the application of the reduct to the

labels provided by L (that is, L|µ assigns the execution state L(n) |µ to a node n and the

execution step L(r) |µ to an arrow r).

Proof. We prove that M|µ is indeed a model of Q1. This requires the proof of the

following:

— For every arrow r = 〈n1, n2〉, L|µ (r) is of the form 〈L|µ (n1),L|µ (n2), , , , 〉.
This follows trivially from the definition of L|µ and the fact that, because M is a

model of Q2, L(r) is of the form 〈L(n1),L(n2), , , , 〉.
— VALTRG |µ (v) = VALTRG′ |µ (v) for every state variable v ∈V1 and every pair of

arrows r = 〈n, m〉 and r′ = 〈n, m′〉 such that there are s∈A1(v), u∈ dsU|µ
∩ EXC |µ

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

J. L. Fiadeiro and A. Lopes 1070

∩EXC ′ |µ, where L|µ (r) and L|µ (r′) are of the form 〈 , TRG |µ, , EXC |µ, , 〉 and

〈 , TRG′ |µ, , EXC ′ |µ, , 〉, respectively.

It follows from the hypothesis and the fact that µ is a refinement morphism that

there are µ(s) ∈A2(µ(v)), u∈ dµ(s)U ∩ EXC ∩ EXC ′, where L(r) and L(r′) are of the

form 〈 , TRG, , EXC, , 〉 and 〈 , TRG′, , EXC ′, , 〉, respectively. Given that

M is a model of Q2, we have that VALTRG(µ(v)) = VALTRG(µ(v)), which implies that

VALTRG |µ (v) = VAL′
TRG |µ (v).

— For any two arrows r = 〈n, m〉 and r′ = 〈n, m′〉 where L|µ (r) and L|µ (r′) are of

the form 〈 , , INV |µ, EXC |µ, , 〉 and 〈 , , INV ′ |µ, EXC ′ |µ, , 〉, respectively,

and service instance u such that 〈 , , u〉 ∈ INV |µ and 〈 , , u〉 ∈ INV ′ |µ, we have

u∈EXC |µ if and only if u∈EXC ′ |µ.
The hypothesis implies that L(r) and L(r′) are of the form 〈 , , INV , EXC, , 〉
and 〈 , , INV ′, EXC ′, , 〉, respectively. Furthermore, 〈 , , u〉 ∈INV and u∈ dsU for

some s∈ µsv(S1). Given that M is a model of Q2, u∈EXC if and only if u∈EXC ′.

Given that u∈ dsU for some s∈ µsv(S1), we conclude that u∈EXC |µ if and only if

u∈EXC ′ |µ.

Definition 5.8 Given a model M of a design 〈Q2,∆2〉, its µ-reduct M|µ is a model of the

design 〈Q1,∆1〉.

Proof. We begin by stating some auxiliary results related to the satisfiability of the

translation of sentences in the languages HLQ1 ,h, SLQ1 ,s and TLQ1 ,s induced by refinement

morphisms in the corresponding interpretation structures and the satisfiability of the

original formulas in the corresponding reducts.

Let h be a handler of an event e in Q1, t∈ dsU|µ
, s be a service in Q1, u∈ deU|µ

, and

STP = 〈SRC,TRG, INV , EXC, PUB,NXT 〉 be an execution step for Q2.

— Every sentence φ in HLQ1 ,h holds for t and h at STP |µ if and only if µ(φ) holds for t

and µ(h) at STP .

— Every sentence φ in SLQ1 ,s holds for u at SRC |µ if and only if µ(φ) holds for u at

SRC .

— Every sentence φ in TLQ1 ,s holds for u at STP |µ if and only if µ(φ) holds for u at

STP .

In order to prove that M|µ is indeed a model of 〈Q1,∆1〉, we must prove that for every

execution step STP |µ= 〈SRC |µ, TRG |µ, INV |µ, EXC |µ, PUB |µ, NXT |µ〉 that is the label

of an arrow of the underlying graph, the following properties hold:

— For every u∈EXC |µ with u∈ dsU|µ
, we have γl1(s) holds for u at SRC |µ.

If u∈EXC |µ, then u∈ dsU for some s∈ µsv(S1) and u∈EXC . Given that M is a model

of 〈Q2,∆2〉 and dsU|µ
= d

µ(s)
U , we have γl2(µ(s)) holds for u at SRC . Given that µ is

a refinement morphism, γl2(µsv(s)) ⊃ µ(γl1(s)) holds and, hence, µ(γl1(s)) holds for u at

SRC . As a consequence of the auxiliary result enunciated above, γl1(s) holds for u at

SRC |µ.

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

An algebraic semantics of event-based architectures 1071

— For every 〈t, h, u〉 ∈INV |µ and u∈ dsU|µ
, if γu1(s) holds for u at SRC |µ, then u∈EXC |µ.

On the one hand, if 〈t, h, u〉 ∈INV |µ and u∈ dsU|µ
, then 〈t, µ(h), u〉 ∈INV and u∈ dsU for

some s∈ µsv(S1). On the other hand, as a consequence of the auxiliary result enunciated

above, if γu1(s) holds for u at SRC |µ, then µ(γu1(s)) holds for u at SRC . Given that µ

is a refinement morphism, µ(γu1(s)) ⊃ γu2(µsv(s)) holds, so γu2(µsv(s)) holds for u at SRC .

Given that M is a model of 〈Q2,∆2〉 and dsU|µ
= d

µ(s)
U , we know that u∈EXC . Because

u∈ dsU for some s∈ µsv(S1), we conclude that u∈EXC |µ.
— For every u∈EXC |µ with u∈ dsU|µ

, we have ρ1(s) holds for u at STP |µ.
If u∈EXC |µ, then u∈ dsU for some s∈ µsv(S1) and u∈EXC . Given that M is a model

of 〈Q2,∆2〉 and dsU|µ
= d

µ(s)
U , we have ρ2(µ(s)) holds for u at STP . Given that µ is a

refinement morphism, ρ2(µsv(s)) ⊃ µ(ρ1(s)) holds, so µ(ρ1(s)) holds for u at STP . As a

consequence of the auxiliary result stated above, ρ1(s) holds for u at STP |µ.
— For every t∈PUB |µ where t∈ deU|µ

and h∈H1(e), we have η1(h) holds for t and h at

STP |µ.
If t∈PUB |µ, then t∈ deU for some e∈ µev(E1) and t∈PUB. Moreover, because µ is a

refinement morphism, h∈H1(e) implies that µ(h) ∈H2(µ(e)). Given that M is a model

of 〈Q2,∆2〉 and deU|µ
= d

µ(e)
U , we have η2(µ(h)) holds for t and µ(h) at STP . Again

because µ is a refinement morphism, η2(µ(h)) ⊃ µ(η1(h)) holds, so µ(η1(h)) holds for t

and µ(h) at STP . As a consequence of the auxiliary result stated above, η1(h) holds

for t and h at STP |µ.

Definition 5.9 Let 〈σ1 : dsgn(Q0) → D1, σ2 : dsgn(Q0) → D2〉 be morphisms in sDSGN

with pushout 〈α1 : D1 → D, α2 : D2 → D〉. Given a pair 〈µ1 : D1 → D′
1, µ2 : D2 → D′

2〉 of

refinement morphisms in rDSGN, there exists a unique refinement morphism µ : D → D′

in rDSGN satisfying α1; µ = µ1; α
′
1 and α2; µ = µ2; α

′
2 in the category SIGN, where 〈α′

1 :

D′
1 → D′, α′

2 : D′
2 → D′〉 is the pushout of 〈σ1; µ1 : dsgn(Q0) → D′

1, σ2; µ2 : dsgn(Q0) → D′
2〉

in sDSGN and (σi; µi) are the morphisms obtained by lifting the composition of the

underlying signature morphisms to sDSGN.

Proof. We begin by noting that there is a forgetful functor rsign from rDSGN to SIGN

that forgets everything from designs except their signatures. The fact that dsgn(Q0) is a

discrete lift ensures that signature morphisms sign(σi); rsign(µi) give rise to morphisms

σi; µi : dsgn(Q0) → D′
i in sDSGN.

Given that sign preserves pushouts, we have that 〈sign(α1), sign(α2)〉 is a pushout of

〈sign(σ1), sign(σ2)〉 in SIGN. Because 〈sign(α′
1), sign(α′

2)〉 is a candidate for being a different

pushout, from the universal property of pushouts, it follows that there exists a unique

morphism µ : sign(D) → sign(D′) in SIGN satisfying α1; µ = µ1; α
′
1 and α2; µ = µ2; α

′
2. It

remains to prove that µ also defines a morphism µ : D → D′ in sDSGN. We will only

prove that µ satisfies the conditions of refinement morphisms that do not necessarily hold

for morphisms in sDSGN; the other conditions follow straightforwardly.

— The functions µev , µsv , µpar−ev,e, µpar−sv,s, µhr−ev,e, for every e∈E and s∈S , are injective.

This is just a simple consequence of a general result about pushouts in the category

of sets and functions.

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

J. L. Fiadeiro and A. Lopes 1072

— Upper guards are reflected, that is, (µ(γu(s)) ⊃ γ′u(µsv(s))) holds for every s∈ S .

As explained at the end of Section 4, if we use {s1, . . . , sn} to denote a quotient set

of amalgamated services, we have γu({s1, . . . , sn}) = αi1 (γ
u
i1
(s1)) ∧ . . . ∧ αin (γ

u
in
(sn)) where

α′
ij

is either α1 or α2, depending on whether sj belongs to S1 or S2. Similarly, if we

use {s′
1, . . . , s

′
m} to denote a quotient set of amalgamated services of designs D′

1 and

D′
2, we have γ′u(s′

1, . . . , s
′
n) = α′

i1
(γui1 (s

′
1)) ∧ . . . ∧ α′

in
(γuin (s

′
n)) where α′

ij
is either α′

1 or α′
2,

depending on whether s′j belongs to S ′
1 or S ′

2. We prove that, for every s′
j in the

quotient set corresponding to µ(s) (that is, s′j in D′
1 or D′

2 such that αij (s
′
j) = µsv(s)),

µ(αi1 (γ
u
i1
(s1))) ∧ . . . ∧ µ(αin (γuin (sn))) ⊃ α′

ij
(γ′u
ij
(s′
j)) holds.

It is not difficult to conclude that for every s′
j in the quotient set corresponding to

µ(s) there exists an sj in the quotient set corresponding to s such that µij (sj) = s′
j .

Because µij is a refinement morphism, we have that µij (γ
u
ij
(sj)) ⊃ γ′u

ij
(µij (sj))) holds, that

is, µij (γ
u
ij
(sj)) ⊃ γ′u

ij
(s′
j) holds. Then, α′

ij
(µij (γ

u
ij
(sj))) ⊃ α′

ij
(γ′u
ij
(s′
j)) also holds. The result

follows trivially from the equalities αi; µ = µi; α
′
i.

Acknowledgements

This work was partially supported through the IST-2005-16004 Integrated Project SEN-

SORIA: Software Engineering for Service-Oriented Overlay Computers. Antónia Lopes

was partially supported by a grant from Fundação para a Ciência e Tecnologia during an

extended stay at the University of Leicester. This work was developed while José Fiadeiro

was on study leave.

References

Alonso, G., Casati, F., Kuno, H. and Machiraju, V. (2004) Web Services, Springer-Verlag.

Bacon, J., Moody, K., Bates, J., Hayton, R., Ma, C., McNeil, A., Seidel, O. and Spiteri, M. (2000)

Generic support for distributed applications. IEEE Computer 33 (3) 68–76.

Bradbury, J. and Dingel, J. (2003) Evaluating and improving the automatic analysis of implicit

invocation systems. In: Proceedings of the 11th ACM SIGSOFT Symposium on Foundations of

Software Engineering 2003 held jointly with 9th European Software Engineering Conference, ACM

Press 78–87.

Carzaniga, A., Rosenblum, D. and Wolf, A. (2001) Design and evaluation of a wide-area event

notification service. ACM Transactions on Computer Systems 19 283–331.

Dingel, J., Garlan, D., Jha, S. and Notkin, D. (1998) Towards a formal treatment of implicit

invocation. Formal Aspects of Computing 10 193–213.

Ehrig, H. and Mahr, B. (1985) Fundamentals of Algebraic Specification 1: Equations and Initial

Semantics, EATCS Monographs on Theoretical Computer Science 6.

Eugster, P., Felber, P., Guerraoui, R. and Kermarrec, A.-M. (2003) The many faces of

publish/subscribe. ACM Computing Surveys 35 (2) 114–131.

Fiadeiro, J. L. (2004) Categories for Software Engineering, Springer-Verlag.

Fiadeiro, J. L. and Lopes, A. (1997) Semantics of architectural connectors. In: Bidoit, M. and

Dauchet, M. (eds.) TAPSOFT: Theory and Practice of Software Development. Springer-Verlag

Lecture Notes in Computer Science 1214 505–519.

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

An algebraic semantics of event-based architectures 1073

Fiadeiro, J. L. and Lopes, A. (2006) A formal approach to event-based architectures. In: Baresi, L.

and Heckel, R. (eds.) Fundamental Aspects of Software Engineering. Springer-Verlag Lecture

Notes in Computer Science 3922 18–32.

Fiadeiro, J. L., Lopes, A. and Bocchi, L. (2006) A Formal Approach to Service Component

Architecture. In: Bravetti, M., Nez, M. and Zavattaro, G. (eds.) Web Services and Formal

Methods, Third International Workshop. Springer-Verlag Lecture Notes in Computer Science

4184 193–213.

Fiadeiro, J. L., Lopes, A. and Bocchi, L. (2007) Modules for service-component architectures. In:

Fiadeiro, J. and Schobbens, P-Y. (eds.) Current Trends in Algebraic Development Techniques.

Springer-Verlag Lecture Notes in Computer Science 4409 37–55.

Fiadeiro, J. L., Lopes, A. and Wermelinger, M. (2003) A mathematical semantics for architectural

connectors. In: Backhouse, R. and Gibbons, J. (eds.) Generic Programming. Springer-Verlag

Lecture Notes in Computer Science 2793 190–234.

Garlan, D., Khersonsky, S. and Kim, J. (2003) Model checking publish-subscribe systems. In: Ball, T.

and Rajamani, S. (eds.) Model Checking Software. Springer-Verlag Lecture Notes in Computer

Science 2648 166–180.

Garlan, D. and Notkin, D. (1991) Formalizing design spaces: Implicit invocation mechanisms. In:

Prehn, S. and Toetenel, W. J. (eds.) VDM’91: Formal Software Development Methods. Springer-

Verlag Lecture Notes in Computer Science 551 31–44.

Goguen, J. (1973) Categorical foundations for general systems theory. In: Pichler, F. and Trappl, R.

(eds.) Advances in Cybernetics and Systems Research, Transcripta Books 121–130.

Katz, S. (1993) A superimposition control construct for distributed systems. ACM TOPLAS 15 (2)

337–35.

Lopes, A. and Fiadeiro, J. L. (2004) Superposition: composition versus refinement of non-

deterministic action-based systems. Formal Aspects of Computing 16 (1) 5–18.

Lopes, A. and Fiadeiro, J. L. (2005) Algebraic semantics of design abstractions for context-awareness.

In: Fiadeiro, J. L., Mosses, P. and Orejas, F. (eds.) Algebraic Development Techniques. Springer-

Verlag Lecture Notes in Computer Science 3423 79–93.

Lopes, A. and Fiadeiro, J. L. (2006) Adding mobility to software architectures. Science of Computer

Programming 61 (2) 114–135.

Meier, R. and Cahill, V. (2002) Taxonomy of distributed event-based programming systems. In:

Proceedings of the International Workshop on Distributed Event-Based Systems, IEEE Computer

Society 585–588.

Misra, J. and Cook, W. (2006) Computation orchestration: A basis for wide-area computing. Journal

of Software and Systems Modelling 6 (1) 83–110.

Sullivan, K. and Notkin, D. (1992) Reconciling environment integration and software evolution.

ACM TOSEM 1 (3) 229–268.

https://doi.org/10.1017/S0960129507006299 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006299

